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Abstract.

This paper investigates the fluid dynamics governing arterial flow used in
lumped parameter CVS models, particularly near the heart where arteries are large.
Assumptions made in applying equations conventionally used in lumped parameter
models are investigated, specifically that of constant resistance to flow. The Womersley
number is used to show that the effects of time varying resistance must be modeled
in the pulsatile flow through the large arteries near the heart. It is shown that
the equation commonly used to include inertial effects in fluid flow calculations is
inappropriate for including time varying resistance. A method of incorporating time
varying resistance into a lumped parameter model is developed that uses the Navier-
Stokes equations to track the velocity profile. Tests on a single chamber model show a
17.5% difference in cardiac output for a single chamber ventricle model when comparing
constant resistance models with the velocity profile tracking method modeling time
varying resistance. This increase in precision can be achieved using 20 nodes with only
twice the computational time required. The method offers a fluid dynamically and
physiologically accurate method of calculating large Womersley number pulsatile fluid
flows in large arteries around the heart and valves. The proposed velocity profile
tracking method can be easily incorporated into existing lumped parameter CVS
models, improving their clinical application by increasing their accuracy.

Submitted to: Phys. Med. Biol.
MSC numbers: 92C35,92C50,76705,92C10



Velocity Profile Method for Time Varying Resistance 2

1. Introduction

Lumped parameter cardiovascular system models offer a relatively simple and
computationally inexpensive method of capturing the essential dynamics of the CVS
(Burkhoff and Tyberg 1993, Santamore and Burkhoff 1991, Olansen et al 2000, Beyar
et al 1987, Ursino 1999, Hardy et al 1982, Sun et al 1997). Finite element methods
are the most commonly used alternative, offering extreme resolution at the cost of
extreme complexity (Peskin and McQueen 1992, Legrice et al 1997, Smaill and Hunter
1991). When lumped parameter methods sometimes do not capture enough detail there
is a need to include some of the complexity and physiologically accurate equations of
the finite element approach. Complexity costs computational power and time, and
should therefore only be added where significant benefits are obtained over a simpler
method. Hence, the addition of complexity to make a lumped parameter model more
physiologically accurate must be justified by demonstrating significant changes in model
performance.

Typical lumped parameter model equations governing arterial flow rate come in
two forms, either including or not including inertial effects. In both cases, resistance to
blood flow is typically assumed constant under varying flow velocity and acceleration.
Realistically, resistance to flow varies with time for pulsatile flow, and this paper
investigates the amount of variation.

The simplest and most common method of modeling blood flow in the CVS
is to calculate flow rate as a function of pressure gradient and constant resistance
(Hoppensteadt and Peskin 2002, Chung et al 1997, Burkhoff and Tyberg 1993, Vis
et al 1997, Santamore and Burkhoff 1991). Other models have included inertial effects
as well as a resistance (Olansen et al 2000, Beyar et al 1987, Ursino 1999, Tsitlik et
al 1992, Hardy et al 1982, Sun et al 1997, Avanzolini et al 1989, Melchior et al 1992).
Often models are based on well-accepted electrical circuit analogies with the advantage
that electrical circuit analysis techniques can be used to model the CVS (Ursino 1999,
Tsitlik et al 1992, Santamore and Burkhoff 1991, Lu et al 2001, Olansen et al 2000).

A method of including the effect of time varying resistance on flow rate into lumped
parameter models is proposed. The method is applied to a simple single chamber
model designed to simulate a single ventricular chamber. Models with time varying
resistance are then compared with models that assume constant resistance to investigate
the differences in performance between them.

