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Abstract 
Compared to natural forests, fast-growing plantations of exotic species such as Pinus radiata 

are often perceived as marginal habitat or unsuitable habitat for most native species. By 

studying Coleoptera (beetles) in a variety of landscape elements (pasture, native forest and 

different aged Pinus radiata stands) in a highly modified and fragmented landscape in New 

Zealand I aimed to determine the value of exotic plantation forests for native biodiversity, and 

how these species are affected by different sized clearfell harvest areas.  

 

Pitfall trap sampling of beetles showed that plantation forest stands can provide suitable 

complimentary habitat to native forest for many species. Rarefied species richness of 

Carabidae, Scarabaeidae and Scolytinae was not significantly different between habitats, 

however, habitat types differed significantly in their beetle community composition. 

Comparing different production habitats, Pinus radiata stands had a beetle community 

composition most similar to native forest. However, a small minority of species, e.g., 

Dichrochile maura, were restricted to native forest habitat highlighting the importance of 

retaining indigenous ecosystems within plantations. Unlike human modified habitats, native 

forests did not provide suitable habitat for exotic species.  

 

Clearfell harvesting is controversial and its impact on biodiversity is a key constraint for 

many forest certification programs, such as that administered by the Forest Stewardship 

Council (FSC). Despite this, no replicated manipulative experimental studies of the impact of 

different sized clearfell harvest areas on biodiversity have been undertaken at scales relevant 

to the New Zealand forest industry. One potential model of the impact of different clearfell 

harvest sizes is the concept of a threshold size. A threshold scenario may occur where 

clearfell harvest impacts increase at a rate disproportionate to the change in clearfell size over 

a small range of harvest areas, but impacts remain relatively unchanged either side of the 

threshold zone. I sampled Coleoptera in experimentally created 0.01, 0.05, 0.5, 5.0, 50 and 

500 ha clearfells within Pinus radiata plantations in the central North Island of New Zealand. 

The wide range of clearfell harvest sizes, including some very small areas, such as 0.01 ha 

was instigated in an attempt to document potential clearfell harvest size thresholds. 

Rarefied native beetle species richness was higher in harvest areas compared to adjacent 

mature plantation stands. The beetle species richness in 5 ha and 500 ha harvest areas was 

significantly greater species than that in small 0.01 – 0.5 ha harvest areas. Although, the high 
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beetle diversity recorded in 500 ha clearfells should be treated with caution due to 

confounding spatial autocorrelation. The degree of change in beetle community composition 

increased with increasing clearfell harvest area. Beetle assemblages in large harvest areas 

were less similar to their paired adjacent mature forest than smaller harvest areas. Although, 

constrained multivariate ordination techniques did show a short-term change in beetle species 

composition between recently clearfelled harvest areas of as little as 0.05 ha and adjacent 

mature P. radiata stands. The colonisation by open-habitat disturbance-adapted species was a 

key driver of this change, some species dispersed into clearfelled stands in significant 

densities within days post-harvest. Overall, there were no distinct short-term trends to the 

change in species richness as a function of increasing harvest area that would suggest an 

ecological impact threshold response. 

  

If short-term outcomes of clearfell harvesting are ameliorated by successful recolonisation, 

the long-term spatial arrangement of different aged stands becomes more important for the 

maintenance of biodiversity at the landscape level than short-term consequences of 

harvesting. By sampling selected beetle taxa in 1, 2, 4, 8, 16 and 26 year-old stands, I found 

that the abundance of seven out of eight of the species selected for analysis recovered to 

levels similar to those in adjacent mature forest within the timeframe of a single harvest 

rotation. Individual species utilised different aged stands, indicating different life-history 

strategies.  For example, open-habitat, disturbance-adapted species such as Cicindela 

tuberculata and Sitona discoideus were prominent in young stands, and forest species such as 

Pycnomerus sophorae and Paracatops phyllobius were highly abundant in older stands. These 

alternative life-history strategies highlight the benefits of maintaining a mixture of different 

aged stands to increase biodiversity at the landscape level.  

 

This thesis fills an important gap in our knowledge of biodiversity in production landscapes. I 

show that plantation forests have value as complimentary habitat to native forest and they 

make an important contribution to the maintenance of biodiversity at the landscape level. 

Although clearfell harvesting is a severe disturbance to the forest ecosystem, the long-term 

recovery of beetle populations suggests that harvesting is not the key limiting factor to the 

enhancement of biodiversity in the plantation forests studied. This unusual situation is 

possibly the result of prior land-use history, as many plantations were established on degraded 

pastoral land, and harvest-sensitive species are unlikely to have survived this initial land-use 



 

Paper produced from 84% FSC certified forest resources 

v

 

change. As such, the severity of the long-term impacts of clearfell harvesting on biodiversity 

are likely to be context specific and will vary accordingly. 

 

The importance of spatial heterogeneity of habitat elements, including different aged 

plantation stands and native forest remnants, needs to be investigated in more detail to 

determine what limits biodiversity in this plantation landscape. Key points to consider are the 

proximity to, and proportion of, native forest cover in the landscape and the degree of 

connectivity among native remnants. It is these landscape-level attributes that may determine 

biodiversity at a regional scale, and more emphasis should be placed on landscape scale 

factors and there interaction with stand specific forest management practices. For example, 

the spatial mosaic of harvesting areas may need to be of a finer-scale when there are fewer 

native remnants within the landscape.  
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Chapter 1 - Introduction 
 

1.1 Background 

1.11 Recent trends in fragmentation research 

Deforestation and forest fragmentation are well-known threats to biodiversity, and are key 

drivers of global species extinctions (Tilman et al. 1994, Hanski et al. 1995, Sala et al. 2000, 

Ewers et al. In Press). Research into forest fragmentation has until recently focussed on three 

key areas: reduction of total forest area within the landscape, increased isolation of the 

remaining forest remnants and the creation of habitat edges (Kupfer et al. 2006), and their 

implications for organisms living in remnant habitat. For example, the size and shape of 

remnant forest patches and how these modify microclimate (Chen et al. 1995), dispersal and 

edge effects (Murcia 1995, Fagan et al. 1999), population viability and metapopulation 

dynamics (Hanski and Ovaskainen 2000, 2002, Ross et al. 2002, Steffan-Dewenter 2003) and 

the functional attributes of ecosystems (Didham et al. 1996). This focus has stemmed from the 

island biogeographic principles underpinning most of fragmentation research (MacArthur and 

Wilson 1967), in which remaining habitat was viewed for the most part as islands in an 

inhospitable matrix of unsuitable habitat (Haila 2002).  However, it is now well recognised 

that remnant habitat fragments are only one component of a heterogeneous landscape made up 

of different elements that vary in habitat quality (Haila 2002, Kupfer et al. 2006). Evidence is 

now mounting that attributes of the matrix, including its extent, degree of contrast from 

remnant habitat, and permanence will affect the isolation of forest fragments (Sisk et al. 1997, 

Lindenmayer et al. 2001, Marzluff and Ewing 2001, Brotons et al. 2003).  

 

1.12 Plantations: habitat or matrix? 

Despite the international focus of research on natural ecosystems (Fazey et al. 2005), 

plantations are increasingly recognised as significant reservoirs of biodiversity, particularly in 

heavily modified landscapes (Humphrey et al. 2001, Carnus et al. 2006). This realisation 

comes at a time when researchers are beginning to recognise that there are few pristine native 

habitat remnants in some landscapes, and in such situations these will be insufficient to 

effectively preserve biodiversity. In such situations the modified production habitat (matrix 

habitat) will be important for the protection of biodiversity at the regional scale (Novacek and 
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Cleland 2001).  These ideas are now incorporated in national government policies such as the 

New Zealand Biodiversity Strategy (NZBS, www.biodiversity.govt.nz), in an effort, perhaps, 

to change historical public and industry attitudes that conservation of biodiversity and 

economic production are mutually exclusive. This historical dichotomy in New Zealand has 

its roots in the Reserves Act 1977 and was an underlying feature of the New Zealand Forest 

Accord (August 1991) (Norton 1998).  

 

Irrespective of government policy, extensive forest industry-led changes regarding 

biodiversity have occurred in the last decade; e.g., the New Zealand Institute of Forestry’s 

biodiversity position statement. This recognises the value of plantation forests as a repository 

of biodiversity and the importance of maintaining and enhancing the value of plantations for 

biodiversity, as well as contributing to research and education (Shaw 1997). One of the main 

drivers for this change has undoubtedly been forest certification (for detailed explanation of 

certification in New Zealand see section 1.14) (Hock and Hay 2003), which in turn has 

evolved from a demand for sustainable forest products. However, the public have been slow 

to recognise the biodiversity value of plantation forests, largely because of historically 

perpetuated values and partially due to publications from environmental non-government 

organisations (e.g., Greenpeace), which have presented unbalanced views of plantation 

forestry (Rosoman 1994).  Despite this, forestry is a significant production land use in New 

Zealand and has the potential to make a significant contribution to our international 

biodiversity obligations. Research has shown that plantation forests can act as a habitat 

reservoir for many species of birds, plants and insects (Clout 1984, Allen et al. 1995, Ogden 

et al. 1997, Brockerhoff et al. 2003, Pawson and Brockerhoff 2005, Berndt et al. Submitted), 

including endangered species such as the kiwi, New Zealand falcon and the carabid beetle 

Holcaspis brevicula (Kleinpaste 1990, Brockerhoff et al. 2005). As such, plantation forests 

could play a major role in biodiversity preservation. As a low contrast matrix habitat 

compared to native forest they have the potential to act as conduit habitat, increasing the 

extent of forest habitat and providing connectivity between native forest remnants (Norton, 

1998).  
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1.13 Forestry in New Zealand 

Large-scale plantations dominate the New Zealand forest industry and cover c.1.87 million 

hectares (22.5% of total forest area in New Zealand) (Anon 2005). The exotic Monterey or 

radiata pine (Pinus radiata) is the principle species and comprises 89% of the current 

plantation area.  The combination of the light-demanding regeneration requirements, fast 

rotation time and low timber value make clearfelling the most common harvesting technique 

for radiata pine. Clearfelling is defined as the removal of all trees from an area of sufficient 

size to break the continuity of the forest microclimate (Kimmins 1992). The result is a 

heterogeneous landscape of successional forest stages on a much larger and regular scale (the 

‘chequer board’ landscape) than that created by natural disturbance processes. This has been 

condemned by environmental organisations (Rosoman 1994), whereas the main public 

concern about clearfelling appears to be its immediate visual impacts (McGee 1970, Hansis 

1995), although no published research on this has been undertaken in New Zealand.  

 

1.14 Forest Stewardship Council (FSC) certification in New Zealand 

The Forest Stewardship Council (FSC, www.fsc.org) is an international non-governmental 

agency established in 1993 that certifies (through independent certification providers) forest 

management on the basis of 10 principles and 54 criteria. The aim is to ensure that forest 

management is sustainable and this can include an analysis of the ‘Chain of Custody’ of wood 

products from the forest through the supply chain to the end consumers. The concept of forest 

certification hinges on the willingness of consumers to pay a premium price for products 

derived from sustainably managed resources, this ‘market edge’ then pays for the compliance 

costs of certification. Hock and Hay (2003) reviewed FSC certification in New Zealand and 

found that by 2003 eleven forestry companies had certified 610,257 ha of forest, representing 

about 34% of our plantation estate. As part of the certification process, companies can be 

issued with major and minor corrective action request (CARs). Major corrective actions (also 

known as pre-conditions) indicate a major deficiency in a specific area that must be resolved 

before certification can proceed. Minor corrective actions are issues that must be resolved but 

are not considered a limiting factor for certification, and companies are generally given a 

period of time to rectify problems (Hock and Hay 2003).  
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Clearfell harvesting impacts and biodiversity are key areas of concern to the FSC process in 

New Zealand (Hock and Hay 2003). Forestry companies have responded to this by 

undertaking internal studies, contracting research, or supporting external research to address 

problems identified by FSC auditors.  

 

1.15 Clearfell harvesting and harvest area 

Clearfell harvest areas and young regenerating stands in a plantation landscape are the 

equivalent of matrix habitat in a fragmentation sense. As open habitat they present a 

discontinuity between the remaining unharvested forest stands. Like all other harvesting 

techniques, clearfelling has significant ecological consequences that have been the focus of 

much scientific study on both abiotic (Camargo and Kapos 1995, Chen et al. 1995, Chen et al. 

1999) and biotic factors (Murcia 1995, Dijak and Thompson 2000, McGeoch and Gaston 

2000, Campi and Mac Nally 2001, Barbosa and Marquet 2002, Honnay et al. 2002, Magura 

2002). Despite the wealth of research into harvest impacts and their subsequent edge effects, 

very little is understood about the relative impacts of different sized clearfell harvest areas. A 

limited number of studies in North America have analysed whether the impact on biodiversity 

differs between small and large clearfell harvest areas, but most of these have only examined 

harvest areas of less than 10 ha, which is too small to be relevant to current forest harvesting 

practices in New Zealand (Pawson et al. 2002). It is surprising that so few published studies 

exist on the biological impacts of different sized clearfell areas given the world wide public 

concern regarding clearfell harvesting as a forestry practice. The public generally associate 

clearfell harvesting with a reduction in biodiversity, which is not necessarily correct (Niemela 

et al. 1993), and have demanded changes in forest harvesting policies to preserve biodiversity 

attributes (Ribe and Matteson 2002). In response, many research programs have been 

established to evaluate alternative harvesting systems (Hansen et al. 1995, Prescott 1997, 

Beese and Arnott 1999, Beese and Bryant 1999, Koivula 2002a). However, no-one has 

experimentally manipulated clearfell harvest size and measured the effect of harvest area on 

ecosystem attributes, including biodiversity. Perhaps small clearfell harvest areas have a 

lower impact on forest ecosystems and may be a suitable compromise between continuous 

cover forestry and large-scale even-aged silvicultural management. 
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1.16 Rationale of thesis 

This thesis aims to fill a distinct gap in our understanding of forest ecology and the impact of 

forest harvesting on biodiversity. I achieve this by undertaking a replicated study that analyses 

the impact of different sized harvest areas, at a scale relevant to the New Zealand plantation 

forestry industry. The research described in my thesis will provide valuable information on 

the interaction between clearfell size and edge effects in a largely forested landscape and 

resolve important applied ecological issues relevant to environmental certification of forestry 

companies in New Zealand. 

 

Pinus radiata plantations were chosen as an ideal study site to analyse the effects of clearfell 

harvest size for several key reasons: (i) as a managed forest ecosystem it was possible to 

experimentally clearfell specific areas of known size; (ii) past forest management history was 

well documented in a GIS framework; (iii) forest canopy had a simple structure of a single 

commercial species, which reduced variation between sites; and (iv) the sites were easy to 

access by a good road network. 

 

 

1.2 Thesis Objectives 

The objective of my PhD was to: 

 

Compare the beetle fauna of Pinus radiata plantation forests with other habitat elements 

within a fragmented landscape, and analyse by experimental manipulation the effects of 

clearfell harvest area on invertebrate biodiversity in an intensively managed Pinus radiata 

ecosystem.  

 

The thesis has a number of specific aims that are addressed in a series of chapters. These aims 

are: 

• To synthesise currently available literature on the impacts of clearfell harvest size on 

biodiversity, and analyse this in an ecological threshold context.  

• To determine the value of plantation forests as low-contrast matrix habitat for species 

that were historically associated with native forests. 

• Quantify the change in beetle biodiversity as a function of different sized clearfell 
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harvest areas. 

• Analyse the change in abundance of selected beetle species as a function of stand 

regeneration post-harvest.  

 

1.3 Thesis Structure 

The thesis is organised as a progression of chapters beginning with the known impacts of 

clearfell harvesting and potential implications of a change in harvest area. Plantations are 

evaluated for their potential as reservoirs of biodiversity before concluding with an analysis of 

the short-term and long-term impacts of clearfelling on Coleoptera (beetles). Thesis chapters 

are structured as follows: 

 

Chapter 2 provides a description of general methods that are applicable to multiple thesis 

chapters. A detailed outline of the study area, collection of beetle samples, understorey 

vegetation, canopy-cover estimates, and site characteristics (deadwood, drainage and litter) is 

given to avoid repetition of these in subsequent chapters. Concise methods sections are given 

in individual chapters providing detailed explanation of methodologies and analyses relevant 

to each chapter. 

 

Chapter 3 reviews the abiotic and biotic impacts of clearfell harvesting and provides a 

synthesis of available literature on the impacts of clearfell harvesting with respect to clearfell 

harvest area. The chapter finishes with a discussion of potential ecological threshold 

responses, which are currently being applied to fragmentation problems but have not been 

considered in a harvesting context. The material present in this chapter has been accepted as a 

manuscript for publication in the Canadian Journal of Forest Research as Pawson, S. M., 

Brockerhoff, E. G., Norton, D. A., and Didham, R. K., “Clearfell harvest impacts on 

biodiversity: Past research and the search for harvest size thresholds”.  

 

The public often view plantations as ‘biological deserts’. To test this, Chapter 4 compares the 

Coleopteran and understorey vegetation diversity in Pinus radiata plantations versus other 

habitat elements (native forest and pasture) within a landscape of intensely managed land 

uses. The aim is to determine if managed forests can provide habitat for native biodiversity in 

a landscape that has a reduced and highly fragmented native forest area. This is important, as 
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forestry is often compared unfavourably with other production land uses, such as intensive 

pastoral farming, even though preliminary evidence suggests that managed production forests 

can have considerable biodiversity benefits. 

 

Chapter 5 evaluates the short-term impacts of clearfell harvesting on beetle biodiversity as a 

function of harvest area. Internationally there is intense public pressure to change from 

clearfelling to alternative silvicultural systems, due to the perceived ecological impacts of 

clearfell harvesting and aesthetic considerations. This chapter presents the results of the first 

large-scale, replicated experiment that compares the total beetle biodiversity in different sized 

clearfell harvest areas at a scale relevant to plantation forestry in New Zealand.   

 

Chapter 6 presents results from a space-for-time substitution (chronosequence) experiment 

that evaluates the change in abundance of selected beetle species throughout an entire 26-year 

harvest rotation. Most overseas studies of clearfell harvest impacts have concentrated on 

short-term impacts, as long-term studies are difficult both logistically and financially. I 

circumvent the problems associated with a long-term project by comparing the abundance of 

selected invertebrate taxa in different-aged regenerating stands and adjacent mature stands. 

The aim is to determine habitat utilisation of these species as stands regenerate. This 

information can then be incorporated into harvest plans to ensure continuity of required 

habitat within plantations. 

 

Chapter 7 provides a general synthesis of the results presented in previous chapters, and I 

discuss their ecological implications and relevance to forest managers. Finally my research is 

placed within the context of other international research on harvest impacts, fragmentation 

and the role of the matrix, and I consider future research directions. 
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Chapter 2 - General methodology 
 

2.1 Introduction 

Individual chapters of this thesis are designed to address specific thesis aims and are written 

as separate units for publication in peer-reviewed journals. As separate units they each have 

markedly different experimental approaches. Chapter 4 makes comparisons among different 

habitat types by sampling beetles across gradients running between different landscape 

elements (Table 2.1). Chapter 5 uses direct experimental manipulation of clearfell harvest size 

as a powerful method to assess ecological change to environmental perturbation and quantify 

the impact of clearfell harvest area on biodiversity (Table 2.1). To analyse long-term changes 

in species abundance with stand age (Chapter 6) I used a space-for-time (chronosequence) 

approach, sampling beetles in different aged stands and comparing them to adjacent mature 

forest sites (Table 2.1). 

 

By approaching the thesis as a series of independent chapters there will inevitably be a certain 

degree of overlap in methods sections. To prevent unnecessary overlap between chapters 

common sections (field sites, collection of invertebrate samples, and the collection of 

environmental variables), are described in this chapter.  

 

2.2 Field Sites 

 

2.21 Regional context 

The study area is within the Kaingaroa plateau that is part of a region of intensive volcanism 

known as the Taupo Volcanic Zone (Healy 1963). The geology is defined by a stratigraphic 

sequence of silicic and basaltic tephra’s, and ignimbrite formations (Froggatt and Lowe 

1990). The most northern study sites are dominated by the recent basaltic Tarawera tephra 

(from an eruption in 1886 AD), whilst southern and central sites have a thick mantle of the 

silicic Taupo tephra (from an eruption about 1850 ± 10 yr BP) (Froggatt and Lowe 1990). The 

Kaingaroa plateau is predominantly flat with dissecting gullies that were formed as a result of 

fluvial processes. Plateau dissection is most prominent in the northern Tarawera and Ngamotu 

forests and has resulted in a complex network of narrow valleys. In many cases these valleys 
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have not been converted to plantation forests and a substantial network of native forest 

remnants exists. Alluvial areas are present to the west and east of the plateau including the 

Reporoa lowlands (the location of Broadlands Forest) and the Rangitaiki Plains. This is the  

result of depositional activity of the Waikato and Rangitaiki rivers, respectively (Healy 1963). 

The Tarawera eruption has created young soils in the Tarawera, Ngamotu, Matahina and 

Putuaki forests. These areas are prone to drought due to the poor moisture holding capacity of 

the coarse unweathered basaltic scoria that dominates the soil profile (Molloy 1988). 

Kaingaroa forest soils in general are characterised by the influence of pumice tephras from the 

Taupo eruption, which have a thick compacted C-horizon (Molloy 1988).  

 

The altitude of sites ranged from 100 to 800 metres above mean sea-level, with rainfall 

throughout the region averaging 1200-1600mm dependent on topography and proximity to 

the coastline (Quayle 1983).  Kaingaroa averages a single winter snowfall (Quayle 1983), 

however the region never experiences periods of snow accumulation.  

 

Table 2.1. Summary of the experimental design of individual chapters, including replicates and 

number of pitfall traps: note * denotes traps from the 50 ha clearfell harvest size treatments that are 

also used in Chapter 5, † denotes comparison also used in the Chapter 4 analysis of comparisons 

between landscape elements. 

Comparison Replicates Number of 

pitfall traps 

Comparison between landscape 

elements Chapter 4 

  

P. radiata vs. Clearfell 3 21 

P. radiata vs. Pasture 3 21 

P. radiata vs. Native 3 21 

Native vs. Clearfell 3 21 

Native vs. Pasture 3 21 

Pasture vs. Clearfell 3 21 

   

Clearfell harvest size Chapter 5   

0.01 ha vs. adjacent P. radiata 6 30 
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0.05 ha vs. adjacent P. radiata 6 30 

0.5 ha vs. adjacent P. radiata 6 36 

5 ha vs. adjacent P. radiata 6 42 

50 ha vs. adjacent P. radiata 6 42 

500 ha vs. adjacent P. radiata 6 48 

   

Comparison between different aged 

P. radiata Chapter 6 

  

1 yr vs. P. radiata † 3 27* 

2 yr vs. P. radiata† 3 27* 

4 yr vs. P. radiata† 4 36 

8 yr vs. P. radiata† 4 36 

16 yr vs. P. radiata† 4 36 

26 yr vs. P. radiata† 4 36 

Total  582 

 

2.22 Selection of individual sites 

Clearfell harvest study sites were located in the managed plantation forests of the central 

North Island, New Zealand (Figure 2.1). Comparisons were made with other landscape 

elements including pastoral areas (dairy and beef) adjacent to plantations, several unprotected 

native forest remnants within the plantations, and a single Department of Conservation 

managed reserve on the Paeroa Range. Plantation forests sampled included the central and 

northern regions of Kaingaroa forest, Broadlands forest, Ngamotu forest, Tarawera forest, 

Matahina forest, Crater forest and Putuaki forest (Figure 2.1). These plantations are 

dominated by P. radiata, which comprises over 90% of the total area. A number of alternative 

species such as Douglas-fir (Pseudotsuga menziesii) are grown in small amounts. All clearfell 

harvest study sites were within P. radiata stands that were surrounded on all sides by other P. 

radiata stands. The location of the central boundary trap was determined by selecting a 

random number (from a random number table) to represent the number of metres from the 

edge of the stand boundary. This was constrained by the condition that it was greater than 125 

m from the forest stand boundary. Central traps were then located in the field using a hip-
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chain distance measuring device. The New Zealand map-grid coordinates are given for the 

central trap in each of the 52 pitfall trap lines that were used in the three main experiments 

(Appendix 2.1).  

 

2.23 Vegetation 

The pre-human vegetation of the area was influenced by the intense volcanic activity in the 

region (Leathwick and Mitchell 1992, Wilmshurst and McGlone 1996). The central and 

southern Kaingaroa regions were originally dominated by tall lowland-montane conifer 

broadleaf forests, which were periodically destroyed by rhyolitic eruptions (McGlone 1989). 

After the colonisation by Polynesians, the vegetation was characterised by a shift to seral 

species (including Pteridium esculentum, Leptospermum scoparium and Dracophylum 

subulatum (McQueen 1961)) that were adapted to human initiated episodic burning (McGlone 

1989). Northern areas of the Kaingaroa plateau had a slightly different forest composition, 

described by Nicholls (1991), including the emergent and canopy trees species Dacrydium 

cupressinum, Metrosideros robusta, Beilschmiedia tawa and Litsea calicaris, and a sub-

canopy of Weinmannia racemosa, Olearia rani and Melicytus ramiflorus.  

 

Plantation forests of exotic species were first established in New Zealand in the late 1890’s. 

However, the truly large state funded plantations such as Kaingaroa Forest were initiated 

during the great planting boom of 1925-1935 and a second planting boom between 1960-1987 

(Roche 1990). The majority of Tarawera forest was planted in this second period (60,000 

acres) and occurred after land consolidation was permitted by the Tarawera Forests Act 1967 

(Roche 1990). Plantation forest establishment has continued throughout the 1990s, but in 

recent times a recession in the forestry industry (caused by rising costs and an unfavourable 

New Zealand currency exchange rate) has seen new plantings come to an almost complete 

standstill since 2005. 

 

2.3 Collection of beetle samples 

 

Resources were insufficient to make an attempt at sampling all invertebrates, or even all 

insects. As such, it was decided to focus on a particular group. The beetles were chosen 

because of their high species diversity, breadth of trophic levels, ubiquitous distribution 
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(Evans et al. 1996), sensitivity to different habitats (Dufrêne and Legendre 1997), and my 

personal familiarity with their taxonomy, which is well-known compared to most other New 

Zealand invertebrate groups. All of these are criteria are suggested as characteristics to 

consider when selecting indicator groups (McGeoch 1998). 

 

Pitfall trapping, like other passive sampling methods, such as Malaise and flight intercept 

trapping, does not yield a direct measure of abundance, but a measure of insect activity which 

is sometimes referred to as activity-density (Greenslade 1964, Luff 1975, Halsall and Wratten 

1988, Topping and Sunderland 1992, Lang 2000). Passive techniques are subject to inherent 

bias induced by factors such as the structural complexity of forest floor habitat that can alter 

the relative capture efficiency at different sites. These disadvantages of pitfall trapping are 

well known, but it continues to be a standard technique in ecological studies, and has a 

number of important benefits. Unlike direct measures of sampling insect density, such as litter 

or turf sampling, the passive nature of pitfall trapping allows the collection of samples over a 

long period of time, capturing rare species and those that may only be present at specific 

points in time. Therefore, pitfall trapping still remains the most efficient method for collecting 

highly mobile ground dwelling species that may spend the day in soil burrows or in refugia, 

such as beneath logs.  Pitfall traps are also relatively easy to establish and maintain, which 

was a priority given the level of replication involved in this study. 

 

All sampling used a standard pitfall trap design consisting of a circular, 680 ml polypropylene 

plastic container of 100mm diameter buried to ground level. White plastic guide panels 1.2 m 

long and 0.10 m high were placed at ground level in a cross-design over the central trap 

(Figure 2.2). Guide panels were used in an attempt to increase trap catch by channelling 

ground dwelling arthropods towards the central collecting cup. A 70% monoethylene glycol 

(antifreeze) solution was used as a preservative and changed at approximately monthly 

intervals.  Samples were subsequently transferred into 70% alcohol for storage prior to 

analysis. Insects were sorted using a 6-50 × Zeiss stereomicroscope.  All pinned material will 

be lodged with the Ensis entomology collection in Rotorua, however a reference collection is 

to be held at its Ilam office. The remainder of the unsorted material is stored in alcohol at the 

Ilam office.  
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Figure 2.1. Map showing the location of study forests in the context of surrounding land cover in the 

central North Island of New Zealand. Land cover was defined by the New Zealand land cover 

database version 2 (LCDB2) (Terralink 2004). Note yellow circles document the rough centre of the 

major plantation forests and some of the native remnants used as study sites. (1) Broadlands Forest, (2) 

Kaingaroa Forest both central and northern, (3) Crater Forest, (4) Ngamotu Forest, (5) Matahina 

Forest, (6) Tarawera Forest, (7) Putuaki Forest, (8) non-protected native remnant owned by forestry 

company and (9) Paeroa Range – owned by Department of Conservation. 

 

 
2.4 Collection of environmental variables  

Environmental variables were recorded for each pitfall trap to aid interpretation of patterns in 

beetle abundance. Variables collected included – vegetation, ground cover, canopy cover, 

LENZ (Land Environments of New Zealand) and spatial attributes (Table 2.2) 
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Figure 2.2 Pitfall trap design. I am holding the polypropylene plastic container that is buried to ground 

level beneath the junction of the two white plastic guide panels when the trap is operational. An ice 

cream container lid (lower corner of photo) is used as a rain cover and is held in place over the guide 

panels above the plastic container by wire pegs. Photo by Kennedy Warne. 

 

Table 2.2 Description of environmental variables collected and their units of measurement. 

Abbreviation Description Units 

Vegetation   

Vege 1 Axis 1 from PCO of vegetation composition PCO Scores 

Vege 2 Axis 2 from PCO of vegetation composition PCO Scores 

Vege 3 Axis 3 from PCO of vegetation composition PCO Scores 

500m-nat Proportion of native vegetation within 500 m radius Proportion 

500m-exo Proportion of exotic vegetation within 500 m radius Proportion 

1000m-nat 

Proportion of native vegetation within 1000 m 

radius Proportion 

1000m-exo Proportion of exotic vegetation within 1000 m Proportion 
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radius 

5000m-nat 

Proportion of native vegetation within 5000 m 

radius Proportion 

5000m-exo 

Proportion of exotic vegetation within 5000 m 

radius Proportion 

Ground Cover   

Litter Qualitative assessment of litter within 2 m of trap Categorical 

Dead wood Qualitative assessment of dead wood within 2 m of 

trap 

Categorical 

Drainage Qualitative assessment of drainage within 2 m of 

trap 

Categorical 

Canopy Cover   

Canopy Cover Percentage of canopy cover Percentage 

LENZ variables   

Acidp Acid soluble phosphorous Categorical 

Age Age of soil Binary 

VPD Vapour pressure deficit KPa 

Tmin Mean minimum temperature of coldest month ºC 

Slope Slope defined from 25 m digital elevation model Degrees 

Chemlims Chemical limitations to plant growth Categorical 

Calcium Exchangeable calcium Categorical 

Drainage Description of soil internal drainage Categorical 

R2pet Water balance ratio Ratio of rainfall to 

evaporation 

Psize Soil particle size Mm 

Mat Mean annual temperature °C 

Mas Annual solar radiation MJ/M2/day 

Junes Winter solar radiation MJ/M2/day 

Induration Soil parent material hardness Discrete classes 

Deficit Annual water deficit mm 

Lenz_layer 4 Lenz_layer4 dummy variable Binary 
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Lenz_layer 3 Lenz_layer3 dummy variable Binary 

Lenz_layer 2 Lenz_layer2 dummy variable Binary 

Lenz_layer 1 Lenz_layer1 dummy variable Binary 

Spatial Attributes   

Long  Longitude NZ map grid 

Lat  Latitude NZ map grid 

Lat2  Latitude2 NZ map grid 

Long2  Longitude NZ map grid 

Lat2*Long  Latitude2 * Longitude NZ map grid 

Long2*Lat  Longitude2 * Latitude NZ map grid 

Long2* Lat2  Longitude2 * Latitude2 NZ map grid 

Long3  Longitude3 NZ map grid 

Lat3  Latitude2 NZ map grid 

 

2.41 Vegetation  

Vegetation surveys were conducted between 4 - 12 April 2003 for the 2003 harvest replicates 

and from 21 - 25 April 2004 for 2004 replicates.  Surveys were conducted within a 2.5 × 2.5 

m quadrat centred on the pitfall trap.  Individual plant species were quantified in four layers to 

incorporate information on spatial structuring (ground: 0.0 – 0.3 m, shrub: 0.3 m – 2 m, sub 

canopy: 2.0 - 10 m and canopy: >10 m).  Shrubs and trees were identified to species and 

samples of plants that could not be identified in the field were taken for subsequent expert 

identification at the Ensis herbarium. Identified species were assigned to one of seven 

abundance classes that correspond to a percentage vegetation cover (Table 2.3). Vegetation 

data for each species were then converted to a single value for analysis using the following 

formula (D. Norton pers. comm.): 

 

Vegetation cover = ∑
=

−

1i

tiersN
midpoint of % cover * log10 (tier depth + 1) 

 

Tier depths varied depending on forest type and P. radiata stand age (Table 2.4). Single 

importance values were ln(x+1) transformed and a principal coordinate analysis was 

conducted on the basis of Bray-Curtis dissimilarities using the Fortran program, PCO 
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(Anderson 2003b). The resulting principal coordinate axes scores were then used as 

environmental correlates (variables Vege1, Vege2 and Vege3) in ordination analyses of beetle 

abundance data.  

 

Table 2.3. Abundance and cover classes used to quantify the percentage vegetation cover at different 

tier heights. 

Abundance 1 2 3 4 5 6 7 
Cover Class <1% 1-5% 6-10% 11-25% 26-50% 51-75% 76-100% 

 

 

Table 2.4. Vegetation height tiers used to obtain single importance values. 

Height (metres) Mature Pine Native 4yr Pine 8yr Pine 16yr Pine 

Canopy 15 10 0 2 8 

Sub-canopy 8 4 8 8 8 

Shrub 2 2 2 2 2 

Ground 0.3 0.3 0.3 0.3 0.3 

 

The proportion of native and exotic plantation forests within a 500, 1000 and 5000 m radius 

of each study site was calculated using data from the Land Cover Database V2 (LCDB2) 

(Terralink 2004). These variables (500m-nat, 500m-exo, 1000m-nat, 1000m-exo, 5000m-nat 

and 5000m-exo) were then included as explanatory variables in multivariate ordination 

analyses. 

 

2.42 Ground surface characteristics 

Estimates of the percentage leaf litter cover, drainage and the quantity of deadwood were 

calculated on the basis of a 5-tier scale at the same time as understorey vegetation 

measurements were recorded (Table 2.5). Given the qualitative nature of these assessments all 

scoring was done by a single observer to reduce potential bias. These measurements were then 

incorporated as categorical binary variables into subsequent ordination analyses, i.e., a binary 

variable was created for each of n-1 levels of each ground surface factor (Table 2.5). 
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Table 2.5. Scoring system to provide a qualitative measurement of the amount of deadwood, drainage 

and litter surrounding each pitfall trap. 

