INNOVATION IN THE ANALYSIS OF THERAPEUTIC CHANGE: COMBINING BOTH IDIOGRAPHIC AND NOMOTHETIC APPROACHES IN ONE VISUAL ANALYSIS.

Neville M Blampied
University of Canterbury
Christchurch, NZ
The Challenge of Change

Change central to all applied & clinical psychology

Detect
Induce
Measure
Analyse
Theorise
Explain
Predict & Control

CHANGE
Methodological challenges researching change (1)

Focus
• within-participant change
• Not between participant difference
 • Rutherford “stamp collecting”
 • Lakens (2013) “designism”

It depends on whether we are interested in causation at the group or individual level. If we are interested in causation at the group level, obtaining differences in between group means is reasonable. But if the causal hypothesis is at the individual level, obtaining differences between group means might be fine for a start, but it is not the basis for a strong conclusion. …

Methodological challenges researching change (2)

Focus

- On Individuals, not Group means

So we need

idiographic as well as nomothetic science

The application of knowledge is always to the individual case (Allport, 1942, p 58)

Causality operates on single instances, not on populations. (Cohen, 1994, p 1001).

... it is the individual organism that is the principle unit of analysis in the science of psychology. (Barlow & Nock, 2009, p19).
Nomothetic vs idiographic science

nomothetic
- Concerned with general laws
- Concerned with the universal
- Abstract
- Timeless
- Objective/impersonal
- Inter-individual research
- Legacy of Quetelet/Fisher

idiographic
- Concerned with the individual case in context
- Concerned with the particular
- Concrete
- Historically situated
- Subjective/personal
- Intra-individual research
- Legacy of Bernard/Pavlov/Skinner
This is not a trivial issue

Utilizing reliable and clinically significant change criteria to assess for the development of depression during smoking cessation treatment: The importance of tracking idiographic change

Andrew M. Busch, Theodore L. Wagener, Kristin L. Gregor, Kevin T. Ring, Belinda Borrelli

Keywords:
- Smoking
- Depression
- Reliable change
- Clinically significant change

Abstract

Studies typically measure mood changes during smoking cessation treatment in two ways: (a) by tracking mean change in depression scores or (b) by tracking the incidence of major depression development using diagnostic assessments. However, tracking mean change does not capture variability in individual mood trajectories, and diagnosing participants at multiple time points is time and labor intensive. The current study proposes a method of assessing meaningful increases in depression without the use of diagnostic assessments by utilizing reliable and clinically significant change criteria. This method was applied to 212 participants in a smoking cessation trial to explore the relationship between smoking status and depressed mood, assessed at baseline, end-of-treatment, and 2-, 6-, and 12-month follow-ups. High rates of reliable (24–28%) and both reliable and clinically significant increases (23–24%) in depressed mood were observed across all participants, regardless of whether or not they achieved abstinence. However, when we calculated group mean change in depression during the trial, only decreases in depressed mood were observed across several intervals. Findings indicate that utilizing reliable and clinically significant change criteria to track symptoms of depression during smoking cessation treatment leads to different conclusions than simply tracking mean changes. We propose that a combination of reliable and clinically significant change criteria may serve as a useful proxy measure for the development of major depressive disorder during smoking cessation.
Investigating change –

Some questions -

Is there a better/more useful way to do it?
Is there an answer to Barlow’s question?
Why can’t we be more idiographic in our research?

Can we combine nomothetic & idiographic methods of analysis?
Can we incorporate visual analysis?

As soon as you have collected your data, before you compute any statistics, look at your data.