2. Equations Governing Flow-Rate

Assuming laminar incompressible Newtonian flow, the Navier-Stokes equations in
cylindrical-polar co-ordinates may be written as:
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where u,, u, and uy are the longitudinal, radial and angular velocities respectively, P
is the modified pressure relative to hydrostatic, p is the density and v is the kinematic

viscosity.
The following assumptions are applied:

e The arteries through which blood flows are assumed to be rigid with constant cross-

sectional area (% =0). This assumption fits in with standard windkessel type
circuit design involving a rigid pipe and a elastic chamber in series. The rigid tube
simulates the fluid dynamics while the elastic chamber simulates the compliance of

the artery walls (Tsitlik et al 1992, Melchior et al 1992).

e Laminar axi-symmetric flow is assumed as the tube is rigid with constant radius
(0, =0, uy =0, ‘98% =0). Although turbulence can occur around the valves, it
takes time to develop, and is assumed not to affect the flow profile significantly.

e The flow is assumed fully developed along the length of the tube meaning the

velocity profile is constant with respect to x (%= = 0) (Fung 1993).

e Pressure is assumed constant across the cross-sectional area and the pressure
gradient is constant along the length of each section so that the pressure gradient
is a function of time only (22(t)).

These assumptions enable Equation (1) to be reduced to the following simplified
version of the Navier-Stokes equation:

pau((;t, t) _ _g_i(t) N %% <r¥> (2)

where 1 is the viscosity (@ = vp) and u(r,t) is the velocity in the x-direction (uy(r,t))
as a function of radius and time only.

2.1. Poiseuille’s Equation for Flow Rate with Constant Resistance

If the additional assumption of steady-fully developed flow is applied then Equation (2)

0 P, +H£ <IM> (3)

reduces to:
_&( ) r Or or

This equation can be integrated to obtain the flow rate (Q) through a pipe of radius
(1), as shown in Figure 1, under a pressure gradient (0P/0dx) (White 1991, Fung 1990).

g Po(t) — Pi(t) ()

Q(t) = 81 7
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with upstream pressure (P;(t)), downstream pressure (P5(t)) and artery length (¢). By
grouping the constants an equation for resistance is derived.

R = 8ul/nrg (5)

Equation (4) can then be simplified to the electrical analogy commonly used in the
literature to calculate the flow rate of blood through arteries and valves (Chung et al
1997, Beyar et al 1987, Burkhoff and Tyberg 1993, Ursino 1999, Olansen et al 2000,
Smith et al 2003a,b).

Q) = 201 )

Note that Equation (6) does not include inertial effects or the effects of time varying
resistance that influence pulsatile flow.

2.2. Inclusion of Inertial Effects

In many parts of the arterial tree, such as the capillaries, the variation in velocity may
be minimal, however significant changes in velocity will occur around the heart valves
and the flow can no longer be assumed to be steady. Integrating Equation (2) across
the cross-sectional area and along the length produces an equation governing the rate
of change of flow rate.

/” / o / N pau(r’t)rdrdﬁdx
T P

Ou(rg, t)

plxa —x1) ot o (P1(t) — P2(t)) + 2mrop(xe — XI)T (8)
pt 0Q 24 Bu
e ot =Pi—Py 4 ry Or 5 (10) 9)

au(ro) is the velocity gradient at the

where the artery length is defined ¢ = (x5 — x1) and
wall of the tube. Equation (9) can then be Compared with the equation for flow rate
with inertial effects commonly found in the literature (Olansen et al 2000, Beyar et al

1987, Ursino 1999):
LQ=P, —P,— QR (10)

The derivation of Equation (10) can be found from electrical circuit analogies for an
inductor and a resistor in series.
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By comparing Equation (9) with Equation (10) the value of the inductance (L) can
be found as a function of the fluid properties, making it a measure of the magnitude of
the inertial effects on the fluid per unit cross-sectional area.

14
L=/ (11)

2
I

However, when comparing the resistance terms from Equations (9) and (10) the following
identity is found.

QR(t) = ML) (12)

rg Or

The definition in Equation (12) implies that the flow rate (Q) and the boundary
velocity gradient (9%(ro)) are related by a constant multiplied by R. If R is assumed
constant, meaning the flow is steady, then this relationship is valid. However, for
pulsatile flow with time varying resistance (R(t)), when the flow rate is zero the
boundary velocity gradient is not necessarily zero. Figure 2 shows an example where
the flow rate is zero, but the boundary velocity gradient is non-zero. If the boundary
velocity gradient at zero flow rate is not necessarily zero, R(t) will be undefined. This
inconsistency shows that Equation (10), which is used to simulate inertial effects in
many cases of prior research, is not a suitable governing equation for pulsatile fluid flow
with time varying resistance, a more suitable alternative is Equation (9) (Olansen et al
2000, Beyar et al 1987, Ursino 1999, Sun et al 1997).