Score Dead-wood Drainage Litter 

1 None or very little 

deadwood (at most a few 

twigs) 

Poor drainage (surface water 

present within the plot even 

during prolonged dry spells) 

Little or no litter cover (< 5 

% cover) 

2 Intermediate, low - med Intermediate, low - med Intermediate, low – med 

3 Medium amount of 

deadwood (at least one 

log > 10 cm diameter) 

Medium drainage (at least one 

place within the plot that 

"squelches" when walked on) 

Medium amount of litter 

(30-50 % cover of litter) 

4 Intermediate med - high Intermediate med - high Intermediate med - high 

5 Much deadwood (plot is 

difficult to move in due 

to the amount of 

deadwood) 

Well-drained (no surface water 

even during prolonged rain) 

Abundant litter (70% or 

more of the plot is covered 

in thick litter) 

 

2.42 Canopy cover 

Canopy cover was estimated as a percentage from hemispherical photographs analysed using 

Hemiview version 2.1.  The hemispherical lens captures a 180-degree field of view and an 

adjustment was necessary to ensure that canopy cover was only calculated on the basis of a 

90-degree arc directly above the pitfall trap, i.e., between 45-135o of horizontal.  Photographs 

were taken at ground level and the proportion of the circular photo selected for analysis was 

calculated as:  

Radius of the portion of the hemispherical image to be analysed = radius of the 

photograph/sqrt2. Note: contrast was altered manually to account for differential light 

conditions between photographs. 

  

2.43 LENZ variables (covariables for ordination analyses) 

LENZ is a New Zealand wide classification of landscapes based on a comprehensive set of 

climate (7), landform (1) and soil variables (7) (Leathwick et al. 2003). LENZ variables for 

each site were obtained by creating a spatial join in ArcView between pitfall trap locations 

and each of the fifteen underlying LENZ data layers (Table 2.2). The resolution of LENZ data 

(c.1 ha) was insufficient to distinguish between individual pitfall traps so the entire transect is 
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represented by a single value for the location of the central boundary trap. Individual 

landscape-level LENZ attributes were incorporated into composite variables by the use of 

principal components analysis (PCA) conducted in Canoco Version 4.02 (see Gates and 

Donald (2000)). LENZ attributes were not transformed, scaling was focussed on inter-sample 

distances and there was no centering or standardisation of samples. The first three axis scores 

were then incorporated as environmental variables (PCA1, PCA2 and PCA3) in ordination 

analyses of beetle data. 

 

2.5 Conclusion 

A total of 582 pitfall traps were used across all three main studies. Experimental designs made 

use of both the experimental manipulation of treatments and a mensurative (space-for-time) 

approach to data collection. A total of 35 environmental variables were collected to describe 

conditions surrounding trap locations and provide possible explanations of the observed 

beetle abundances. Individual methods sections that provide chapter-specific information 

should be used in consultation with the overall methods presented here to provide a 

comprehensive explanation of the techniques used to conduct experiments in this thesis. 
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Appendix 2.1. New Zealand map-grid location and plantation forest compartment (where 

particular treatment included a plantation forest component) for each study site. The 

geographic location given marks the central boundary (0m) trap from the pitfall trap gradient. 

Comparison 

Forest 

Compartment 

(where applicable) 

NZ-map-grid 

East 

NZ-map-grid 

North 

Habitat Comparisons    

P. radiata vs Pasture Goudies  2823620 6313960 

P. radiata vs Pasture Kaingaroa 1053 2813740 6299500 

P. radiata vs Pasture Kaingaroa 1054 2814490 6299440 

P. radiata vs Clearfell Kaingaroa 153 2816580 6285750 

P. radiata vs Clearfell Kaingaroa 240 2805440 6287760 

P. radiata vs Clearfell Kaingaroa 391 2819440 6280170 

P. radiata vs Native Forest Matahina 205 2834330 6323860 

P. radiata vs Native Forest Tarawera 94 2829410 6328990 

P. radiata vs Native Forest Tarawera 115 2838400 6330540 

Clearfell vs Native Forest Matahina 378 2835540 6324110 

Clearfell vs Native Forest Tarawera 155 2831450 6325540 

Clearfell vs Native Forest Tarawera 132 2821690 6323200 

Clearfell vs Pasture Kaingaroa 902 2814070 6296440 

Clearfell vs Pasture Kaingaroa 340 2811570 6311900 

Clearfell vs Pasture Kaingaroa 210 2808600 6315150 

Native Forest vs Pasture  2796010 6306510 

Native Forest vs Pasture  2821440 6321370 

Native Forest vs Pasture  2822010 6321530 

Clearfell harvest size    

0.01 ha Kaingaroa 278 2808260 6278120 

0.01 ha Kaingaroa 1080 2815890 6300830 

0.01 ha Kaingaroa 1105 2819910 6308150 

0.05 ha Kaingaroa 278 2808450 6278220 

0.05 ha Kaingaroa 1080 2816440 6300840 

0.05 ha Kaingaroa 1105 2820240 6307570 

0.5 ha Kaingaroa 278 2808310 6278320 

0.5 ha Kaingaroa 1080 2817120 6300730 
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0.5 ha Kaingaroa 1105 2820650 6308150 

5 ha Broadlands 3 2797390 6287570 

5 ha Kaingaroa 179 2812390 6284140 

5 ha Not sampled   

50 ha Kaingaroa 153 2816580 6285750 

50 ha Kaingaroa 240 2805440 6287760 

50 ha Kaingaroa 391 2819440 6280170 

200-500 ha Kaingaroa 132 2822910 6324080 

200-500 ha Putuaki 191/192 2839320 6339330 

200-500 ha Matahina 205 2833350 6324250 

Different aged stands    

P. radiata vs 4 yr Kaingaroa 1028/1029 2812380 6300410 

P. radiata vs 4 yr Kaingaroa 1035 2812620 6306270 

P. radiata vs 4 yr Kaingaroa 1046/1061 2814720 6306150 

P. radiata vs 4 yr Kaingaroa 88 2817590 6295850 

P. radiata vs 8 yr Kaingaroa 185 2815630 6280440 

P. radiata vs 8 yr Kaingaroa 375 2819580 6283830 

P. radiata vs 8 yr Kaingaroa 46 2823180 6296440 

P. radiata vs 8 yr Kaingaroa 213 2808090 6292570 

P. radiata vs 16 yr Kaingaroa 224 2807490 6290720 

P. radiata vs 16 yr Kaingaroa 230 2807930 6289270 

P. radiata vs 16 yr Kaingaroa 233 2806370 6289150 

P. radiata vs 16 yr Kaingaroa 1068 2817260 6310740 

P. radiata vs P. radiata Kaingaroa 231 2808960 6288530 

P. radiata vs P. radiata Kaingaroa 377 2821490 6282440 

P. radiata vs P. radiata Kaingaroa 382 2820140 6281860 

P. radiata vs P. radiata Kaingaroa 1157 2825630 6301600 
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Chapter 3 - Clearfell harvest impacts on biodiversity: Past 

research and the search for harvest size thresholds 
 

This chapter has been accepted in its present form (with the addition of an abstract) for 

publication in the Canadian Journal of Forest Research.  

 

3.1 Introduction 

As natural ecosystems are becoming increasingly degraded in many parts of the world, 

conservation of terrestrial biodiversity must increasingly look to production landscapes to 

achieve conservation goals (Knight 1999, Norton 2000, Novacek and Cleland 2001, Ewers et 

al. In Press). Managed natural or planted forests represent one type of production landscape 

that makes a significant contribution to biodiversity at both local and regional scales 

(Spellerberg and Sawyer 1995, Chey et al. 1997, Moore and Allen 1999, Brockerhoff et al. 

2001, Hartley 2002). Plantations are known to provide alternative habitat for native species, 

improve connectivity between old-growth remnants, and buffer natural forests from edge 

effects, particularly in heavily-modified landscapes where there is little unmodified forest 

habitat left.  These biodiversity benefits remained largely unpublicised, whilst forest 

management practices often face heavy public criticism. 

 

Environmental issues associated with forestry are controversial, particularly the extensive 

even-aged monocultural plantations (especially of exotic tree species) and the large-scale 

clearfell harvesting that is typical of plantations and of many managed natural forests. It is 

indisputable that clearfelling results in substantial immediate on-site changes to the 

community structure and functional attributes of terrestrial ecosystems (Niemela et al. 1993, 

De Grandpre et al. 2000, Wardell-Johnson and Williams 2000, Roberts and Zhu 2002), their 

aquatic components (Rishel et al. 1982, Rowe and Taylor 1994, Stott and Marks 2000, Bubb 

and Croton 2002) and the aesthetic appeal of the landscape (McGee 1970, Hansis 1995). 

However, deep-seated underlying social values (which are difficult to influence and vary 

spatially) are used by people to interpret the visual changes associated with forest harvesting 

and are a strong determinant of the acceptability of such practices (McCool et al. 1986, Bliss 

2000).  
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Condemnation of clearfell harvesting, especially by environmental non-government 

organisations (ENGOs), has been a significant driving force in forest policy (Schindler et al. 

1993, Potton 1994, Rosoman 1994, Ribe and Robert 1999, Wilson and Wilson 2001). The 

acceptability of large-scale high impact clearfell harvesting is now reduced and in some 

countries restricted by voluntary mechanisms (industry led agreements, such as the New 

Zealand Forest Accord 1991 and forest certification schemes, such as the Forest Stewardship 

Council) or by legislation (e.g., the Forest Regeneration & Clearcutting Standards, Maine, 

USA 1999). These restrictions are partially responsible for the increased implementation of 

alternative silvicultural systems over the last 20 years, including shelterwood, green-tree 

retention methods and patch cuts. Numerous trials have assessed some of the impacts of these 

alternative harvesting techniques and these have often included comparisons with clearfelling 

(Schowalter 1995, North et al. 1996, Volin and Buongiorno 1996, Franklin et al. 1997, 

Prescott 1997, Beese and Arnott 1999, Beese and Bryant 1999, Bohonak 1999, Perry et al. 

1999, Bartman et al. 2001, Duguay et al. 2001, Moorman and Guynn 2001, Huggard and 

Vyse 2002, Koivula 2002a, Knapp et al. 2003). However, as Koivula (2002b) and Spence 

(2001) point out, the full ecological consequences and long-term ecological sustainability of 

these alternative strategies are still not fully understood.   

 

Given that clearfell harvesting has met with such strong opposition, it is surprising that few 

studies have investigated whether a reduction in the harvest area of individual clearfells might 

be a viable strategy to mitigate ecological impacts. After all, some forest policies around the 

world restrict clearfelling by prescribing maximum size cuts. One of the assumptions 

underlying these policies is that there is a threshold size above which ecological change 

occurs at a rate that is socially and environmentally unacceptable. The concept of ecological 

thresholds has been used in habitat fragmentation studies for some years (Andren 1994) and 

more recently in ecological restoration (Hobbs and Norton 1996). Thresholds have also found 

favour with land managers and territorial authorities as a mechanism for regulating land 

management policies (Huggett 2005). However, empirical evidence on which to base such 

policies is limited and individual studies are often contradictory (Lindenmayer and Luck 

2005). As yet no one has experimentally tested forest harvest size thresholds. What limited 

work that has been conducted on clearfell size effects, at least at small spatial scales, was 

summarised by Bradshaw (1992), while a more extensive study in British Columbia is still in 
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progress (Vyse 1999). In many ways it appears that the combined pressure of ENGOs and 

public opinion have circumvented research on the issue of clearfell harvest size impacts and 

most studies have focussed on evaluating alternative silvicultural systems instead. 

 

In this paper I begin by providing a brief overview of the on-site ecological changes induced 

by clearfelling in the context of plantations (including those of exotic species) and managed 

indigenous forests.  I then review the few available studies on clearfell harvest size influences 

and its impact on ecological change. This information is then combined to evaluate the 

possibility of a harvest size threshold at which ecological change occurs at a rate 

disproportionate to the change in harvest area. Different potential forms of this relationship 

are discussed in the context of recent ecological threshold studies in related disciplines of 

landscape ecology, with suggestions for designing empirical studies to test for threshold 

effects. The overall goal of this paper is to provide an increased understanding of the 

ecological consequences of harvest size in relation to large-scale clearfelling.  

 

3.2 Impacts of clearfelling 

3.21 Abiotic  

The forest microclimate is strongly influenced by changes in overstorey canopy structure and 

is thus temporally and spatially variable (Chen et al. 1999). Harvesting practices such as 

clearfelling alter canopy structure and hence impact on the microclimate of forest stands 

(Chen et al. 1999, Burton 2002).  Temperature, relative humidity, wind speed and solar 

radiation are significantly more variable (both spatially and temporally) in clearfelled areas 

compared to intact forest due to the removal of the buffering effect of the forest canopy (Chen 

et al. 1999, Zheng et al. 2000, Burton 2002, Spittlehouse et al. 2004) (Table 3.1).  

Furthermore, at forest boundaries steep edge-effect gradients can occur between stands due to 

their different microclimates (Chen et al. 1999).   

 

Edge effects have received considerable attention recently by conservation biologists 

examining their effect on indigenous biodiversity (Murcia 1995, Didham et al. 1998, 

Laurance 2000, Ries et al. 2004). However, forest types differ in their vegetation structure and 

rates of secondary succession following disturbance (Brockerhoff et al. 2003). As a result the 
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persistence and penetration of microclimatic edge effects, which are dependent on the rates of 

vegetative regrowth, will vary with biogeographic region, for example tropical forest edges 

rapidly produce an edge understorey that buffers the microclimate within the remaining forest 

(Didham and Lawton 1999).   

 

Land-use change and forest harvesting have considerable impacts on rates of snow 

accumulation and melt (Hudson 2000, Murray and Buttle 2003) and thus the local water 

balance.  In high latitude forests snowmelt is a significant part of the annual water balance. 

Snow accumulation is often higher in harvest areas compared to intact forest, especially in 

small-to medium-sized harvest areas and to a lesser extent in large clearings, as snow is blown 

away from large clearfells into adjacent forest (Hudson 2000, Murray and Buttle 2003) (Table 

3.1). However, the difference between clearfell and forest snow accumulation is greater in 

coniferous than hardwood forests due to the more open hardwood canopy allowing increased 

snow penetration (Murray and Buttle 2003). Snowmelt is greater in clearfell areas than forests 

under radiant melt conditions (Adams et al. 1998, Huggard and Vyse 2002). However, the 

difference in snow ablation between forest and clearfells, caused by rain falling on snow, is 

dependent on canopy snow loading (Beaudry, et al., 1997, cited in Hudson, 2000). 

Irrespective of clearfell harvesting or canopy cover, the spatial variation in snowmelt rates is 

most strongly influenced by geographical aspect, i.e., north vs south facing slopes (Murray 

and Buttle 2003).   

 

In warmer climates the influence of tall vegetation (e.g., trees) on dry and wet leaf 

evaporation will be more important in determining catchment water yield (see recent review 

by Davies & Fahey, (2005)). Reduction in tall vegetation within catchments has been shown 

to increase stream flow (Bosch and Hewlett 1982) and create a temporary rise in stream 

temperature due to an increase in solar radiation on the water surface (Rishel et al. 1982, 

Rowe and Taylor 1994, Stott and Marks 2000, Kiffney et al. 2003), unless appropriate 

riparian management is undertaken (Young, 2000). However, preliminary data suggests that 

flow rates return to pre-harvest levels as regeneration proceeds (Bubb and Croton 2002) 

(Table 3.1). There are also significant regional differences in the change in water yield in 

response to afforestation and forest harvesting (Rowe 2003). In addition to altered 

evaporation, the decrease in litter and coarse woody debris (especially from site preparation, 
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e.g., wind-rowing) can reduce rainfall infiltration rates, further increasing overland flow 

(France 1997, Costantini and Loch 2002). 

 

Increased overland flow increases soil erosion, however clearfelling is not necessarily as 

damaging in this regard as other harvesting techniques. For example, group selection was 

shown by Hood (2002) to erode 25.1 t/ha more soil per 100-year rotation than clearfell 

harvesting. This is probably induced by the increase in temporary roads required for group 

selection harvesting. Sedimentation rates in stream channels can increase as a result of this 

enhanced erosion (France 1997) and affect surface communities as well as deeper streambed 

fauna (Trayler and Davis 1998). A buffer strip along a waterway is the management response 

designed to prevent increased sedimentation (Young 2000), however insufficient testing has 

been done at a catchment scale of commonly utilised buffer strip widths, some of which may 

prove to be inadequate (Kiffney et al. 2003). 

 
Table 3.1 Summary of the known ecological changes in species abundance, richness and composition 

of different taxonomic groups and abiotic changes induced by clearfell harvesting. Change is recorded 

as positive (+), negative (-) or variable (-/+). 

Response 

Variable 

 

Abiotic 

factor/taxon 

Impact Important points Reference 

Microclimate -/+ 

Temperature, relative humidity, light and 

windspeed become more variable post-

harvest. 

(Chen et al. 1995, Zheng et al. 

2000, Spittlehouse et al. 2004) 

Snowmelt, 

accumulation 

and ablation 

-/+ 

Increased snow in harvested areas and 

increased rates of snow melt post-harvest 

compared to intact forest. 

(Hudson 2000, Murray and 

Buttle 2003) 

Stream 

flows/hydrology
+ Stream flows increase post-harvest. 

(Bosch and Hewlett 1982, Bubb 

and Croton 2002) 

Stream 

temperature 
-/+ 

Stream temperature generally increases, 

however extent dependent on riparian 

buffer management strategies. 

(Rishel et al. 1982, Rowe and 

Taylor 1994, Stott and Marks 

2000, Young 2000) 

A
bi

ot
ic

 F
ac

to
rs

 

Soil loss due to 

erosion 
+ 

Soil loss and stream sedimentation can 

increase post-harvest. 
(France 1997) 
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Bats -/+ Species specific, dependent on body size 

and foraging strategy. 

(Patriquin and Barclay 2003) 

Spiders -/+ Species specific, most impact on web-

builders.  

(Coyle 1981) 

Salamanders - Harvest impacts just as severe in leave 

tree, group selection or shelterwood. 

(Knapp et al. 2003) 

Birds - Abundance still reduced for one third of 

all species after 14 years.  

(Williams et al. 2001) 

Nematodes - Clearfell impact as severe as in 

shelterwood treatments 

(Panesar et al. 2000) 

Stream macro-

invertebrates 

- Returned to normal after spring rain, 

affected by increased sediment load 

associated with harvesting.  

(Growns and Davis 1994) 

Sp
ec

ie
s a

bu
nd

an
ce

 

Plants - Decreased herbaceous layer cover. (Gilliam 2002) 

Carabidae + Increased open habitat species in many 

cases led to increased overall species 

richness. 

(Atlegrim et al. 1997, Beaudry et 

al. 1997, Heliola et al. 2001) 

Sp
ec

ie
s r

ic
hn

es
s Stream macro- 

invertebrates 

- Returned to normal after spring rain, 

affected by increased sediment load 

associated with harvesting. Dependent on 

depth in stream sediment 

(Growns and Davis 1994, 

Trayler and Davis 1998) 

Lucanidae + Some species may not survive in long-

term in clearfell areas and require old-

growth conditions. 

(Michaels and Bornemissza 

1999) 
 

Birds + Some species did decline in abundance. (Baker and Lacki 1997) 

Spiders -/+ Different response from visual pursuit, 

micro-web and trap door spiders. 

(McIver et al. 1992) 

Ectomycorrhizae -/+ Driven by changes to soil biology and 

chemistry. 

(Hagerman et al. 1999, Jones et 

al. 2003) 

Sp
ec

ie
s c

om
po

si
tio

n 

Beetles -/+ Changes between forest generalist and 

open habitat species. 

(Niemela et al. 1993) 
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Plants -/+ Changes in abundance of shade tolerant 

and open habitat species. 

(De Grandpre et al. 2000)  

Small mammals -/+ Change in fauna in open habitat areas. (Hansson 1994) 

 

 

3.22 Clearfell harvest impacts on the biotic environment 

 The change in composition of biotic communities as a result of clearfell harvesting has been 

well studied. Despite this there is a paucity of information on some groups, particularly 

invertebrates, herbaceous vegetation and fungal communities, all of which provide important 

ecosystem services. Table 3.1 gives an overview of some research findings with respect to the 

impact of clearfelling on species richness, abundance and composition of different taxa.  

 

Plants  

Harvesting releases resources otherwise monopolised by the mature canopy species, allowing 

opportunities for surviving understorey plants and new colonisers originating from the soil 

seed bank and seed rain (Burton 2002). As a result of rapid colonisation by open-habitat 

specialists, plant species richness is usually greatest in the first few years following 

clearfelling (Freedman et al. 1994, De Grandpre et al. 2000, Burton 2002, Roberts and Zhu 

2002) (Table 3.1). However, in many countries the presence of large numbers of exotic 

invasive species may significantly alter these regeneration patterns. For example, in New 

Zealand’s exotic plantation forests the dominant colonising grasses, herbs and shrubs 

following clearfelling are adventive, although some indigenous species present in the 

understorey prior to felling commonly re-sprout (Allen et al. 1995, Ogden et al. 1997, 

Brockerhoff et al. 2003).  

 

Invertebrates 

Most studies of the change in invertebrate community assemblage post-clearfelling have 

utilised single taxonomic groups, often ground beetles in the family Carabidae (Coleoptera). 

Unfortunately, these studies are often undertaken with little or no robust statistical 

justification as to the suitability of the chosen indicator species, citing abundance, sensitivity 

to environmental change, taxonomic and ecological knowledge, and ease of carabid sampling 

as justification for their use (Koivula 2002a, Magura 2002, Brouat et al. 2004).  
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Previous studies have shown that clearfelling results in the loss of some insect species, but 

just like plant communities there is often an increase in species richness associated with 

colonisation by open-habitat specialists, e.g., beetles (Lenski 1982, Niemela et al. 1993, 

Butterfield et al. 1995, Spence et al. 1996, Beaudry et al. 1997, Niemela 1997, Fahy and 

Gormally 1998, Ings and Hartley 1999, Heliola et al. 2001) and ground hunting spiders 

(Coyle 1981, McIver et al. 1992) (Table 3.1). The influx of open-habitat specialists is a 

transitory phenomenon, but in some Canadian and Finish managed indigenous forests species 

richness did not peak until approximately 10 years after harvest (Niemela 1997) and in some 

cases open-habitat species were still present after 27 years of stand regeneration (Spence et al. 

1996). As such, the ecological impacts of these open-habitat species on forest specialist 

species may be of significance for very long time-periods, although this has not been tested in 

New Zealand. 

 

Birds 

Forest canopy structure determines the availability of nesting and foraging resources for birds 

(Williams et al. 2001), and therefore influences the species richness and composition of 

resident bird communities (Clout and Gaze 1984, Wardell-Johnson and Williams 2000). 

Clearfell harvesting typically creates large, even-aged, homogeneous stands with reduced 

resource diversity that has been shown to limit bird abundance and species richness (Beese 

and Bryant 1999, Moore and Allen 1999, King and DeGraaf 2000, Wardell-Johnson and 

Williams 2000, Williams et al. 2001).  However, it is the concomitant change in species 

composition (Clout and Gaze 1984, Hansson 1994) that is probably of greater importance. 

Large-scale, even-aged forests tend to favour open-habitat and generalist bird species post-

harvest. As such it is unsurprising that recent clearfells and young forests are dominated by 

early successional transient species and, in some countries, mainly exotic species (Clout and 

Gaze 1984, Hansson 1994, Wardell-Johnson and Williams 2000), while older regenerating 

and mature forests have higher proportions of forest generalist and old-growth bird species 

(Clout and Gaze 1984, Wardell-Johnson and Williams 2000).  

 

Across all taxonomic groups there is concern that old-growth species in general may be lost 

from short rotation clearfell harvest systems due to a lack of suitable habitat, poor dispersal 
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abilities and/or a lack of source populations (Clout 1984, Clout and Gaze 1984, Niemela et al. 

1993, Spence et al. 1996, Wardell-Johnson and Williams 2000). However, conflicting 

evidence does exist, such as forest specialist carabid beetles that have colonised newly 

established plantation forests in the UK, despite a lack of obvious source populations in the 

immediate vicinity (Jukes et al. 2001). Similarly, a rare carabid beetle Holcaspis brevicula is 

only known from an isolated exotic pine plantation on the Canterbury Plains (New Zealand), 

an area retaining less than 1% of the original native forest and scrub communities 

(Brockerhoff et al. 2005). This indicates that some forest-specialist and rare species have 

sufficient dispersal capabilities and tolerance of disturbance to maintain populations in newly-

established, and repeatedly clearfelled forests.. Whether these species represent exceptions 

from a general trend needs further investigation, as dispersal abilities are a key attribute to 

overcoming impacts of larger clearfells. 

 

3.3 The impact of clearfell harvest size 

Few published studies exist on the functional relationship between clearfell harvest size and 

the degree of ecological change at spatial scales relevant to current forestry practices. As such 

it is difficult to determine if there is a threshold clearfell size beyond which there is a 

disproportionate increase in ecological change with increasing harvest area. Indeed, few 

studies have even sampled different sized harvest areas, and most of these have focussed on 

gap-regeneration ecology at sizes of less than 1 ha (Figure 3.1). These studies concentrated 

largely on tree regeneration rates, but in some cases measured biodiversity attributes, 

including bird diversity (Moorman and Guynn 2001). However, there continues to be a lack 

of comparative sampling or experimentation over larger harvest areas, making it difficult to 

gauge the nature of the relationship between harvest area and ecological impact. 

 

3.3.1 Plants 

Phillips and Shure (1990) reported significantly greater vegetative re-growth in 2-10 ha 

clearfells (one year after clearfelling) compared with smaller 0.016 ha clearfells in the 

Southern Appalachians. By contrast, Moorman and Guynn (2001) failed to find similar 

vegetative trends in canopy gaps of the same size in bottomland hardwood forests of the 

Upper Coastal Plain of South Carolina. In Phillips and Shure’s (1990) case, the increase in 

vegetative growth was a reflection of more prolific stump-sprouting in large clearfelled areas 
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and was attributed mainly to increased solar radiation induced by larger-scale canopy 

removal.  Coates (2000) in a study of commercial tree species showed that plant growth rates 

increased with harvest area up to 0.2 ha, yet growth rates increased little between 0.2 ha and 

0.5 ha. This is probably attributable to edge effects limiting solar radiation in forest gaps up to 

one tree height in radius (Spittlehouse et al. 2004). In contrast York et al. (2003) extended the 

spatial scale of the study up to 1 ha gaps, and found that growth rates were still increasing at 

this maximum gap size. The lack of consensus between studies illustrates that further research 

is required, particularly at larger spatial scales. 

Indirect evidence of clearfell size impacts suggests that even relatively large clearfells (100-

120 ha) in plantation forests in New Zealand are recolonised by some indigenous forest plant 

species during a single rotation (ca. 27 years) (Allen et al. 1995, Ogden et al. 1997, 

Brockerhoff et al. 2003). However, the ability to colonise such large clearfells will be 

influenced by the relative dispersal abilities of different species, characteristics of the 

available seed bank and the proximity and size of source populations. The combination of 

dispersal ability and rotation length has significant implications for the recolonisation of 

clearfells of different sizes and requires further investigation. 

 

 
Figure 3.1. Spatial scale of studies that focus on the ecological changes resulting from different 

clearfell harvest sizes. Note that the scale is logarithmic. 
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3.3.2 Birds 

Early successional bird species are currently in decline throughout parts of the United States 

(Krementz and Christie 2000). This may in part be a function of their populations being 

unnaturally high after centuries of habitat loss that created early successional habitat that is 

now being allowed to regenerate. Nonetheless clearfells provide important recently disturbed 

habitat for these species and manipulation of harvest practices has been suggested as a way of 

managing them in modified landscapes. Krementz and Christie (2000) found no decrease in 

reproductive effort, relative abundance or species richness of early successional bird species 

with increasing harvest area (2 – 57 ha) in a Pinus palustris forest in South Carolina. 

However, this is not surprising as early successional species might be expected to benefit 

from such harvesting practices. Other studies of entire bird communities have yet to show 

consistent changes in species richness per plot over different clearfell sizes. For example 

Leupin et al. (2004) observed no consistent changes in species abundances following 

clearfelling in smaller harvest areas (<0.01 - 10ha). Moorman & Guynn (2001) showed an 

increase in species richness with increasing harvest area from 0.06 – 0.5 ha, and Rudnicky 

and Hunter (1993) found similar results at slightly larger spatial scales up to 20 ha. At even 

larger spatial scales (48 - 132 ha and 218 - 240 ha), Spurr & Coleman (2002) found no 

difference in the species richness of birds as a result of clearfell harvest size.  

 

Overall, it appears from the available evidence that clearfell harvest size has few (detectable) 

negative effects on the species richness of bird communities over the range of clearfell sizes 

and ages tested. Even Rudnicky and Hunter (1993) who found the most compelling evidence 

for an effect of harvest area recognised that clearfell size was not the most important factor 

for most bird species utilising managed forests. Clearfell size may have profound impacts on 

subsequent recolonisation by forest species as larger clearfells may impose greater constraints 

on individuals displaced by harvesting, however this is yet to be tested.  

 

3.3.3 Insects 

Both species richness and relative abundances of arthropods were similar across all clearfell 

sizes (0.016 - 10 ha) at the beginning of the season in Shure and Phillips’ (1991) study in the 

Southern Appalachian Mountains. Later, during the growing season, abundance and species 

richness in the small and large clearfelled areas approximately doubled, but remained 
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unchanged in mid-sized (0.08-0.4 ha) clearings. High arthropod diversity in the small and 

large openings was attributed to a confounding variable (greater vegetation cover), which 

supplied food and protection from the adverse microclimatic changes associated with 

clearfelling (Shure and Phillips 1991). Most importantly, different groups of arthropods 

responded differently to variation in clearfell size in two independent studies (Shure and 

Phillips 1991, Huggard and Vyse 2002). Millipedes, spiders, beetles and ice crawlers 

(Grylloblattoidea) decreased in abundance with clearfell size, whilst slugs and Homoptera 

tended to increase in abundance with increasing clearfell size (Shure and Phillips 1991, 

Huggard and Vyse 2002). Meanwhile, some spiders and ants exhibited non-linear responses 

and had decreased abundance in mid-sized clearfell areas (Shure and Phillips 1991). 

 

3.4 Reference points for testing clearfell harvest impacts 

The majority of studies of ecological change with respect to clearfell harvest size described 

above have utilised comparisons among clearfells, rather than against a fixed reference point, 

such as unharvested interior forest. However, a few studies have made direct comparisons, 

including Leupin et al. (2004) who compared bird abundance in different harvest sizes with a 

control forest and individual tree selection (30 % tree removal) and found that Golden-Crown 

Ringlet (Regulus satrapa) abundance decreased significantly in all harvest areas compared to 

control stands, whereas both individual tree selection systems and 10 ha clearfell harvest 

treatments had lower abundance than smaller 1 ha clearfells. Pawson et al. (2005) in a 

comparison between different clearfell sizes and uncut adjacent stands of Pinus radiata 

showed that Pycnomerus sophorae (Coleoptera: Zopheridae) had greater abundance in small 

0.05 ha clearfells compared to uncut adjacent forest, but lower abundance than the reference 

stand in larger clearfell areas. The use of reference points as a baseline for comparison is 

critical to the interpretation of harvest impacts.  

 

Perhaps because of the perception that clearfell harvest sizes might have to be very small to 

remain essentially unchanged from the ecological conditions in uncut forests, there has been a 

growing interest in legacy management techniques, e.g., variable retention harvest as a 

method for reducing the severity of ecological change of even-aged forest management 

(Mitchell and Beese 2002).  However, it is only recently that studies such as Mazurek and 

Zielinski (2004) and Bebber et al. (2005) have provided direct evidence for the value of 
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legacy management as a method of improving biodiversity conservation in even-aged 

harvesting systems. In this context, a comparison of clearfell harvest areas to uncut forest, 

with and without legacy management, would be particularly instructive. For example, does 

legacy management protect conservation values across the entire spectrum of clearfell sizes, 

or does the importance of legacy management change with increasing harvest area.  Most 

importantly in all such comparative studies between clearfelling and uncut-forest, or 

alternative harvesting systems, there is a need to sample across a wide range of taxa and 

ecological processes to ensure that ecosystem-level responses are measured, rather than 

individual taxon responses that may not be representative of the majority of species. 

 

Given the intense interest in the hypothesis that clearfell harvest areas may mimic natural 

disturbance processes, other potentially important reference points to consider include open-

habitat created by natural disturbance processes, such as wind throws or catastrophic 

wildfires. The ecological similarity of clearfells and natural disturbances comparison, 

including the effects of post-harvest treatments, has been the subject of many studies (Gluck 

and Rempel 1996, Quine et al. 1999, Carignan et al. 2000, Lindenmayer and McCarthy 2002, 

Baker et al. 2004, Simon and Schwab 2005) and the issue remains contentious. As part of this 

debate consideration should be given to the fact that any similarity between clearfell 

harvesting and the results of natural disturbance processes may change with harvest area, a 

point yet to be studied in detail.  

 

3.5 The search for thresholds 

The key focus of future research, and the concept of greatest interest to land managers, is the 

potential existence of a threshold clearfell size, beyond which induced ecological change 

increases disproportionately to the linear increase in harvest area. The notion of ecological 

thresholds or discontinuities in response is not new (Muradian 2001, Huggett 2005), but it is 

only relatively recently that there has been a major focus on the theoretical and empirical 

importance of ecological thresholds. For example, in the extensive habitat fragmentation 

literature there is accumulating evidence of ecological thresholds in remaining habitat cover, 

below which there is a non-linear decrease in population persistence in habitat fragments 

(Andren 1994, Fahrig 2001). However, recent empirical studies highlight inconsistencies in 

the location (or existence) of ecological thresholds across species and sites (Drinnan 2005, 
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Lindenmayer et al. 2005, Radford et al. 2005), and Muradian (2001) and Huggett (2005) raise 

caution about the limited predictive abilities of such empirical threshold estimates.  Despite 

this, the concept of ecological thresholds has found great utility with territorial authorities to 

manage land for conservation purposes, particularly in Australia (Huggett 2005).  

 

So what is the range of likely responses of ecological communities to clearfell harvesting 

(Figure 3.2)?  

• Harvest impacts may follow the null hypothesis of no change in biodiversity and 

ecosystem function after harvesting (curve I in Figure 3.2a), although this is unlikely for 

the majority of response variables given the known changes in abiotic and biotic factors 

discussed earlier.  

• Responses may be linear in that ecological change is proportional to harvest size (curve II 

in Figure 3.2a), i.e., there is no critical breakpoint or threshold in the system.  

• A third possibility is that there is a threshold effect, in which ecological change increases 

disproportionate to the increase in harvest area, although there are several alternative 

scenarios for the location and shape of the threshold effect across harvest areas (Figure 

3.2b). Ecological change may occur rapidly at very small harvest sizes and then plateau 

with little change beyond this small critical size (curve III in Figure 2.2b). 

• Alternatively, threshold points may occur at larger clearfell sizes and the transition 

between low and high ecological impacts may be more gradual (curves IV-VI in Figure 

3.2b).  
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Figure 3.2 (A) Null hypothesis of no-change (curve I), or a linear change (curve II) in ecological 

impacts with increasing harvest area. (B) Hypothetical scenarios for threshold ecological change 

across different clearfell sizes (curves III – VI). Ecological change might occur sharply at a defined 

point, or be spread over wider clearfell sizes. The magnitude and rate of change (slope of line) are 

likely to vary depending on the response variable studied. As such, there may not be a single 

identifiable threshold point, but rather a threshold zone might be likely to occur (denoted with 

shading). 
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The species responses discussed in previous sections, e.g., lack of change in bird species 

richness in clearfells over 20 ha (Rudnicky and Hunter 1993), suggest that non-linear 

responses to clearfell harvesting do exist in at least some circumstances.  Given these non-

linear responses, at what harvest size might threshold points occur and where should research 

effort be concentrated to quantify potential threshold sizes? The magnitude of the change 

post-harvest will vary depending on the response variable measured, as well as broad-scale 

biogeographic factors such as forest type and fine-scale factors such as aspect and slope 

(Figure 3.2). Consequently, there is most likely to be a threshold zone of ecological transition 

(indicated by the shaded area in Figure 3.2b) and exact thresholds will vary spatially and 

temporally depending on response variables (e.g., species abundance, community composition 

and so on) and stand specific factors. 

