A KOROVKIN THEOREM FOR AL-SPACES

by

P.F. Renaud

No. 27 July 1982
1. INTRODUCTION

In [4] Wulbert obtained the following Korovkin-type theorem for linear operators on the space $L^1[0,1]$.

THEOREM. Let T_n be a sequence of contraction operators on $L^1[0,1]$. If

(i) $T_n 1 \xrightarrow{S} 1$ and

(ii) $T_n f \xrightarrow{W} f$ for the two functions $f(x) = x$ and $f(x) = x^2$,

then $T_n f \xrightarrow{S} f$ for all f in $L^1[0,1]$.

Probably the most interesting aspect of this result is that the usual positivity assumption of the operators T_n is absent. Meir [2] obtained a similar result where T_n is now assumed positive and condition (ii) is weakened by assuming only that $T_n f \xrightarrow{W} f$ for the function $f(x) = x$.

The purpose of this paper is to establish a result which generalizes both Wulbert's and Meir's theorems. Moreover to allow our result to apply to ℓ^1 spaces as well as L^1 spaces, we replace the space $L^1[0,1]$ by an Abstract Lebesgue (AL) space and the constant function 1 by a generalized weak unit. Specifically we will prove the following.

THEOREM. Let E be an AL-space with generalized weak unit $\{e_\alpha\}$ and let T_n be a sequence of contraction linear operators on E such that $T_n e_\alpha \xrightarrow{S} e_\alpha$ for all α.

Let $N = \{f : T_n f \xrightarrow{W} f\}$.
Then \(N \) is a (closed) sublattice of \(E \) and \(T_n f \xrightarrow{E} f \) for all \(f \in N \).

Meir's theorem follows at once by noting that the smallest closed sublattice of \(L^1[0,1] \) containing 1 and the function \(f(x) = x \) is all of \(L^1[0,1] \).

2. NOTATION

DEFINITION. A (real) Banach lattice \(E \) is called an AL space if

\[
\|x + y\| = \|x\| + \|y\| \quad \text{whenever} \quad x, y \geq 0.
\]

For \(E \) an AL space define \(E^+ = \{x : x \geq 0\} \) and \(E_1 \) the unit ball in \(E \) with similar definitions for \(E^* \) - the dual space of \(E \).

A generalized weak unit \(\{e^*_\alpha\} \) for \(E \) is a maximal orthogonal family in \(E^+ \). Such families clearly exist via Zorn's lemma.

The following properties of AL-spaces will be needed. A subset \(A \subset E \) is weakly sequentially precompact (w.s.p.) if every sequence in \(A \) has a weakly Cauchy subsequence. Since \(E \) is weakly sequentially complete ([3], p.119) "Cauchy" can be replaced by "convergent". If \(A \) is norm bounded then ([3], p.152) \(A \) is w.s.p. iff for all disjoint majorized sequences \(\{\psi_n\} \) in \(E^{**} \),

\[
\lim \sup_{n \in A} \langle |x|, \psi_n \rangle = 0.
\]

The map from \(E^+ \to \mathbb{R} \) given by \(x \to \|x\| \) extends to define a linear functional \(\psi_0 \in E^* \) - the evaluating functional.

Finally if \(T \) is a linear operator on \(E \), the linear modulus \(|T| \) can be defined by
\[|T|x = \sup_{|y| \leq x} |Ty|, \ x \in \mathbb{E}^+ \]

and extends to a linear operator on \(\mathbb{E} \) satisfying

\[-|T| \leq T \leq |T| \text{ and } \|T\| = |T| \]

(see [3], Ch IV. §1, especially Corollary 2).

For notational simplicity we write \(\tau \) for \(|T| \).

3. THE KOROVKIN THEOREM

Throughout \(\mathbb{E} \) denotes an AL space with generalized weak unit \(\{e_\alpha\} \). \(T_n \) is a sequence of contraction linear operators on \(\mathbb{E} \) with linear moduli \(\tau_n \). Let \(N = \{f : T_n f \overset{w}{\to} f\} \). Clearly \(N \) is a (closed) subspace of \(\mathbb{E} \). To prove the Korovkin theorem stated above we first need the following

PROPOSITION. Let \(T_n e_\alpha \overset{w}{\to} e_\alpha \) for all \(\alpha \). Then \(N \) is a sublattice of \(\mathbb{E} \).