2.3. The Womersley Number

The previous two sections have shown the derivation of three different methods of
modeling arterial flow, using either of Equations (6), (9) or (10). Equation (6) would be
the preferred choice where possible as it is simple and easy to implement. However, if
including inertial effects by using Equations (9) or (10) is going to produce significantly
more accurate results, then the increase in complexity is justified.

To investigate which equation should be used to model different types of flow,
the Womersley number («) is used, along with a solution to Equation (2) derived by
Womersley. The Womersley number is defined as the ratio of the inertial force to the
viscous forces in Equation (2) (Fung 1990).

, transient inertial force  wd? (13)
o = - =
viscous force v

where w is a characteristic frequency, defined as the heart rate (HR) and d is a
characteristic length, defined as the radius of an artery (rg). In the CVS the heart
rate (w) and the kinematic viscosity () do not vary significantly when compared with
the variation in the square of the tube radius. Therefore, frequency and kinematic
viscosity can be assumed to be constant and the magnitude of the Womersley number
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in the CVS becomes dependent on radius alone. A Womersley number greater than one
(aw >1) is considered large and indicates that inertial forces are significant. Flow with a
low Womersley number less than one (o <1) is assumed to be only negligibly influenced
by inertial effects (Zamir 2000).

The analytical solution derived by Womersley to Equation (2) for flow driven by a
sinusoidally varying pressure gradient (5= (t)) is defined (White 1991):

d_P
dx

u(r, t) = APy — [1 _ by iw/y) ] (15)

Jo(ror/—iw/v)

(t) = —dPymp.e™" (14)

where dP,,, represents the amplitude of the variation in the pressure gradient, w
represents the frequency of oscillation, and .Jy represents a Bessel function of order
zero. Values employed for these constants are outlined in Table 1. The amplitude of
pressure gradient variation is set as bmmHg to approximate the pressure drop in the
aorta.

Two different flow cases are modeled for flow through a tube and the profiles of
the variation in flow rate and boundary velocity gradient are determined numerically.
The first case is flow through a small radius with a low Womersley number (a = 0.009)
representing the peripheral circulation, such as flow through the capillaries. The second
case simulates a large radius, indicating a large Womersley number (a = 55), such as
in the larger arteries and veins near the heart. Figure 3 shows the results where the
top graph plots the variation in pressure gradient with time. The middle graph plots
both the flow rate (Q) and the boundary velocity gradient (42(rg)) overlaid for a small
Womersley number. It is shown that the boundary velocity gradient is directly in phase
with the flow rate for small Womersley number flow. The bottom graph shows the
same information for a large Womersley number, where the flow rate and the boundary
velocity gradient are considerably out of phase.

In the arteries and veins close to the heart the Womersley number is large, inertial
forces are significant, and they must be included in fluid flow calculations. For large
Womersley number flow inertial effects on the fluid cause the flow rate to significantly lag
behind the pressure gradient as shown in Figure 3. Additionally, the boundary velocity
gradient is shown to be out of phase with the flow rate. By relating this phase lag to
Equation (12), it can be seen that resistance must vary with time to accommodate the
out of phase variations in Q and du/0r(r). Equation (10) assumes constant resistance
and is therefore not suitable for modeling this flow, and Equation (9) should be used
as a more accurate alternative based directly on the Navier-Stokes equation and fluid
dynamic principles.

Therefore, for large arteries with a high Womersley number flow, both inertial effects
and the effects of time varying resistance must be simulated by using Equation (9).



Velocity Profile Method for Time Varying Resistance 7

When simulating flow through the smaller vessels in the peripheral circulation,
Equation (6) is more suitable as it requires significantly less computational time. By
using a suitable combination of these two equations, a more physiologically accurate
closed loop model of the CVS can be constructed and solved in optimum time.