 

In many cases the definition of clearfelling focuses on the changes in microclimate with 

increasing disturbance to the mature forest stands. Given that microclimate is a key variable 

that determines species distributions, community composition and influences biological 

processes (Krebs 2001), the harvest area where the forest microclimate changes to an open-

habitat microclimate seems a logical starting point to assess ecological thresholds in the 

response of biodiversity to forest harvesting. Most definitions of clearfells have assumed an 

area with a radius greater than 1 - 2 tree heights (Bradshaw 1992). Recent research into 

microclimatic changes induced by clearfelling at Sicamous Creek supports this showing that 

the greatest rate of change occurred within one tree height of the forest edge (Spittlehouse et 

al. 2004). Therefore, clearfell areas above or below 1 to 2 tree heights in radius become a 

logical starting point to test for clearfell thresholds and changes in forest biodiversity. This 

size will vary depending on forest type, topography and local climate.   

 

In addition to potential ecological thresholds resulting from clearfelling there is a strong social 

element of public acceptability to take into consideration. It is likely that there are limits to 

public acceptability of clearfell harvest impacts that may differ greatly from the amount of 

ecological change observed (Figure 3.2b). As yet there is no empirical evidence to define 

where (or if) these ecological thresholds in clearfell size exist, and as such one cannot 

reconcile any potential differences between forest policy and public perceptions. However, a 

mismatch between the ecological threshold and public acceptability creates potential conflict, 
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especially if the ecological threshold is higher than the limits of public acceptance. 

 

3.6 Discussion and Conclusions 

Disturbances of the magnitude produced by clearfell harvesting will cause significant changes 

in abiotic factors such as microclimate and hydrology, which in turn affect local biotic 

communities. In the past, clearfelling has been promoted as a mimic of natural processes, such 

as wild fire and wind-throw, although in recent years such comparisons have been questioned. 

Clearfelling may be an adequate mimic of disturbance in some forest systems (Seymour and 

Hunter 1999), but the extent of similarities can in some cases be quite superficial, with 

forestry providing a poor substitute (Spence 2001, Pedlar et al. 2002). 

 

Clearfell harvest size has been reduced or replaced by alternative silvicultural systems in 

recent years, due largely to public pressure, but in some cases also for specific ecological 

reasons (e.g., concern over population decline in the Spotted Owl (Strix occidentalis) Noon, 

1996) It appears, generally speaking, as if there has been an a priori assumption that large 

clearfells are ‘bad’, yet from the available research there is conflicting empirical support for 

this generalisation (Phillips and Shure 1990, Shure and Phillips 1991, Rudnicky and Hunter 

1993, Huggard and Vyse 2002, Spurr and Coleman 2002, Leupin et al. 2004).   

 

Public acceptability is partially driven by science and to a large degree by social values. 

Unfortunately the data for critically assessing ecological change as a function of clearfell size 

is lacking. As such, forest managers lack crucial information to facilitate consultation with the 

public over their management practices. Further complications will occur when comparing 

managed native forests with plantations formed by the reforestation of previously agricultural 

land. Public perception of plantations is different to that of managed native or old-growth 

forests and these differing attitudes will affect the acceptability of clearfelling depending on 

the forest context. In addition, the actual impact of clearfelling may also be context 

dependent, because the process of afforestation to create plantations may select for species 

with good dispersal abilities and generalist habitat requirements that are better suited to cope 

with clearfell harvesting methods. As a result, many species in recently reforested agricultural 

landscapes may be less affected by large sized cuts than those present in managed indigenous 

forests. 
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Currently, large-scale clearfelling may be the most cost-effective form of harvesting currently 

available, especially for low-value timber species. However, considerable research is still 

required to determine the ecological change induced by different sized clearfell harvest areas 

across the spectrum of currently managed forests, including different forest types (managed 

indigenous, exotic and native plantations), as well as a range of biogeographic zones.  This 

research is important to identify possible thresholds where the severity of ecological damage 

changes dramatically. Previous work on microclimatic changes induced by clearfelling would 

indicate that a large amount of change occurs in forest gaps greater than one tree length in 

radius. As such, research should be targeted at assessing impacts from <1ha to 10ha to 

identify potential threshold points. However, comparisons with uncut forests and with larger 

clearfell areas will also be necessary to confirm the shape and magnitude of the impact curve 

(Figure 3.2) and to determine responses of other abiotic and biotic variables. 

 

Threshold sizes, if they exist, can guide forest management, enabling the development of 

improved harvesting policies. However, potential thresholds of 1-2 tree lengths in radius will 

be significantly smaller than current forest harvesting practices in many countries. This will 

be a contentious issue that will need addressing in due course. 

Research and policy design needs to be followed by a process of public education. The point 

needs to be made that forestry is not all bad for biodiversity (Pawson and Brockerhoff 2005), 

especially with respect to plantation forestry in areas that have otherwise lost the majority of 

native tree cover. In some instances, establishing plantations on marginal agricultural land can 

be beneficial for regional forest biodiversity. In such cases silviculture can have positive 

conservation outcomes, but to ensure its sustainability and gain broad public acceptance it 

must be based on sound science.  
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Chapter 4. Non-native plantation forests as reservoirs for native 

biodiversity in a fragmented New Zealand landscape 
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4.1 Introduction 

Habitat loss and fragmentation are recognised as critical agents of species decline (Tilman et 

al. 1994, Sala et al. 2000, Brooks et al. 2002, Fahrig 2003, Reed 2004, Ewers and Didham 

2006a). In New Zealand, the impacts of habitat loss on biodiversity have been most severe in 

the fertile lowland forest environments that were best suited for conversion to pastoral 

agriculture (Norton 2001), where over 90 % of the original forest cover has been destroyed in 

some regions (Ewers et al. 2006). Significant changes in land use still occur (Ewers et al. 

2006, Walker et al. 2006), and in lowland regions recent reforestation for plantation timber 

production has established large areas of forest habitat that have been missing from these 

landscapes for many decades. In a landscape matrix otherwise dominated by pastoral farming, 

low contrast matrix habitats such as plantation forests are increasingly recognised for their 

potential contribution to biodiversity preservation (Humphrey et al. 1999, Anon 2000, Carnus 

et al. 2006). 

 

Because plantation forests are intensively managed for the commercial production of timber 

and other forest products, they are typically composed of just one or a few tree species 

(predominantly Pinus radiata in New Zealand) grown in even-aged stands with  a simplified 

canopy structure, that are repeatedly harvested by clearfelling. As a consequence, plantation 

forests are often assumed to support a low abundance and diversity of indigenous species, and 

they are frequently referred to as ‘biological deserts’ (Brockerhoff et al. 2001). Contrary to 

such perceptions, research has shown that managed plantation forests can support a diverse 

array of native understorey plants (Allen et al. 1995, Geldenhuys 1997, Ogden et al. 1997, 

Brockerhoff et al. 2003), birds (Ryder 1948, Weeks 1949, Clout 1984, Clout and Gaze 1984), 

and invertebrates (Humphrey et al. 1999, Hutcheson and Jones 1999, Bonham et al. 2002, 

Woodcock et al. 2003, Humphrey 2005, Mesibov 2005, Oxbrough et al. 2005, Carnus et al. 

2006). Furthermore, plantation forests contribute to ecosystem integrity by buffering native 

forest remnants from the microclimatic influence of surrounding matrix habitat (Norton 1998, 

Brockerhoff et al. 2001, Hartley 2002, Denyer et al. 2006), and provide a  low contrast forest 

environment suitable for many species dispersing between remnant native habitats in the 

landscape (Norton 1998, Hale et al. 2001). 

Internationally, there is increasing pressure to reduce the real and perceived negative 

environmental effects of plantation forestry, and to enhance sustainable timber production 
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(Hock and Hay 2003). An array of stand-level initiatives to increase forest heterogeneity and 

enhance biodiversity has been evaluated in managed production forests. Most are 

encompassed by the concept of legacy management (manipulation of organisms or 

organically-derived biological structures that survive a disturbance event and provide 

propagules, habitat, food or other ecosystem services to recovering biological communities, as 

summarised in Franklin et al. 2000) which includes management of harvest debris and 

manipulation of stand composition, vertical structure and age (Kerr 1999, Franklin et al. 2000, 

Bonham et al. 2002, Mazurek and Zielinski 2004). However, external influences at larger 

spatial scales, such as landscape composition and connectivity, are now emerging as equally 

critical determinants of biodiversity within plantations, and the influence of stand level 

management should be considered within a landscape context (Humphrey et al. 2004, 

Lindenmayer and Hobbs 2004, Barbaro et al. 2005). Unfortunately, advances in this vein are 

hampered because most landscape ecological research continues to focus on natural 

ecosystems (Norton 2001, Fazey et al. 2005), and there is little understanding of the 

contribution managed habitats, such as plantation forests, can make to regional biodiversity 

conservation relative to native remnants. 

 

The objective of this study was to determine the role of modified habitats, particularly non-

native plantation forests as reservoirs of native biodiversity in heavily fragmented landscapes. 

This is particularly important in regions that have undergone extensive deforestation, where 

plantation forests may provide significant ‘surrogate’ forest habitat throughout the landscape. 

For example, afforestation in New Zealand from 1900 onwards has created 1.8 million 

hectares of exotic (primarily Pinus radiata) forest (ca. 25% of New Zealand’s total forest 

cover) in the form of intensively-managed plantation forest habitat (Anon 2005). In some 

regions of the central North Island and the eastern South Island, plantation forests dominate 

the matrix habitat that surrounds remnant native habitat. I compared invertebrate biodiversity 

in native forest habitat and three human-modified ecosystems (pasture, mature production 

forest stands, and recent clearfell-harvested stands) in the highly fragmented landscape of the 

central North Island. Sampling focused on beetle diversity within three dominant families, 

ground beetles (Carabidae), chafer beetles (Scarabaeidae) and bark beetles (Curculionidae: 

Scolytinae), which are known to occur in high abundance within New Zealand’s exotic 

plantations (Chapter 5) and include critically endangered species of conservation concern 
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(Brockerhoff et al. 2005). Sampling across gradients between habitats was an attempte to 

investigate the presence of edge-mediated changes in the abundance of beetles. 

 

4.2 Methods 

4.2.1 Collection of beetles 

The study was conducted in the central North Island of New Zealand, a region historically 

subject to infrequent catastrophic disturbances, predominantly from the Taupo Volcanic Zone 

(Froggatt and Lowe 1990, Wilmshurst and McGlone 1996). Before European colonisation the 

vegetation of this volcanic plateau was a mosaic of seral shrub-heaths and frost flats at higher 

altitudes, and lush mixed podocarp-broadleaved forests on lowland terraces (Wardle 1991). 

Current patterns of indigenous vegetation are a reflection of drastic changes in land use over 

the last 200 years (McGlone 1989, Roche 1990). Exotic pasture species (predominantly 

ryegrass, Lolium perenne, and clover, Trifolium repens) and plantation forests of P. radiata 

are now dominant and surround highly fragmented, isolated patches of native habitat. Native 

vegetation is limited to a few large intact areas of forest (managed by the Department of 

Conservation), many small privately-owned forest remnants (including a substantial network 

throughout plantation forests along riparian margins and steep gullies), pockets of indigenous 

shrubland, areas of fire-induced shrubland, and the significant but often unrecognised native 

plant component within the understorey of plantation forests (Allen et al. 1995, Ogden et al. 

1997, Brockerhoff et al. 2003). 

 

Invertebrates were collected along three independent replicate edge gradients in each of the 

six possible comparisons between pairs of the following habitats: mature 26 year-old P. 

radiata, recently clearfelled P. radiata stands, native forest and pasture. Along each of the 18 

edge gradients, individual pitfall traps were placed at seven distances from the habitat 

boundary, at -125, -25, -5, 0, +5, +25 and +125 m perpendicular to the edge (negative 

distances arbitrarily assigned to one of the habitats, giving 126 pitfall traps in total. The 

logarithmic scale applied to the sampling design reflects the a priori assumption that changes 

in species abundances would occur most rapidly near habitat edges (Didham et al. 1998, 

Ewers et al. In Press). Carabidae, Scarabaeidae and Scolytinae (Curculionidae) were 

identified to species level from the pitfall samples. These three taxonomic groups were chosen 

to provide a balance between identifying all Coleoptera (which was not technically feasible 
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due to resource limitations) and the other extreme of relying on a single taxonomic ‘indicator’ 

group. The families were selected to provide a range of trophic groups: Scarabaeidae are 

herbivores, Scolytinae are phloem feeders in wood, and Carabidae are generally predators. 

Little is currently known about the diet of New Zealand carabids, but it is assumed that they 

have similar trophic roles to those found in other countries (Larochelle and Larivière 2001). 

 

Trap monitoring was undertaken six times at monthly intervals between November 2002 – 

February 2003 and December 2003 – February 2004. Total abundance of each species within 

traps was used in rarefaction analysis, however, for other analyses the abundance of 

individual species was unit-standardised by converting to abundance per 100 trap-days to 

account for minor differences in sampling duration between traps that resulted from the 

schedule of sample collection. For detailed discussion of study sites, pitfall trapping 

procedures and the collection of environmental variables see Chapter 2. 

 

Table 4.1. Description and units of measurement of environmental variables included in constrained 

CCA ordination (Figure 4.3).  

Abbreviation Description Units of measurement 

Dist Distance along transect Metres 

Long Longitude (also expresses collinear effects of Long2, 

Long3,  Long2 * Lat and Long * Lat2) 

NZMG Longitude/1,000,000

Lat Latitude (also expresses collinear effects of Lat2 and 

Lat3) 

NZMG Latitude/1,000,000 

500m-nat Proportion of native vegetation within 500 m radius Proportion 

500m-exo Proportion of exotic vegetation within 500 m radius Proportion 

1000m-nat Proportion of native vegetation within 1000 m radius Proportion 

1000m-exo Proportion of exotic vegetation within 1000 m radius Proportion 

5000m-nat Proportion of native vegetation within 5000 m radius Proportion 

5000m-exo Proportion of exotic vegetation within 5000 m radius Proportion 

Adj-N Adjacent stand to site is native Categorical 

Adj-P Adjacent stand to site is pasture Categorical 

Adj-M Adjacent stand to site is Pinus radiata 26 yr Categorical 
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Adj-C Adjacent stand to site is clearfell Categorical 

DW-1-5 Dead wood, categorical scale 1-5, i.e., 4 levels Categorical 

D-1-5 Drainage, categorical scale 1-5, i.e., 4 levels Categorical 

L-1-5 Leaf litter, categorical scale 1-5, i.e., 4 levels Categorical 

PCA-Veg1 PCA axis 1 scores of understorey vegetation surveys Ordination scores 

PCA-Veg2 PCA axis 2 scores of understorey vegetation surveys Ordination scores 

PCA-Veg3 PCA axis 3 scores of understorey vegetation surveys Ordination scores 

PCA-LENZ 1 PCA axis 1 scores of LENZ environmental information Ordination scores 

PCA-LENZ 2 PCA axis 2 scores of LENZ environmental information Ordination scores 

PCA-LENZ 3 PCA axis 3 scores of LENZ environmental information Ordination scores 

 

4.2.3 Assessment of species richness and community composition 

Expected species accumulation curves were calculated using the sample-based rarefaction 

index (Mau-Tau, in Estimate-S 7.5.0), rescaled and expressed in terms of number of 

individuals (Colwell 2004). Associated confidence intervals were calculated by a general 

binomial mixture model with 100 randomisations (Colwell et al. 2004). The expected 

asymptote of the rarefaction curve was calculated by extrapolation beyond the sampled data 

range using the Michaelis-Menten richness estimator (Colwell and Coddington 1994, Colwell 

2004).  

 

Variation in beetle species composition between habitats was analysed using multivariate 

ordination techniques. An unconstrained correspondence analysis (CA) was conducted on log-

transformed species abundances. A total of 39 variables characterising spatial attributes, 

vegetation structure and local environmental factors were collected for each of the sampling 

sites (Table 4.1).  After removing collinear variables, the remaining factors were included in a 

canonical correspondence analysis (CCA), and a forward selection procedure was used to 

identify potential confounding variables (such as spatial autocorrelation among trap locations) 

that explained significant variation in beetle community composition (Ter Braak 1995). Both 

longitude and latitude were significant and thus considered to represent spatial autocorrelation 

in the data, and were subsequently added to the model as covariables (Borcard et al. 1992). A 

final partial CCA was then conducted on 29 environmental variables and the two covariables, 
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using inter-sample distances and biplot scaling.  All ordination analyses were conducted in 

Canoco V. 4.01 (ter Braak and Smilauer 1999). 

 

4.2.4 Assessment of community and individual responses between different habitat types 

The abundance of native and exotic beetles in different habitat types was analysed with a 

split-plot repeated measures ANOVA (Genstat Version 9). Habitat comparisons (e.g., pasture 

versus clearfell) were assigned as the main plot and individual habitat types as sub-plots. A 

factor was created called ‘compartment group’ which provided an identifier for each unique 

pairing of habitat types.  By nesting habitat type within ‘compartment group’ it is possible to 

assess the effect of adjacent habitat on beetle abundance (measured as average catch per 100 

trap days).    For this particular analysis, the 5, 25 and 125 m pitfall traps were assigned as 

repeated measures within the sub-plot. Treatments were beetle origin (native or exotic), 

habitat type (native, pine, clearfell and pasture) and distance from boundary between the 

habitats.  Examination of residual plots indicated a log transformation was required, but 0 

values in the data set forced the use of an adjusted log transformation, i.e., log(x  + 0.01).   

 

Species characteristic of particular habitats were identified by the Indval procedure of 

Dufrêne and Legendre (1997). Indval sample groupings were assigned a priori on the basis of 

habitat type (clearfell, pasture, native forest and mature P. radiata). Habitat types were 

constructed by grouping pitfall traps along transects, whereby traps at 125 m and 25 m in each 

habitat were considered representative of their particular habitats. This was a conservative 

approach to avoid the most severe edge-effects that are present at the habitat boundaries and 

at pitfall traps 5 m either side. 

 

Differences in the relative abundance of native and exotic species were then further analysed 

across entire habitat gradients to determine whether the shape of the edge response function 

varied between habitat types. Variation in the proportional representation of exotic beetles 

across habitat edges was modelled by testing the fit of five continuous response functions of 

increasing complexity: null, linear, power, logistic and unimodal (Ewers and Didham 2006b). 

Response functions were calculated in R version.2.4.0 (Team 2006) using a single average 

proportional abundance of exotic species for each trap, which was the average value pooled 

across the six trapping periods (so as to avoid pseudoreplication).  The best-fit model, out of 
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the five response functions tested, was selected using Akaike weights (calculated from Akaike 

information criterion, AIC, values), which give the probability that a particular model is the 

best fit to the data from the set of models that are evaluated. 

 

4.3 Results 

4.3.1 Rarefied species richness 

There was no significant variation in beetle species accumulation curves as a function of 

habitat type, either for all species combined (Figure 4.1a), or for native beetles species 

considered separately (Figure 4.1b). In both cases, clearfell habitats had the highest expected 

species richness, whereas native forest had a lower total expected species richness asymptote 

than production habitats. The principle cause of this was the low exotic beetle species richness 

in native forest (Appendix 4.1), this was further illustrated by an increase in the slope and 

expected asymptote of the native forest species accumulation curve relative to other habitat 

types when comparing native beetles only, as opposed to all beetles (Figure 4.1b).   

The target species groups were very well characterised by the level of sampling effort 

employed, as illustrated by the curves approaching an asymptote (Figure 4.1a). Pooling across 

all habitats, the actual species richness was equivalent to 97.7% of the expected species 

richness asymptote as calculated by Michaelis-Menten running means. 

 

4.3.2 Relative beetle abundance in different habitat types 

A combined total abundance of 9,974 Carabidae (28 species), 1,433 Scarabaeidae (11 species) 

and 633 Scolytinae (3 species) were collected from all habitat types. The majority of species 

(75 %) were native, however eight carabid species, one scarabaeid species and two scolytine 

species were exotic species (Appendix 4.1). There was strong evidence of an interaction 

between the origin of beetle species (exotic versus native) and their abundance in different 

habitat types (F3,78 = 25.55, P < 0.001, Table 4.2). Recent clearfells had the greatest pooled 

mean abundance of the four habitats sampled (140.8/100 trap days), due largely to the 

dominance of one native species, Cicindela tuberculata (78 % of individuals).  Exotic beetle 

abundance in native habitat was extremely low compared to all other habitat types (Figure 

4.2). There was evidence of lower exotic species abundance in mature P. radiata habitat 

compared to recent clearfells (Figure 4.2).  However, there was no significant difference in 

the abundance of native beetles between habitat types (Figure 4.2).  
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Average beetle abundance did not change with distance into habitat, or distance as an 

interaction with other factors in the repeated measures ANOVA (Table 4.2). However, a 

number of species, including Hypharpax australasiae, Scopodes spp., Demetrida natsuda and 

Lecanomerus sharpi were present in open habitats, such as clearfells and pasture, but not in 

mature forest (Appendix 4.1). Four species were specific to a single habitat type, three of 

which, Scopodes edwardsi (clearfell), Ataenius brouni (forest) and Notagonum submetallicum 

(pasture), may be transient species given their low abundance, whereas the fourth species, 

Acrossidius tasmaniae, is a common pasture pest (Appendix 4.1).  

 

4.3.3 Variation in beetle community composition between habitat types 

Twelve of the 29 environmental variables tested in the forward selection procedure of the 

canonical analysis were significant predictors of variation in beetle community composition 

between sites (Table 4.3). Given their potential as confounding factors, latitude and longitude 

were incorporated as covariables in a partial canonical correspondence analysis (pCCA). Axes 

1 and 2 of the pCCA explained 6.3 and 5.6 % of the total variance in species abundances, 

respectively, and 17.7 and 15.8 % of the species environment relationship, respectively 

(Figure 4.3a). The four habitat types formed distinct groupings (Figure 4.3a). Although 

mature P. radiata sites shared multivariate space with other habitat elements they were the 

most similar to native forest (Figure 4.3a).  Overall, variation in beetle species composition 

was best explained by the proportion of native forest within 500 m of the sample location, 

with sites most strongly correlated with this environmental variable along pCCA axis 1 (Table 

4.3). The second strongest correlation with Axis 1 was the axis 1 scores of the PCA analysis 

of understorey vegetation, PCA-Veg1 (Table 4.3). Axis 2 was most strongly correlated with 

the PCA axis 1 of the LENZ data layers (Table 4.3).  

  

4.3.4 Individual species responses 

In general, indicator values for individual taxa were low, but values for two species exceeded 

50 (C. tuberculata in clearfells and C. zealandica in pasture) indicating a strong habitat 

association.  A further 14 species had maximum indicator values greater than 25 (Table 4.4). 

Clearfell and native forest had the most distinctive assemblages, with 8 and 5 species, 

respectively, exceeding an indicator value of 25. In contrast to native forest that was 
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Figure 4.1. Species accumulation curves of, A) all beetle species and B) only native species were 

calculated for different habitat types by sample-based rarefaction. The x-axis is rescaled to the number 

of individuals and error bars denote 95% confidence intervals. The Michaelis-Menten richness 

estimator was used to estimate the expected species richness asymptote. All rarefaction analyses were 

conducted using Estimate-S (Colwell 2004). 
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Table 4.2. Results of repeated measures ANOVA of beetle species abundances with respect to habitat 

comparison type, habitat type, species origin and distance from habitat edge. A correction factor of 

0.9658 was applied to the d.f. of the distance term and its interactions to adjust for potential correlation 

between pitfall traps sampled from the same trap gradient. Origin refers to whether the beetle was 

native or exotic. 

Source of variation 
 

d.f. Sums of Squares Mean 
Square 

F P 

Compartment stratum     
Habitat Comparison 5  324.66  64.93  11.07 <0.001
Residual 12  70.41  5.87  2.79  
Compartment * Subplot stratum     
Habitat Type 3  114.47  38.16  18.16 <0.001
Habitat Comparison. Habitat 
Type 

3  32.49  10.83  5.16  0.016

Residual 12  25.21  2.10  0.97  
Compartment . Subplot * Distance stratum    
Distance 2  6.30  3.15  1.45  0.244
Distance.Habitat Comparison 10  12.40  1.24  0.57  0.828
Distance.Habitat Group 6  7.03  1.17  0.54  0.774
Distance.Habitat 
Comparison.Habitat Group 

6  22.15  3.69  1.70  0.140

Residual 48  103.95  2.17  1.70  
Compartment . Subplot * Distance * Replication stratum   
Origin 1  303.13  303.13  237.68 <0.001
Distance.Origin 2  0.41  0.20  0.16  0.853
Habitat Comparison.Origin 5  94.28  18.86  14.79 <0.001
Habitat Group.Origin 3  96.06  32.02  25.11 <0.001
Distance.Habitat 
Comparison.Origin 

10 21.03  2.10  1.68  0.101

Distance.Habitat Group.Origin 6  10.58  1.76  1.41  0.233
Habitat Comparison.Habitat 
Group.Origin 

3  11.28  3.76 3.00 0.038

Distance.Habitat 
Comparison.Habitat 
Group.Origin 

6  5.91  0.99  0.77 0.594

Residual 78 97.38  1.25    
   
Total 215  1353.56      
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Figure 4.2. The abundance of native species did not differ significantly across all habitat types, 

whereas the abundance of exotic species varied between habitat types and was very low in native 

forest. LSD (p = 0.05 with 26.06 d.f.). 
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Table 4.3. Significant environmental variables and associated intraset correlations from partial 

canonical correspondence analysis. Eigenvalues, F-values and P-values are from forward selecting 

regression procedure, Canoco V. 4.02 (ter Braak and Smilauer 1999). Intraset correlations in bold are 

significant at P < 0.05. 

Intraset correlations Environmental 

Variables 
Eigenvalue, Σ of 

eigenvalues = 1.49F P Axis 1 Axis 2 

500 m Native forest 0.16 4.88 0.002 0.67 -0.03 

PCA LENZ 1 0.15 4.45 0.002 -0.24 -0.51 

PCA Vege 1 0.11 3.52 0.002 0.60 0.04 

500 m Exotic 0.10 2.96 0.002 -0.10 -0.37 

Adjacent pasture 0.10 3.43 0.002 -0.15 -0.07 

5,000 m Exotic 0.09 3.04 0.002 0.08 -0.10 

PCA LENZ 3 0.09 2.81 0.002 -0.18 -0.09 

5,000 m Native 0.08 2.89 0.002 0.24 0.12 

Drainage 5 0.06 1.83 0.014 -0.05 -0.24 

Litter 1 0.08 1.50 0.042 -0.28 -0.01 

 

dominated by native indicator species, many of the clearfell species were exotic in origin. 

Pasture and mature P. radiata had a predominantly generalist fauna, with only 2 and 3 

indicator species respectively. Partial canonical correspondence analysis axis scores of beetle 

species with significant indicator values greater than 25 were superimposed on the plot of  

 

4.3.5 Changes in the proportion of exotic beetles across habitat boundaries 

Exotic and native beetle abundance varied significantly between habitat types, but this was 

dependent on the adjacent habitat type (F3,78 = 2.95, P < 0.038, Table 4.2). There was 

negligible invasion by exotic beetles at all distances into native forest despite the presence of 

exotic species in adjacent production habitats (Figure 4.4a). Proportional representation of 

exotic beetles in P. radiata was low at all distances from the native forest edge, but increased 

with distance into pasture (Figure 4.4a). There was an unusual unimodal abundance pattern in 

recent clearfells; exotic beetle abundance peaked 5 m into the clearfell habitat before 

declining with increasing distance from the forest boundary (Figure 4.4a). Plantation stands of 

P. radiata and recently disturbed clearfell habitat had a much lower proportional abundance 
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A 

 
B. 

  
Figure 4.3. A) Site-based partial constrained correspondence analysis (pCCA) of combined Carabidae, 

Scarabaeidae and Scolytinae in different habitat types. B) Biplot of significant environmental variables 

(Table 4.3) with the most abundant taxa and those with significant indicator values for at least one 

habitat type overlaid (abbreviations as in Table 4.4). Continuous environmental variables are shown as 

arrows, while categorical variables are expressed as a single black circle indicating its centroid. 
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Table 4.4. Indicator values for beetle taxa in different habitats, values were calculated using the 

methodologies of Dufrêne and Legendre (1997) on the basis of a priori selected habitat groupings 

using PC-ORD V. 4.01 (McCune and Mefford 1999). 

Family Species 
Abbrevi-

ation 
Clearfell Native Pasture 

Mature 

P. radiata

Signific-

ance 

Carabidae Cicindela tuberculata Cic tub 85 0 1 0 0.001 

Scarabaeidae Costelytra zealandica Cos zea 2 0 53 4 0.001 

Carabidae Platynus macropterus Pla mac 39 0 0 0 0.001 

Scarabaeidae Odontria sp. Odo sp. 15 5 5 36 0.005 

Carabidae Ctenognathus bidens Cte bid 2 34 2 2 0.003 

Carabidae Mecodema occiputale Mec occ 12 34 1 9 0.004 

Carabidae Dichrochile maura Dic mau 0 33 2 1 0.001 

Carabidae Hypharpax australis Hyp aus 31 0 0 5 0.001 

Carabidae Rhytisternis miser Rhy mis 27 0 31 2 0.003 

Scarabaeidae Saphobius 

squamulosus  Sap squ 5 31 0 4 0.002 

Scolytinae Hylastes ater Hyl ate 31 0 0 27 0.005 

Carabidae Mecyclothorax 

rotundicollis 
Mec rot 30 0 15 0 0.002 

Carabidae Holcaspis mordax Hol mor 10 29 7 16 0.038 

Carabidae Scopodes prasinus Sco pra 29 1 0 0 0.001 

Scolytinae Hylurgus ligniperda Hyl lig 26 0 0 15 0.001 

Scolytinae Pachycotes peregrinus Pac per 19 0 0 25 0.004 
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Figure 4.4.  Average proportional abundance of exotic beetle species across gradients between 

habitats, A) Native forest versus clearfell, P. radiata and pasture, B) Pasture versus clearfell. Curves 

represent continuous response functions fitted using the methods of Ewers and Didham (2006b). 
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of exotic beetles than intensively managed pastoral grassland adjacent to native forest (Figure 

4.4a). Despite the fact that both clearfells and pastoral grassland are structurally open habitats, 

the proportional abundance of exotic species was much higher in pasture, even when pasture 

was directly adjacent to clearfell habitat (Figure 4.4b).  

 

4.4 Discussion 

4.4.1 High native beetle biodiversity in plantation forests 

In New Zealand’s central North Island, intensively-managed exotic plantation forests 

supported significant native beetle biodiversity. This is consistent with other recent 

invertebrate studies in New Zealand (Brockerhoff et al. 2005, Pawson 2006, Berndt et al. 

Submitted) and Australia (Bonham et al. 2002, Mesibov 2005). The expected total species 

richness was higher in plantations (including recently clearfelled stands) than native forest 

(Figure 4.2a). However, low beetle diversity in native forest was partially a reflection of the 

resilience of native forest to invasion by exotic species. Hylastes ater, a common bark-beetle 

pest species of P. radiata was the only exotic species recorded in native forest sites. In 

contrast, clearfell-harvested sites had seven exotic species, and P. radiata and pasture sites 

had eight. Harris and Burns (2000) also observed apparent resilience to exotic species 

invasion in native kahikatea (Dacrycarpus dacrydioides) forest fragments of the Waikato 

district (~ 120 km from our study site), despite the dominance of exotic species in adjacent 

pasture. Harris and Burns (2000) attributed this to the difference in light levels between native 

forest and pasture, preventing the establishment of adventive plant species and their host-

specific adventive beetles. Our results do not support this conclusion as the canopy closure of 

native forest and plantations was very similar (calculated using hemispherical photographs, 

see Chapter 2), yet P. radiata stands supported many more exotic beetle species. However, 

few of the species considered here were host-specific species, unlike many of the Malaise-

trapped flying species of Harris and Burns (2000). Alternative explanations include the 

difference in disturbance history of the native forest compared to the managed production 

habitats and the origin of the tree species and their potential flow-on effects to the invertebrate 

community, and the choice of taxa sampled. Disturbance is much more frequent and intense 

in plantation forests or pasture, and disturbance processes are known to facilitate 

establishment of invasive species (Hobbs and Huenneke 1992, Lozon and MacIsaac 1997).  



 

Paper produced from 84% FSC certified forest resources 

82

If exotic species are excluded from the analysis the expected species richness falls into two 

groups, mature plantation habitat and clearfells with higher richness, and native forest and 

pasture with lower richness (Figure 4.2b). The lower native beetle species richness in pasture 

may reflect both the lack of native host plant species in managed exotic grass swards (Harris 

and Burns 2000, Ecroyd and Brockerhoff 2005)and the historical rarity of natural grasslands 

and their associated beetle communities in the central North Island (see appendix Kennedy et 

al. 1978). 

 

4.4.2 Low exotic dominance in plantation forests 

Beetle abundance varied significantly between habitat types, but this was dependent on the 

adjacent habitat type and on beetle species origin (exotic versus native) (Table 4.2). Exotic 

beetles were almost absent from native forest, irrespective of the adjacent habitat type, 

implying that there may be some attributes of undisturbed native forest that promote 

resistance to the establishment of exotic species. Plantation forests are already recognised as a 

suitable microclimatic buffer for native remnants (Denyer et al. 2006), and the low proportion 

of exotic species in mature P. radiata stands (Figure 4.4a) suggests that they may also provide 

a ‘temporary’ biological buffer from exotic species dominance, compared to alternative 

pasture land uses. The word temporary is important to bear in mind, as pine plantations are 

harvested regularly and the proportion of exotic beetles was high immediately adjacent to the 

native forest boundary in recent clearfell habitats (Figure 4.4a). Furthermore, plantation 

forests may reduce the equilibrium density of exotic species in the landscape, by increasing 

the risk of mortality to individuals dispersing between isolated regions of pasture (Barlow and 

Kean 2004). Forest boundaries are known to act as a barrier to the dispersal of some insect 

species (Cant et al. 2005), and this may partially explain the unimodal relationship in exotic 

species dominance with distance away from the forest edge in clearfells.  

 

The dominance of exotic beetles in pasture decreased exponentially with increasing proximity 

to native forest (Figure 4.4a), suggesting that there may be increased spill over of native 

species into the adjacent pasture habitat (Magura et al. 2001). This may partially explain the 

greater than anticipated total native beetle diversity in pasture sites as a whole. Whether the 

native beetles in the pasture samples represent resident populations is unclear, as the dispersal 

of invertebrates between managed and natural ecosystems is common (see review by Rand et 
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al. (2006)). However, additional sampling of pasture sites that are more isolated from natural 

and plantation forests is required before a definitive statement can be made about the relative 

importance of dispersal versus resource utilisation in the matrix. In contrast, comparisons 

between mature P. radiata stands and clearfells in our study were conducted deep within the 

plantation estate, often many kilometres from the influence of alternative habitat types. As 

such, there is a very low probability that the rich native beetle community sampled in 

plantation-clearfell comparisons were the result of dispersal from adjacent non-plantation 

habitat.  

 

4.4.3 Plantation forestry as a surrogate for native forest 

Mature P. radiata stands provided the best surrogate habitat to augment remaining native 

forest remnants in this study area. Beetle species composition of mature plantation stands was 

more similar to native forest than of either pasture or recent clearfells (Figure 4.3a). The 

environmental drivers regulating the similarity in species composition between the two 

habitats is unknown. However, I would have expected plantation forests to provide an 

equivalent microclimate to native forest due to their similar canopy cover and known ability 

to ameliorate microclimate edge effects (Denyer et al. 2006). Furthermore, the depth of leaf-

litter and soil chemical properties in P. radiata stands are more likely to be analogous to 

native forest than open pastoral habitat (Parfitt et al. 1997, Alfredsson et al. 1998). However, 

plantation forests are dynamic and individual stands are clearfelled about every 28 years in 

New Zealand. Although harvesting can be locally destructive, it is not necessarily detrimental 

to landscape-level species persistence if a spatial mosaic of different successional forest 

stages can be maintained within the landscape (Butterfield 1997, Magura et al. 2003).  