Can we integrate with the new statistics?
The new statistics

- Estimation
- Precision –
 - Confidence intervals
- Effect sizes (descriptive)
- Meta-analysis (inference)
 (best evidence synthesis)
 *Both lead to concern for Measurement: validity/reliability/error

Does not routinely use NHST

... friends do not let friends compute p [Klein, 2013].
I conclude from the arguments and evidence I have reviewed that best research practice is not to use NHST at all [Cumming, 2012]
Beginning at the beginning –
Brinley Plots - 1965

Experimental Cognitive research

Brinley’s insight

Scatterplots –
Plot same DV on X & Y

If

• X scale = Y scale, &
• Common origin
• Then 45° diagonal =
 line of no effect/X = Y

Systematic effects deviate from the line
Brinley Plots – the original

Coordinate pairs plotted represent sub-group means grouped by categorical variable (age)

Figure 1. Mean response time (RT) of the older adult group as a function of the mean RT of the young adult group in the corresponding experimental condition. The solid line is fit to the data from the 9 shift conditions (open circles) and the dashed line is fit to the data from the 12 nonshift conditions. If the condition mean RTs for the old and young groups were equal, the points would fall along the diagonal. Data are taken from Brinley (1965).

Fig. 1. A Brinley plot showing the reaction time (RT) of non-video-game players (NVGPs) on the X-axis versus that of expert video-game players (VGPs) on the Y-axis, for 89 different experimental conditions from nine different types of task. For each experimental condition, the RTs of VGPs and NVGPs were retrieved and plotted as one separate data point. A simple linear function \(y = mx \) was used to describe the relationship between VGP and NVGP RTs (dashed line). VGPs responded 11% faster than NVGPs across a wide range of RTs (VGP RTs = 0.89 × NVGP RTs, \(R^2 = 0.98 \)). Importantly, similar accuracy was observed across groups, ruling out an explanation in terms of simple speed-accuracy trade-off (VGP accuracy = 0.99 × NVGP accuracy, \(R^2 = 0.92 \)). The studies are (a) Greenfield, deWinstanley, Kilpatrick, & Kaye (1994); (b) Castel, Pratt, & Drummond (2005); (c) Bialystok (2006); (d) Dye, Green, & Bavelier (2009); (e) Green & Bavelier (2003); (f & g) Bavelier & Bailey (2007).
Modified Brinley plots - 1979

Clinical research
Brinley plot modified

- **Individual’s** data points
 - @ t_1 (X-axis) plotted against t_2 (Y-axis)
First use in clinical context - 1979

• $t_1 =$ weight change @ end of treatment

• $t_2 =$ weight change @ 5 yr follow-up

• Stable weight = points on the line (NB: reverse direction on axis scale)

Other clinical examples 1984 - 1995

Therapy for alcohol abuse

CBT for marital distress

Rationale

Consistently emphasised that group mean data does not necessarily apply to any specific individual Clinicians need to know about individual patterns of response to treatment

...how many clients actually show improvement from pre- to post-treatment? ... Statistical group outcome reports convey very little about what types of individual change are typical

The classical approach

Now regarded as the *classical* approach

CBT for marital distress

Parallel development in biometrics

Issue –

How to compare gold-standard assay with new assay

Lin (1989)

• Same plot
• Same logic
• $p_c = \text{concordance correlation coefficient}$
The classical approach

I’m following & extending this work
There is a moral to the story

This innovative research had almost no impact on subsequent clinical research!

No RCT published in these journals has ever used these plots.

Modified Brinley plots – key features

- Individual’s data is plotted
- Axes same scale & origin
- 45° diagonal is line of no effect

(a) No time effect shown – perfect stability $x = y$
Modified Brinley plots – key features

(b) Unsystematic variability/measurement error
Modified Brinley plots – key features

(c & d) Systematic change over time is shown as points above/below the line
Modified Brinley plots – aids to interpretation

Add clinical cut-off lines

• After Jacobson, et al
Modified Brinley plots – aids to interpretation

Clinical cut-off lines
Modified Brinley plots – aids to interpretation

- Arrow indicates score reduction = improvement
- Graph sectors have meaningful interpretation
Interpretation where increase = clinical improvement
Further Examples

(a) Shows possible interaction between treatment and initial severity of problem

(b) Shows effect of categorical variable split.

Many categorical variables can be investigated –

gender
age
ethnicity
therapist
therapy features
etc
How much change is needed to believe that it is real change?

Suppose

- d is large
- t is statistically significant

Therefore group mean change is OK

But what about individual change?

How much is enough to be real?