The proof requires the following

LEMMA. Let \(u \geq 0 \) and suppose that \(T_n u \overset{w}{\to} u \). Then

(i) \(|T_n u| \overset{w}{\to} u \) and

(ii) \(\tau_n u \overset{w}{\to} u \).

PROOF.

(i) Since \(T_n u \overset{w}{\to} u \), \(\{T_n u\} \) is w.s.p. and hence so is \(\{|T_n u|\} \).

So we can choose a subsequence \(T_n(j) \) such that \(|T_n(j) u| \overset{w}{\to} v \) say. Clearly \(v \geq u \).
4.

Using the evaluating functional we have $\|T_n(j)u\| \to \|v\|$. i.e. $\|v\| = \lim \|T_n(j)u\| \leq \|u\|$.

This combined with $v \geq u$ shows that $v = u$. Applying this argument to any subsequence of T_n we have $|T_n u| \overset{w}{\to} u$.

(ii) For $\psi \in E_i^*$ we have

$$|\langle \tau_n u - u, \psi \rangle| \leq |\langle \tau_n u - |T_n u|, \psi \rangle| + |\langle |T_n u| - u, \psi \rangle|.$$

The second term $\to 0$ by (i) and the first term is bounded by $\|\tau_n u - T_n u\| = \|\tau_n u\| - \|T_n u\|$

$$\leq \|u\| - \|T_n u\| \to 0 \text{ by (i)}.$$

So $\tau_n u \overset{w}{\to} u$.

PROOF OF PROPOSITION. It suffices to show that if $f \in N$, so does $|f|$. Fix $f \in N$. We firstly reduce the problem to the case where a weak unit for E exists.

Let $\text{spt } f = \{\alpha : |f| \land e_{\alpha} > 0\}$. Since the e_{α}'s are disjoint and positive we have for any $\alpha_1, \ldots, \alpha_n$,

$$\|f\| \geq \sum_{i=1}^{n} \|f\| \land e_{\alpha_i}$$

so that $\text{spt } f$ is countable.

Define $e = \sum \frac{e_n}{2^n\|e_n\|}$ with summation over $\text{spt } f$.

For $A \subseteq E$ let $\downarrow A = \{x : |x| \land |y| \text{ for all } y \in A\}$. Then ([1], p.309) $\downarrow(e)$ is a sub AL-space of E for which e is a weak unit and which contains f. Hence we can assume that E has a weak unit $e \geq 0$. Clearly $T_n e \overset{w}{\to} e$ and so by the lemma $\tau_n e \overset{w}{\to} e$.

We now show that $T_n |f| \overset{w}{\to} |f|$.
For \(m = 1,2, \ldots \) we have \(0 \leq |f| \leq \text{me} \leq \text{me} \) so that
\[
\tau_n(|f| \text{me}) \leq m \tau_n \text{e}.
\]
Since \(\tau_n \text{e} \) is weakly convergent, \(\tau_n(|f| \text{me}) \) is w.s.p. for each fixed \(m \).

Choose a subsequence \(n(1,j) \) such that
\[
\tau_{n(1,j)}(|f| \text{e}) \xrightarrow{w} g_1.
\]
Now choose a subsequence \(n(2,j) \) of \(n(1,j) \) such that
\[
\tau_{n(2,j)}(|f| \text{e}) \xrightarrow{w} g_2 \quad \text{etc.}
\]
By diagonalization we have a subsequence \(n(j,j) \) such that
\[
\tau_{n(j,j)}(|f| \text{me}) \xrightarrow{w} g_m \quad \text{for each } m.
\]
Clearly \(\{g_m\} \) is increasing and via the evaluating functional we see that
\[
\|g_m\| = \lim_j \|\tau_{n(j,j)}(|f| \text{me})\| \leq \|f\|.
\]
So \(\{g_m\} \) converges (order and strongly) to \(g \) say and \(\|g\| \leq \|f\| \).