 

The high species richness in clearfells (36 species), and their distinctive fauna (Table 4.4), is 

consistent with European studies (Niemela et al. 1993, Koivula et al. 2002) which have shown 

that both open-habitat species and surviving populations of forest generalist species co-exist 

(at least temporarily) in clearfells. In our study area a number of exotic species that are known 

to prefer open habitat colonised recent clearfells, e.g., Anisodactylus binotatus, H. australis, 

H. australasiae, L. verticalis, L. vestigialis and R. miser (Larochelle and Larivière 2001). 

However, this has been found to be a transient phenomenon, with the abundance of these 

species decreasing in nearby plantation stands greater than four years old (unpublished data).  
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Despite the richness of the beetle fauna in clearfells and mature plantation stands, native 

forest had a distinct fauna (reflected in the Indval indicator species analysis results, Table 4.4) 

characterised by a higher abundance of some species. This, combined with the fact that 

proximity to native forest was the strongest environmental predictor (Table 4.3) of beetle 

community composition in non-native habitats, highlights the importance of retaining native 

forest within the plantation matrix (Humphrey et al. 2004, Lindenmayer and Hobbs 2004) 

 

4.5 Conclusions 

In New Zealand, extensive habitat loss and fragmentation have left scattered, isolated native 

forest remnants spread throughout a landscape matrix dominated by plantation forest and 

improved pastoral grassland. These modified production ecosystems provide a considerable 

extension to the potential habitat of many native beetle species that were previously perceived 

to be restricted to native habitat. However, different matrix habitats are not equivalent in 

quality or habitat-suitability for native beetles. Mature P. radiata plantations support native 

beetle communities that are most similar to those in native forest. Disturbed and open habitat 

areas are more prone to invasion by exotic species than native forests or pine plantations, 

where exotic beetle species were uncommon.  

 

Further work is required to understand spatio-temporal variation in the relationship between 

the mosaic of different-aged plantation stands and how they interact with native habitat at a 

landscape scale. In particular, some of the most important questions to address are how 

insects disperse between regenerating stands, whether this is affected by proximity to native 

habitat, and whether stand-level management techniques, such as legacy management, 

influence these dispersal processes. Despite the importance of proximity to native habitat, 

many existing exotic tree species plantations currently contain few native remnants. Further 

research is required to determine the value of restoring small native remnants within existing 

plantations, and their role as source populations for invertebrate recolonisation of regenerating 

plantation stands.  
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Appendix 4.1. Average catch per 100 trap days of individual beetle taxa sampled at different 

distances from the habitat edge into clearfelled plantation forest, mature P. radiata forest, 

native forest, and pasture 

 Clearfell (1 yr) P. radiata 26 yr Native Forest Pasture 

Species 5 m 25 m 125 m 5 m 25 m 125 m 5 m 25 m 125 m 5 m 25 m 125 m

Exotic             

Carabidae             

Anisodactylus binotatus  0.07 0.06  0.03  0.02    0.07   

Anomotarsus illawarrae    0.02         

Hypharpax australasiae   0.12  0.25       0.05 0.05 0.19 

Hypharpax australis 0.97 0.37 0.68 0.21 0.06 0.18    0.04   

Lecanomerus verticalis 0.05 0.28 0.37 0.02 0.05 0.05    0.34  0.24 

Lecanomerus vestigialis 0.24 0.55 0.25 0.05 0.09 0.25     0.07 0.04 

Rhytisternis miser  1.06 2.46 2.41 0.08 0.08 0.47    2.03 2.64 2.11 

Scolytinae             

Hylastes ater  3.02 4.78 2.36 3.02 2.32 2.12 0.05  0.05 0.60   

Hylurgus ligniperda 0.64 1.30 0.69 0.60 0.19 0.19    0.06 0.06  

Scarabaeidae             

Acrossidius tasmaniae            2.74  

Native             

Carabidae             

Allocinopus sculpticollis  0.05   0.02     0.12   

Amarotypus edwardsii 0.05 0.24 0.40 0.19 0.08 0.09 0.37 0.07  0.33 0.12  

Aulacopodus calathoides 0.52 1.16 1.26 0.38 0.34 0.42 0.99 1.51 0.29 0.73 0.41 1.09 

Cicindela parryi 6.94 7.34 2.23 1.28 16.28 0.37 2.27 0.14  1.97 0.10  

Cicindela tuberculata 88.98 105.60136.40 0.09 2.28 0.92  0.08  22.77 0.48 0.42 

Ctenognathus adamsi 0.18 0.91 1.76 0.09 0.40 0.40 1.04 1.79 1.10 1.32 0.57 1.84 

Ctenognathus bidens 0.13 0.45 0.18 0.18 0.19 0.13 6.18 1.46 1.39 0.50 0.64 0.26 

Demetrida natsuda   0.05          

Dichrochile maura  0.06  0.06  0.06 0.23 0.71 0.24 0.16 0.16 0.10 

Holcaspis mordax 1.53 1.47 1.03 2.93 1.68 1.57 1.94 3.27 2.69 2.30 1.72 2.94 

Holcaspis mucronata 0.15 0.10 0.05 0.11 0.15 0.15       

Lecanomerus sharpi 0.11 0.10 0.05    0.26 0.37     

Mecodema occiputale 2.91 1.57 0.80 3.73 3.06 2.06 4.33 3.40 2.94 0.81 0.97 0.05 
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Mecyclothorax rotundicollis 0.40 1.19 2.26  0.05 0.23    0.51 1.42 1.39 

Notagonum submetallicum            0.07 

Pentagonica vittipennis  0.06  0.18 0.32 0.37       

Platynus macropterus 0.34 1.21 14.16  0.09 0.15     0.06 0.12 

Scopodes edwardsi 0.06            

Scopodes multipunctatus 0.07 0.05           

Scopodes prasinus 0.32 1.14 0.10   0.05 0.06 0.12     

Syllectus anomalus  0.15  0.07 0.02    0.05    

Scolytinae             

Pachycotes peregrinus 1.12 0.66 0.38 0.54 0.73 0.49 0.04   0.04   

Scarabaeidae             

Ataenius brouni      0.03       

Costelytra sp a 0.89 0.30 0.16 0.05 1.36 0.19       

Costelytra zealandica 0.88 0.71 0.16 0.88 0.51 0.05 0.41 0.07  7.35 2.31 6.86 

Odontria magnum    0.03 0.03 0.05 0.13 0.07    0.10 

Odontria ?piciceps. 2.58 1.36 0.74 2.09 4.84 1.44 1.11 0.55 0.63 1.31 0.72 1.03 

Odontria sylvatica 0.75 0.30 0.56 0.14 0.02 0.02 0.86 0.52 0.12 0.27 0.24 0.10 

Pyronota "red form"    0.05 0.02     0.25 0.21 1.20 

Pyronota festiva 0.13 0.44 0.06 0.46 0.15 0.08 1.17 0.62 0.17 1.35 0.58 0.31 

Saphobius squamulosus  0.24 1.07 0.51 0.56 0.49 0.49 1.93 3.70 2.43    

Saphobius sp.       0.42  0.05 0.15   

 Stethaspis longicornis 0.12 0.13 0.06 0.03 0.02  0.06 0.05 0.11    
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Chapter 5 - Impact of clearfell harvest area on beetle biodiversity 

in an exotic Pinus radiata ecosystem  

 
5.1 Introduction 

Plantation forests of native or exotic tree species provide suitable habitat for a wide range of 

non-production species including plants, invertebrates, fungi, mammals and birds (Humphrey 

et al. 1999, Hartley 2002, Carnus et al. 2006). However, plantations are production 

environments and the management practices associated with the forestry industry can have 

significant impacts on native biodiversity. Quantification of these impacts has concentrated on 

changes in species composition and species richness associated with harvesting (Niemela et 

al. 1993, Baker and Lacki 1997, Heliola et al. 2001, Williams et al. 2001, Grove 2002a, 

Koivula et al. 2002, Clayton 2003). However, the causal mechanisms for such changes, e.g., 

changes in microclimate and how they influence species traits such as survival, competition 

and reproduction are less frequently studied and remain poorly understood. 

 

The dominant management model in New Zealand’s plantation forests is the planting of large-

scale, even-aged stands that are subsequently clearfelled. Globally, plantation managers have 

adopted clearfell harvesting on the basis of ecological requirements for the growth of 

saplings, reduced risk of wind damage and marginal economic returns from low value crop 

species (Kimmins 1992). However, public acceptability of clearfelling has decreased, and the 

combination of growing environmental awareness and changes in consumer demand has 

promoted a shift toward environmental certification of forest management practices, such as 

forest stewardship council certification (Fletcher and Hansen 1999). To meet such 

environmental standards and to quell growing public concern over clearfell harvesting, many 

forestry companies have begun to implement alternative harvesting techniques. The impact of 

these alternative techniques on biodiversity and comparisons with existing clearfell harvesting 

regimes has been the focus of much recent research (Schowalter 1995, North et al. 1996, 

Volin and Buongiorno 1996, Prescott 1997, Beese and Arnott 1999, Beese and Bryant 1999, 

Perry et al. 1999, Bartman et al. 2001, Duguay et al. 2001, Moorman and Guynn 2001, 

Huggard and Vyse 2002, Knapp et al. 2003), however the true extent of their impacts relative 

to clearfelling remains unknown (Spence 2001, Koivula 2002b) 
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In a New Zealand review of environmental certification assessments under the Forest Steward 

Certification (FSC) scheme, Hock and Hay (2003) highlighted the recurring theme of large 

clearfells with no size limit as a common area of concern. Given the widespread and 

longstanding public dislike of clearfell harvesting (McGee 1970, Ribe and Robert 1999) and 

pressure to move to alternative harvesting techniques (or a pure preservationist ideal), it is 

surprising that very little research has been undertaken on the impact that clearfell size has on 

biodiversity (Chapter 2), especially since several alternative-harvesting strategies are merely a 

series of disconnected small clearfells.   

 

To test the impact of different sized clearfell harvest areas on coleopteran biodiversity, a 

large-scale project was established in the Pinus radiata plantation forests of the central North 

Island volcanic plateau of New Zealand. Plantation forests present excellent opportunities for 

ecological research, with a single-species, even-aged canopy structure, and a known forest 

management history that allows selection of similar stands as replicates of different 

treatments. As a study taxon, Coleoptera were chosen in order to build on previous 

community level ecological studies in P. radiata plantations and native forest in New Zealand 

(Hutcheson and Jones 1999, Harris and Burns 2000), and similar European studies of beetle 

taxa, particularly the family Carabidae (Niemela et al. 1993, Koivula et al. 2002). However, 

long term monitoring of the ecological impacts of clearfell harvesting on groups such as 

Coleoptera is difficult. Large-scale complete inventories at a species level are prohibitive in 

terms of both time and cost. As a solution, the use of indicator taxa have frequently been 

promoted as an alternative to comprehensive surveys (McColl 1975, Butterfield et al. 1995, 

Dufrêne and Legendre 1997, McGeoch 1998, Ferris and Humphrey 1999, Panesar et al. 

2000). To succeed, such an approach requires robust statistical confirmation of a relationship 

between the indicator species and the factors under scrutiny (McGeoch 1998). Comprehensive 

assessments of harvest impacts that utilise species rich groups such as Coleoptera thus have 

the potential to identify individual taxa that are most sensitive to harvesting treatments so that 

they may be utilised in the future for targeted monitoring. 

 

This chapter examines the short-term changes in coleopteran biodiversity in response to the 

experimental creation of different sized clearfell harvest areas in an exotic Pinus radiata 

plantation ecosystem. The main aim was to test the post-harvest change in species richness 
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and community composition of Coleoptera and determine if they are affected by the size of 

the harvest area.  

 

5.2 Methods 

5.21 Sampling design 

Short-term changes in coleopteran biodiversity were monitored in six different clearfell 

harvest sizes, 0.01, 0.05, 0.5, 5, 50 and 500ha. Three replicates of each clearfell size were 

harvested in 2002, except 5 ha plots that were only represented by two replicates because one 

replicate was unfortunately not harvested in time (Table 5.1). Smaller clearfells (0.01-5.0 ha) 

were custom created as squares to the exact size required. Larger clearfells were selected from 

scheduled forest operations in consultation with the forest manager and varied within 20 % of 

the desired size. For harvesting reasons small clearfells (0.01-0.5 ha) were located within the 

same three forest compartments, but individual replicates were separated by a minimum of 

150 metres. Larger clearfells were located in different forest compartments. Commercial 

harvesting crews using standard clearfelling practices were contracted to create all harvest 

areas.  

 

Pitfall sampling was conducted between 7th December 2002 and 22nd January 2003. 

Sampling consisted of traps placed at eight distances on a log5 scale (-125, -25, -5, 0, +5, +25, 

+125, +625 m, note: positive distances indicate traps placed in clearfell areas and negative 

distances those in adjacent mature forest stands, transects were also sequentially truncated, 

where appropriate, to account for the different sized clearfell harvest areas) along edge 

gradients perpendicular to the boundary between mature P. radiata stands and clearfell areas. 

The 0 m trap was placed at the drip-line of the mature forest stand. Pitfall traps were placed in 

the mature forest as reference points for comparison with the adjacent samples from 

clearfelled sites. The pairing of these traps was designed to provide localised “control” traps 

that reduce the issue of spatial heterogeneity in beetle communities throughout the forest that 

can be problematic when control sites are located at considerable distances from treatment 

plots.  
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Table 5.1.  The location of harvest treatments throughout 100-200 ha forest compartments in the 

central North Island plantations of New Zealand. Abbreviations: Kang = Kaingaroa Forest, Broad = 

Broadlands Forest, Tawa = Tarawera Forest, Crater = Crater Block, Roto = Rotoehu Forest, Puta = 

Putauaki Forest.  Numbers reflect individual forest compartments, and * denotes the compartment that 

was not harvested in time. Note: that 500 ha sites were a combination of different forest 

compartments, only the compartment where the traps were actually sites is listed. 

 

 Harvested 2002 

0.01 ha Kang 1080 Kang 1105 Kang 278 

0.05 ha Kang 1080 Kang 1105 Kang 278 

0.5 ha Kang 1080 Kang 1105 Kang 278 

5 ha Kang 1017 Kang 1017* Broad 3 

50 ha Kang 153 Kang 240 Kang 391 

200-500 ha Tawa 132/133 Puta 191/192 Roto 205 

 

All Coleoptera were individually dry mounted on pins and sorted to morphospecies based on 

external morphological characters. Most species of Aleocharinae (Staphylinidae) and 

Scydmaenidae were excluded from the analysis due to the poor condition of specimens and 

the lack of resources to undertake genitalic dissections to ensure accurate species 

identification.  Subsequent catch data were converted to number of individuals per 100 trap 

days for multivariate analyses (ordinations), in order to account for different sampling 

durations among traps.  Refer to chapter 2 for a comprehensive outline of the study area, 

pitfall trap design, beetle sampling programme and collection of environmental data.  

 

5.22 Comparing species richness between treatments 

The inherent nature of pitfall trap sampling produces data with uneven sample sizes due to the 

variable number of insects captured in any given trap. To account for this our analysis of 

species richness used a recently derived moment-based interpolation method (Colwell et al. 

2004) that allows direct statistical comparison of species richness between different harvest 

areas and distances from clearfell edge. Sample based species rarefaction analyses were 

conducted using untransformed actual catch data in Estimate-S Version 7.5, with random 

replications set to 100 (Colwell 2004). The pitfall trap gradient was split into clearfell traps 

(that included the boundary trap) and the adjacent mature forest traps and rarefaction curves 
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were calculated separately. Data are presented as traditional species accumulation curves 

(with associated 95% confidence intervals), where the x-axis has been rescaled from samples 

to individuals. The expected asymptote was calculated using the Michaelis Menten running 

means method (Colwell and Coddington 1994), also in Estimate-S Version 7.5. 

 

5.23 Comparing species composition between treatments 

An unconstrained correspondence analysis (CA) was performed to assess absolute variation in 

species composition among pitfall samples in ordination space, using Canoco V4.02 on log 

transformed species abundance data (expressed as catch per 100 trap days), with inter-sample 

distances and biplot scaling (ter Braak and Smilauer 1999).  

 

Because variation in beetle community composition is not only a function of clearfell harvest 

treatment effects, but is also influenced by environmental variables and spatial autocorrelation 

among sampling locations a constrained canonical correspondence analysis (CCA) was 

conducted, incorporating 50 measured environmental variables in Canoco V 4.02 (ter Braak 

and Smilauer 1999). A forward selection regression procedure was used to test significance of 

individual environmental variables. Significant collinearity was detected among some 

environmental variables and was dealt with in two ways: collinear site-level attributes were 

subsumed into larger more inclusive categories, whereas landscape-level LENZ attributes 

were incorporated into composite variables by the use of principal components analysis 

(PCA) (see Gates and Donald (2000)). This resulted in a reduced set of 25 environmental 

variables (Table 5.2), which were used in subsequent analyses. 

 

If any of the measures of spatial autocorrelation explained significant variation in beetle 

species composition among sites they were subsequently treated as covariables in a partial 

canonical correspondence analysis (pCCA). A pCCA conducts an ordination of the species 

data but removes (‘partials out’) variation attributable to significant environmental variables 

identified as representing ‘background’ variation (these are termed covariables) priori to 

testing other environmental factors. This analysis was conducted in Canoco (Version 4.02, 

GLW-CPRO 1999) using log transformed species abundance data (expressed as catch per 100 

trap days), latitude and longitude as covariables and twenty-three environmental variables 

(Table 5.2). 
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Table 5.2. Site and landscape variables used as explanatory variables in multivariate ordination 

analyses. A description is given for each variable and where necessary identifies collinear composite 

terms. Units of measurement are specified. 

Abbreviation Description Units 

Site Variables    

Size Size of harvest area (representing also the collinear 

interaction terms: Clearfell size * Habitat, Clearfell 

size * Distance and Clearfell size * Habitat * 

Distance) 

Hectares 

Clear Clearfell or mature forest Binary dummy 

variable  

Dist Distance along transect Metres 

Longitude Longitude of site (representing also the collinear 

terms: long2, lat * long, long3, long2 * lat, lat2 * long 

and long2 * lat2) 

NZMG 260/ 

1,000,000 

Latitude Latitude of site (representing also the collinear 

terms: lat2 and lat3) 

NZMG 260/ 

1,000,000 

Canopy Cover Canopy cover as calculated from hemispherical 

photographs 

Proportion 

Dead wood Dead wood at site 

Drainage Drainage of site 

Litter Leaf litter 

Four binary 

dummy variables 

for each factor, see 

chapter 3 for 

assessment scale. 

Vege 1 Axis 1 from PCA of vegetation composition PCA Scores 

Vege 2 Axis 2 from PCA of vegetation composition PCA Scores 

Vege 3 Axis 3 from PCA of vegetation composition PCA Scores 

Landscape Level 

Variables 

  

500m-nat Native vegetation within 500m radius Proportion 

500m-exo Exotic vegetation within 500m radius Proportion 

1000m-nat Native vegetation within 1000m radius Proportion 

1000m-exo Exotic vegetation within 1000m radius Proportion 
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5000m-nat Native vegetation within 5000m radius Proportion 

5000m-exo Exotic vegetation within 5000m radius Proportion 

PCA-1  PCA Scores 

PCA-2 PCA Scores 

PCA-3 

Axis scores from a PCA analysis of underlying 

attributes of the LENZ (Land Environments of New 

Zealand) classification Variables included; water 

balance ratio, soil particle size, mean annual 

temperature, annual solar radiation, winter solar 

radiation, soil parent material hardness and annual 

water deficit 

PCA Scores 

 

 

5.24 Individual species responses 

A canonical analysis of principal coordinates (CAP) was conducted to provide a measure of 

the correlation between individual species and constrained ordination axes. The advantage of 

the CAP procedure is that the discrimination function can constrain axes such that they are 

most strongly correlated with pre-defined groups (Anderson and Willis 2003), in this case 

clearfell harvest size. The analysis was conducted on clearfell data only, i.e., 0, 5, 25 and 125 

m traps in clearfell habitat, using the discriminant function of the Fortran program CAP 

(Anderson 2003a), log-transformed data, automatic selection of the number of principal 

coordinate (PCO) axes to be retained (in this case 23) and Bray-Curtis distances. Individuals 

with a correlation greater than |r| = 0.40 with CAP axes 1-3 were then selected for further 

evaluation. Candidate species with a mean trap catch less than 1 per 100 trap days were 

removed. These species are unlikely to be suitable as indicators of community assemblage 

change as insufficient specimens would be caught to ensure statistical rigour and repeatability. 

Changes in the abundance of more common taxa were then compared between different 

clearfell harvest areas. This was expressed as the percentage change in abundance (∆N) 

relative to the adjacent mature forest traps and was calculated as follows.  

 

100*)/)(( FFCN −=Δ  

 

Forest insect abundance (F) was calculated as the mean catch per 100 trap days of traps 

installed at 125m into mature forest.  This was to reflect species abundance within ‘deep’ 

forest and avoid possible edge effects. Abundance within different clearfell sizes (C) was 
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calculated as the mean catch per 100 trap days of the combined 0, 5, 25 and 125 metre traps as 

appropriate (i.e., smaller clearfells only had 0 and 5m traps due to their smaller size). 

 

5.3 Results 

5.31 Beetle species diversity and harvest size 

A total of 18,270 beetles were extracted from the 107-pitfall trap samples collected from late 

December 2002 to late January 2003 (4,841 active trap days).   A total of 355 species from 45 

families were collected (the number of families recorded includes the Scydmaenidae that were 

excluded from other analyses, see methods). This represents 55% of the 82 families reported 

from the New Zealand sub-region (Klimaszewski and Watt 1997). Expert identification of 

morphospecies is important (Ward and Larivière 2004) and in this case resolved 24 cases of 

incorrect morphospecies, due to in most cases over-splitting of morphologically variable taxa. 

Staphylinidae and the Curculionidae dominated the fauna. The trap catch of individual species 

showed a typical, highly skewed distribution of a few common species and many rare species, 

with 106 species represented by a single specimen. The most common species were 

Thalycrodes australis (1793 individuals, Family: Nitidulidae), Cicindela tuberculata (1544 

individuals, Family: Carabidae) and Pycnomerus sophorae (1476 individuals, Family: 

Zopheridae). Only 21 species (5.9%) were known adventives, including some significant 

forestry and agricultural pests, e.g., Hylastes ater and Sitona discoidea pests. A detailed 

breakdown of species and their actual catch in different harvest areas is given in Appendix 

5.1. 

 

Rarefied native beetle species richness in clearfells increased idiosyncratically with harvest 

area throughout the range of clearfell sizes. Accumulation curves (Figure 5.1a) show lower 

species richness in smaller harvest areas compared to large 500 ha clearfells. The steep slope 

of the 500 ha curve suggests that the total number of species from these sites is much greater 

than was actually sampled. In contrast the slope of the accumulation curve in smaller harvest 

areas is lower, indicating that a larger proportion of the total species pool was sampled 

(Figure 5.1a).  Among the smaller harvest areas, 5 ha sites had significantly greater species 

richness than 0.01-0.5 ha harvests (based on 95% confidence intervals (Colwell 2004)), 

whereas the species richness of 50 ha harvest areas was marginally, but not significantly, 

greater than 0.01-0.5ha treatments (Figure 5.1a).  
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Native beetle species richness in mature P. radiata stands showed similar patterns to their 

adjacent clearfells. Mature stands adjacent to large 500 ha clearfells had significantly greater 

species richness than those of other harvest area treatments (Figure 5.1b).  Also, the 50 ha and 

5 ha treatments were slightly higher than the smaller 0.01- 0.5 ha harvest areas. 

Rarefied native beetles species richness changed with distance from the forest-clearfell 

boundary (Figure 5.2). However, the slope of individual accumulation curves was more 

similar at all distances except 625 m. The steep slope of the accumulation curve at 625 m into 

clearfells reflects the higher diversity in 500 ha replicates (Figure 5.1a & b) as this distance 

was only present in the 500 ha stands. Note: The asymptote was not calculated for 625 m as 

its validity would be questionable given the extrapolation from only three samples. Species 

richness in deep forest (125 m into mature P. radiata) was significantly lower (based on 95% 

confidence intervals) than forest edge samples and all distances into adjacent clearfell harvest 

areas except at 25 m. 

 

5.32 Composition of beetle assemblages  

There were distinct differences in beetle community composition among clearfell harvest 

treatments (Figures 5.3 & 5.4). Axes 1 and 2 of an unconstrained correspondence analysis of 

beetle species composition clearfell pitfall traps explained 5.4 % and 3.9 %, of the variation 

respectively, and showed a clear separation between the beetle communities in 500 ha sites 

versus other clearfell areas (Figure 5.3). Changes in the community composition among the 

remaining harvest areas are difficult to determine due to the dominant effect of 500 ha sites in 

ordination space. 

 

Eleven of the 25 environmental factors (Table 5.3) explained significant variation in beetle 

community composition in a forward selection regression procedure in a CCA analysis (Table 

5.3). Both composite spatial variables (latitude and longitude, Table 5.2) proved significant 

predictors of species distributions. This combined with a significant correlation observed 

between harvest area and latitude, as well as between harvest area and longitude (Spearman 

Rank Correlation, Latitude; R = 0.412, P<0.001, Longitude; R = 0.406, P<0.002) led us to 

assign them as confounding spatial effects and the model was rerun as a partial-CCA with 

these coded as covariables.    
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Figure 5.1. Sample based rarefied species richness, rescaled and expressed as individuals (x-axis), 

error bars are 95% confidence intervals. A) As a function of different sized clearfell harvest areas, and 

B) of mature P. radiata stands situated adjacent to the different size clearfell harvest areas. 
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Figure 5.2. Sample based rarefied species richness, rescaled and expressed as individuals (x-axis) as a 

function of distance across a clearfell, mature forest gradient. Negative distances represent traps in 

mature P. radiata stand, positive distances those in clearfells. Error bars represent 95% confidence 

intervals calculated in Estimate-S Version 7.5. 

 

Plotting all sites (clearfell and adjacent mature forest controls) on axes 1 and 2 of the pCCA 

showed a trend from small harvest areas at negative axis values to larger clearfells at higher 

axis values (Figure 5.4a). Eight sites formed two distinct, closely related clusters at highly 

positive values of axis 1. These sites correspond to a single 500 ha replicate situated on the 

north-eastern flank of Mt Tarawera. The two groups of four sites represent the clearfell 

samples and the adjacent forest control samples respectively. Comparing a pCCA plot of axes 

1 & 2 of only clearfell sites (Figure 5.4b) with the full plot of clearfell and adjacent forest 

controls (Figure 5.4a) it shows that the species assemblages of small clearfell areas have 

greater similarity with their forest controls than the larger harvest areas. 
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5.33 Environmental variables as an explanation for community composition 

Intra-set correlations of environmental variables (that were shown to add significant 

explanatory power to the ordination by a forward selection procedure) show that axis 1 is 

most highly correlated with the proportion of native vegetation within 500 m of the site 

(Figure 5.4). However, the 500 ha plot mentioned above from the north-eastern flank of Mt 

Tarawera was the only site with significant amounts of native vegetation within 500m. This is 

reflected in the position of the native-500m environment arrow, indicating a major influence 

of the proximity of native forest on beetle species composition at this site (Figure 5.4a). 

Clearfell harvest size and larger-scale landscape attributes, such as the proportion of exotic 

and native vegetation within a 1000m and 5000m radius were also highly correlated with 

changes in beetle species composition (Table 5.3).  

 
Table 5.3. Significant environmental variables from a forward selecting regression (Canoco) both 

before (a) and after (b) assignment of significant spatial variables as covariables. Intraset correlations 

are given that define the strength of the relationship between environmental variables and the 

constrained ordination axes of the pCCA after the removal of spatial autocorrelation due to 

covariables. λ -A is the additional variance explained by each variable at the time it was included in 

the forward selection analysis, P is the significance of the F-value from a Monte-Carlo test with 500 

replicates. 

a) 

Without covariables  
Environmental Variable 

λ-A F P 

Clearfell size 0.35 5.22 0.002 

Proportion of native vegetation within 500m 0.25 3.81 0.002 

Clearfell vs. Forest 0.18 2.70 0.002 

longitude 0.13 2.02 0.002 

Distance along transect 0.13 2.00 0.002 

PCA LENZ Axis 3 0.11 1.78 0.002 

Proportion of exotic vegetation within 1000m 0.11 1.74 0.002 

Latitude 0.10 1.70 0.002 

PCA LENZ Axis 2 0.10 1.50 0.002 

PCA LENZ Axis 1 0.10 1.73 0.002 

Proportion of exotic vegetation within 5000m 0.10 1.60 0.002 
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Table 5.3b) 

With covariables  

Intraset 

correlations with 

pCCA 
Environmental Variable 

λ -A F P Axis-1 Axis-2 

Proportion of native vegetation within 

500m 0.25 3.76 0.001 0.854 -0.42 

PCA LENZ Axis 2 0.18 2.86 0.001 -0.655 -0.461 

Clearfell vs. Forest 0.17 2.64 0.001 0.323 0.521 

Distance along transect 0.13 2.02 0.001 0.123 0.090 

PCA LENZ Axis 3 0.11 1.77 0.001 0.073 0.340 

Proportion of exotic vegetation within 

1000m 0.11 1.76 0.001 -0.706 0.344 

Clearfell size 0.09 1.5 0.001 0.737 0.371 

PCA LENZ Axis 1 0.11 1.73 0.001 0.351 -0.106 

Proportion of exotic vegetation within 

5000m 0.1 1.6 0.001 -0.706 0.344 

Latitude 

Longitude 
Added as covariables to model 
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Figure 5.3. Correspondence analysis ordination diagram of axis 1 and 2 scores showing samples from 

different clearfell harvest sizes. Samples from 500 ha clearfell areas had very different community 

assemblages to other smaller harvest areas. Note: traps from the entire transects, including mature 

forest adjacent to the clearfell harvest areas are shown. 

 

5.34 Identifying species responsible for multivariate patterns 

Eighteen species had a correlation with CAP axes greater than |r| = 0.40 and an abundance 

greater than 1 per 100 trap days. All of the nine species correlated with axis 1 of the CAP 

ordination showed negative correlations, indicating a preference for forested areas or small 

clearfells of 0.01 and 0.05 ha (Table 5.4). This was reflected in the change in abundance of 

these species between clearfells and their adjacent forest areas, e.g., Hylastes ater (Figure 5.5) 

and Pycnomerus sophorae (Figure 5.6) that were much more numerous in traps from small 

harvest areas compared to larger clearfells. In contrast Cicindela tuberculata that is negatively 

correlated with CAP axis 2, had higher abundances in medium sized clearfell areas, peaking 

at 0.5 ha (Figure 5.7). Sitona discoideus was the only species to be highly correlated with axis 

3 of the CAP analysis and had greater abundance in clearfell areas compared to mature forest, 

in all harvest sizes except 5 ha (Table 5.4).   

 
 



 

Paper produced from 84% FSC certified forest resources

101

 
Figure 5.4. A) Partial CCA of all sites (forest and clearfell) with longitude and latitude removed as 

covariables. Significant environmental variables from a forward selection regression (Table 5.3) are 

given as lines from the origin, abbreviated environmental names are given in full in Table 5.2. B) 

Same pCCA showing only clearfell harvest sites. Comparisons show greater similarity between small 

clearfells and mature forest than with larger clearfell harvest areas. 
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5.4 Discussion 

 

5.41 Effect of clearfell size on beetle species richness 

The greater rarefied species richness in recent clearfells compared to adjacent mature P. 

radiata forest (Figure 5.2) is consistent with the post-harvest responses of carabid beetles in 

Europe (Niemela et al. 1993, Koivula et al. 2002). This increase has been attributed to the 

temporary retention of forest species augmented by colonisation by open-habitat species. 

Clearfells are often defined as harvest areas sufficient to cause a transition from a forest to an 

open-habitat microclimate (Kimmins 1992). As such, the observed trends in species richness 

across the forest boundary (Figure 5.2) suggest that post-harvest biodiversity within clearfells 

may change with harvest area. Why, because harvest area is a key factor in determining the 

degree of microclimatic change (Spittlehouse et al. 2004). 

 

Microclimate studies indicate that the forest edge provides a moderating influence on the 

climate in open areas to a horizontal distance of one to two tree heights (Davies-Colley et al. 

2000, Spittlehouse et al. 2004). Thus harvest areas of this size are a logical starting point to 

investigate potential threshold harvest areas that may result in significant change to species 

richness post-clearfelling. Based on stand records, the height of mature P. radiata in the study 

area was approximately 30-35 m at harvest indicating a potential harvest threshold of 

approximately 0.5 ha. The change in species richness between small 0.01 – 0.5 ha areas and 

slightly larger 5 ha areas is consistent with the notion of an ecological threshold; where small 

harvest areas retain microclimatic buffering from adjacent forest and larger harvest areas are 

transformed to an open habitat microclimate. However, based on our data such thresholds 

remain speculative, especially since the higher species richness in 50 ha sites is not 

significantly different from smaller harvest areas. Further sampling is required to determine if 

such threshold clearfell sizes are biological realities or an artefact of sampling.  
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Figure 5.5. Difference in abundance of Hylastes ater between clearfell and mature forest relative to the 

mature forest abundance (●) and the average abundance of H. ater in clearfell areas (∆) as a function 

of clearfell harvest size. Note: clearfell harvest size is expressed in hectares on a log scale and when 

abundance in deep forest sites was zero differences could not be calculated and thus no value is given. 