The Reliable Change Index

(Jacobson, et al., 1984; Jacobson & Truax, 1991)
Reliable Change & Measurement Error

Frequency of error
The normal law of error

Distribution of measurement error
The Gaussian distribution
RC – what you need to know to compute

Info about the measure

- $S = \text{SD of reference data-set}$
- $r_{xx} = \text{Test-retest reliability of measure (Chronbach’s alpha)}$

Used to compute
1. SEM
2. SDiff

Both are a form of Standard Deviation
SDiff is SEM of the Error Distribution of the Difference Scores

Distribution of measurement error

- Is a Normal distribution
- $\frac{\text{SEM}}{\text{SDiff}}$ is the Standard Deviation of the error distribution
- 95% of errors lie within $\pm 1.96 \text{SEM}$
Logic of RCI

Is the same as for the t-test

Observation = true score +/- error

Ho for any Difference Score = no difference \((\text{true score } 1 = \text{true score } 2)\) (i.e., no treatment effect)

Therefore, if Difference Score $\neq 0$, must be due to error

BUT, if Standardized Difference Score $> +/-1.96$ this is improbable \((p < .05)\) under Ho

Therefore we reject Ho and accept that there is a treatment effect \((\text{true score } 1 \neq \text{true score } 2)\) – in combination with error
RC computation

Steps & formulae

1. Compute Standard Error of Measurement
 \[SE_M = s\sqrt{1-r_{xx}} \]
2. Compute \(S_{DIFF} \)
 \[S_{DIFF} = \sqrt{2(SE_M^2)} \]
3. Compute the difference score for each individual
 \[Diff = x_1 - x_2 \]
4. Compute \(\frac{x_1 - x_2}{S_{DIFF}} \)
5. If \(\geq 1.96 \) a difference that large not likely due to measurement error – is in 5% tail of error distribution
 Change not likely due to measurement error p < .05

Example

1. If variability \(s = 7.5 \)
 Chronbach’s \(\alpha = .80 \)
 \[SEM = 7.5\sqrt{1-.8} = 3.35 \]
2. \(S_{DIFF} = \sqrt{2(3.35*3.35)} = 4.74 \)
3. So if
 \(x_1 = 47.75 \)
 \(x_2 = 32.5 \quad \text{Diff} = 15 \)
4. \(\frac{15}{4.74} = 3.16 \)
 \(3.16 > 1.96 – \text{Change is reliable} \)
Displaying RC information (1)

Reliable Change Index (boundaries) = \(\pm S_{\text{Diff}} \times 1.96 \)
Displaying RC information (2)

By classifying participants
RC+, RCo, RC-

<table>
<thead>
<tr>
<th>Time 1</th>
<th>Time2</th>
<th>t1 - t2</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
<td>31</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>27</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>27</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>25</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>21</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>17</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>13</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>9</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>7</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>o</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>o</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>-6</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>-8</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>-18</td>
<td>-</td>
</tr>
</tbody>
</table>
Interpreting the plot … Overlaying Nomothetic Group information

Means @ t₁ & t₂

+ marks the means
Interpreting the plot …

Confidence Intervals

Means +/- 95% CI

What does the CI mean?

The interval [95% CI] estimates μ, with 95% confidence.

[Klein, R.B. (2013) Beyond significance testing 2$^\text{nd}$ Ed. p 41]
Interpreting the plot ... relation to \(t \)-test

Null hypothesis is that the point lies on the diagonal

\[
\text{Mean 1} = \text{Mean 2}
\]

Gap is tested by:
- Repeated measures \(t \)
- \(95\% \text{CI on difference scores} \)
Interpreting the plot …

Cohen’s d_{av}

For within-subjects use d_{av} (or d_{rm} to control for correlation)

For calculation of d_{av} etc
See Cumming (2012) &
Lakens (2013)

[both provide free software apps
Cumming’s app also calculates the 95% CI on d]
RC+% - a new Effect Size

- RC+% = nRC+/N x 100

- Is another Effect Size measure
 - Measures individual impact
 - Vs Cohen’s d_{av}
 - Measures group mean impact
Another useful ES

