Central automorphisms of finite Laguerre planes

SCDO 2016

Günter Steinke

School of Mathematics and Statistics
University of Canterbury
New Zealand

17 February 2016
What is a Laguerre plane?

Definition
A finite Laguerre plane $\mathcal{L} = (P, C, G)$ of order n consists of a set P of $n(n+1)$ points, a set C of n^3 circles and a set G of $n+1$ generators (where circles and generators are both subsets of P) such that the following three axioms are satisfied:

(G) G partitions P and each generator contains n points.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator can be joined by a unique circle.

A finite Laguerre plane of order n is a transversal design $\text{TD}_1(3, n+1, n)$, or equivalently, an orthogonal array of strength 3 on n symbols, $n+1$ constraints and index 1. In case n is odd the Laguerre plane corresponds to an antiregular generalized quadrangle of order (n, n).
Models of Laguerre planes

All known finite Laguerre planes are ovoidal, that is, they are obtained as the geometry of non-trivial plane sections of a cone, minus its vertex, over an oval in 3-dimensional projective space over a finite field \mathbb{F}. In case the oval is a conic one obtains the miquelian Laguerre plane over \mathbb{F}.

\[\text{PG}(3,\mathbb{F}) \]

\[\text{PG}(2,\mathbb{F}) \]
Models of Laguerre planes

All known finite Laguerre planes are ovoidal, that is, they are obtained as the geometry of non-trivial plane sections of a cone, minus its vertex, over an oval in 3-dimensional projective space over a finite field \mathbb{F}. In case the oval is a conic one obtains the miquelian Laguerre plane over \mathbb{F}.

\[
P G(2, \mathbb{F}) \quad \quad P G(3, \mathbb{F})
\]
Derived incidence structures

The derived design at a point p of a finite Laguerre plane of order n is an affine plane of order n. Circles not passing through p induce ovals in the projective completion of the affine plane at p by adding the point ω at infinity of vertical lines that come from generators of the Laguerre plane.

A planar representation of an ovoidal Laguerre plane $L(f)$ has point set $(\mathbb{F} \cup \{\infty\}) \times \mathbb{F}$ and circles are of the form

$$\{(x, af(x) + bx + c) \mid x \in \mathbb{F}\} \cup \{(\infty, a)\}$$

where $a, b, c \in \mathbb{F}$ and $f : \mathbb{F} \to \mathbb{F}$ is parabolic.
Derived incidence structures

The derived design at a point p of a finite Laguerre plane of order n is an affine plane of order n. Circles not passing through p induce ovals in the projective completion of the affine plane at p by adding the point ω at infinity of vertical lines that come from generators of the Laguerre plane.

A planar representation of an ovoidal Laguerre plane $\mathcal{L}(f)$ has point set $(\mathbb{F} \cup \{\infty\}) \times \mathbb{F}$ and circles are of the form

$$\{(x, af(x) + bx + c) \mid x \in \mathbb{F}\} \cup \{(\infty, a)\}$$

where $a, b, c \in \mathbb{F}$ and $f : \mathbb{F} \to \mathbb{F}$ is parabolic.

Theorem

- A finite Laguerre plane of odd order with a Desarguesian derivation is miquelian. (Chen, Kaerlein 1973, Payne, Thas 1976)
- A Laguerre plane of order at most ten is ovoidal and, in fact, miquelian except in case of order 8. (S. 1992, 2003)
An automorphism of a Laguerre plane \mathcal{L} is a permutation of the point set that takes generators to generators and circles to circles.

A homothety of \mathcal{L} is an automorphism of \mathcal{L} that is either the identity or fixes precisely two points on different generators and induces a homothety in the derived affine plane at each of these two fixed points. One speaks of a $\{p, q\}$-homothety if p, q are the two fixed points.