 

Determining the presence or absence of such a threshold size is important as it could have 

significant implications for forest management and future research into new silvicultural 

techniques. For example, many studies have compared the impact of alternative harvesting 

systems versus clearfelling on biodiversity (Beese and Arnott 1999, Beese and Bryant 1999, 

Huggard and Vyse 2002, Koivula 2002a, Knapp et al. 2003). These alternatives are in many 

cases small interspersed clearfells, but frequently research fails to account for the influence of 

harvest area.  
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Table 5.4. Abundance of individual species in mature Pinus radiata 125 m from the forest edge, average abundance at 0, 5, 25 and 125 m into clearfells 

and the change in abundance of taxa highly correlated with ordination axes 1-3 of a constrained analysis of principal coordinates (Anderson and Willis 

2003) at different clearfell harvest sizes.  
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?Phrynixus sp. -0.413 0.83 2.08 150.60 0.00 2.19  2.46 19.68 700.00 0.00 2.61  0.00 16.51  0.00 0.45  

Ctenicera sp. -0.416 5.83 13.70 134.99 6.57 3.65 -44.44 1.67 7.80 367.07 0.00 0.32  17.68 8.78 -50.34 0.00 0.00  

Sepedophilus sp. -0.423 5.82 4.97 -14.60 3.25 5.01 54.15 4.13 4.78 15.74 1.32 1.64 24.24 0.83 1.88 126.51 1.52 0.76 -50.00 

Odontria ?piciceps -0.473 1.67 17.78 964.67 0.00 23.24  16.51 8.85 -46.40 0.00 0.97  1.67 19.64 1076.1 0.00 0.76  

?Conoderus sp. -0.484 0.83 0.81 -2.41 0.83 5.82 601.20 2.50 21.88 775.20 6.58 3.62 -44.98 8.33 7.50 -9.96 0.00 0.00  

Parepierus sp. -0.516 10.70 12.62 17.94 14.96 15.25 1.94 12.38 1.85 -85.06 1.32 2.29 73.48 0.83 2.30 177.11 0.00 0.00  

Hylastes ater -0.590 0.00 44.06  0.00 34.54  13.53 42.48 213.97 0.00 1.97  0.00 12.84  1.52 1.52 0.00 

Pycnomerus 

sophorae 
-0.702 105.89 98.42 -7.05 47.47 95.13 100.40 47.30 27.83 -41.16 32.15 7.46 -76.80 137.94 12.18 -91.17 1.52 1.67 9.87 

Thylycrodes 

australis 
-0.796 73.86 44.56 -39.67 78.97 87.66 11.00 111.29 101.96 -8.38 7.76 39.07 403.48 36.36 20.99 -42.27 0.76 0.45 -40.79 

CAP Axis 2                    

Paracatops 

phyllobius 
0.596 67.44 22.32 -66.90 32.61 4.09 -87.46 118.30 7.55 -93.62 7.86 0.66 -91.60 0.83 0.00 -100.00 28.79 7.42 -74.23 

Phrynixus astutus 0.459 14.99 15.41 2.80 12.53 17.16 36.95 17.56 13.50 -23.12 1.28 0.64 -50.00 3.33 10.93 228.23 12.88 8.94 -30.59 

Eupuraea sp.1 0.436 9.69 11.38 17.44 24.15 3.75 -84.47 12.63 0.32 -97.47 0.00 0.65  3.38 1.06 -68.64 9.09 1.67 -81.63 

Eupuraea sp.2 0.412 8.06 5.36 -33.50 16.67 0.62 -96.28 6.53 0.92 -85.91 7.73 0.64 -91.72 21.71 0.66 -96.96 34.85 1.82 -94.78 
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Brounthina 

aequalis 
0.401 34.82 13.33 -61.72 20.54 1.85 -90.99 105.84 2.17 -97.95 0.00 0.66  0.00 0.00  0.00 0.00  

Cicindela 

tuberculata 
-0.415 0.00 0.00  0.00 68.38  0.00 206.24  0.00 125.38  0.00 31.41  0.00 18.79  

Cotes sp. -0.468 4.07 4.76 16.95 8.93 0.92 -89.70 4.92 4.32 -12.20 1.28 10.47 717.97 7.85 10.21 30.06 0.76 1.06 39.47 

Gromilus sp. -0.480 0.00 0.40  0.00 1.57  0.00 2.79  3.95 5.87 48.61 2.50 5.44 117.60 0.00 1.06  

CAP Axis 3                    

Sitona discoideus 0.525 0.00 1.28  0.00 3.78  0.00 15.11  1.32 0.96 -27.27 0.00 6.96  0.76 3.33 338.16 
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Figure 5.6. Difference in abundance of Pycnomerus sophorae between clearfell and mature forest 

relative to the mature forest abundance (●) and the average abundance of P. sophorae in clearfell areas 

(∆) as a function of clearfell harvest size. Note: clearfell harvest size is expressed in hectares on a log 

scale and when abundance in deep forest sites was zero differences could not be calculated and thus no 

value is given. 

 

Species richness in the large (500 ha) areas was significantly greater than all other harvest 

areas sampled (Figure 5.1). However, harvest area is not the only important factor 

determining species richness as the mature forest stands adjacent to the 500 ha clearfells were 

also very species rich (Figure 5.1b). The reasons for this are unknown, although 500 ha sites 

were situated further north than other sites and had a greater proportion of native remnants 

within the immediate landscape.  The use of adjacent mature P. radiata controls was 

important in this study as it identified the presence of site-specific factors that affected species 

richness, a result that may otherwise have been attributed solely to the clearfell harvest size 

treatment. 
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Figure 5.7. Difference in abundance of Cicindela tuberculata between clearfell and mature forest 

relative to the mature forest abundance (●) and the average abundance of C. tuberculata  in clearfell 

areas (∆) as a function of clearfell harvest size. Note: clearfell harvest size is expressed in hectares on 

a log scale, no C. tuberculata were caught in deep forest and thus the calculated values for the 

difference between clearfell and forest habitats when individuals were sampled from clearfells was 

infinity. 

 

5.42 Effect of clearfell harvest size on beetle species composition 

Given that beetle species richness appears to be influenced in part by harvest area and that 

other studies have documented changes in species composition related to clearfell harvesting 

(Niemela et al. 1993, Heliola et al. 2001, Koivula et al. 2002), I would expect to find changes 

in beetle species composition with changing harvest area. My results showed decreased 

similarity in the community composition of forest and clearfells with increasing harvest size 

(Figure 5.4). This may reflect the negligible change in some microclimatic variables in small 

harvest areas that are still buffered from open habitat conditions by the adjacent mature forest 

(Davies-Colley et al. 2000, Spittlehouse et al. 2004). The larger sites ranging from 5 – 500 ha 
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have distinct open habitat microclimates that would in part be responsible for the greater 

difference in species composition between clearfell and forest portions of the sampling 

transect (Figure 5.4). However, the increasing distance from source populations at the forest 

edge may have contributed to the change in species composition in larger clearfell harvest 

sizes. Interestingly the 0 m traps placed on the drip line of the mature forest had a faunal 

composition most similar to forest traps despite habitat disturbance characteristic of clearfell 

areas.  

 

Large clearfells have beetle assemblages that are different from those of small clearfells 

(Figure 5.4), and individual species in these larger clearfells can have significantly different 

abundances relative to those in adjacent mature forest (Table 5). However, it must be 

recognised that change in individual species abundance also occured at much finer spatial 

scales, e.g., 0.01-0.05 ha. The individual species responses to clearfell harvest size were 

variable, some species increased in abundance, e.g., C. tuberculata (Figure 5.7) whereas 

others decreased, e.g., H. ater (Figure 5.5) and P. sophorae (Figure 5.6). Species with strong 

negative correlations relative to CAP axis 1 favoured small 0.01-0.05 ha clearfell openings 

(Table 5). This infers a preference for a microclimate more similar to mature forest than to 

large clearcuts. However, the abundance of some species was sensitive to even the smallest 

clearfell harvest areas. For example, Paracatops phyllobius, Brounthina aequalis and 

Pycnomerus sophorae all had abundances greater than 30 per 100 trap days in the –125m 

mature forest control sites, yet in the adjacent 0.01 ha clearfells their abundance decreased, 

dropping -66.9 %, -61.72 % and -7.05 %, respectively, compared to adjacent mature forest. 

Meanwhile, Hylastes ater was abscent in –125 m mature forest controls and increased to 44.1 

per 100 trap days. It is unlikely that the microclimate in small 0.01 ha harvest areas would 

have changed substantially (however this was not tested) therefore it is anticipated that other 

factors, such as individual biological traits of species or habitat disturbance, e.g., changes to 

leaf litter (Koivula et al. 1999, Magura et al. 2005) have significant influences on the 

abundance of species post clearfelling. 

 

The biology of Hylastes ater is well known, largely due to its significance as a forest pest 

(Milligan 1978). The increased abundance of H. ater post-harvest, particularly in smaller 

harvest areas of 0.01-0.5 ha, is unlikely to reflect a preference for open habitat, but of an 



 

Paper produced from 84% FSC certified forest resources 

109

attraction to host volatiles from recently felled timber (Reay and Walsh 2002, Brockerhoff et 

al. Submitted a). Lower trap catches in larger harvest areas are potentially the result of a 

dilution effect, where a finite number of individuals in the surrounding environment have 

colonised a larger resource. Alternatively, the forest edge could be an attractor or barrier to 

dispersal out of the clearfells increasing trap catch of H. ater at the forest boundary. P. 

phyllobius, B. aequalis and P. sophorae all reacted negatively to habitat disturbance, however, 

little is known about the biology of these species that may explain the drop in abundance in 

small 0.01 ha harvest areas. These species are thought to be litter layer scavengers that may 

feed on subterranean fungi, however basic research is required on the biology of these species 

before the mechanisms driving these post-harvest changes in beetle assemblages can be 

inferred. 

 

5.43 Species richness of plantation habitat 

The total number of beetle species (355 species) identified was much greater than the 131 

morphospecies recorded in samples from Hutcheson and Jones (1999) in their study of 

Coleoptera in New Zealand P. radiata plantations. Beetle species richness was also higher 

than studies of other New Zealand ecosystems dominated by exotic vegetation, e.g., gorse, 60 

species (Harris et al. 2004), pasture, 30-70 species (Harris and Burns 2000). The high species 

richness observed here reflects, in part, a more extensive sampling strategy (that is known to 

influence species richness (Bunge and Fitzpatrick 1993, Gotelli and Colwell 2001)) including 

greater geographical range compared to other studies. However, the higher species richness is 

probably, in part, attributable to the different sampling techniques (pitfall versus Malaise). 

Such sampling differences were observed by Prentice et al. (2001) who found large 

differences in the species catch of spiders between malaise and pitfall traps. Irrespective of the 

sampling issues of comparing between studies, our results provide further support for the role 

of plantations in the conservation of biodiversity. 

 

5.44 Edge gradients 

Beetle species richness was greatest in clearfells and at edges (Figure 5.2), which is consistent 

with results from other studies that compared Carabidae in clearfells and forests in Europe 

(Niemela et al. 1993, Heliola et al. 2001, Magura 2002). This increased diversity in open 

habitats has been attributed to an influx of open-habitat, disturbance-adapted species and the 
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short-term retention of forest species, which may, or may not be able to sustain breeding 

populations in the recently created clearfells (Niemela 1997, Fahy and Gormally 1998, Ings 

and Hartley 1999).  Most of these studies took place in Europe and focus on the family 

Carabidae, whose ecological requirements are well known in the Northern Hemisphere. The 

extent of the open habitat effect is difficult to calculate in this study, as the taxonomy of the 

New Zealand insect fauna is not fully understood (Watt 1975), let alone their biology. 

However, the increased abundance of some known open habitat species of Carabidae in this 

study post-clearfelling, e.g., Cicindela tuberculata (and Hypharpax spp. and Lecanomerus 

spp. see chapter 3), suggests that similar processes are responsible. 

 

5.45 Limitations of the study design 

The greater species richness of 500 ha sites highlights one of the limitations of studying 

biodiversity by manipulative experiments in commercial forests at the landscape-scale. 

Greater control of experimental design can be achieved in large-scale experiments if the 

research is conducted on land owned by the research institute (Vyse 1999). I worked in a 

commercial forest and the economic value of commercial timber species within a 500 ha area 

was immense and experimental designs were not top priority in the decision of when and 

where such areas would be cut. In this study, 500 ha sites were concentrated in the northern 

area of Kaingaroa Forest, as I was constrained by the pre-defined harvesting plans of the 

participating forestry companies. An unconstrained CA analysis of beetle abundances showed 

distinct differences between uncut mature forest stands adjacent to 500 ha sites and all other 

harvest areas (Figure 5.3), which highlights the geographical variation in faunal composition. 

Furthermore, species richness was greater in the P. radiata stands surrounding the 500 ha 

samples (Figure 5.1b). There are many factors that could contribute to this, including the 

lower elevation, increased temperature and higher rainfall (Quayle 1983), which results in 

greater plant growth rates as measured by the P. radiata site index (Hunter and Gibson 1984).  

These physical characteristics that contribute to the growth of tree species also promote higher 

diversity of native plant species in indigenous forest (Leathwick et al. 1998). In addition 

northern study areas have an extensive network of native forest remnants that are absent from 

other areas of Kaingaroa Forest. The proportion of native forest within 500 m was the 

strongest environmental predictor of species assemblages (Figure 5.4), corroborating the 

findings of UK studies that have shown beetle species richness to be correlated with native 
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vegetation proximity (Humphrey et al. 2004). The influence of remnant native habitat in these 

plantation dominated landscapes needs further investigation, as the role of landscape 

heterogeneity is increasingly acknowledged as a key determinant of biodiversity in managed 

forest landscapes (Humphrey et al. 2004, Lindenmayer and Hobbs 2004).  

Environmental variables that were confounded with the 500 ha treatments can be partialled 

out using covariables in the ordination analyses. However, this is not possible for the rarefied 

species richness analysis, and these confounding factors should be considered when 

interpreting results from the largest harvest areas. 

 

5.5 Conclusions 

The impacts of clearfell harvesting on biodiversity have received considerable attention, 

however this study is the first attempt to quantify clearfell harvest impacts by experimental 

manipulation at a size relevant to current forestry practices in large-scale plantation forests. 

The degree of change in beetle species richness and community composition increased with 

clearfell harvest area. However, these results should be considered as the short-term context 

and long-term changes must be monitored, as the entire rotation response is critical to 

determine the full impacts of clearfelling as a silvicultural practice. Monitoring of invertebrate 

biodiversity is difficult due to the sampling of taxonomically diverse groups (Oliver and 

Beattie 1996), care should be taken of the selection of potential ‘indicator’ species for long-

term monitoring projects as phylogenetic relatedness is not a reliable predictor of correlations 

(Oertli et al. 2005). 

 

Given that beetle community assemblages change with clearfell harvest size it is important to 

include harvest area as a variable in comparisons between different silvicultural treatments. 

Results from the beetles sampled here suggest no significant ecological harvest size threshold 

to changes in species richness, but there is stronger evidence for a threshold change to species 

composition. Further work is required using other taxonomic groups, such as plants, lichens, 

fungi and birds, at spatial scales similar to this study, to examine the possibility of threshold 

changes in other groups that may be more sensitive to harvest impacts. However, the 

possibility exists that the most sensitive species are already locally extinct (prior to 

reforestation as a plantation), thus diminishing the observable effect of experimental 

manipulation of clearfell size. Significant environmental correlates to beetle species richness 
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suggest that plantation managers should focus on broader landscape level issues, such as the 

isolation of forest stands from native habitat, as this appears to have a major effect on stand-

level biodiversity. 
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Appendix 5.1 Raw species data of all 355 species and actual individual species catch in each habitat. 

Family Genus/Species Authority 

0.
01

 h
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T
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Aderidae Xylophilus sp.126  0 1 0 0 0 0 1 

Anobiidae Megabregmus sp.234  0 0 0 0 0 2 2 

Anthicidae Anthicus sp.346  0 0 0 0 0 22 22 

Anthicidae Cotes sp.345  39 31 29 36 74 13 222 

Anthicidae Cotes crispi (Broun, 1880) 6 4 5 6 19 1 41 

Anthicidae Sapintus pellucidipes (Broun, 1880) 7 29 43 35 486 46 646 

Anthicidae Trichananca fulgida Werner and 

Chandler, 1995 

1 0 5 0 12 0 18 

Anthribidae Etnalis spinicollis Sharp, 1873 0 0 2 0 0 1 3 

Anthribidae Phymatus sp.229  0 0 0 0 1 0 1 

Byrrhidae Microchaetes sp.72  8 19 20 35 17 16 115 

Byrrhidae Synorthus sp.71  0 0 0 0 0 41 41 

Byrrhidae Synorthus sp.68  0 0 0 2 35 0 37 

Byrrhidae Synorthus sp.73  0 0 0 0 0 27 27 

Byrrhidae Synorthus sp.69  0 0 0 1 0 0 1 

Carabidae Allocinopus sculpticollis Broun, 1903 0 0 0 0 0 2 2 

Carabidae Amarotypus edwardsi Broun 1872 0 0 0 0 0 17 17 

Carabidae Anomotarus variegatus Moore, 1967 0 0 0 0 0 3 3 

Carabidae Aulacopodus calathoides (Broun, 1886) 0 0 9 19 6 41 75 

Carabidae Cicindela tuberculata Fabricius, 1775 1 219 663 387 150 124 1544

Carabidae Cicindela parryi White 1846 16 57 11 3 192 9 288 

Carabidae Ctenognathus adamsi (Broun, 1886) 19 2 12 32 7 8 80 

Carabidae Ctenognathus bidens (Chaudoir, 1878) 0 0 0 0 0 5 5 

Carabidae Demetrida nasuta White, 1846 0 0 0 0 1 0 1 

Carabidae Dicrochile maura Broun, 1880 0 0 0 0 0 2 2 

Carabidae Genus sp.89  0 0 0 0 0 1 1 

Carabidae Genus sp.90  0 0 1 0 0 0 1 

Carabidae Holcaspis mordax Broun, 1886 19 19 28 21 28 22 137 

Carabidae Holcaspis ?mucronata Broun, 1886 0 0 0 0 0 7 7 
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Carabidae Hypharpax australis (Dejean, 1829) 0 0 1 0 0 0 1 

Carabidae Lecanomerus vestigialis (Erichson, 1842) 1 1 0 2 4 3 11 

Carabidae Lecanomerus sharpi (Csiki, 1932) 0 0 0 0 0 2 2 

Carabidae Mecodema occiputale Broun, 1923 6 17 16 1 35 14 89 

Carabidae Mecyclothorax 

rotundicollis 

(White, 1846) 2 4 3 0 1 1 11 

Carabidae Pentagonica vittipennis Chaudoir,1877 0 0 0 3 0 0 3 

Carabidae Platynus macropterus (Chaudoir, 1879) 0 4 1 10 4 7 26 

Carabidae Rhytisternus miser (Chaudoir, 1865) 6 17 19 10 19 44 115 

Carabidae Scopodes prasinus Bates, 1878 0 1 0 2 0 1 4 

Carabidae Scopodes multipunctatus Bates, 1878 0 0 0 0 0 1 1 

Carabidae Syllectus anomalus Bates, 1878 0 8 4 3 1 0 16 

Cerambycidae Arhopalus tristis (Fabricius, 1787) 0 0 1 7 1 10 19 

Cerambycidae Prionoplus reticularis White, 1843 2 4 2 5 4 1 18 

Cerambycidae Ptinosoma sp.37  0 2 0 6 2 0 10 

Cerambycidae Ptinosoma sp. 37  0 0 1 3 1 0 5 

Cerambycidae Somatidia sp.29  1 1 1 0 2 0 5 

Cerambycidae Somatidia sp.34  0 0 1 0 2 0 3 

Cerambycidae Spilotrogia maculata Bates, 1874 0 0 0 0 0 1 1 

Cerambycidae Tenebrosoma sp.40  0 0 0 0 0 3 3 

Cerambycidae Tenebrosoma sp.33  0 0 0 0 0 1 1 

Cerambycidae Xylotoles griseus (Fabricius, 1775) 0 0 0 0 0 8 8 

Cerambycidae Xylotoles ?gratus Broun, 1880 0 0 0 0 0 1 1 

Cerylonidae Hypodacnella rubripes (Reit) 0 0 0 0 0 1 1 

Cerylonidae Philothermus sp.127  0 1 0 1 1 0 3 

Chrysomelidae Adoxia sp.244  0 0 0 0 1 0 1 

Chrysomelidae Aphilon sp.16  0 0 0 0 0 4 4 

Chrysomelidae Longitarsus ?jacobeae (Wat., 1858) 3 0 0 0 0 0 3 

Chrysomelidae Trachytetra rugulosa (Broun, 1880) 0 0 0 0 0 1 1 

Ciidae Cis sp.27  0 0 0 0 0 12 12 

Ciidae Cis sp.24  0 1 0 0 1 1 3 

Ciidae Cis sp.25  0 0 0 0 0 2 2 

Ciidae Cis sp.318  0 0 0 0 0 2 2 
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Ciidae Cis sp.26  1 0 0 0 0 0 1 

Ciidae Cis sp.331  1 0 0 0 0 0 1 

Ciidae Scolytocis sp.319  0 0 0 0 0 1 1 

Clambidae Genus sp.272  17 69 15 61 7 90 259 

Clambidae Genus sp.1  9 23 28 21 76 34 191 

Clambidae Genus sp.3  16 9 6 6 12 8 57 

Coccinellidae Coccinella 

undecimpunctata 

Linnaeus, 1758 0 0 0 0 12 1 13 

Coccinellidae Coccinella leonina Fabricius, 1775 0 0 0 0 1 0 1 

Coccinellidae Diomus notescens (Blackburn, 

1889) 

0 0 2 0 5 3 10 

Coccinellidae Genus sp.253  0 0 0 0 0 3 3 

Coccinellidae Rhyzobius sp.246  0 0 0 0 0 3 3 

Coccinellidae Rhyzobius sp.11  1 0 0 0 0 0 1 

Coccinellidae Rhyzobius sp.194  0 0 0 0 0 1 1 

Coccinellidae Rhyzobius ?consors Broun 0 0 0 0 0 1 1 

Coccinellidae Scymnus loewi (Mulsant, 1850) 0 0 2 0 0 2 4 

Corylophidae Arthrolips oblonga (Broun, 1893) 0 2 5 3 0 11 21 

Corylophidae Clypeastrea pulchella  1 3 3 2 1 4 14 

Corylophidae Holopsis sp.274  0 0 0 0 0 2 2 

Corylophidae Holopsis sp.22  0 0 0 0 0 1 1 

Corylophidae Holopsis sp.275  0 0 0 0 0 1 1 

Corylophidae Holopsis sp.349  1 0 0 0 0 0 1 

Corylophidae Holopsis sp.5  0 0 0 0 1 0 1 

Corylophidae Holopsis sp.303  0 0 0 0 0 0 0 

Corylophidae Sericoderus sp.4  2 10 6 12 17 97 144 

Corylophidae Sericoderus sp.6  0 0 0 0 1 21 22 

Cryptophagidae ?Micrambina sp.279  0 0 1 1 0 0 2 

Cryptophagidae Atomaria lewisi (Reitter, 1887) 1 1 1 28 0 2 33 

Cryptophagidae Micrambina sp.122  3 7 5 9 6 28 58 

Cryptophagidae Micrambina sp.335  0 0 0 0 0 1 1 

Cryptophagidae Paratomaria sp.121  0 2 12 0 1 0 15 

Cryptophagidae Paratomaria crowsoni Leschen 0 0 2 2 1 0 5 
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Curculionidae ?Athor sp.147  1 0 0 0 1 0 2 

Curculionidae ?Bradypatae sp.151  0 0 0 0 0 8 8 

Curculionidae ?Morronella sp.135 c  0 0 0 0 0 1 1 

Curculionidae ?Notacalles sp.329  0 0 0 0 0 4 4 

Curculionidae ?Notacalles sp.324  0 0 0 0 0 3 3 

Curculionidae ?Notacalles sp.150  0 0 0 0 0 2 2 

Curculionidae ?Notacalles sp.327  0 0 0 0 0 1 1 

Curculionidae ?Notacalles sp.334  0 0 0 0 0 1 1 

Curculionidae ?Phronira sp.160  0 0 0 0 0 3 3 

Curculionidae ?Phronira sp.145  0 0 0 0 0 1 1 

Curculionidae ?Phrynixus sp.144  0 0 0 0 0 1 1 

Curculionidae Agacalles formosus Broun, 1886 0 0 0 0 0 39 39 

Curculionidae Agacalles sp.134 a  0 0 0 0 0 1 1 

Curculionidae Agacalles comptus (Broun, 1893) 0 0 0 0 0 1 1 

Curculionidae Agatholobus waterhousei Broun, 1913 0 0 0 0 0 1 1 

Curculionidae Allanalcis sp.167  0 0 0 0 0 3 3 

Curculionidae Allaorus sp.161  0 0 0 0 0 2 2 

Curculionidae Baeosomus amplus  2 4 29 3 6 1 45 

Curculionidae Baeosomus sp.330  1 0 0 1 1 0 3 

Curculionidae Camptoscapus planiusculus (Broun 1880) 0 0 0 0 1 0 1 

Curculionidae Crisius sp.152  0 0 0 1 0 0 1 

Curculionidae Crooktacalles certus (Broun, 1880) 0 0 0 0 0 7 7 

Curculionidae Dermothrius sp.333  0 0 0 0 0 3 3 

Curculionidae Euophryum sp.135 b  0 0 0 2 0 0 2 

Curculionidae Genus sp.143  15 9 89 24 105 5 247 

Curculionidae Genus sp.135  0 1 0 3 1 1 6 

Curculionidae Gromilus sp.139  1 5 11 25 35 8 85 

Curculionidae Gromilus setosus  3 3 8 20 7 1 42 

Curculionidae Gromilus sp.163  0 0 1 0 3 1 5 

Curculionidae Hylastes ater (Paykull, 1800) 111 110 158 9 79 12 479 

Curculionidae Hylurgus ligniperda (Fabricius, 1787) 0 1 1 2 1 10 15 

Curculionidae Listronotus bonariensis (Kuschel) 0 0 0 0 0 0 0 

Curculionidae Mandalotus sp.136  2 1 2 0 0 0 5 
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Curculionidae Mandalotus sp.155  0 2 0 0 0 0 2 

Curculionidae Mandalotus sp.328  1 0 0 0 0 0 1 

Curculionidae Megacolabus sp.157  0 0 0 0 0 2 2 

Curculionidae Megacolabus sp.159  0 0 0 0 0 2 2 

Curculionidae Metacalles sp.162  0 0 0 0 0 39 39 

Curculionidae Metacalles sp.332  0 0 0 0 0 2 2 

Curculionidae Metacalles sp.156  0 0 0 0 0 1 1 

Curculionidae Mitrastethus baridioides (Redtenbacher, 

1868) 

1 23 20 3 3 13 63 

Curculionidae Pachycotes peregrinus (Chapuis, 1869) 2 15 4 5 5 3 34 

Curculionidae Paromalia vestita Broun, 1880 0 0 0 0 0 3 3 

Curculionidae Phrynixus astutus Pascoe 92 84 88 4 62 132 462 

Curculionidae Phrynixus ?asper  0 1 0 0 0 0 1 

Curculionidae Praolepra sp.165  12 4 7 0 15 1 39 

Curculionidae Rhinocyllus conicus  0 0 0 0 0 1 1 

Curculionidae Rhopalomerus sp.153  0 0 1 0 1 0 2 

Curculionidae Scelodolichus sp.172  0 0 0 0 0 6 6 

Curculionidae Scelodolichus sp.170  0 0 0 0 0 2 2 

Curculionidae Scelodolichus sp.326  0 0 0 0 0 1 1 

Curculionidae Sericotrogus subaenescens Wollaston, 1873 0 0 0 0 1 3 4 

Curculionidae Sitona discoidea Gyllenhal 10 19 53 6 34 30 152 

Curculionidae Synacalles cingulatus (Broun, 1883) 0 0 0 0 0 5 5 

Curculionidae Synacalles dorsalis (Broun, 1881) 0 0 0 0 0 1 1 

Curculionidae Zeacalles picatus  0 0 0 0 0 5 5 

Curculionidae Zeacalles formosus  0 0 0 0 0 2 2 

Elateridae ?Conoderus sp.190  9 24 85 19 53 0 190 

Elateridae Conoderus sp.183  0 7 2 2 12 30 53 

Elateridae Ctenicera sp.186  157 27 33 3 157 0 377 

Elateridae Ctenicera olivascens (White, 1846) 0 0 0 0 0 2 2 

Elateridae Genus sp.266  1 0 5 1 0 0 7 

Elateridae Genus sp.184  0 0 0 0 2 0 2 

Elateridae Genus sp.265  0 0 1 0 1 0 2 

Elateridae Genus sp.178  0 0 1 0 0 0 1 
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Elateridae Genus sp.182  0 0 0 0 0 1 1 

Elateridae Genus sp.189  0 0 0 0 0 1 1 

Elateridae Genus sp.262  1 0 0 0 0 0 1 

Elateridae Lomemus sp.314  0 0 0 0 0 0 0 

Elateridae Metablax acutipennis (White, 1846) 0 0 2 0 4 0 6 

Elateridae Ochosternus zelandicus (White, 1846) 0 0 0 3 6 0 9 

Elateridae Oxylasma sp.188  0 0 0 0 0 8 8 

Elateridae Panspoeus guttatus Sharp, 1877 3 8 18 7 10 2 48 

Elateridae Panspoeus guttatus Sharp, 1877 0 0 0 0 0 1 1 

Elateridae Protelater sp.249  0 1 0 0 2 1 4 

Elateridae Protelater sp.185  0 0 0 0 1 0 1 

Elateridae Sphaenelater collaris (Pascoe, 1876) 0 0 0 0 0 1 1 

Elateridae Thoramus sp.180  0 0 0 0 1 0 1 

Endomychidae Holoparamecus sp.130  0 0 0 4 0 0 4 

Erotylidae Cryptodacne synthetica Sharp, 1878 9 5 8 5 1 14 42 

Eucnemidae Genus sp.258  20 10 10 16 8 2 66 

Histeridae Parepierus sp.224  83 89 24 20 13 0 229 

Histeridae Saprinus detritus (Fabricius, 1775) 0 0 0 1 0 0 1 

Hydrophilidae Adolopus sp.20  0 0 0 2 0 0 2 

Hydrophilidae Cyloma sp.356  0 0 0 0 0 1 1 

Latridiidae Aridius sp.105  5 3 0 3 8 5 24 

Latridiidae Aridius ?costatus (Erichson, 1842) 0 0 0 4 0 8 12 

Latridiidae Aridius bifasciatus (Reitter, 1877) 0 0 0 1 1 6 8 

Latridiidae Enicmus sp.106  3 1 1 19 3 0 27 

Latridiidae Enicmus sp.114  0 0 0 0 0 0 0 

Latridiidae Genus sp.108  0 1 9 4 20 22 56 

Latridiidae Genus sp.119  0 0 0 1 0 0 1 

Latridiidae Genus sp.120  0 0 0 0 0 1 1 

Latridiidae Lithostygnus sp.48  0 0 0 1 0 9 10 

Latridiidae Melanopthalma sp.117  159 104 39 43 107 24 476 

Latridiidae Melanopthalma sp.113  0 0 5 1 1 5 12 

Latridiidae Melanopthalma sp.109  0 0 0 1 0 4 5 

Latridiidae Melanopthalma sp.115  0 0 0 1 1 0 2 
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Latridiidae Melanopthalma sp.118  0 0 0 2 0 0 2 

Latridiidae Melanopthalma sp.123  0 0 0 2 0 0 2 

Latridiidae Melanopthalma sp.110  0 0 1 0 0 0 1 

Latridiidae Melanopthalma sp.23  1 0 0 0 0 0 1 

Latridiidae Melanopthalma sp.280  0 0 0 0 0 1 1 

Latridiidae Melanopthalma sp.315  0 0 0 0 1 0 1 

Leiodidae Agyrtodes nebulosus (Broun, 1880) 1 0 0 0 1 0 2 

Leiodidae Camiarus estriatus Broun, 1912 0 0 0 0 0 1 1 

Leiodidae Inocatops sp.267  0 0 0 0 0 1 1 

Leiodidae n.g. sp.76  0 0 0 2 6 0 8 

Leiodidae n.g. sp.18  0 0 0 0 2 2 4 

Leiodidae Paracatops phyllobius  231 78 266 16 5 194 790 

Leiodidae Zeadolopus ?maoricus Daffner, 1985 0 0 0 0 1 30 31 

Leiodidae Zeadolopus sp.364  0 0 0 2 0 1 3 

Leiodidae Zeadolopus sp.320  0 0 0 0 1 0 1 

Lucanidae Dendroblax earlii White, 1846 1 0 0 0 0 0 1 

Lycidae Porrostoma rufipennis (Fabricius) 1 3 3 2 3 1 13 

Melandryidae Axylita sp.129  0 1 0 0 0 0 1 

Melandryidae Genus sp.257  0 0 0 1 0 4 5 

Melandryidae Genus sp.132  0 0 0 3 0 0 3 

Melandryidae Genus sp.241  0 0 0 0 0 1 1 

Mordellidae Mordella jucunda (Broun, 1880) 0 0 0 0 0 1 1 

Mycetophagidae Triphyllus sp.125  47 35 15 3 18 28 146 

Mycetophagidae Triphyllus ?punctulatus Broun, 1880 0 4 4 5 3 0 16 

Mycetophagidae Triphyllus serratus (Broun, 1880) 1 0 0 0 1 0 2 

Nitidulidae Brounthina aequalis Kirejtshuk, 1997 153 69 157 6 0 0 385 

Nitidulidae Epuraea sp.357  43 27 15 21 31 90 227 

Nitidulidae Epuraea sp.354  65 62 20 2 17 28 194 

Nitidulidae Epuraea sp.359  1 0 1 0 0 15 17 

Nitidulidae Epuraea sp.358  0 0 0 0 0 7 7 

Nitidulidae Epuraea sp.360  0 0 0 0 0 3 3 

Nitidulidae Priateles optandus Broun, 1881 1 5 0 0 1 0 7 

Nitidulidae Thalycrodes australis Germor 390 424 607 160 208 4 1793
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Oedemeridae Baculipalpus strigipennis (White, 1846) 68 71 189 58 138 221 745 

Oedemeridae Genus sp.197  0 0 0 0 0 1 1 

Oedemeridae Selenopalpus sp.193  1 38 14 4 14 0 71 

Phloeostichidae Priasilpha obscura Broun, 1893 0 0 0 0 0 1 1 

Prostomidae Dryocora howitti Pascoe 1 0 1 0 0 0 2 

Ptiliidae ?Notoptenidium ?lawsoni  1 1 2 0 4 34 42 

Ptiliidae Genus sp.264  1 0 0 0 0 5 6 

Ptiliidae Genus sp.271  0 0 0 1 2 0 3 

Ptiliidae Genus sp.10  0 0 0 1 0 1 2 

Ptiliidae Genus sp.263  0 2 0 0 0 0 2 

Ptiliidae Genus sp.268  0 0 0 0 0 0 0 

Ptiliidae Genus sp.270  0 0 0 0 0 0 0 

Rhysodidae Kupeus arcuatus (Chevrolat, 1873) 0 1 0 3 0 0 4 

Salpingidae Genus sp.225  0 0 0 0 0 2 2 

Salpingidae Genus sp.256  0 0 0 0 0 1 1 

Salpingidae Genus sp.317  0 0 0 0 0 1 1 

Scarabaeidae Ataenius brouni (Sharp, 1876) 0 0 0 0 1 0 1 

Scarabaeidae Costelytra ?zelandica White, 1846 1 0 0 1 1 0 3 

Scarabaeidae Odontria ?piciceps Broun, 1893 78 87 68 4 107 12 356 

Scarabaeidae Odontria sylvatica Broun, 1880 3 7 5 3 29 7 54 

Scarabaeidae Odontria magnum Given, 1952 0 1 0 0 0 3 4 

Scarabaeidae Pyronota sp.58  0 0 0 0 0 5 5 

Scarabaeidae Pyronota sp.83  0 0 0 0 1 0 1 

Scarabaeidae Saphobius squamulosus Broun, 1886 0 0 0 0 0 3 3 

Scraptiidae Nothotelus sp.316  0 1 0 0 0 0 1 

Silvanidae Brontopriscus pleuralis (Sharp, 1877) 0 0 0 0 0 2 2 

Silvanidae Cryptamorpha brevicornis (White, 1846) 0 0 2 1 3 0 6 

Silvanidae Cryptamorpha desjardinsi (Guerin, 1844) 0 0 0 0 0 3 3 

Staphylinidae ?Quedius sp.352  2 2 2 0 3 4 13 

Staphylinidae Agnosthaetus sp.341  0 0 0 0 0 1 1 

Staphylinidae Anabaxis foveolata (Broun, 1880) 39 28 37 22 46 12 184 

Staphylinidae Anotylus sp.371  29 47 33 22 15 354 500 

Staphylinidae Anotylus sp.374  9 17 16 11 2 158 213 
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Staphylinidae Anotylus sp.373  0 0 0 0 22 0 22 