3. Single Chamber CVS Model

To demonstrate and quantify the relative performance of Equations (9) and (10), a
single chamber model is used, as shown in Figure 4. The single elastic chamber is
modeled as a resistor, an inductor and a “valve” at both the inlet and outlet to simulate
resistance, inertial effects and the cardiac valves. Such chambers have been successfully
used to model the dynamics of a single ventricle with constant upstream and downstream
pressures, and can be combined to create larger models with many chambers (Beyar et
al 1987, Olansen et al 2000, Santamore and Burkhoff 1991, Smith et al 2003a,b).

The present model uses a time varying elastance (E(t)) to simulate the cardiac
muscle activation. The upper and lower limits of the elastance are defined by the
end-systolic pressure-volume relationship (ESPVR) and end-diastolic pressure-volume
relationship (EDPVR) respectively (Chung et al 1997). By combining the ESPVR and
EDPVR an equation for the pressure in a cardiac chamber as a function of time and
chamber volume is found (Smith et al 2003a, Chung et al 1997, Santamore and Burkhoff
1991, Beyar et al 1987).

Py (V,t) = e(t)Ees(V — Va) 4+ (1 — e(t))A(}VVe) — 1) (16)

where e(t) is a driver function that varies in a user defined profile between 0 and 1. The
profile of e(t) used in this case is defined:

N
e(t) =) Aje PO (17)
i=1

where A, B;, C; and N are parameters that determine the shape of the driver profile.
In this case, values of A; =1, B; =80, C; =0.27 and N =1 are used, although more
complex shapes can be used (Chung et al 1997).

Using Equation (16) the pressure in the chamber is calculated as a function of time
and volume, and the pressure gradient between the inlet and outlet can be determined.
With the pressure gradient known, either of Equations (6), (9) or (10) can be used to
determine the flow rate in and out of the chamber. The rate of change of volume is
calculated from the difference in flow rates.

Values of the constants used in single chamber model simulations are shown in
Table 1. Blood properties are taken from Guyton (1991) and the heart rate is set to
80 beats/min. Artery properties are approximated based on dimensions found in the
literature, with the artery length adjusted to produce reasonable results (Chung et al
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1997, Smith et al 2003a,b). Chamber properties are optimized values initially obtained
from other models in the literature for a human (Chung et al 1997, Burkhoff and Tyberg
1993, Ursino 1999, Smith et al 2003a,b).

3.1. Simulating the Single Chamber Model

The single chamber model is numerically integrated using Matlab’s odel5s ODE solver.
Conventionally used models use either Equation (6) or Equation (10) as the governing
equations for flow rate. Where Equation (6) is used, the volume of the chamber is the
only state variable (x=[V]). However, if Equation (10) is used, then volume as well as
flow rate in and out are all state variables in the state vector (x=[V, Qin, Qout])-

Models with greater numbers of chambers and complexity are solved the same
way by simply adding the volume of every elastic chamber to the state vector. Where
inertial effects are included in flow rate calculations, the flow rates are also added as
state variables. The result is a numerically stable and physiologically accurate model of
basic CVS dynamics (Smith et al 2003a,b).

Valve closure is assumed to occur when net flow rate goes to zero. Research shows
that in fact a small amount of reversing flow occurs just before valve closure, but this
flow is negligible and ignored in this model (Bellhouse and Talbot 1969). The velocity
profile at zero net flow rate is shown in Figure 2, with the flow moving forward along
the central axis of the tube and reversing flow around the outside of the tube.

3.2. Tracking the Velocity Profile

It has been shown that Equation (9) should be used when trying to model the effects
of time varying resistance and inertial effects. The question is how to add this equation
into a lumped parameter model to replace Equation (10). This paper presents a method
where instead of just determining the flow rate (Q), the velocity profile vector (u) is
added as a series of state variables in the state vector. In this way, not just the flow rate
will be determined, but also the variations in the velocity profile, enabling the boundary
velocity gradient and resistance to be determined at any given time.