Common Language Effect Size CLES =
The probability of any case having a better score at time 2 than time 1 (Lakens, 2013)

Aka Percent superiority ES

NB: RC+% is more conservative – requires reliable change + shift in clinical direction
Uses: Tracking change over time

- Group mean +
- \(ES1 = d_{rm} \)
- \(ES2 = CLES \)

(data from Lothian, Blampied, & Rucklidge, *Clinical Psychological Science*, 2016)
Uses: Summarising much data

14 subjects x 5 phases x 5 DVs = 350 data points

(Gordon, et al., 2015)
Uses: Confirming that baselines are stable

[Sole, et al., 2016]
Uses: Differentiating participants

From Norton, Blampied, & France, 2016 - Use of Teen Triple-P post Earthquake IES = Impact of Event Scale
Uses: Adapting for absolute changes over time and practice effects

- Solid diagonal shifted upwards represents $Y = X(\text{age}) + 2\text{mo}$ (Reading age)
- Dashed diagonal represents $Y = X(\text{age}) + 12\text{mo}$

Robson, Blampied & Walker (2015)
Uses: Revealing what conventional analyses conceal

- Between & within-groups NHST statistically significant
- ES large
- BUT – few participants show clinically significant change

[data courtesy of Rosemary Tannock]
USES: Original study effect size versus replication effect size (correlation coefficients).

Open Science Collaboration Science 2015;349:aac4716
http://www.sciencemag.org/content/349/6251/aac4716

Published by AAAS
One graph to rule them all?

- Visual analysis √
- Groups √
- Means √
- 95% Confidence intervals √
- Individuals √
- Reliable Change √
- Effect size √
- 95% CI on ES √
- % with Reliable Change √
- Clinical significance √
Conclusion: Potential synthesis merging nomothetic & idiographic research & the new statistics?

The new statistics$^{(nomothetic)}$ + single-case/individuals$^{(idiographic)}$ + replication$^{(both)}$ + visual analysis$^{(both)}$

Abandon our over-reliance on NHST $p < .05$

And

- Show proper respect for measurement – Calibration & SEM
- Use Reliable Change @ individual level
- Attend to clinical/practical significance [Effect size] instead of statistical significance

Humans, not the gods, created all forms of enquiry, and we can and should modify them.

[Camic, Rhodes, & Yardley, 2003, p4]
Acknowledgements & Thanks

Colleagues

Julia Rucklidge
Karyn France
Jacki Henderson
Lawrence Walker
Mark Sobell
Bill Fordyce

Students – for letting me play with their data

Jo Capstick
Amy Clarke
Heather Gordon
Martin Hood
Wendy Kelly (VUW)
James Maguire
Jess McIvor (Massey)
Joanna Lothian
Pip Newton
Tabitha Norton
Cathy Robson
Ellen Sole
Frances Sutherland
Richard Straight
Vic Weedon (Massey)
Abstract

For decades there have been calls for clinical research in psychology to be more idiographic and less dependent on group statistical inference, because what applies in aggregate (nomothetic research) does not necessarily apply to any specific individual (idiographic application). Recommended alternatives include more extensive use of graphs and visual analysis of data. This presentation describes the history, construction and interpretation of modified Brinley plots, a technique for analysing treatment outcomes for individuals within groups that is particularly suitable for therapy outcome research, especially during the treatment-development phase when full randomized controlled trials may be premature. Modified Brinley plots are scatter-plots that compare individual scores at time 1 (normally pre-treatment) with scores at various times post-treatment. If the origin and axis scales of the graph are the same no or little change is shown by data points clustering on or about the 45° diagonal line. Change over time (improvement or deterioration) is shown by shifts away from the diagonal. Interpretation is aided by the addition of clinical cut-offs, and by the use of the Reliable Change Index (based on measurement error), features which partition the graph space into meaningful zones. In addition to displaying individuals’ data, these graphs may also display group effects such as means, variances, confidence intervals, and effect sizes. Both between-group and within-group data may be presented and analysed this way and large amounts of data can be efficiently presented and clearly understood within one figure.