Staphylinidae Anotylus sp.370  0 0 0 0 0 3 3 

Staphylinidae Anotylus sp.372  0 0 0 0 0 1 1 

Staphylinidae Astenus guttula Fauvel, 1877 0 0 0 0 2 10 12 

Staphylinidae Baeocera sp.13  5 1 4 3 25 2 40 

Staphylinidae Brachynopus sp.14  0 1 2 3 6 27 39 

Staphylinidae Eupines sp.216  0 0 1 0 0 28 29 

Staphylinidae Eupines sp.208  0 0 0 0 0 1 1 

Staphylinidae Eupines sp.209  0 0 0 0 0 1 1 

Staphylinidae Eupinolus sp.214  0 0 0 0 0 1 1 

Staphylinidae Falagria sp.  136 161 292 28 111 27 755 

Staphylinidae Falagria sp.348  1 1 3 0 0 0 5 

Staphylinidae Genus sp.375  6 7 202 3 2 15 235 

Staphylinidae Genus sp.  16 21 32 14 27 66 176 

Staphylinidae Genus sp.308  22 18 29 16 40 31 156 

Staphylinidae Genus sp.292  0 0 0 0 0 39 39 

Staphylinidae Genus sp.218  2 2 1 4 4 18 31 

Staphylinidae Genus sp.211  0 1 0 0 1 20 22 

Staphylinidae Genus sp.217  4 5 1 3 2 4 19 

Staphylinidae Genus sp.284  0 8 0 0 5 4 17 

Staphylinidae Genus sp.300  8 0 0 0 1 1 10 

Staphylinidae Genus sp.212  0 0 0 3 4 2 9 

Staphylinidae Genus sp.310  0 2 3 0 1 1 7 

Staphylinidae Genus sp.204  0 1 0 0 2 3 6 

Staphylinidae Genus sp.219  0 0 0 1 0 2 3 

Staphylinidae Genus sp.287  1 0 0 0 1 1 3 

Staphylinidae Genus sp.296  0 0 1 0 1 1 3 

Staphylinidae Genus sp.313  1 0 2 0 0 0 3 

Staphylinidae Genus sp.343  2 0 1 0 0 0 3 

Staphylinidae Genus sp.291  0 0 0 1 0 1 2 

Staphylinidae Genus sp.207  0 0 0 0 0 1 1 

Staphylinidae Genus sp.215  0 0 0 0 0 1 1 

Staphylinidae Genus sp.286  0 0 0 0 0 1 1 
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Staphylinidae Genus sp.290  0 1 0 0 0 0 1 

Staphylinidae Genus sp.298  0 0 0 0 0 1 1 

Staphylinidae Genus sp.304  0 0 0 1 0 0 1 

Staphylinidae Genus sp.305  1 0 0 0 0 0 1 

Staphylinidae Genus sp.311  1 0 0 0 0 0 1 

Staphylinidae Genus sp.353  0 0 0 0 0 1 1 

Staphylinidae Genus sp.363  1 0 0 0 0 0 1 

Staphylinidae Genus sp.369  0 0 0 1 0 0 1 

Staphylinidae Genus sp.289  0 0 0 0 0 0 0 

Staphylinidae Hyperomma sp.293  0 0 0 0 0 2 2 

Staphylinidae Metacorneolabium sp.309  0 8 0 1 0 0 9 

Staphylinidae n.g. sp.240  0 2 0 0 0 2 4 

Staphylinidae Nototorchus ferrugineus (Broun, 1893) 9 33 63 0 0 2 107 

Staphylinidae Paratorchus sp.339  0 0 0 0 0 10 10 

Staphylinidae Phanophilus comptus (Broun, 1880) 2 0 1 8 5 0 16 

Staphylinidae Physobryaxis inflata (Sharp, 1874) 0 0 0 0 2 21 23 

Staphylinidae Quedius sp.294  12 9 8 2 1 1 33 

Staphylinidae Quedius sp.295  2 0 0 0 0 0 2 

Staphylinidae Quedius sp.306  0 0 1 0 0 0 1 

Staphylinidae Sagola genalis Broun, 1881 0 0 0 0 3 3 6 

Staphylinidae Scaphisoma funereum Loebl, 1977 1 0 0 1 11 17 30 

Staphylinidae Sepedophilus sp.82  34 34 30 10 17 7 132 

Staphylinidae Sepedophilus sp.80  0 1 0 0 1 31 33 

Staphylinidae Sepedophilus sp.77  3 3 0 3 4 18 31 

Staphylinidae Sepedophilus sp.78  0 2 0 3 5 16 26 

Staphylinidae Sepedophilus sp.81  2 2 2 0 0 1 7 

Staphylinidae Sepedophilus sp.307  0 0 1 0 0 2 3 

Staphylinidae Sepedophilus sp.84  0 0 0 0 0 1 1 

Staphylinidae Silphotelus nitidus Broun, 1895 2 1 3 6 4 32 48 

Staphylinidae Tachyporus nitidus (Fabricius, 1781) 0 0 0 0 3 2 5 

Staphylinidae Thyreocephalus sp.297  0 0 1 7 5 51 64 

Staphylinidae Tychotyrus sp.206  1 0 1 8 11 4 25 

Staphylinidae Zeoleusis virgula (Fauvel, 1889) 0 2 0 0 0 2 4 
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Tenebrionidae Amarygmus sp.238  0 0 0 0 0 1 1 

Tenebrionidae Archaeoglenes costipennis Broun, 1893 0 0 0 0 0 8 8 

Tenebrionidae Artystona sp.237  0 0 0 0 0 6 6 

Tenebrionidae Kaszabadelium 

aucklandicum 

(Broun, 1880) 2 6 1 0 5 17 31 

Tenebrionidae Menimus sp.228  0 0 0 0 0 2 2 

Tenebrionidae Menimus sp.247  0 0 0 0 0 2 2 

Tenebrionidae Uloma tenebrionoides White, 1846 2 1 0 0 2 1 6 

Trogossitidae Australiodes vestitus (Broun, 1882) 1 1 2 0 0 13 17 

Trogossitidae Australiodes sp.28  1 0 0 0 0 0 1 

Trogossitidae Genus sp.9  0 0 0 0 0 4 4 

Trogossitidae Genus sp.365  0 0 1 0 0 2 3 

Trogossitidae Genus sp.367  1 0 1 0 0 0 2 

Trogossitidae Genus sp.131  0 0 0 0 1 0 1 

Trogossitidae Genus sp.273  0 0 0 0 0 1 1 

Trogossitidae Genus sp.366  0 0 0 0 0 1 1 

Zopheridae ?Ablabus sp.54  0 0 0 0 0 2 2 

Zopheridae Ablabus sp.47  26 27 12 4 14 21 104 

Zopheridae Bitoma distans Sharp 0 0 9 0 8 1 18 

Zopheridae Bitoma insularis White, 1846 0 0 1 0 1 1 3 

Zopheridae Bitoma ?rugosa Sharp 0 1 0 0 0 0 1 

Zopheridae Chorasus sp.43  0 0 0 0 0 5 5 

Zopheridae Epistranus sp.55  0 0 0 1 0 16 17 

Zopheridae Notocoxelus sp.51  0 0 0 0 0 1 1 

Zopheridae Pristoderus bakewellii (Pascoe, 1866) 7 51 15 2 34 72 181 

Zopheridae Pristoderus antarcticus (White, 1846) 0 3 0 0 0 1 4 

Zopheridae Pristoderus tuberculatus Broun 0 0 0 0 0 7 7 

Zopheridae Pristoderus scaber Fabricius 0 0 0 0 1 1 2 

Zopheridae Pristoderus antarcticus (White, 1846) 0 0 0 0 0 1 1 

Zopheridae Pycnomerus sophorae Sharp 543 381 180 76 277 19 1476

Zopheridae Rytinotus squamulosus Broun, 1880 0 0 0 0 0 1 1 

Zopheridae Syncalus sp.351 d  0 0 0 0 0 8 8 

Zopheridae Tarphiomimus indentatus Wollaston, 1873 2 1 0 3 0 17 23 
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Chapter 6 - A space-for-time substitution experiment to test long-

term changes in the abundance of beetle species throughout an 

entire 26 year forest rotation. 

 
6.1 Introduction 

Despite the considerable loss of native habitats worldwide (FAO 2001), the area of plantation 

forests is increasing rapidly in many countries and has the potential to mitigate the effects of 

habitat loss (Carnus et al. 2006). Exotic plantations are generally perceived to support low 

biodiversity (Hartley 2002), however managed forests of Pinus radiata provide suitable low-

contrast alternative habitat to native forest for many indigenous species (Clout 1984, Clout 

and Gaze 1984, Kleinpaste 1990, Bonham et al. 2002, Mesibov 2005, Carnus et al. 2006). 

Species composition and abundance of native understorey plants in New Zealand plantations 

changes dramatically throughout a rotation (Allen et al. 1995, Ogden et al. 1997, Brockerhoff 

et al. 2003). However, knowledge about invertebrate biodiversity in such ecosystems is 

limited (Hutcheson and Jones 1999, Berndt et al. Submitted). Despite this, insects are 

essential to most ecosystem functions, e.g., pollination (Murren 2002), nutrient cycling and 

litter decomposition (McCullough et al. 1998, Chapman et al. 2003) and are key components 

in food-webs, providing food for more charismatic species such as birds and mammals (Clout 

1984, Clout and Gaze 1984). Because of their ecological importance greater knowledge of 

invertebrates and their long-term ecological responses to clearfelling will allow forest 

managers to enhance the biodiversity value of plantation stands.  

 

International desire to preserve biodiversity is growing steadily alongside recognition that the 

production landscape matrix can provide suitable habitat for native species (Meurk and 

Swaffield 2000, Novacek and Cleland 2001, Kupfer et al. 2006). Plantation forest managers 

have in many cases responded to concerns about sustainable management by voluntarily 

adopting one of a range of management certification schemes such as the Forest Stewardship 

Council (FSC). One of the goals of these sustainable forest management schemes is to 

increase the capacity of plantations to support non-commercial species, thus contributing to 

the maintenance of regional biodiversity.  
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Clearfell harvesting is one of the most visible and controversial forestry practices. It invokes 

strong negative public reactions (Hansis 1995) and has been a key contention in some forest 

certification applications (Hock and Hay 2003). Short-term impacts of clearfelling on 

biodiversity are comparatively well studied (Beaudry et al. 1997, Roberts and Zhu 2002, 

Knapp et al. 2003, Saint-Germain et al. 2005), however post-harvest recovery of populations, 

recolonisation of regenerating stands, and the recovery of ecosystem processes may take 

many years, if not decades (Spence et al. 1996). This has serious implications for biodiversity 

preservation particularly in short-rotation forestry and a greater understanding is required of 

these long-term post-harvest impacts. 

 

Despite the 100-year history of large-scale short-rotation plantation forest management in 

New Zealand (Roche 1990), the short-term impacts of clearfell harvesting on plants (Allen et 

al. 1995, Ogden et al. 1997, Brockerhoff et al. 2003) and invertebrate taxa (Chapter 5) have 

only been studied in the last 10 years. Our current understanding of long-term changes in 

invertebrate populations is poor, with only a single published mensurative study comparing 

the beetle fauna of three different-aged Pinus radiata stands (Hutcheson and Jones 1999). 

Previous studies of understorey plant diversity have sampled across a wider range of stand 

ages, because it is a simpler, less resource-intensive process than sampling invertebrate 

diversity. Hutcheson and Jones (1999) is still the most comprehensive multi-aged (5, 14 and 

30 year-old stands) invertebrate study in New Zealand plantation forests. From their data they 

could distinguish between different aged stands on the basis of Malaise-trapped beetle species 

composition. However, the restricted sampling of plantation age classes and unequal 

distribution of sampling effort between treatments limits the ability to infer whether the 

differences in abundance of individual species between sites translates into long-term changes 

in abundance over time. 

  

Plantations can be viewed as pre-existing large-scale fully replicated study areas suitable for 

space-for-time experiments capable of documenting the process of succession from a 

disturbance-adapted community to a forest dominated ecosystem over time. Detailed 

management records, including stocking rates, pruning and thinning schedules and most 

importantly the time of harvest exist for the extensive Pinus radiata plantations of the central 
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North Island of New Zealand. An accurate account of the time since disturbance and 

subsequent management actions provides excellent opportunities to establish trials that assess 

forest succession processes by spatial substitution of replicates, i.e., a chronosequence 

(mensurative approach (McGarigal and Cushman 2002)). Population and community recovery 

of forest ecosystems post-disturbance can be assessed in different-aged stands simultaneously, 

which circumvents the process of following individual stands through time. Space-for-time 

substitution studies make the study of long-term effects more viable as resource and logistical 

issues are simpler to overcome, and results are more quickly realised to guide future 

management. However, space-for-time studies can be affected by confounding variables, such 

as spatial heterogeneity, which may be ameliorated to some extent by adequate site 

replication. 

 

This chapter evaluates the population responses of selected individual invertebrate species and 

plant species richness at different distances into regenerating stands and adjacent mature 

forest. The short-term responses of the invertebrate species are already known (Chapter 5), 

and this study aims to establish the similarity of long-term responses with early successional 

post-harvest processes.  

 

6.2 Methods 

 

6.21 Study sites and experimental design 

The study was conducted in the extensive Pinus radiata plantation forests of New Zealand’s 

central North Island.  Stands of six different age class treatments (1, 2, 4, 8, 16 and 26 yrs) 

were selected from available forest compartments of the correct age. To mitigate unwanted 

size effects stands were restricted to those within 20% of a desired 50 ha in size. Treatment 

stands also had to meet the constraint that they were surrounded by P. radiata of at least 20 

years of age (in order to assure full canopy closure) with one stand boundary being at least 25 

years. The 25 year-old boundary represents a mature forest reference point to compare with 

the abundance of beetles in adjacent regenerating stands. 

 

Beetles were sampled in pitfall traps placed along a gradient between the different aged 

regenerating stands and the adjacent mature 25 year-old forest stand. Traps were placed at 
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log5 distances from the drip-line of the mature forest and subsequently at 5, 25, 125 and 290 

m in either direction perpendicular to the stand boundary (Figure 6.1). The end of each 

transect thus represented the rough mid-point of the approximately square 50 ha stands 

evaluated. Two replicates of 4, 8, 16, and 26 year-old-stands were sampled monthly between 

November 2002-February 2003 and two additional independent replicates of each age class 

were sampled between January and February 2004.  Three replicates of year 1 stands were 

sampled monthly from November 2002-February 2003 and in their second year post harvest, 

January 2004-February 2004. For an in-depth description of other methodology including the 

collection of vegetation data, study sites and pitfall trap design consult chapter 2. 

 

Sampling across gradients between age treatments and their adjacent mature forest reference 

point provides a localised ‘control’ site that allows the change in abundance post-harvest to be 

compared with the closest available mature plantation stands. Traditionally, studies that have 

compared harvest treatments only have one or a limited number of control sites that can be at 

considerable distances from treatment areas. The concept of pairing treatment and mature 

forest sites is an attempt to reduce random spatial variability and thus increase the statistical 

power of testing differences between mature and regenerating stands.  

 

6.22 Selection of beetle taxa and analysis of data 

A comprehensive study analysing the change in abundance of all beetle taxa was not feasible 

due to the processing time required to sort the large quantity of material collected and the 

taxonomic impediment of correctly assigning individual specimens to valid species. As such 

we decided to choose a suite of indicator taxa. It is important that the selection of indicator 

taxa is robust and justifiable, preferably from some initial sampling (McGeoch 1998). I 

selected seven beetle taxa on the basis of results from earlier research into short-term 

responses to clearfell harvesting (Chapter 5). The abundances of these seven species were 

known to change significantly in the first two years post-harvest, either increasing or 

decreasing in response to clearfell harvest disturbance (Table 6.1). 

 

Beetles were sorted from samples preserved in alcohol and counts were converted to catch per 

100 trap days to account for the unequal sampling time between traps. As such all references 
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to abundance in this chapter are actually a relative measure of capture rate, expressed as catch 

per 100 trap days.  
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Figure 6.1 Concept graph illustrating the experimental design of transects between mature forest 

control sites and adjacent regenerating stands of P. radiata. Transects were 580 m in length and were 

sampled from 290 m into mature P. radiata to 290 m into different-aged regenerating stands. In all 

graphs where the full transect is shown (Appendix 6.1) the mature forest control is given on the left 

and the regenerating stand on the right. Distances are measured in metres and presented on a log5 

scale.  
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Table 6.1. Observed patterns in the abundance of selected beetle taxa as a function of clearfell size 

(data presented in detail in Chapter 5). Exotic species are denoted by an-asterisk. 

Species 
Change in abundance with respect to 

increasing clearfell size 

Pycnomerus sophorae Negative 

Paracatops phyllobius Negative 

Latridiidae sp 117 Negative 

Hylastes ater* Negative 

Cicindela tuberculata Positive 

Odontria sp. 56 Bimodal, high at small and large clearfell sizes. 

Sitona discoideus*  Positive 

 

 

Individual ‘proc-mixed’ models (SAS V8) for each species were used to analyse the 

significance of both fixed (age, distance, distance2 and the age*distance and age*distance2 

interactions) and random effects (forest compartment, compartment*age interaction). Squared 

terms are to account for potential curvilinear responses in the data. Distance was coded as a 

continuous variable in the analysis and species data were tested for normality prior to the 

application of square root, log or inverse transformations, as appropriate, to correct for 

skewness and ensure that the assumptions of normality for the ‘proc mixed’ model were met. 

Interaction terms across the entire gradient were complex and to distil trends from only the 

regenerating stands the difference between mature and regenerating stands was analysed 

rather than the raw abundance data. The difference between mature and regenerating stands 

was calculated by subtracting the combined mean abundance of 5, 25, 125 and 290 m traps in 

mature forest from the abundance at each individual distance (including the 0 m) in the 

adjacent regenerating stand. The mean mature forest value was calculated separately for each 

age comparison and curves were fitted by linear regressions using the standard linear curve 

fitting function of Sigmaplot (Version 7, SPSS Inc 2001).  

 

Species with no significant change in abundance with respect to distance across transects 

within a single age treatment are presented as a scatterplot of the mean difference in 

abundance per age class, with associated confidence intervals. Species with significant linear 
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regression slope coefficients in one or more age classes can not be plotted as an average 

difference per age class, as the mean would not provide a suitable estimate of abundance due 

to its dependence on distance. In such cases the slope coefficient is compared at different 

ages. 

  

6.3 Results 

6.31 Understorey plant diversity 

The average species richness of native vascular dicotyledonous plants (excluding grasses, 

sedges and rushes) per quadrat surrounding the pitfall traps was greater than the number of 

adventive species in all age classes (Table 6.2). Average species richness of native 

understorey plant species per quadrat decreased significantly with increasing distance from 

the mature forest edge in 1 year-old and 4 year-old stands (Figure 6.2a & 6.2b). However, the 

similarity in native plant species richness between mature forest and regenerating stands 

increased with stand age as shown by the reduced slope of the linear regression analysis of 

species richness as regeneration proceeded (Figure 6.2a-e). 

 

Table 6.2. Average species richness of native (N) and adventive (A) plants (excluding grasses, herbs 

and mosses) per 2 x 2m quadrat surrounding pitfall traps at different distances along an edge gradient 

sampled between mature 26 year P. radiata and regenerating stands of different ages. 

 

  Age of regenerating stand (years) 

  1 4 8 16 26 

Distance from edge (m) N A N A N A N A N A 

-290 m 5.0 0.3 4.0 0.8 4.7 1.0 4.0 1.0 5.5 0.5 

-125 m 7.0 0.3 3.6 0.8 5.7 0.7 4.8 1.0 2.3 0.5 

-25 m 5.7 0.3 3.4 1.0 6.0 0.7 5.0 1.0 3.3 0.5 M
at

ur
e 

-5 m 3.3 1.0 5.6 0.6 7.3 1.3 6.5 0.5 4.8 0.5 

Boundary 0 m 4.0 1.0 4.4 0.6 3.7 1.3 5.0 1.5 4.8 0.3 

+5 m 2.3 1.0 3.2 1.2 5.3 1.5 4.0 1.0 4.5 0.3 

+25 m 2.7 0.7 2.2 0.4 4.3 0.3 4.8 0.8 4.5 0.8 

+125 m 2.7 0.0 1.8 0.4 3.3 0.3 4.8 0.8 3.3 0.5 

R
eg

en
er

at
in

g 

290 m 2.0 0.0 2.2 0.8 4.0 0.3 5.5 0.8 5.8 0.3 
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Figure 6.2. Average species richness of understorey vegetation decreased significantly with distance 

from mature forest in 1 and 4 year-old regenerating stands. a) year 1 (Y= -0.58x + 3.85 R2 = 0.49, P = 

0.0001), b) year 4 (Y= -0.31x + 3.38 R2 = 0.17, P < 0.0049), c) year 8 (R2 = 0.10, P < 0.11),  d) year 

16 (R2 = 0.001, P < 0.82), and e) year 26 (R2 = 0.03, P < 0.29) stands. Negative distances indicate sites 

in mature forest and positive into regenerating stands. Error bars are 95% confidence intervals of the 

sample based rarefied species richness; E) Similarity of understorey vegetation diversity increases 

with stand age, i.e., tends to zero. Significant of regression slopes is indicated by the use of 

alphabetical superscripts *  = P<0.05, ** = P<0.01 and *** P< 0.001. 
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6.32 Beetle abundance 

A total of 25,065 individuals of the seven selected were species extracted from pitfall 

samples; this comprised 10,193 Cicindela tuberculata, 9,605 Pycnomerus sophorae, 2,113 

Latridiidae sp 117, 1,545 Paracatops phyllobius, 626 Hylastes ater, 608 Odontria ?piciceps 

and 375 Sitona discoideus. Average catch per 100 trap days across the mature forest-

regenerating stand gradient is given for each species in Appendix 6.1. 

 

6.33 Changes in abundance as a function of stand age and distance from forest edge 

Separate mixed model ANOVAs for individual species showed that C. tuberculata was the 

only species to exhibit significant changes in abundance as a function of stand age post-

harvest (Table 6.3). The abundance of C. tuberculata was very low in mature forest compared 

to extremely high catches in 1 and 2 year-old stands (Appendix 6.1). 

 

Table 6.3. F-values and associated significance (<0.05 *, <0.01 ** and <0.001 ***) of a mixed model, 

random effects ANOVA to test for changes in species abundance by stand age, distance along transect 

(both linear and curvilinear) and the age*distance age*dist2 (curvilinear) interaction. Random effects 

in the model were the age and age (compartment). 

 

Species 

d.f.:

Age 

(5, 2) 

Dist 

(1, 537) 

Dist2 

(1, 537) 

Age*Dist 

(5, 537) 

Age*Dist2 

(5, 537) 

Odontria ?piciceps 7.01 4.26* 13.49*** 0.43 7.07*** 

Pycnomerus sophorae 3.44 23.94*** 5.13* 4.93*** 1.51 

Paracatops phyllobius 0.88 41.06*** 0.14 2.99* 1.66 

Sitona discoideus 1.84 18.03*** 0.18 2.29* 0.21 

Cicindela tuberculata 25.57* 238.46*** 0.57 58.51*** 4.00** 

Hylastes ater 18.19 9.44** 14.01*** 4.76*** 3.67** 

Latridiidae sp. 117 3.79 58.40*** 3.76 10.53*** 3.79** 

 

However, as with plant species richness, the abundance of all seven beetle species differed 

significantly with distance (main effect in model) across the mature forest-regenerating stand 

gradient (Table 6.3). These changes were not always linear, e.g., Odontria ?piciceps, Hylastes 

ater and Pycnomerus sophorae showed significant Distance2 terms indicating a curvilinear 
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response in abundance as a function of distance along the gradient. The strong curvilinear 

responses of O. ?piciceps is shown clearly by the preference for edge habitat in younger 

stands (Appendix 6.1).  

 

6.34 Interaction terms 

The response of all species to distance from the regenerating stand edge changed significantly 

with increasing stand age (despite C. tuberculata being the only species to show a significant 

main effect of stand age). Analysis of the difference in abundance between mature and 

regenerating stands at each distance showed that the abundance of Odontria ?piciceps, 

Cicindela tuberculata and Hylastes ater changed significantly with distance into the 

regenerating stand for at least one age treatment. Abundance of Odontria ?piciceps decreased 

significantly with distance into 1 and 2 year-old stands (strong negative regression slopes that 

were a product of two of the three replicates: year 1: R = 0.59, n = 15, P=0.018; year 2: R = 

0.77, n = 15, P = 0.0008 (Figure 6.3 a & b)), however there was no significant differences in 

older 4, 8, 16 and 26 year-old stands (Figure 6.3c-f). The difference in abundance of C. 

tuberculata between mature and regenerating stands increased significantly with distance into 

2 year-old stands (R = 0.68, n = 15, P = 0.005 (Figure 6.4a & b)), and H. ater decreased into 1 

year-old stands (R = 0.476, n = 20, P = 0.034 (Figure 6.4c & d)).  As abundance is dependent 

on distance across the gradient for these species, an average ‘difference’ value could not be 

calculated for each age class and thus comparisons must be made using the regression lines as 

in Figures 6.4b & d). In contrast, Latridiidae sp. 117, Pycnomerus sophorae, Paracatops 

phyllobius and Sitona discoideus did not vary in abundance with distance and average values 

can be calculated for the difference between mature forest and regenerating stands in each age 

class (Figures 6.5a-d) 

 

The immediate post-harvest change in the abundance of individual beetle species in 

regenerating stands compared to adjacent mature forest was variable.  C. tuberculata (Figure 

6.4b), H. ater (Figure 6.4d), O. ?piciceps (Figure 6.3 a-f) and Sitona discoideus (Figure 6.5d) 

increased in abundance immediately post-harvest and declined as regeneration proceeded; 

note the changes in C. tuberculata, H. ater and O. ?piciceps abundance were dependent on 

distance in some age classes. This distance effect varied between species with C. tuberculata 
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increasing in abundance with greater distance into young regenerating stands, whereas O. 

?piciceps and H. ater  decreased in abundance along the same gradient. 

 

 
 

Figure 6.3. Scatter-plot with linear regressions of the difference in abundance of Odontria ?piciceps 

between regenerating stands and their adjacent mature forest control at a) year 1, b) year 2, c) year 4, 

d) year 8, e) year 16 and f) year 26.  Slopes of the linear regression were significantly different from 

zero in year 1 and 2, where trap catch was greatest at the forest edge.  Harvesting did not have a 

positive impact on all species.  



 

Paper produced from 84% FSC certified forest resources 

136

 

 

 
 

Figure 6.4. Slope of relationship between abundance and distance was approximately zero in stands 

older than 8 years, indicating no difference in abundance along the habitat gradient. However, a) 

Cicindela tuberculata and c) Hylastes ater showed disparate responses in younger stands. C. 

tuberculata increased in abundance with distance into clearfell harvest areas, whereas H. ater 

decreased. Regression lines of the difference in abundance between mature and regenerating stands 

show that b) C. tuberculata and d) H. ater had greater abundance in young stands compared to 

adjacent mature controls. 
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Figure 6.5. Average difference in abundance between regenerating stands and adjacent mature forest 

controls of a) Latridiidae sp. 117 and b) Pycnomerus sophorae decreased immediately post-harvest 

and recovered as stands regenerated. c) Paracatops phyllobius showed a similar response with a time 

lag of 4 years, but did not appear to fully recover after 26 years. In contrast d) Sitona discoideus had 

higher abundance in young stands compared to the adjacent mature forest that decreased with stand 

age. Dashed lines indicate zero difference between mature P. radiata and adjacent regenerating stands. 
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The difference in abundance of Pycnomerus sophorae and Latridiidae sp. 117 across the 

habitat gradient exhibited an immediate negative response to harvesting.  However, 

populations recovered to pre-harvest levels within 26 years (Figures 6.5a & b). Paracatops 

phyllobius was also negatively affected but there was a delayed response (significant decrease 

at 4 years post-harvest) but the species appears to recover within the 26-year time frame 

sampled when the variance around the mean is acknowledged (Figure 6.5c). 

 

6.4 Discussion 

 

This study is the most comprehensive analysis of changes in beetle abundance as a function of 

stand age to be attempted in a New Zealand P. radiata plantation. Data support the notion that 

50 ha clearfells are not significant barriers to stand recolonisation by these beetles, as six of 

the seven species sampled were collected from all distances along the habitat gradient, 

irrespective of the age class comparison. Cicindela tuberculata, which is a strongly-flighted 

heliophilous predatory species (Savill 1999, Larochelle and Larivière 2001), was the only 

species not present in deep mature P. radiata habitat, but it was clearly capable of rapidly 

colonising clearfells post-harvest, as shown by the high abundance in recent clearfells 

(Appendix 6.1).  

 

6.41 Dispersal into regenerating stands   

Transition zones between different habitats (ecotones) have been the focus of intense 

research, particularly with respect to changes in the abundance of organisms and the effects of 

edges on dispersal probability (Ries et al. 2004). New Zealand plantation forests have few 

avian frugivores and are dominated by insectivorous bird species (Clout 1984) resulting in a 

largely wind-assisted mode of dispersal for most plant species. Plant species richness 

decreased significantly with distance from forest edge in 1 and 4 year-old regenerating stands, 

which is consistent with many other studies of seed dispersal (Cubina and Aide 2001, Clark et 

al. 2005, Devlaeminck et al. 2005, Lavi et al. 2005). Short-distance wind dispersal of seeds 

further highlights the importance of proximity to native vegetation (see chapter 5) and the role 

of landscape level habitat attributes to the retention of diversity.  
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Dispersal into regenerating stands is not always passive, insects can disperse actively and 

their abundance in a particular location may, in part, reflect habitat suitability, rather than 

proximity of source populations in highly mobile groups (Hughes et al. 2000). Abundance of 

Hylastes ater and Cicindela tuberculata changed significantly with distance from the forest 

edge in 1 and 2 year-old regenerating stands. Hylastes ater is a bark beetle and would be 

attracted to recent harvest areas by suitable host volatiles (Reay and Walsh 2002). Cicindela 

tuberculata is an open habitat species (Savill 1999) that would be attracted to, and is easily 

capable of dispersing into, recently created clearfells. The two species responded differently 

to distance from forest edge (Figure 6.4b & 6.4d), H. ater was most abundant at forest edges, 

whereas C. tuberculata was most numerous in the centre of clearfells. The reasons for such 

differential responses are poorly understood, however structural contrast between adjacent 

habitats, microclimatic changes at forest edges, and individual behavioural responses are 

known to play a role in edge permeability to dispersal (Ries and Debinski 2001, Schtickzelle 

and Baguette 2003). 

 

Two scenarios may explain the high abundance of H. ater at recently clearfelled stand 

boundaries: (i) a source-sink effect where a finite population in surrounding forest disperses 

into recently harvested areas and abundance decreases with distance from the source; or 

alternatively, (ii) individuals migrating from within clearfells accumulate at the stand edge as 

it presents a barrier to outward dispersal (changes in dispersal behaviour at habitat boundaries 

have also been recorded for Lepidoptera (Schultz and Crone 2001)). A detailed tracking study 

would be necessary to assess the relative influence of these two alternatives. 

 

The larvae of C. tuberculata inhabit shallow (10-15cm) burrows in exposed mineral soil 

(Larochelle and Larivière 2001), which is abundant in freshly clearfelled stands. The large 

increase in trap catch during the second year post-harvest is probably due to the emergence of 

the adult progeny of the previous year’s overwintering larvae (Appendix 6.1). However, this 

does not explain the change in abundance relative to habitat edge. Adventive grasses and 

herbaceous species have been shown to rapidly colonise harvested stands (Brockerhoff et al. 

2003). In this study, native plant species richness was highest at the edge of regenerating 

stands (Figure 6.2a & b). Bare ground is a key resource for C. tuberculata and high 
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abundance in the centre of clearfells may have been the result of more rapid regrowth of 

vegetation close to the boundary (seed source) of regenerating stands. 

 

Apart from understorey plant species richness, and C. tuberculata and H. ater abundance, the 

difference in abundance between mature and regenerating stands of the other five beetle 

species sampled did not vary with distance from source populations (mature forest). However, 

the average difference in abundance of these five species did change with the age of 

regenerating stands. This indicates alternative life-history strategies (forest, open habitat and 

edge preference) that allow these species to maintain populations in a mosaic of different 

stand ages. The biology of these five species is poorly understood. Given that so little is 

known about these species generalising results to other taxa should be done judiciously, as 

phylogenetic relatedness is not a reliable criterion for extrapolation (Ricketts et al. 2002, 

Oertli et al. 2005). 

 

6.42 Forest habitat species 

Pycnomerus sophorae and Latridiidae sp 117 had significantly reduced abundance in young 

regenerating stands suggesting a preference for mature forest (Figure 6.5a & b). However, the 

effect of harvesting on species abundance is not always immediate (Niemela et al. 1993). In 

this study Paracatops phyllobius seemed relatively unaffected immediately post-harvest, but 

had low abundance in 4 year-old stands. Forest species require suitable source habitat within 

the range of their dispersal capabilities to initiate habitat recolonisation (Cunningham 2000, 

Murren 2002). The dispersal distances of the three forest species studied are unknown, 

however dispersal is an important determinant of how these species would experience 

connectivity between different aged forest stands, and is critical for maintaining and 

enhancing biodiversity in managed forest ecosystems (Lindenmayer and Hobbs 2004, Barbaro 

et al. 2005).  

 

6.43 Open habitat species 

Sitona discoideus is an open habitat species with high abundance in young regenerating 

stands, however it was also present at low densities in older stands (unlike C. tuberculata). 

The high abundance of Sitona in the 1, 2 and 8-year stands is unlikely to reflect the proportion 

of bare ground (as in the case of C. tuberculata) as Sitona is herbivorous and its distribution is 
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probably more dependent on the availability of its principal host (Lucerne (Medicago sativa), 

although it does feed on other introduced Medicago spp. that are very uncommon). Mature 

stands with full canopy cover have a low abundance of Lucerne and consequently low 

incidence of Sitona. The high abundance in open, recently clearfelled sites, may not be solely 

dependent on host plant availability, as coarse woody debris created during harvesting may 

also be attractive as summer aestivation sites, which are important for Sitona (Goldson et al. 

1984).  

 

6.44 Edge species 

The existence of edge-specialist species has been shown in many studies of Carabidae 

(Magura et al. 2001, Molnar et al. 2001, Magura 2002) and butterflies (Schultz and Crone 

2001). However the concept is controversial, as their existence is not universal (Heliola et al. 

2001), and is thought to be restricted to human modified habitat boundaries (Imbeau et al. 

2003). O. ?piciceps was chosen for this study as previous sampling indicated that it had an 

unusual preference for extreme clearfell sizes, both large and small (Chapter 5). Detailed 

sampling across different age stands showed that O. ?piciceps had a strong preference for 

edge habitat at the boundary of mature forest and young 1-2 year-old regenerating stands 

(Appendix 6.1). This edge effect is less defined in 4 and 8 year old stands where regenerating 

trees can be over 10 m tall (Carson et al. 1999).  Modifications to flight behaviour have been 

observed in other flying insects with respect to habitat edges, e.g., butterflies (Ries and 

Debinski 2001, Schultz and Crone 2001), but the interaction between insects and habitat 

edges are often species-specific, and can vary temporally and micro-climatically (Ewers et al. 

In Press).  