Further for \(\psi \in E^* \) we have
\[
| \langle \tau_{n(j,j)} |f| - g, \psi \rangle | \leq | \langle \tau_{n(j,j)} (|f| - |f| \text{me}), \psi \rangle | + | \langle \tau_{n(j,j)} (|f| \text{me}) - g_m, \psi \rangle | + | \langle g_m - g, \psi \rangle |.
\]
For \(m \) sufficiently large, the first and third terms on the right are small and for fixed large \(m \), the second term is small for large \(j \). We deduce that
\[
\tau_{n(j,j)} |f| \xrightarrow{w} g.
\]
But then \(\tau_{n(j,j)} |f| \geq |T_{n(j,j)} f| \geq T_{n(j,j)} f \) and in the limit we have \(g \geq f \). Similarly \(g \geq -f \) so that \(g \geq |f| \). This
6.

together with \(\|g\| \leq \|f\| \) shows that \(g = f \). Now applying this reasoning to an arbitrary subsequence of \(\{T_n f\} \) we have that \(\tau_n |f| \xrightarrow{w} |f| \).

To show now that \(T_n |f| \xrightarrow{w} |f| \), we first notice that since \(|T_n (|f| \wedge m e)| \leq \tau_n (|f| \wedge m e) \) then for each fixed \(m \), \(\{T_n (|f| \wedge m e)\} \) is w.s.p. By the argument above there exists a subsequence \(T_n(j,j) \) and a sequence \(\{h_m\} \) such that

\[
T_n(j,j) \left(|f| \wedge m e \right) \xrightarrow{w} h_m \text{ for all } m.
\]

Fix \(\psi \in E^{*+} \). Then

\[
0 \leq \langle (\tau_n(j,j) - T_n(j,j)) |f|, \psi \rangle \leq \langle (\tau_n(j,j) - T_n(j,j)) (|f| - |f| \wedge m e), \psi \rangle + \langle (\tau_n(j,j) - T_n(j,j)) m e, \psi \rangle.
\]

The first term on the right can be made small by choosing \(m \) large and for fixed large \(m \) the second term \(\to 0 \) as \(j \to \infty \). We deduce that \((\tau_n(j,j) - T_n(j,j)) |f| \xrightarrow{w} 0 \) and hence that

\[
T_n(j,j) |f| \xrightarrow{w} |f|.
\]

Applying this to any subsequence of \(\{T_n |f|\} \) we have

\[
T_n |f| \xrightarrow{w} |f|.
\]

PROOF OF THEOREM. Without loss of generality we may again assume that \(E \) has a weak unit \(e \) and that \(T_n e \xrightarrow{s} e \). Fix \(f \in N \). By the proposition above we have \(\tau_n f \xrightarrow{w} f \). We first show that

\[
\tau_n f \xrightarrow{w} f.
\]

In fact \(\{\tau_n f\} \) is w.s.p. so that for some subsequence \(n(j) \), \(\tau_n(j) \xrightarrow{w} g \) say. Again by the proposition we have

\[
|f| \pm f \xleftarrow{w} T_n (|f| \pm f) \leq \tau_n (|f| \pm f) \xrightarrow{w} |f| \pm g
\]

which shows that \(g = f \). We now deduce that \(\tau_n f \xrightarrow{w} f \).
Since E has a weak unit it may be represented as the L^1 space of a compact measure space ([3], p.114) where e becomes the constant function 1.

Meir's result ([2], Corollary) applies directly to show that $\tau_n f \overset{S}{\rightarrow} f$ for all $f \in N$.

Let $f \in N, f \geq 0$. Then

$$0 \leq (\tau_n - T_n)f = (\tau_n - T_n)(f - f \wedge me) + (\tau_n - T_n)(f \wedge me).$$

Choosing m large so that $\| f - f \wedge me \|$ is small and noting that $(\tau_n - T_n)(f \wedge me) \leq (\tau_n - T_n)me \overset{S}{\rightarrow} 0$ we have

$$\| \tau_n f - T_n f \| \rightarrow 0.$$

Hence

$$T_n f \overset{S}{\rightarrow} f.$$

Applying this idea to $|f| \pm f$ we have $T_n f \overset{S}{\rightarrow} f$ for all $f \in N$ which proves the theorem.
REFERENCES