The velocity profile vector calculated is a discrete representation of the velocity
profile, dividing the radius into equally spaced nodes. Instead of using Equation (9),
Equation (2) is now used since the velocity profile, and not the flow rate, is obtained
at each time step. At each iteration of the ODE solver, the rate of change of velocity is
calculated at each node using Equation (2). A non-slip boundary condition is applied.
Thus, where Equation (10) is often used to calculate the rate of change of flow rate,
Equation (9) would now be used to calculate the rate of change of the velocity vector.

Using this method, the state vector is of the form:

X = [V7 llin.li Uin.2; -y uin.ia llout.h Uout.25 -9 uOut.il] (18)

-~ -~

Ui Uout
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where u;, and u,,; are the velocity profile in and out of the chamber respectively. The
following steps are taken at each iteration of the ODE solver:

e The chamber volume and the velocity profiles are passed to the ODE function as
state variables.

e The chamber pressure is calculated from the volume using Equation (16).
e Equation (2) is used to find the rate of change of the velocity profile.

e The velocity profiles are numerically integrated to calculate the flow rates.

2T ro
Q:/O /0 u(r, t)rdrdé (19)

e The rate of change of chamber volume is calculated from the flow rate in less the
flow rate out.

e The time derivative of the state vector is passed back to the ODE solver including
the rate of change of volume and the rate of change of the velocity profiles.

Thus, time varying resistance and inertial effects are easily included in a simple
lumped parameter CVS model. The actual values of inertia (L) and time varying
resistance (R(t)) are not directly calculated in the manner of conventional lumped
parameter CVS models. Instead, this method of tracking the velocity profile
automatically incorporates these effects.

3.3. Non-Dimensionalisation

The magnitude of the variables used in Equation (2) vary significantly, which will
contribute to an accumulation of computational error. For example, the magnitude
of the volume is on the order of milliliters (10 °m?®) and pressure is on the order of
mmHg (102N/m?), so that there is an order of 10® difference in these numbers. To avoid
accumulation of machine error, the equations were non-dimensionalized before being
applied to the model.

Non-dimensional values are labeled with a star (*) so the non-dimensional form of
a dimensional variable x is x*, which is related to x by it’s characteristic value labeled
X. The characteristic flow rate is defined:

— attdP
_ ll 20
Q 8y dx (20)
where the characteristic pressure gradient is defined:
dP Py —Py
— -z -1 21
dx Y (21)

The characteristic velocity is set as the characteristic flow rate divided by the cross
sectional area.

- = (22)
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The non-dimensional form of the equation for the rate of change of the velocity vector
can also be found from Equation (2).

ou*(r*,t*)  480v oP* 1 (0Pur(r*,t*) 1 out(r,t*)
o PHR <_ o ) Fg ( o2 ¢ o (23)

Note that the term v/(T?HR) is equal to the inverse of the Womersley number squared

(1/a?).
4. Results

For the velocity profile method, nodes at which velocity is calculated are spaced equally
along the radius. Before carrying out simulations using the velocity profile method, the
number of nodes required to gain accurate results must be found. Using many nodes
makes the calculations more accurate, but lengthens the time required to simulate the
model. Figure 5 shows a plot of the percentage error of the stroke volume for models
using different numbers of radial nodes. The percentage error is relative to the stroke
volume at 150 nodes, where the solution has converged and error is negligible. From
Figure 5 the number of nodes required can be determined based on the allowable error.
For all simulations in this paper using the velocity profile method, 100 nodes were used
as this number produces minimal error, although fewer nodes would still produce good
results with less computation time.

To verify the velocity profile method, using Equation (2), against the constant
resistance method, using Equation (10), inertial effects are minimized in both and the
results compared. Inertial effects are minimized by setting the density (p) of the blood
to a very low value of 1kg/m®. Substituting v = p/p into Equation (13), it can be seen
that this density decrease will cause a significant decrease in Womersley number, and
inertial effects will be negligible. For the constant resistance method, values of R and L
are calculated using Equation (5) and Equation (11) respectively. In both cases, making
the inertial effects negligible means that there is now much less restriction on the rate
of change of velocity and the velocity profile develops almost instantly to that defined
by Poiseuille (White 1991).