 

6.45 Exceptions to general abundance trends and their implications for forest management 

There were some exceptions to the broad patterns in abundance that were exhibited by the 

seven species sampled. For example, Pycnomerus sophorae was highly abundant in the 5 and 

25 m traps of one replicate of the 8 year-old stands (Appendix 6.1). Spatially variable 

resources such as coarse woody debris are known to have an influence on the abundance of 

litter dwelling invertebrates (Evans et al. 2003), and the peaks in the individual trap data of P. 

sophorae were associated with high trap catches at two sites that had large piles of adjacent 

pruning slash. Pruning slash may act as a reservoir or attractor for this species in the young 
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regenerating stands, as I found them living in large numbers under the bark of recently dead 

trees. The abundance spikes are a sampling effect and their overall significance should be 

considered in that context, however their existence raises important questions about the role 

of spatially variable resources in biodiversity retention, e.g., legacy management, where key 

biological resources such as standing dead trees are retained in harvested areas to provide 

habitat for biodiversity whilst stands regenerate (Lindenmayer and Hobbs 2004, Keeton and 

Franklin 2005). Mechanical site preparation is known to affect biota both above and below 

ground (Miller et al. 1999, Peltzer et al. 2000, Bird et al. 2004), however species responses 

are inconsistent and subject to spatial variation (Bird et al. 2004). The sharp peaks in 

abundance of P. sophorae indicate fine scale spatial clustering, which is one of the goals of 

legacy management.  Legacy management aims to leave high-biodiversity value, spatially 

variable resources such as standing dead trees after harvest (Lindenmayer and Franklin 2002, 

Mazurek and Zielinski 2004). The question remains as to whether these peak spots of insect 

abundance can be replicated by post-harvest site preparation and whether these peaks in 

individual species are a reflection of high overall invertebrate biodiversity. Further research 

into the over-all community response to the presence of these biological legacies may identify 

simple modifications of current silvicultural practices that can enhance biodiversity. 

 

6.5 Conclusions  

Species show disparate responses to clearfell harvesting, and distance from forest edge can be 

an important factor determining the abundance of species. Beetle species utilised the forest 

stands at different stages in forest regeneration, which highlights the need to provide a level of 

connectivity between stands of different ages that match the dispersal capabilities of the 

species. There is a clear lack of basic biological information on dispersal capabilities, habitat 

requirements of non-pest species and the factors mediating movement across patch and matrix 

boundaries. Future work should focus on species groups with life-history strategies that are 

known to make them vulnerable to habitat change, e.g., large flightless habitat specialist 

species with poor dispersal abilities (Gibbs and Stanton 2001, Fahrig 2003, Driscoll and Weir 

2005), as their dispersal success is likely to decrease dramatically with increasing distance 

between suitable forest stands.  

 Appendix 6.1. Average catch per 100 trap days of selected beetle taxa across pitfall trap gradients 

between mature forest and regenerating stands (positive distances) is presented. A) Odontria ?piciceps 
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was attracted to edge habitat in young stands, where as B) Pycnomerus sophorae, C) Paracatops 

phyllobius and G) Latridiidae sp. 117  preferred mature forest stands. In contrast D) Sitona discoideus, 

E) Cicindela tuberculata and F) Hylastes ater were most abundant in the open habitat of young 

clearfells. Lines in all graphs are splines created using the curve fitting function of Sigma Plot 

(Version 7.0, SPSS Inc). 
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Chapter 7 - Synthesis 
 

7.1 Introduction 

It is universally recognised that deforestation is a key driver of global biodiversity loss (Sala 

et al. 2000). Deforestation is closely linked with national wealth (Meyer et al. 2003, Rudel et 

al. 2005, Ewers et al. In Press), and some wealthy countries are experiencing net afforestation 

(Ewers et al. In Press). Most of New Zealand’s lowland and coastal regions have suffered 

extensive historic deforestation by both Polynesian and European settlers (McGlone 1989), 

and in some ecological districts deforestation continued to the point where less than 1 % 

native forest cover remains, e.g., Canterbury and Waikato (data from LCDB2, (Terralink 

2004) , Walker et al. 2005).  It was only in the early 1800s that New Zealand went through the 

initial stages of a developing nation, with an economy that was heavily reliant on natural 

capital, e.g., native forests.  It was recognised as early as 1911 that extractive forestry was 

unsustainable, and a comprehensive government-driven operation was begun to develop 

plantation forests (Roche 1990). Today New Zealand’s publicly-owned native forests are 

totally protected and it is the large plantation forest estate of nearly 2 million hectares of 

exotic species that supports the now privatised forest industry. Overseas studies of the long-

term clearfell harvesting impacts have focussed on managed native forests (Spence et al. 

1996, Williams et al. 2001, Koivula et al. 2002, Ferguson and Elkie 2003), not fast-growth 

plantations of exotic species. As such, overseas research is often not applicable and it is 

important to undertake clearfell harvest research in New Zealand. 

 

7.2 Non-native forests as reservoirs for native biodiversity in a fragmented New Zealand 

landscape  

Plantation forests have the potential to provide alternative habitat for biodiversity, particularly 

in highly fragmented landscapes that retain little of their indigenous forest cover (Carnus et al. 

2006). This implies that plantation forest, as a ‘matrix’ habitat, provides a suitable low-

contrast extension of native habitat (Kupfer et al. 2006), that also improves connectivity 

between native remnants and the populations present therein (Norton 1998). Empirical studies 

have shown that plantations in New Zealand and Australia can support significant populations 

of native plants (Allen et al. 1995, Ogden et al. 1997, Brockerhoff et al. 2003), birds (Clout 
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1984, Lindenmayer et al. 2002, Spurr and Coleman 2002) and invertebrates (Bonham et al. 

2002, Mesibov 2005, Berndt et al. Submitted), including a number of threatened or rare 

species (Kleinpaste 1990, Brockerhoff et al. 2005). My studies of selected beetle taxa found 

no difference in rarefied beetle species richness between native forest, mature P. radiata or 

pasture (Chapter 4) in the central North Island of New Zealand. Furthermore, over 350 

species of beetles were collected during an assessment of clearfell harvest size impacts on 

biodiversity (Chapter 5). Most beetle species were native and only a few exotic species were 

present. Exotic species were not a feature of the native forest, which suggests that the 

increased frequency of disturbance in plantation forests, and the tree species composition may 

present opportunities for the establishment of non-native beetle species. Despite the presence 

of exotic species in mature P. radiata stands, the beetle assemblages in this production habitat 

were the most similar to native forest. These results show that New Zealand plantation forests 

are a suitable habitat extension to remaining native forest, even though they could never fully 

replace them as habitat for all native species. Native habitat and its proximity will remain 

pivotal to many species that require specialist resources that are not available in managed 

plantations of exotic tree species.  

Although there was no difference in the species richness of pasture sites compared to other 

habitats sampled, sampling did not extend more than 125 m into grassland habitat. In contrast 

P. radiata sites sampled within the middle of Kaingaroa forest were several kilometres from 

the nearest native habitat, yet they retained high beetle biodiversity. Further study is required 

to understand the influence of the proximity of remnant native forest and plantation stands on 

biodiversity in adjacent pasture. The high diversity of native beetle taxa recorded in our 

pasture sites may be the result of short-distance dispersal from adjacent forest, and thus not 

represent self-sustaining populations. This point is critical given that the dominant matrix 

habitat throughout New Zealand is pasture and native remnants in some ecological regions are 

highly isolated.  

 

7.3 Impact of forest harvesting 

Forest harvesting, especially clearfelling, is a controversial process (Noon and McKelvey 

1996), and clearfelling unquestionably results in severe and immediate changes to forest 

ecosystems (see review in Chapter 3; and references therein). There has been a slow transition 

to alternative harvesting regimes that avoid the large-scale, even-aged forest management 
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approach of clearfelling, particularly in North America and Europe. These new silvicultural 

techniques have been the focus of several long-term, large-scale research projects, e.g., at 

Sicamous Creek (Vyse 1999) and MASS (Beese and Arnott 1999) in British Columbia. 

However, the work presented in this thesis is the only attempt to measure biodiversity in 

experimentally created clearfell harvest areas of different sizes that are relevant to current 

plantation forestry practices in New Zealand.  

 

7.31 Short-term impacts 

The expected rarefied species richness of native beetles in clearfell habitat was greater than 

that found in mature P. radiata stands (Chapter 4). Furthermore, there was a significant 

increase in rarefied beetle species richness in recent clearfells relative to adjacent mature P. 

radiata stands (Chapter 5). This is consistent with overseas studies of clearfell harvesting 

were species richness of certain taxonomic groups increased post-harvest, e.g., Carabidae 

(Niemela et al. 1993), although individual species responses are inconsistent (Atlegrim et al. 

1997). The cause of these short-term changes in species richness is not fully understood. 

European studies of Carabidae have shown an initial survival of forest species, which is 

augmented by the rapid colonisation of clearfells by open-habitat species (Niemela et al. 

1993, Atlegrim et al. 1997, Koivula et al. 2002). My work supports the notion of rapid 

colonisation of open habitat species, such as C. tuberculata, and the resultant post-harvest 

increase in overall species richness. However the persistence of ‘forest’ species is difficult to 

assess as the ecological requirements of New Zealand Carabidae, like those of other southern 

hemisphere countries, e.g., Australia (New 1998), are poorly understood. 

 

Rarefied species richness of native beetles was significantly higher in the largest 500 ha 

clearfells, but unfortunately there was significant spatial autocorrelation in the analysis of this 

treatment level, so the significance of the high species richness in these large harvest areas 

should be treated with caution. In contrast to large clearfell areas there was little change in 

beetle species richness in 0.01 ha to 50 ha clearfell harvest areas. However, significant 

changes in the beetle species composition between different-sized clearfell harvest areas and 

adjacent mature forest stands did occur. Small 0.01 ha harvest areas showed very little change 

in species composition, whereas larger clearfells had a very different fauna compared to 

adjacent mature P. radiata stands. A central theme to this thesis has been the concept of a 
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threshold clearfell size (See Chapter 3). My analysis of beetle diversity across a range of 

clearfell harvest sizes did not indicate the presence of a threshold clearfell size where the rate 

of change in ecological impacts was disproportionate to the change in clearfell harvest size. 

Perhaps the theoretical concept of an ecological threshold is not valid, or alternatively I was 

unable to detect it due to my experimental design. The taxa studied or the size range sampled 

may not have been suitable to document an effect. Furthermore, the effect of historical land-

use may have had a stronger influence on biotic communities than the size of different harvest 

areas. The study was undertaken in second and third rotation plantation forests and many of 

the clearfell harvest area sensitive species may already have been lost; or alternatively they 

did not survive the transition from native forest to a production ecosystem.  

 

Proximity of native forest and clearfell harvest size were the most significant environmental 

factors explaining this short-term change in species composition between harvest size 

treatments (see also Humphrey et al. 2004). As such, landscape scale management of habitat 

heterogeneity may indeed be crucial for enhancing biodiversity in managed forests, as 

suggested by Lindenmayer et al. (2004). 

 

Short-term disruption to the visual appearance of forests post-harvest can be severe, and such 

aesthetic changes are the focus of intense public opposition to clearfelling (Ribe and Robert 

1999). Aesthetic change is undoubtedly one factor that influences the public perception of 

harvest impacts on biodiversity, although this appears not to have been studied. Empirical 

research presented in this thesis has shown that clearfelling is not necessarily detrimental for 

biodiversity (and can be beneficial for some species). Unfortunately, such research may never 

counter-balance the current strength of public opinion. As such, forest managers should 

seriously consider a coordinated education programme to inform the general populous of the 

potential biodiversity benefits of plantation forests. Irrespective of the negative consequences 

of clearfell harvesting (both real and perceived) and the potential short-term benefits for some 

disturbance-adapted species, it is the long-term impact (over the entire forest rotation) that 

determines the sustainability of current clearfell harvesting practices. 

 

7.32 Long-term implications 
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Biodiversity in overseas plantations is often lower than that in managed native forests 

(Magura et al. 2003), however my results show that plantations can have similar or greater 

rarefied beetle species richness than adjacent native forest. Biodiversity has been shown to 

recover to pre-harvest levels in some managed native forests, although this may take many 

years, e.g., 70 years for birds in an Australian eucalypt forest (Williams et al. 2001). 

Although, sensitive groups, such as saproxylic beetles are known to suffer from clearfell 

harvesting and do not recover under current management techniques (Grove 2002a, 2002b). 

Prior to my study the only evidence for differences in beetle community assemblages between 

different-aged P. radiata plantation stands in New Zealand was a limited three-age-class 

study by Hutcheson and Jones (1999). Results from my study (Chapter 6) indicate that the 

beetle species sampled recover from the short-term effects of clearfell harvest within 8 years.  

Despite the high-intensity disturbance to the forest ecosystem during harvesting, insect 

species still colonise regenerating stands as they mature. Furthermore, individuals of the 

seven species sampled were distributed throughout the entire gradient between 50 ha 

clearfells and different aged stands sampled, which indicates that harvest areas of this size are 

not detrimental to the long-term retention of these species, as suitable habitat is within the 

scope of individual dispersal distances of these species. 

 

Understorey plant diversity decreased significantly with distance into harvested stands 

(Chapter 6), but like beetles, a long-term space-for-time chronosequence study showed that 

plant species recovered quickly to pre-harvest levels (Chapter 6). Recovery of understorey 

plant species in New Zealand plantations can also be inferred from studies by Allen et al. 

(1995), Ogden et al. (1997) and Brockerhoff et al. (2003), as they recorded high understorey 

diversity in second rotation plantation stands indicating recolonisation post-harvest.   

 

7.4 New Zealand forestry: modern biodiversity challenges, their implications and 

potential solutions. 

 

Approximately one-third of New Zealand’s plantations are currently certified as sustainably 

managed forests and adhere to the criteria of the Forest Stewardship Council (FSC). Since 

1995 FSC principle 10, which comprises 9 criteria specific to the management of plantation 

forests (that must be adhered to in addition to the other 9 principles), has been a key element 
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of the FSC process. However a draft discussion document (Synnott 2002) that attempted to 

clarify policies within principle 10 was rejected in November 2002 by the FSC general 

assembly as ‘too ambiguous’ and in need of clarification. In response principle 10 is currently 

under review (see FSC website,  http://www.fsc.org/en/work_in_progress 

/plantations_review), and some environmental NGOs have made attempts to exclude exotic 

species plantations from FSC on the basis that they are not ‘forests’ in the natural sense 

(Rosoman 2004). Will this affect forestry in New Zealand and why is it relevant to my thesis? 

 

New Zealand currently has 1.8 million hectares of plantation forest (Anon 2005) and 

approximately 112,000 ha of native forest managed for timber production. Depending on the 

outcome of the FSC review, the New Zealand plantation forest industry could be severely 

affected, as many important export markets demand FSC certification of their wood products. 

There are several key points of contention; the use of chemicals, clearfell harvesting and the 

biodiversity capacity of plantations versus natural forests. Results from this thesis provide one 

of the largest single studies about clearfell harvest impacts and stand regeneration on 

invertebrate biodiversity in New Zealand. The knowledge that plantation forests are suitable 

low-contrast alternative forest habitat for Coleoptera, and that they compare favourably with 

other habitats elements within the landscape can be used, in part, to argue for the inclusion of 

plantations within the scope of FSC. New Zealand plantations are no longer established by 

replacing native forest, in fact there is a higher probability, given current economic 

conditions, that plantations will be converted to pasture. Unfortunately pastoral areas are 

incapable of supporting native plants and probably most forest insect species (although further 

sampling is required). As such, increases in the proportion of pastoral farming could 

potentially lead to significant reductions in regional biodiversity. Regardless of this argument, 

plantations will never provide all of the necessary habitat requirements for specialist 

invertebrate species (and nor should they), thus remaining native habitat in the landscape is 

extremely important and should be protected and enhanced through active management. This 

can be achieved by plantation initiatives such as FSC Principle 10.5 that requires a portion of 

the estate to be managed as natural forest cover, currently no similar standards exist for 

pastoral farming. Furthermore utilising plantation resources alleviates pressure on remaining 

native forest resources, thus protecting native ecosystems.  
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Clearfelling is one of the most controversial issues addressed by the FSC review of principle 

10. Clearfell harvesting clearly has significant impacts on the invertebrate fauna (Chapter 4 & 

5), but there is no indication that larger clearfell sizes detrimentally affect short-term beetle 

species richness at the scales sampled in this study. However, larger harvest areas cause 

greater change in beetle community composition. My study has not detected any clear 

ecological threshold size to clearfell harvesting impacts that could potentially guide the 

creation of clearfell harvest size policies in New Zealand. Nevertheless, there is some 

indication that rarefied beetle species richness may change significantly between 0.5 ha and 5 

ha, although this requires further investigation.  

 

What is clear from my work is that the proportion of native habitat in the landscape has a 

significant effect on the composition of the beetle fauna in clearfelled stands (Chapter 4 & 5), 

and that native plant understorey influences beetle species composition in different habitats 

(P. radiata, native forest and pasture, Chapter 4). The proximity of native forest remnants and 

their influence on nearby plantation stands has been recorded before (Humphrey et al. 2004), 

and landscape heterogeneity is increasingly acknowledged as an important determinant of 

biodiversity in managed forest ecosystems (Lindenmayer and Hobbs 2004, Barbaro et al. 

2005, Loehle et al. 2005). As such, FSC should move away from stand-level management 

issues and place further emphasis on larger landscape-level issues within plantations and how 

they influence biodiversity. By increasing landscape scale heterogeneity in stand ages and 

decreasing the isolation of stands from native remnants, native biodiversity within plantation 

forests may benefit more than specific changes to stand-level clearfell harvest policies. 

Biodiversity in New Zealand forestry is not an issue of “plantation forests versus native 

forests”. Plantations in New Zealand should be seen as a complimentary habitat and efforts 

should concentrate on how best to integrate this resource into the landscape to enhance 

biodiversity preservation at a landscape level. 

 

7.5 Future research directions 

As with most research projects many questions arise from a set of initial experiments. These 

questions then provide the basis for future research directions, which are listed below.  
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• What is the influence of landscape and stand structural heterogeneity on invertebrate 

biodiversity? Clearfelling is a stand-level attribute, however important landscape level 

issues (Lindenmayer and McCarthy 2002, Barbaro et al. 2005) are yet to be studied in 

New Zealand plantation forests. Overseas research has concentrated on the influence 

of native habitat proximity on biodiversity in managed native forests, but it is 

important to answer this question in a New Zealand plantation context. Our forest 

industry is unique in that we rely, almost solely, on fast-rotation exotic plantation 

forests. Furthermore the New Zealand fauna has evolved on a large, isolated 

archipelago, which was recently colonised by humans and has been subjected to an 

extraordinary complement of exotic plant and animal invasions. Because of these 

differences with Northern Hemisphere continental habitats, e.g., Boreal forests, the 

interaction between New Zealand’s plantation and native habitats may vary 

considerably from that of other countries. 

  

• Individual species respond differently to post-harvest environmental changes. Some 

species increase in abundance and others decline relative to levels in adjacent mature 

forest. At present our species-level ecological knowledge is limited and we do not 

know the mechanisms that drive these species response. By designing specific 

experiments to test abiotic and biotic factors that may influence the abundance of 

individual species we can potentially reduce the impact of forest harvesting on these 

species. 

 

• Invertebrates are a key food source for many other species, and are present in much 

higher abundances in recent clearfells compared to other habitat (Chapter 4). Recent 

clearfells are also popular breeding sites for the New Zealand flacon (Falco 

novaeseelandiae) that preys on small passerine birds. As yet we do not know if there 

is a link between harvested areas, invertebrate populations, small bird abundance and 

predatory species such as the New Zealand falcon. Future research on the ecological 

links between trophic levels in plantations may allow forest managers to increase the 

populations of threatened New Zealand fauna, such as falcons or kiwi on their estates. 
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• How does clearfelling affect the small-scale, farm forester? During the latter stages of 

my PhD I was asked to write a small article for ‘The Tree Grower’ (Appendix 7c) 

outlining how my results may be of relevance to farm foresters. Large-scale plantation 

forest stands nearly always have remaining mature stands to provide source 

populations for the regenerating stands. Farm foresters in New Zealand manage a total 

of over 100,000 ha of plantation forest but in most cases these are small isolated 

stands that are harvested in their entirety at once. As such, the question remains, do 

invertebrates manage to successfully recolonise these harvested stands given their 

potential isolation from source populations of forest invertebrates.  

 

• By sampling across gradients between different landscape elements it became 

apparent that there was a ‘spill-over’ effect caused by the dispersal of species from 

adjacent habitat (Chapter 4). Because pasture was only sampled at a maximum 

isolated distance of 125 m we cannot be certain that the biodiversity recorded in this 

study is independent of such dispersal effects. Further sampling is necessary to 

determine the effect of habitat isolation on biodiversity within pasture, especially since 

it is the dominant matrix habitat in most modified New Zealand landscapes.  

 

 

 

“You cannot see the forest for the trees? I assure you it is there, beneath the green plantation 

canopy lives a thriving forest community of native species” 
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Appendix A – Other publications produced during my PhD  
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A) Pawson, S. M., and Brockerhoff, E. G. 2005. Natives in a pine forest. New Zealand 
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Natives 
in 

   a Pine Forest
By Steve Pawson
with contributions by
Eckehard Brockerhoff
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Plantations of exotic 
timber trees, especially 
pines, are looked on with 
disdain by many as alien 
monocultures, an unpleasant 
accommodation necessary to 
protect precious indigenous 
forests from the logger’s 
chainsaw. Yet a good range of 
native organisms, untroubled 
by the trees’ pariah status, are 
quietly enjoying life beneath 
the rain of pine needles. 



I
T’S ANOTHER WARM, sunny summer day, ideal for tree growth. Just south of 
the Waiotapu pub, on the Rotorua-to-Taupo highway, I head into one of New 
Zealand’s largest pine forests, Kaingaroa Forest, to check my pitfall traps and 
see how many insects I’ve caught.

After parking the dusty ute and donning the usual high-vis reflective 
clothing, it’s into the blackberry and gorse that seem to protect the edge of 
many pine plantations from all but the most curious of people. In the open 
it’s already hot, but inside the forest it’s cool and damp, with a lush carpet of 

mosses and ferns underfoot. The first of my insect traps is only a few hundred metres 
inside; however, along the way there are several diversions. A fantail flitters behind me 
as I push through increasingly dense tree ferns and small native shrubs. Rotten tree 
stumps have been heavily damaged by a pig that has spent a recent evening feasting on 
the huhu grubs within. The remains of last night’s work by the local spiders sparkle 
with morning dew, and webs strung between trees catch my face. 

My first pitfall trap is placed next to a grove of tree ferns. It consists of a plastic cup 
sunk to ground level with a rain cover and panels that guide ground-dwelling inverte-
brates to the central collecting pottles. A robin hops along to have a look at my haul of 
weta, millipedes, beetles, flies and a myriad other creatures. I transfer these to a jar of 
alcohol for later examination and move on, as I have only five days to check over 400 
such traps spread throughout Kaingaroa and Tarawera Forests and some smaller neigh-
bouring plantations. Besides which, Ecki, who is attending to the other half of the trap 
line in the adjacent compartment, will soon be waiting at the truck, and we still have 
another 11 trap lines to check before the end of the day. 

How rich are our exotic pine plantations in native flora and fauna? It was Ecki who 
brought the biodiversity value of pine forests to my attention at the start of my studies. 
In his work in Rotoehu and Kaingaroa Forests (near Rotorua), Hochstetter Forest (on 
the West Coast) and Eyrewell Forest (in North Canterbury) he found a total of 202 
native and 70 introduced plant species in only 60 small study plots. This number of 
native plants represents almost 10 per cent of New Zealand’s total, a very respectable 
figure indeed considering the small size of the area assessed. Plant diversity is pretty 
much confined to the understorey, however, the upper canopy in older stands consist-
ing entirely of pine. So far my insect traps, part of a large-scale project investigating the 

The uncommon New 
Zealand falcon is a 
species that seems happy 
to move into even quite 
freshly milled exotic 
forest areas, nesting 
successfully among the 
debris and feeding on 
newly-exposed birds and 
insects.

impact of the size of clearfell harvest areas on invertebrate biodiversity in pine forests, 
are showing similar results. I’ve found over 350 species of native beetle alone, and the 
number keeps climbing. 

Pine forests are a mosaic of stands of different ages, with recently harvested areas, 
young trees and mature pines in relatively close proximity. This provides a wide range 
of habitats, and also helps me to navigate. A forest-establishment map and an eye for 
different tree heights (and thus ages) allow me to find my way to various sites, despite 
the maze of unnamed roads that leave first-time visitors disoriented.

Introduced plant species such as buddleia, gorse, broom and grasses tend to dominate 
in the open—in harvested areas and skid sites (where timber is collected for transporta-
tion) and along roadsides—although many natives are also present in these places. This 
tends to be all that the average passing motorist sees of the country’s pine plantations, 
which does little for an appreciation of the diversity of native plants in the understo-
rey. 

As a plantation ages and successional processes kick in, the proportion of native 
species begins to increase. By the time the pines are 20 years of age a dense understo-
rey of native shrubs, tree ferns and, in some cases, sub-canopy trees is likely to have 
developed. As long as moisture is adequate, the low light levels associated with canopy 
closure give native plants an advantage over exotics such as gorse, which demand more 
light. As the pines approach maturity the understorey is often very similar to that of 
nearby native-forest remnants. The dry Canterbury Plains forests, however, such as 

Pine forest natives

81

About a quarter of New 
Zealand’s forests consist 
of exotic plantations, 
90 per cent of them 
radiata pine. On the 
pumice lands of the 
central volcanic plateau, 
Kaingaroa Forest (seen 
here) covers hundreds 
of kilometres—a vast 
resource for the myriad 
native plants and 
animals that have taken 
up residence within it. 
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Eyrewell, have much lower understorey diversity than the wetter forests around 
Rotorua and on the West Coast.

Probably the most conspicuous native plants in pine plantations are ferns, 
which regularly reach levels of diversity similar to those in adjacent native for-
est. The large mamaku, or black tree fern (Cyathea medullaris), and our national 
emblem, the silver fern (Cyathea dealbata), are common in the sub-canopy of many 
low-altitude North Island pine forests. I regularly do battle with their fronds as I 
push through to my more distant pitfall traps, although bracken is worse, grow-
ing to a height of 2 m at some of my sites. 

The densest groves of tree ferns develop in moist gullies, while smaller ferns 
are ubiquitous. Studies by John Ogden of Auckland University have shown that 
tree ferns commonly reach densities of 2000–2500 per hectare in the mature pine 
plantations of the central North Island. Such proliferation is largely a reflection 
of tree ferns’ dispersal capabilities. Fern spores are readily blown through the 
landscape, and the canopy of a radiata forest provides an ideal environment for 
their germination and subsequent growth. Even stands as young as 6 years may 
have healthy fern populations derived from the regrowth of plants that survived 
the harvesting process. 

Not only are pine forests a haven for common New Zealand native plants, they 
are home to a number of endangered or threatened species. For example, the na-
tive woodrose (Dactylanthus taylorii), a bat-pollinated parasitic plant that grows 
on the roots of sub-canopy trees (see NZ Geographic, Issue 6), has been found in 
a pine forest in north Taranaki. An undescribed species of Pomaderris, a genus of 
indigenous shrubs uncommon in the South Island, is found in relative abundance 
in Eyrewell Forest. Probably the most fascinating plants to be found in New Zea-
land’s pine forests, however, are the native orchids. 

The Iwitahi Orchid Reserve, established in a corner of Kaingaroa Forest in 
August 1987, is a small piece of paradise for orchid lovers. Only a few hectares in 
size, this old-growth Pinus nigra forest, with its deep litter layer and rich fungal 
flora, supports a staggering 36 species of native orchid, including the only known 
North Island population of Chiloglottis valida. Not to be outdone, a larch and Cor-
sican and Austrian pine forest near Hanmer Springs, in North Canterbury, is also 
rich in native orchids. Controversy has recently arisen as a result of large areas of 
this forest being harvested. Despite the dramatic changes to the landscape, the 
orchids and other wildlife should return in time. To facilitate recovery, however, 
foresty companies need to draw up sensible harvesting plans. Thoughtful logging 
allows indigenous flora to survive in the remaining mature compartments of a 
forest while regeneration takes place in the younger stands. A chequerboard pat-
tern of stand ages can maximise ecological opportunities and facilitate dispersal 
between habitats, thereby maintaining (even enhancing) forest biodiversity on a 
landscape scale.

New Zealand’s unique bird fauna is without doubt a main focus of the coun-
try’s conservation efforts. On the whole New Zealanders prefer to watch and 
listen to birds than to observe other animals. If past research is anything to go by, 
one of the best places to see birds is in your local pine forest. 

The earliest records of native birds colonising pine forests were made in the 
1940s. By the 1960s, Kaingaroa Forest boasted the highest densities of birds re-
corded on the New Zealand mainland, with 1203 pairs per 100 ha, 652 of which 
were native. Such abundance is still noticeable. On warm, fine afternoons, as I 
walk through Kaingaroa Forest to check my pitfall traps, the chorus of birdsong 
is unlike anything I’ve heard in other mainland forests. Although the avifauna of 
pine forests is not as diverse as that of thriving native ecosystems, forest biologist 
R.W. Jackson recorded 54 native and 26 exotic species in pine forests. Insectivo-
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This 20 mm long native 
chafer beetle Stethaspis 
suturalis is common in 
both native and exotic 
forests, where its larvae 
feed on tree roots.
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rous birds dominate owing to the abundance of suitable food and the general lack of 
fruit and nectar as required by other birds, such as tui, bellbirds and kereru. Whitehe-
ads, tomtits, robins and brown creepers are all abundant within their respective ranges, 
as are a number of introduced species.  

Lunchtime in a pine forest is always a good time to observe these birds and presents 
me with an opportunity to feed the local population of inquisitive robins the odd crumb 
from my cheese sandwich. However, a couple of my study sites are rather more danger-
ous places in which to dawdle, being home to breeding pairs of the endangered New 
Zealand falcon. These birds don’t take kindly to visitors and have been known to force 
this humble entomologist to run between traps to keep out of their way. Many falcon 
families have taken up residence in pine plantations, and the species is currently flour-
ishing in the large clearfell areas and young stands of radiata in the central North Island 
forests. The precise reasons for this success are not known; however, there is an abun-
dance of prey due to the high densities of insect- and seed-feeding songbirds in pine 
plantations. Falcons are also present in exotic forests elsewhere in the country. 

Don Cooper, a retired New Zealand Forest Service technical officer and long-time 
amateur ornithologist from Nelson, has had a long association with the falcons in near-
by Golden Downs forest. Brief glimpses of falcons chasing prey through the trees was 
about as much as he saw of the birds while working in the forests over 40 years ago. Yet 
his long-term observations indicate that birds from the finch family make up a large 
proportion of the falcon diet in Nelson’s exotic forests, and that nearby streams are 
important preening and bathing sites. 

Since spring 2003, Nelson forest owners Weyerhaeuser have discovered numerous 

falcon nests in recently harvested areas. With a little help from logging crews and 
plastic tape to keep machinery away from their nests (which are on the ground, among 
harvesting debris), the falcons have been flourishing. Cooper has witnessed the fledg-
ing of numerous chicks from these areas, sometimes as many as three at once, when 
two is more usual. The falcons’ hunting ground of open scrubland expands as the crews 
remove yet more trees. If you venture into such an area, don’t forget to wear a hard hat 
or you might just get a slap on the head from a swooping bird. 

Other rare or threatened New Zealand birds are either resident in pine forests or 
occasionally visit them. These include the rifleman, fernbird and long-tailed cuckoo. 
Kaka in the Whirinaki region derive a considerable portion of their diet from exotic 
trees, in particular Douglas fir, from which they strip and eat the bark of the termi-
nal leaders as well as the seeds. Wetlands and streams within plantations also provide 
habitat for species such as blue duck, Australasian bittern, brown teal, dabchick, banded 
rail, spotless crake and, perhaps surprisingly, kakapo, kiwi and kokako. Yes, three of 
our most iconic bird species are quite happy about spending time in pine forests, odd 
as this may seem. 

Kakapo deserve a special mention with respect to pines. It is thought that plant hor-
mones present in green rimu fruit—in the relatively occasional years in which this is 
abundant—trigger kakapo breeding. These hormones are also present in other develop-
ing fruits and plant materials. On Maud Island/Te Hoiere, in the Marlborough Sounds, 
where some kakapo were kept for a time, one of the birds’ favorite foods was Pinus 
radiata. Foliage, stems, pollen cones, small green cones, bark—they loved everything. 
In 1998 two Maud Island kakapo, Flossie and Richard Henry, bred successfully on this 
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A year after a logged 
forest at Riverhead 
north of Auckland 
has been replanted, 
introduced weeds such 
as fireweed, gorse 
and pampas abound, 
but a few natives that 
like high light levels, 
such as this kumaraho, 
have also established. 
Once the growing 
pines produce shadier 
conditions, these 
species will only survive 
on the margins of the 
forest.

As pine forests mature 
and the canopy closes 
after 10 or 15 years, the 
heavy shade beneath 
the trees is perfect 
for the growth of not 
only native ferns, 
but a whole range of 
understorey species 
such as five finger, 
various coprosmas, 
putaputaweta, pate, and 
hangehange. 
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Insect-eaters, such 
as the native robin, 
are often to be found 
in plantations where 
decaying prunings and 
the carpet of needles 
provide shelter and 
sustenance for a great 
range of arthropods. 
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diet. From early November 2004 to February 2005, 13 female and 4 male kakapo on 
Codfish Island/Whenua Hou were fed green pine conelets in an attempt to stimulate 
breeding. Preliminary results suggest possible success. 

BIRDS ARE THE noisiest contributors to the biodiversity in plantations; however, the 
majority of native organisms in pine forests remain unseen by most visitors. Many 
invertebrates are active only at night, and the prolific fungal communities are, for 

the most part, underground. Fungi are for long periods present only as masses of white 
and yellow hyphae that grow slowly through the deep layers of pine-needle litter and 
woody debris on the forest floor. However, every year they burst forth with the fruiting 
bodies we know as toadstools and mushrooms. Brown, red, purple, orange and white, 
they sprout following periods of rain. Thousands of red- and white-spotted Amanita 
muscaria can pop up seemingly overnight, imbuing the forest with a magical fairytale 
quality. 

Apart from their attractive—and, in some cases, deadly—fruiting bodies, fungi play 
a vital role in the health and growth of pine trees. Chemical decomposition of organic 
matter by the enzymes produced by fungi is integral to the recycling of nutrients in a 
forest. Some fungi have a symbiotic relationship with trees. These are the so-called 
mycorrhizal fungi, which live among the tree roots, where they receive shelter from the 
soil environment and enjoy a ready source of carbon as food. In return, mycorrhizae 
help trees garner nutrients such as nitrogen and phosphorous, which are essential for 
growth but often in limited supply.

The prolific growth of fungi and the abundant supply of decaying wood provide 
ideal habitat and food for many insects. Insect diversity in an individual pine forest 
could well top 1000 species when beetles, flies, wasps, true bugs and all other insect 
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groups are taken into account.
The huhu beetle is a very common and gastronomically popular denizen of pine 

forests. As the sun sets and the light fades on warm summer evenings, the drone of 
their wings as they cruise the forest in search of freshly felled timber is clearly audi-
ble. Females lay eggs in recently dead radiata logs or stumps. Once hatched, the grubs 
proceed to turn the wood into dust before emerging as adults two years later. However, 
hungry wild pigs, which use their powerful tusks to rip apart such logs in search of a 
high-protein snack, often interrupt this process.

Weta is the common name for several families of native flightless grasshopper. A 
number of species of ground weta and cave weta are common in pine forests. Cave weta 
are perfectly at home there, thriving in the damp environment of rotting logs or piles 
of waste wood produced during pruning or thinning.

Caterpillars of the ghost moth (family Hepialidae, members of which grow up to 10 
cm long) spend the nocturnal hours ambling across the forest floor looking for food 
while trying to avoid becoming food for others. By day they shelter in deep burrows in 
the litter, protected from predators and the drying sun. As they roam at night, feeding 
on fallen leaves, they create little swirls in the pine needles surrounding their homes. 
However, you have to tread very carefully if you want to see one, as they are incredibly 
sensitive to vibration and quickly retreat underground.