A group Γ of automorphisms of \mathcal{L} is said to be $\{p, q\}$-transitive if Γ contains a subgroup of $\{p, q\}$-homotheties that acts transitively on each circle through p and q minus p and q.
Laguerre homotheties

An *automorphism* of a Laguerre plane \mathcal{L} is a permutation of the point set that takes generators to generators and circles to circles. A *homothety* of \mathcal{L} is an automorphism of \mathcal{L} that is either the identity or fixes precisely two points on different generators and induces a homothety in the derived affine plane at each of these two fixed points. One speaks of a $\{p, q\}$-*homothety* if p, q are the two fixed points.

A group Γ of automorphisms of \mathcal{L} is said to be $\{p, q\}$-transitive if Γ contains a subgroup of $\{p, q\}$-homotheties that acts transitively on each circle through p and q minus p and q.

Ruth Kleinewillinghöfer investigated the possible configurations \mathcal{H} of all unordered pairs of distinct points $\{p, q\}$ for which the automorphism group of \mathcal{L} is $\{p, q\}$-transitive and found 13 feasible configurations. One says that \mathcal{L} is of type m if \mathcal{H} is as in configuration m.
Kleinewillinghöfer types w.r.t. homotheties

1. $\mathcal{H} = \emptyset$.

5. There are a circle C and a fixed-point-free involution $\phi : C \to C$ such that $\mathcal{H} = \{\{p, \phi(p)\} \mid p \in C\}$.

8. There are two distinct generators F, G such that $\mathcal{H} = \{\{p, q\} \mid p \in F, q \in G\}$.

9. Each point of \mathcal{L} is in exactly one pair in \mathcal{H}.

11. There is a point p such that $\mathcal{H} = \{\{p, q\} \mid q \in P \setminus \{p\}\}$.

12. There is a generator G such that $\mathcal{H} = \{\{p, q\} \mid p \in G, q \in P \setminus G\}$.

13. \mathcal{H} consists of all unordered pairs of points on different generators.
A finite ovoidal Laguerre plane has Kleinewillinghöfer type 1, 8, 12 or 13.

The respective types are obtained as $\mathcal{L}(f)$ over $\text{GF}(2^h)$ when

$$f(x) = \begin{cases}
 x^{1/6} + x^{3/6} + x^{5/6} & \text{where } h \geq 5 \text{ is odd;} \\
 x^6 & \text{where } h \geq 5 \text{ is odd;} \\
 x^{2i} & \text{where } \gcd(i, h) = 1; \\
 x^2 & \text{any } h.
\end{cases}$$
Characterisations and exclusions

Theorem

- A Laguerre plane is of Kleinewillinghöfer type 13 if and only if it is miquelian. (Hartmann, 1982)

- A finite Laguerre plane has Kleinewillinghöfer type 12 if and only if it has even order and is ovoidal over a proper translation oval (not a conic). (Hartmann, 1982, S. 2015)

 \(\mathcal{H} = \{\{p, q\} \mid p \in G, q \in P \setminus G\} \)

- A finite Laguerre plane of Kleinewillinghöfer type 5 or 9 has odd order. (Kleinewillinghöfer, 1979)

 \(\text{type 5: } \mathcal{H} = \{\{p, \phi(p)\} \mid p \in C\}, \phi \text{ fixed-point-free involution on } C, \)

 \(\text{type 9: each point is in exactly one pair in } \mathcal{H} \)
Theorem

- A finite Laguerre plane that contains a group of automorphisms of Kleinewillinghöfer type 11 is miquelian or ovoidal over a translation oval; the plane then is of type 13 or 12.

\[(\mathcal{H} = \{\{p, q\} \mid q \in P \setminus [p]\})\]

- A finite Laguerre plane of type 8 is an elation Laguerre plane, that is, the plane admits a group of automorphisms that acts trivially on the set of generators and regularly on the set of circles.

\[(\mathcal{H} = \{\{p, q\} \mid p \in F, q \in G\})\]

- A finite non-ovoidal elation Laguerre plane has type 1 or 8.