Figure 6 shows the results of each method in a PV diagram. There is virtually no
difference in performance between the two. This result verifies that the velocity profile
method performs in the same way as the constant resistance method under very low
inertia conditions as expected since density, and consequently inertial effects, have been
made negligible.

The models are simulated again with the density reset to a normal blood density
of 1050kg/m?, from Table 1. Figure 7 compares the performance of the two models.
Figure 8 plots the same simulation results as Figure 7 but in a PV diagram. It is found
that the velocity profile method results in an approximately 17.5% decrease in stroke
volume, and thus cardiac output. This decrease is a significant change in the cardiac
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performance of the model resulting from using the more physiologically accurate velocity
profile method over the widely used constant resistance assumption.

The relative computational speed of the constant resistance method compared with
the velocity profile tracking method was found by measuring the computational time
required for each method. When 100 nodes are used in the velocity profile method, it
took 10 times longer to solve than the constant resistance method. When 20 nodes are
used then the solution took only twice as long to solve. Therefore, the increase in cost
is an approximately number of nodes divided by 10 times increase in solution time.

5. Conclusions

The electrical circuit analogy equations governing flow rate traditionally used in lumped
parameter CVS models are investigated and compared with standard fluid dynamics
principles and equations. Key assumptions made in the derivation of these equations
are outlined and their relevance discussed, particularly the assumption of constant
resistance under varying flow rates. Womersley number analysis shows that for large
arteries around the heart, inertial effects and time varying resistance must be included in
equations governing pulsatile flow. The electrical analogy equation most commonly used
to calculate flow rate with inertial effects is shown to be inadequate in simulating large
Womersley number flow. As a result, a method for calculating and incorporating time
varying resistance into lumped-parameter models is proposed. This method involves
tracking the velocity profile, instead of just the flow rates, using a non-dimensionalized
governing equation derived from the Navier-Stokes equation. Tests are carried out on
a single chamber CVS model comparing the performance of commonly used constant
resistance methods with the proposed method of tracking the velocity profile. A 17.5%
difference in cardiac output for pulsatile flow in larger arteries is found, justifying
the inclusion of the more physiologically accurate velocity profile tracking method.
Adequate precision is achieved when using 20 nodes, which takes approximately twice
as long to solve as a constant resistance method. The velocity profile tracking method
is presented as a more fluid dynamically, and therefore physiologically, accurate method
for simulating pulsatile blood flow in large arteries near the heart. The increased
computational effort required to solve a model using this method is justified by the
significant change in model output dynamics.
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Figure captions

Figure 1. Flow through a rigid pipe of constant cross section.

Figure 2. The velocity profile at zero flow rate.

Figure 3. Sinusodially varying pressure gradient driving flow (top), variations in
Ou/0r(rg) and Q for small Womersley number flow, a = 0.009, (middle) and large
Womersley number flow, @ = 55 (bottom).

Figure 4. The single chamber model.

Figure 5. Percentage error of stroke volume versus number of nodes on radius.

Figure 6. Velocity profile method (VProf) and constant resistance method (CR)
results overlaid with inertial effects assumed to be negligible.

Figure 7. Velocity profile method (VProf) and constant resistance (CR) results
overlaid with density = 1050kg/m?.

Figure 8. Velocity profile method results (VProf) overlaid on constant resistance
results (CR) on a PV diagram.
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Figure 2. The velocity profile at zero flow rate.
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Table 1. Constants used in single-chamber simulation

Description Symbol Value

Blood properties:

Blood density p 1050 kg/m?
Blood Viscosity I 0.004 Ns/m?
Blood Kinematic Viscosity v 3.8x107% m? /s
Artery Properties:

Internal Artery Radius ro 0.0125 m
Artery Length { 0.2 m
Chamber properties:

Chamber Elastance E,, 3.56 x 108 N/m?
EDPVR Volume Cross-over Vj 0 m?

ESPVR Volume Cross-over Vj 0 m?

Constant A 33000 m 3
Heart Rate w 1.33 beats/sec
Constant A 10 N/m?
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