UNLIKE MANY countries New Zealand has a relatively impoverished native mammal 
and frog fauna. What few species it boasts are endemic and of international im-
portance. Neither group is commonly represented in plantation forest but speci-

mens from both have been found there. Long-tailed bats have been seen roosting in 
the decaying boles of old pines, and populations of the scarce Hochstetter’s frog (see 

Up to 1000 species 
of insect—and that 
wouldn’t include 
spiders such as 
Hemicloea rogenhoferi 
(above)—are likely 
to live in individual 
pine forests. Since the 
species found will vary 
around the country, 
the total number of 
native insect species 
that use pine forests 
will be considerably 
higher. The beetle with 
the fine jaws is a 3.5 
cm Placumostethus 
planiusculus, from 
Marlborough.

Ecki Brockerhoff 
shakes a kanuka tree 
to dislodge insects 
onto a collecting sheet. 
Ecki leads a team 
studying biodiversity 
and conservation in 
plantation forests at 
the Forest Research’s 
Centre for Sustainable 
Forest Management. 
Steve Pawson (right) 
checks the critters that 
have had the misfortune 
to stumble into his 
preservative-containing 
collecting jar.
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EXOTIC HABITATS are known to support 
some of New Zealand’s more threatened 
organisms. For example, the large and 
endangered Mahoenui giant weta, 
thought to have lived originally in the 
epiphytes of formerly abundant tawa 
forest, now thrives in a large patch of 
King Country gorse. Among insect 
samples recently collected from 
Kaingaroa and Tarawera Forests were 
six specimens of an as yet undescribed 
and little-known species of rove 
beetle—doubling the number of known 
specimens.

Another unusual find was recently 
made in a pine plantation on the 
Canterbury Plains, a region that has lost 
98 per cent of its natural vegetation: 
seven specimens of the ground beetle 
Holcaspis brevicula, a species unknown 
outside the plains. 

Few areas remain that resemble the 
forest habitat it occupied before people 
modified the landscape and, because of 
its rarity and localised occurrence, it is 
near the top of New Zealand’s red list of 
threatened species, being categorised 
as critically endangered. All seven 
specimens originated from Eyrewell 
Forest, which may be the only habitat 
remaining to it. The fact that the trees 
are not native doesn’t seem to bother the 
beetle, which does, however, shun open 
grassland.

North Island brown kiwi are quite 
common in North Island pine plantations, 
especially in Northland. Waitangi Forest, 
near Kerikeri, is estimated to be home to 
800–1000 kiwi—despite normal forestry 
activities and the killing of several 
hundred birds by a single stray dog 
in 1987. The kiwi in this forest are well 
known because they have been studied 
intensively, first by Harold Corbett, 
a forestry student, and then by TV 
personality Ruud “Bugman” Kleinpaste 
and Rogan Colbourne. Their research 
showed that many of the kiwi territories 
were located entirely within areas planted 
with pines, indicating that the birds did 

not necessarily require indigenous forest. 
This surprised some conservationists, 
who assumed that exotic plantation 
forests couldn’t possibly be good kiwi 
habitat. However, if the birds’ basic 
requirements are met—sufficient food (in 
the form of soil-dwelling invertebrates), 
shelter and a scarcity of predators—it 
doesn’t seem to matter too much 
whether the trees are kauri or radiata 
pine. 

The story of the kiwi in Waitangi 
Forest has helped to alleviate some of 
the negative perceptions of plantation 
forests. If their value to native organisms 
was better appreciated, more could 
be done to protect birds in particular. 
Prohibiting dogs would be a good start. 
The way in which harvesting is conducted 
is also important. For example, if smaller, 
scattered compartments could be 
harvested, rather than large, contiguous 
areas, kiwi populations wouldn’t lose 
all their territories at once, and could 
disperse gradually and recolonise new 
areas. 

Alternatively, if small areas of scrub 
were left after harvesting, at least 
some kiwi might be able to remain in 
their existing territories. It would also 
be advantageous to reduce harvesting 
during the breeding season. 

Where threatened species are found, 
forest managers are increasingly 
trying to manage their forests more 
sympathetically, although low log prices 
currently make anything that requires 
extra expenditure tricky. In the near 
future, the management of endangered 
species resident in pine forests will 
be given a boost by publication of the 
Guide to the Management of Rare 
and Endangered Species in Plantation 
Forests by the New Zealand Forest 
Owners Association, an initiative led by 
Colin Maunder of Kaingaroa Timberlands. 
The guide will be an excellent source of 
information for forest owners interested 
in enhancing the biodiversity in their 
forests.
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NZ Geographic, Issue 38) survive in a number of Northland pine forests, where suitable 
habitat exists along the margins of streams. 

Lorna Douglas, at Northern Poytechnic, began studying Hochstetter’s frogs in 1997 
and has been returning to some sites in the pine plantations for the last six years. She 
has found the majority of frogs are resident in steep gullies that retain some native 
forest and are buffered from the surrounding agricultural landscape by an encircling 
pine forest. The gullies provide an ideal habitat, with small waterfalls and cascades and 
abundant shelter under rocks. Douglas’s research has shown that the frogs are reliant 
on good shelter and water quality. In most areas water quality is assured by the ripar-
ian margin of undisturbed native forest bordering the streams. However, wind-throw 
events are common due to the underlying soil types in the area, and canopy disturbance 
from forest harvesting occurs every 25–30 years. These can have an impact on water 
quality, resulting in periods of stream sedimentation. The good news is that recent 
monitoring in Carter Holt Harvey’s forests has shown that some frogs survive both 
wind throw and harvesting and have been found in regenerating stands after logging.

Native frogs are not the only interesting animals associated with the streams of plan-
tation forests. Compared with some other productive land uses, such as pastoral farm-
ing, plantation foresty doesn’t contribute much sediment to streams. Good forestry 
practices protect riparian vegetation, which stabilises riverbanks and, most important-
ly, provides shade, preventing an increase in water temperatures. This combination of 

Kiwi, being eaters of 
grubs, slugs, worms 
and insects, can 
probably reach higher 
densities in pines than 
in native bush. This bird 
was photographed in 
Waitangi Forest where 
some 1000 kiwi are 
thought to live in the 
midst of normal forestry 
operations.
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stabilised banks and shade makes good 
habitat for many native fish. Several 
endangered species, such as the giant 
kokopu and short-jawed kokopu, have 
been found in streams running through 
plantations.

Prehuman New Zealand was pre-
dominantly a forest landscape; howev-
er, much of the original forest has been 
cleared. In the past plantations were 
sometimes established on the clear-
felled remains of native forest. The 
New Zealand Forest Accord, signed by 
most forest owners in the early 1990s, 
has ensured that new pine plantations 
are now created by the afforestation of 
non-forest land, such as marginal agri-
cultural areas. Thus, new plantations 
now provide a forest habitat and asso-
ciated microclimate not present under 
the previous regime of pastoral or ar-
able farming. 

For many native species of bird, fun-
gus, insect and plant this is sufficient, 
as they do not discriminate between na-
tive and plantation forest. They benefit 
greatly from the reforestation of large 
areas of the country, and as plantations 
have expanded, so has the habitat avail-
able to them. Unfortunately the recent 
boom in the dairy industry, in combi-
nation with a slowdown in the forestry 
sector, has resulted in commitments to 
return some large plantations to pas-
ture and other non-forest habitats once 
the trees have matured and been har-
vested.

The average rotation of a pine plan-
tation allows insufficient time for most 
native canopy tree species to mature. Neither do plantations provide the right condi-
tions for some specialist forest dwellers, such as hole-nesting birds. Many native plants 
and animals depend for their survival on other natives—as hosts (in the case of parasitic 
species), food sources or pollinators. A lack of these in radiata forests means that some 
species will never be able to live there. 

Many people consider these facts a negative aspect of New Zealand’s pine forests. 
But while plantations are not native forests and can never be more than a next-best 
substitute, they do represent a significant proportion of the country’s forest cover and 
provide many native species with suitable habitat that other productive land uses do 
not. When assessing the value of pine forests in terms of native biodiversity, we should 
not base our judgements solely on traditional comparisons of pine plantations with 
unmodified forests of native species. When plantations are compared with other kinds 
of productive land use, such as pastoral or arable farming, which allow few indigenous 
species to thrive, it is clear they have their merits. 

Huhu grubs (opposite) 
—larvae of the largest 
brown beetles in 
Stephen Pawson’s top 
tray (above)—being 
prepared by Uwe Braun 
for a recent entomology 
conference. The grubs 
are just one of many 
native species to find 
conditions congenial in 
the new forests.
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B) 
Technical Note: New Zealand Journal of Forestry 2005 - 50(2): 29-32 

 

Clearfell harvest size: A key issue for biodiversity conservation in New Zealand’s plantation 

forests 

 

S. M. Pawson1, 2, 3, E.G. Brockerhoff3, R.K. Didham1 and D.A. Norton2 

 

The New Zealand forest industry and biodiversity 

In recent years the concept of biodiversity has increasingly been integrated into land 

management issues (Brockerhoff et al. 2001). Biodiversity is now a key component of 

national policy statements and strategies, such as the New Zealand Biodiversity Strategy, as 

well as a number of international agreements, such as the Montreal Process. The forest 

industry itself has developed a number of policies, including the Biodiversity Position 

Statement, from the New Zealand Institute of Forestry (NZIF) (Shaw 1997). 

 

By definition,  “"Biological diversity" means the variability among living organisms from all 

sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the 

ecological complexes of which they are part; this includes diversity within species, between 

species and of ecosystems” (Convention on Biological Diversity, 1992).   

 

The forest industry has always valued the within species component of biodiversity for the 

potential breeding opportunities it represents and the potential for crop enhancement. By 

contrast, a more general appreciation for the broader concept of native species biodiversity in 

New Zealand’s plantation forests has been limited, to a large extent, by the perception that 

plantations are biological deserts. A number of recent articles have challenged this perception. 

Brockerhoff et al. (2003) have shown that plantation forests can support a wide range of 

indigenous vegetation. Maunder et al. (2005) produced an excellent review of the contribution 

that plantation forests make to the protection of biodiversity and this was promoted to a 

broader non-scientific audience in the New Zealand Geographic (Pawson and Brockerhoff 

2005). 
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As a productive land use forestry does provide certain conservation benefits. However, there 

remain some serious issues and major information gaps that need addressing (Maunder et al. 

2005).  Hock & Hay (2003) in their review of forest certification systems in New Zealand 

point out the need to give greater attention to rare, threatened and endangered species and 

representative ecosystems. Less obvious from their review, but of equal concern, was the 

number of corrective action requests (CARs, from Forest Stewardship Council) requiring a 

policy on maximum clearfell size. 

 

In this article, I briefly discuss some of the known impacts of clearfelling and synthesise the 

few studies that have investigated the influence of clearfell harvest size on biodiversity.  I 

then outline the Ecological Impacts of Harvest Area (EIHA) study initiated in 2002 by 

ForestResearch and Tenon Ltd (at that time Fletcher Challenge Forests). EIHA was designed 

to investigate clearfell harvest size impacts in a New Zealand context. Some preliminary 

results are provided. 

 

Effects of clearfell harvesting 

Clearfelling (and subsequent reestablishment) causes the greatest single disturbance that any 

plantation ecosystem will undergo. Clearfelling alters microclimatic conditions, including 

temperature, wind speed, relative humidity, evaporation and solar radiation (Chen et al. 

1995). These combined changes then have effects on catchment-level and regional water 

balance (Davie & Fahey 2005), erosion and subsequent sedimentation of streams (France 

1997). Clearfelling also has significant impacts on the biological communities in forests. Post-

clearfelling, species composition and species richness of native plants and animals can change 

dramatically. For example, in New Zealand the flora of recently harvested and regenerating 

stands are dominated by exotic weedy species, whereas mature stands have a greater 

proportion of indigenous shrub species (Brockerhoff et al. 2003). 

 

Recent work in New Zealand (Pawson, Unpub. data) corroborates overseas studies, which 

show that clearfelling induces a transient increase in the species richness of invertebrates 

(Niemelä et al. 1993). This phenomenon is caused by the short-term survival of forest species 

combined with colonisation by open-habitat species. The survival of old-growth specialist 
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forest invertebrates after clearfell harvesting is a significant issue, particularly for short-

rotation forestry (Spence et al. 1996) that dominates the New Zealand industry. 

 

Despite the obvious impacts of clearfelling, scientists internationally have not focused on 

addressing issues related specifically to whether there is an optimal size of harvest areas that 

might maintain greater levels of biodiversity. Instead, most recent research has focussed on 

alternative harvesting strategies and comparisons between these and traditional clearfelling 

(Schowalter 1995, Beese & Arnott 1999, Beese  & Bryant 1999, Koivula 2002). Why is this 

so? It appears that public pressure by individuals and environmental organisations (Potton 

1994, Rosoman 1994) have largely circumvented research focused on sustainable clearfell 

harvesting options and promoted the use of alternatives. Public perception is driven largely by 

the negative aesthetic image of clearfelling and is a powerful force for change (McCool et al. 

1986, Bliss 2000) that can have strong indirect effects on silvicultural activities by controlling 

consumer demand (Wilson & Wilson 2001). Alternative harvesting systems have been 

promoted as ‘better’ than clearfelling, but many of these are merely small clearfells (e.g., 

group selection or patch cutting), although the definition of terms is often country specific, 

complex and confusing (Bradshaw 1992) 

 

To date around the world only a handful of studies have attempted to quantify the impact of 

different sized clearfells, and none of these were conducted at scales relevant to New Zealand 

forestry practices (Pawson et al. 2002). The limited studies of areas up to 10ha in extent do 

suggest that there are changes in species composition and abundance following clearfelling, 

however the magnitude and direction of changes shown so far is dependent on taxonomic 

groups (Shure & Phillips 1991, Huggard & Vyse 2002).   

 

What are we doing about it in New Zealand? 

The Ecological Impacts of Harvest Area (EIHA) study was designed to address five key 

questions related to clearfell harvest size: 

• What is the relationship between clearfell harvest size and invertebrate species 

richness? 

• Does clearfell harvest size alter the magnitude of edge effects into remaining forest? 

• Do the abundance of individual species change with clearfell size? 
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• Is there a threshold size above which clearfelling has more severe ecological impacts? 

• What is the value of plantation habitat for native biodiversity protection compared 

with other land uses? 

 

The EIHA study encompasses a large area of central North Island forests. Specific study sites 

were located in stands throughout Kaingaroa, Tarawera, Matahina, Putuaki and Broadlands 

forests.  Customised experimental clearfells were created measuring 0.01, 0.05, 0.5 and 5ha 

(assisted initially by Fletcher Challenge Forests and subsequently by Kaingaroa Timberlands), 

whilst larger 50 and 500ha clearfells were selected from existing harvest plans.  This study is 

unique worldwide as comparisons of the ecological impacts of clearfell harvesting have never 

been attempted over such a large spatial scale before. As well as determining clearfell harvest 

size impacts the, EIHA study also compares the invertebrate biodiversity between different 

productive and non-productive landuses: plantations, pasture and native forest.  

 

Pitfall traps were installed in transects between mature Pinus radiata stands and recent (<1 yr) 

clearfells to collect invertebrates at distances of 0, 5, 25, 125 and 625m into clearfells and to 

5, 25 and 125m into mature forest (Figure 1). Sampling distances were truncated in harvest 

treatments where the diameter of the harvest area was smaller than the transect length.  

Additional traps were also placed at the same series of distances away from clearfells into the 

adjacent forest to analyse edge-effect impacts that harvesting may have on remaining stands. 

The traps were sampled continuously over two summer periods from November 2002 to 

February 2003 and from December 2003 to February 2004.  

 

To date over 86,000 specimens of beetles have been sorted from traps established. A full list 

of beetle species identified from all aspects of the study is near completion and so far exceeds 

380 species, including 21 adventive species. Such high species richness provides further 

empirical support that plantation forests do contribute to the maintenance of regional 

biodiversity. The families Curculionidae (weevils), Carabidae (ground beetles), Elateridae 

(click beetles) and the staphylinid sub-family Pselaphinae (rove beetles) dominate overall 

beetle biodiversity (Table 1). The weevils and click beetles include many wood-feeding 

species, which take advantage of a resource that is present in large quantities post-clearfelling.  
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In some cases species have shown distinct changes in their abundance with increasing 

clearfell size. For example, the abundance of Pycnomerus sophorae (Family: Zopheridae, 

false-darkling beetles) was higher in small clearfell sizes relative to populations in adjacent 

mature forest stands. However, in larger 5 and 50ha clearfells the abundance of P. sophorae 

dropped relative to mature stands (Figure 2). P. sophorae abundance increased slightly in 500 

ha clearfells, however, average catch per 100 trap days was extremely low at the 500 ha sizes 

compared to the other sites. There are a number of possible explanations for the low 

abundance at 500ha clearfell sizes. Most likely it was a geographical site effect. Alternatively, 

it could represent an edge effect, where the influence of large 500 ha clearfells penetrated 

deep into surrounding mature forest and influenced the population dynamics of P. sophorae in 

remaining forest stands. Such potential edge effects need further study. 

 

Where to from here? 

The final pitfall traps were recently sorted and the vast quantities of data are currently being 

databased and analysed. In-depth analyses will concentrate on determining the response of 

species richness and total abundance to clearfell size, individual responses of key indicator 

species and their interaction with remaining adjacent mature stands, and comparing the 

species composition of different habitat types, e.g., mature forest, clearfell, regenerating 

forest, pasture and native remnants. 

Answers to the five key questions will have practical benefits to New Zealand foresters. 

Information gained will be useful for guiding policies on an optimal clearfell size that 

minimises ecological impacts. It has already provided evidence that plantation forests can 

make a significant contribution to the protection of invertebrate biodiversity. Such policies 

and the protection of biodiversity will become more significant as the increasing influence of 

forest certification regulates market access for timber products around the world.  
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Tables and Figures 

 

Table 1. Species richness of beetle families sorted from a sub-sample of pitfalls established to 

determine the ecological impacts of clearfell size impacts. Note that Staphylinidae and have 

broken into sub-family groupings and are distinguished by the suffix –inae. 

Aderidae 1 Euaesthetinae 1 Phloeostichidae 1 

Aleocharinae ? Eucnemidae 1 Prostomidae 1 

Anobiidae 1 Histeridae 2 Proteininae 3 

Anthicidae 5 Hydrophilidae 2 Pselaphinae 19 

Anthribidae 2 Latridiidae 18 Ptiliidae 8 

Byrrhidae 5 Leiodidae 9 Rhysodidae 1 

Carabidae 26 Lucanidae 1 Salpingidae 3 
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Cerambycidae 11 Lycidae 1 Scaphidiinae 3 

Cerylonidae 2 Melandryidae 4 Scarabaeidae 8 

Chrysomelidae 4 Mordellidae 1 Scraptiidae 1 

Ciidae 7 Mycetophagidae 3 Scydmaenidae 6 

Clambidae 3 Nitidulidae 9 Silvanidae 3 

Coccinellidae 9 Oedemeridae 3 Staphylininae 11 

Corylophidae 9 Omaliinae 6 Tachyporinae 8 

Cryptophagidae 6 Osoriinae 3  Tenebrionidae 7 

Curculionidae 55 Oxytelinae 5  Trogossitidae 8 

Elateridae 22 Paederinae 5 Zopheridae 18 

Endomychidae 1     

Erotylidae 1     
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Figure Captions 

 

Figure 1. Illustration of a pitfall trap transect to capture invertebrates. The 0m trap is placed 

on the drip-line of remaining trees and transects extend in either direction. The insert provides 

a close-up of pitfall trap illustrating plastic guides that channel ground-dwelling invertebrates 

to a central covered collecting pottles sunk to ground level and partially filled with 

preservative. 

 

Figure 2. Abundance of the beetle Pycnomerus sophorae expressed as a percentage relative to 

that caught in control traps placed in adjacent mature forest stands (left hand y-axis). Values 

greater than zero indicate higher abundance in clearfell areas compared to forest. Average 

catch per 100 trap days of P. sophorae caught in clearfell areas as a function of harvest area 

(right hand y-axis). 

 

Figure 1. 
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Figure 2. 

Log (harvest area in hectares)

0.001 0.01 0.1 1 10 100 1000

P
er

ce
nt

 a
bu

nd
an

ce
 re

la
tiv

e 
to

 a
dj

ac
en

t m
at

ur
e 

fo
re

st
 s

ta
nd

s

-200

-100

0

100

200

300

A
ve

ra
ge

 c
at

ch
 p

er
 1

00
 tr

ap
 d

ay
s 

in
 c

le
ar

fe
ll 

ar
ea

s

0

20

40

60

80

100

120

Average catch

Percent abundance

Equal abundance between clearfell
and adjacent forest

 
 

 

 



 

Paper produced from 84% FSC certified forest resources 

200



 

Paper produced from 84% FSC certified forest resources 

201

C) 
 

Native biodiversity and the impact of forest harvesting on small-scale farm forests. 

S.M. Pawson 

School of Biological Sciences and School of Forestry 

University of Canterbury 

Christchurch 

smp65@student.canterbury.ac.nz 

 

As a tree grower the small forest stands on your farm have numerous positive effects – many 

of which are not obvious.  They are not only stabilising hill slopes, reducing global CO2 levels 

and making financial ends meet, but they are also providing forest habitat for important native 

plants, birds and insects that don’t survive in high-productivity pastoral grasslands. Farm 

forest stands are quite different to the large tracts of forest land publicly owned for the 

purposes of conserving nature. Most of these indigenous forests are in the mountainous 

regions, while the few native forest patches that remain in many lowland agricultural 

dominated landscapes are small and heavily fragmented. For example the Canterbury Plains 

has less than 1% of its remaining indigenous habitat intact.  It is in such landscapes that small-

scale farm forestry can make a significant contribution by providing substitute forest habitat 

for native flora and fauna – and this, in turn, could well enhance the market acceptability of 

your produce. 

 

As stands mature they develop a distinct forest microclimate of increased shade, reduced 

temperatures, and deep litter layers (with their abundance of fungal communities) that can be 

a haven for forest dwelling species of plants, insects and birds. Increased abundance and 

diversity of native plant species with increasing stand age is well documented in New Zealand 

plantations, as is the abundance of insectivorous birds. Despite this, the diversity and 

abundance of invertebrates that sustain these birds is poorly understood, particularly when it 

comes to the one inevitable consequence of plantation forestry: harvest! At some point in time 

the trees will be harvested, be this at 28 years for radiata pine or 40-50 years for Douglas-fir 
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and results in immediate and drastic ecosystem changes that have impacts on all species living 

in those stands.  

 

Over the past 3 years, I have been researching the impact of clearfell harvesting on the beetle 

communities in the large plantation estates of the central North Island.  More recently, I was 

asked to comment on how relevant my findings might be to small-scale farm foresters, who 

wish to maximise biodiversity preservation in their forest stands.  

 

The dominant harvesting system in New Zealand is clearfelling, which immediately changes 

the microclimate from a protected cool shady forest interior to an open habitat subject to the 

extremes of temperature and wind. The most noticeable change in this disturbed post-harvest 

landscape is the rapid colonisation of by exotic species of herbs, forbs and grasses that are 

adapted to harsh environments. Less noticeable but just as important is the influx of insect 

species adapted to these open habitats. Some of these insects are associated with the 

breakdown of harvesting debris and they can also provide food for a number of bird species. 

Recent research of three families of beetles, the Carabidae (ground beetles), Scarabaeidae 

(chafers) and Scolytinae (bark-beetles) have shown a massive increase in abundance 

immediately post-harvest (Figure 1), particularly of a few key species, e.g., the tiger beetle 

(Cicindela tuberculata). While the diversity of species was not affected as strongly as 

abundance, it may increase slightly, due to an influx of open habitat species, which augment 

remnant populations of forest dwelling species that survive for the first few years post-

harvest. However, species diversity drops sharply a few years after harvest as the forest-

adapted species cannot maintain successful breeding populations (Figure 1) - although, as 

long as a suitable source populations exist, species can potentially re-establish as regeneration 

proceeds and forest stands once again begin to mature.  Reestablishment in the case of my 

study sites in Kaingaroa was not difficult as other forest stands were merely ‘across the road’ 

- however for small scale foresters the post-harvest biodiversity considerations are likely to 

present other challenges. 

 

Unlike large plantation companies, small wood-lot owners are more likely to harvest their 

entire stand in one event. This has a number of potential ramifications that have yet to be 

studied.  Although populations of forest invertebrates are likely to remain in recent clearfells 
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in the short-term, long-term replacement from adjacent habitat becomes limited for poorly 

dispersing non-flighted species, particularly if the regenerating stand is in a largely pastoral 

dominated landscape and isolated from other forest habitat. Most common understorey plant 

species in plantations have wind or bird-dispersed seeds allowing dispersal across larger 

distances, however there are limits to the dispersal ability between forest fragments.  Having 

stated that, it could be argued that all the resident biodiversity (i.e., birds, plants and insects) 

in small forests established on pre-existing pasture arrived at these developing stands without 

assistance. If so, then the conclusion must be that no future help will be necessary post-

harvest, as the cycle of colonisation will merely repeat itself. This concept treats the matrix 

habitat within the landscape as an ecological sieve where plant and animal communities 

accumulate ‘naturally’, mainly from species with good dispersal characteristics, but also from 

a few chance arrivals that subsequently colonised these habitats. A more beneficial approach 

(that is less subject to the vagaries of chance dispersal events) is to provide some form of 

continuity to forest cover, thus enhancing reestablishment opportunities such that biodiversity 

is maintained at the farm and ultimately the landscape level. 

 

Continuity in mature forest habitat can be achieved in a number of ways; the easiest is by 

planting adjacent to an existing remnant of native forest or shrubland. For example, that steep 

gully (fenced to prevent stock access) at the back of the property can provide a reservoir for 

recolonisation of harvested stands planted on its boundary. The native remnant also benefits, 

as the planted trees buffer its habitat edge from external influences such as strong and/or cold 

winds. Alternatively, one could plant two stands of different species side by side.  Different 

maturation times will result in a semi-mature stand adjacent to your harvest area that can 

provide refugia for forest species until subsequent regeneration allows recolonisation of the 

clearfelled area.  

 

In conclusion, the majority of the indigenous biodiversity present in your average farm-

forestry situation is going to be within your native remnants (including forest, shrubland and 

wetlands) and your plantation forests. Native plants struggle to survive in improved pastoral 

grasslands, although a few native insects do thrive, e.g., grass grub and porina. It only takes a 

little considered thought during the planning stages and perhaps some small concessions (such 

as mixing species and the location of forest stands) to make a big difference to the continuity 
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of biodiversity within your landscape come harvest time. Given the increasing interest in 

biodiversity protection on private land, and the growing environmental sensitivity of 

consumers, the presence of species-rich plantation forests on your farm could make a 

significant difference in the acceptability of your produce in the market-places of the future. 
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Figure 1. Average catch per 100 trap days of effort of all ground beetles, chafer beetles and 

bark beetles in different habitats, including different ages P. radiata, clearfells, native forest 

and pasture. Numbers above the bars are the actual number of species caught in each habitat.  

Note: That samples were obtained by running transects between habitat pairs and the actual 

species number and abundance in each habitat is influenced to some degree by dispersal from 

adjacent habitat types. For example the abundance of beetles in pasture would have been 

considerably lower if the contribution of dispersing tiger beetles (Cicindela tuberculata) from 

the 5 metre pasture samples adjacent to recent clearfell habitat was discounted as this species 

(like others) was not recorded further than 5m into pasture.  However, the data clearly shows 

an increase in invertebrate abundance in recently clearfelled forest stands and a reduction in 

species richness in young regenerating forest stands compared to other habitat types. 
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Introduction 

To the casual observer it seems difficult to associate our ‘monocultures’ of pines or other exotic trees 

with native biodiversity. The biodiversity values of our plantation forests are often judged solely by 

the planted tree species despite the common occurrence of many native inhabitants in these forests. 

Some plantations have little undergrowth and this can indeed give the impression that there is no other 

life. Furthermore, the routine clearfelling of such forests causes concerns from an aesthetic point of 

view and also for the ‘welfare’ of the plants and animals that may live there. But, it’s not that simple! 

In fact, many studies have shown that despite this, plantation forests are very valuable as habitat for 

native species, including some threatened species. After several years of intensive research of 

plantations in many corners of New Zealand and in other countries, we have often been surprised by 

our findings, and it is becoming clear that we need to take a more considered view of the value of 

plantations for biodiversity. 

 

The understorey of plantation forests 

The flora of plantation forests undergoes considerable changes during a rotation from planting to a 

mature forest, following a pattern of natural succession (Allen et al. 1995, Brockerhoff et al. 2003). 

Typically, the open areas created by clearfelling are colonised by light-demanding pioneer species, 

mostly exotic grasses and forbs. Over time the canopy becomes denser, the availability of light 

decreases, and the conditions become more suitable for shade-tolerant species such as the ferns and 

shrubs that are common in the understorey of native forests. But how exactly this ‘succession’ of the 

understorey proceeds, and which species dominate each stage, depends on a number of factors such as 

climate, the flora of the surrounding area, and the density of the canopy (Brockerhoff et al. 2003).  
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Plantations in regions with high rainfall tend to have a much more lush understorey than those in 

relatively ‘dry’ regions where low soil moisture levels may not sustain much undergrowth. There is 

also a strong influence from the surrounding vegetation. When there is some native forest nearby, 

plantations generally have a much higher diversity of native forest species than those that are in 

regions with little or no native forest. Accordingly, Eyrewell Forest on the Canterbury Plains has a 

poor understorey in terms of native biodiversity with comparatively many exotic species and with 

similarities to the equally poor understorey of the few native forest remnants in the area. By contrast, 

plantations in the central North Island and Westland, regions with larger areas of remaining native 

forest, are much more species rich and dominated by native species (Allen et al. 1995, Brockerhoff et 

al. 2003).  

 

Although the closing canopy of a stand creates shady conditions that favour native understorey plants, 

there can be too much shade. This is seen in densely planted, unpruned stands of radiata or Douglas-fir 

where there may not be enough light even for the more shade-tolerant plants. However, light is not a 

limiting factor in the more typical stands that are thinned and pruned. 

 

 

Plantation forests as ‘nurse crops’ for native species 

The native understorey of a plantation does not depend on species that were present at the site before 

planting. We studied a plantation on the Paeroa Range near Taupo that was established in 1973 into 

typical pasture of mostly exotic species. By 2000, the afforested site had developed a rich understorey 

with over 100, mostly native, plant species (Ecroyd and Brockerhoff, unpublished), despite an earlier 

harvesting disturbance. In our plots in the adjacent pasture we recorded 13 exotic pasture species and 

only two species of native herbs. The 65 species of native plants that were found in the plantation had 

all arrived naturally, primarily from a native forest about 1 km away which served as a source of seeds 

and the main dispersal agents – birds. Projecting this development into the future, it becomes obvious 

that the site has the potential to revert back to native forest, all by itself. Interestingly, this capacity of 

plantation forests to act as a nurse crop has been described in a QE II National Trust book on ‘Native 

Forest Restoration’ where it is stated that “Radiata pine provides a fast-growing nurse crop for the 

establishment of native species” (Porteus 1993). However, this positive biodiversity effect of 

plantations is not widely recognised. 

 

Plantations as habitat for native animals 

As with plants, the fauna of plantations can also be dominated by native species, particularly in older 

stands. Most birds with a diet of insects and other invertebrates can be found in plantations (Clout and 
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Gaze 1984), including some rare or threatened species such as kiwi (Kleinpaste 1990) and North 

Island robin (Pawson and Brockerhoff 2005). A recent study of bush falcon revealed a very healthy 

population in Kaingaroa Forest, with the surprise finding that the birds liked to feed and nest in 

clearfell areas (Richard Seaton, pers. comm.).  

 

The range of insect species in plantations is surprisingly similar to those of native forests nearby. For 

example, a recent study at Mt. Oxford in North Canterbury found that the ground beetle assemblage of 

older radiata stands was a close match to that of the adjacent black beech forest (Berndt et al., 

unpublished). Our study in the central North Island gave similar results (below). 

 

A remarkable case is that of the critically endangered ground beetle Holcaspis brevicula. Eyrewell 

Forest on the Canterbury Plains is the only known habitat of this species that appears to be endemic to 

the Eyrewell region in North Canterbury (Brockerhoff et al. 2005). This is perhaps the only example 

of a native species that now only lives in the habitat provided by an exotic plantation forest. 

 

Landscape perspectives  

The case of the critically endangered ground beetle mentioned above highlights how plantations can 

be important substitute habitat for native forest species in regions where little native forest remains. 

The Canterbury Plains are a classic example of this situation because although the Plains used to be 

covered by forest in pre-human times, today less than 0.5% is covered in native forest. Eyrewell Forest 

is not particularly rich in native plants and animals (see above), but the fact that it is the only 

remaining forest of substantial area does make it particularly important as habitat. Other noteworthy 

occurrences of native species in this forest are the only South Island population of Pomaderris aff. 

phylicifolia and the abundance of kanuka in the understorey (Fig. 1) (Ecroyd and Brockerhoff 2005).  

 

The effects of clearfelling on forest beetles 

In a recent study of biodiversity and the impacts of clearfell harvesting over 350 species of beetles, 

mostly natives, were sampled from radiata pine plantations in Kaingaroa Forest (Pawson, 2005). This 

clearly illustrates the value of plantation habitat as a reservoir of native biodiversity. Somewhat 

surprisingly, clearfell harvesting did result in a temporary increase in species richness and abundance 

due in part to changes in beetle community assemblages, such as colonisation by open habitat species 

in conjunction with short-term retention of forest species, which is consistent with other European 

research (Niemelä, 1993).  
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Three groups of beetles; Carabidae (ground-beetles), Scarabaeidae (chafer beetles) and Scolytidae 

(bark and ambrosia beetles) were sampled in detail in different-aged forest stands and other adjacent 

habitats including pasture and native forest. There were distinct differences in the community structure 

between the insects sampled in radiata stands (4, 8, 16 and 26 years), recent clearfells, pasture and 

native forest. Radiata pine stands adjacent to alternative habitat such as native forest and pasture did 

have beetle community assemblages similar to the non-plantation habitat. This would be expected 

given their geographic proximity and provide preliminary evidence for dispersal across at least the 125 

m between habitats The overall combined rarefied species richness (corrected for differential sampling 

effort) of these three groups did not vary significantly between pasture, native forest and radiata pine 

stands. However, recent clearfells did have significantly lower species richness than 8-year-old radiata 

pine stands. Interestingly, individual species did make use of plantation stands at different periods 

throughout the rotation. For example, Cicindela tuberculata (a native tiger beetle) was super-abundant 

in recent clearfells and 4 year-old stands but almost absent from older forest (native and plantation) 

and pasture. In contrast Mecodema occiputale (a ground beetle) was more abundant in mature radiata 

pine and native forest than young pine stands. The effects of clearfelling appear only temporary and 

even the larger clearfells are successfully re-colonised by forest species during a 25-year rotation. 

 

Concluding remarks 

The recent studies we summarised in this paper show conclusively that plantation forests can 

in fact play an important role in the conservation of forest biodiversity. Although in the past 

some plantations have been established at the expense of native forest, today that is not likely 

to happen. Most plantation managers realise that they are also stewards of the flora and fauna 

of their forests. Assessments of the flora and fauna in plantations and in the native forests, 

wetlands and other habitats within plantations are standard practise for those interested in 

environmental certification for their operations. Pest control is often being carried out with 

obvious benefits for many native species. Unfortunately, the current trend of conversion of 

plantations to dairy farming renders many of these areas unsuitable for the native species that 

have lived there. This is especially critical in regions such as the Canterbury Plains where 

most native forest has been lost and where plantation forests harbour much of the remaining 

diversity of native forest species. 
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