A CHARACTERIZATION OF NEWTON MAPS

Arno Berger and Theodore P. Hill

Department of Mathematics and Statistics
University of Canterbury
Private Bag 4800
Christchurch, New Zealand

Report Number: UCDMS2005/11 NOVEMBER 2005
A characterization of Newton maps

Arno Berger*
Department of Mathematics and Statistics
University of Canterbury
Christchurch, New Zealand
arno.berger@canterbury.ac.nz

and

Theodore P. Hill†
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160 USA
hill@math.gatech.edu

28th November 2005

Abstract

Conditions are given for a \(C^l \) map \(T \) to be a Newton map, that is, the map associated with a differentiable real-valued function via Newton's method. For finitely differentiable maps and functions, these conditions can only be necessary, but in the smooth case, i.e. for \(l = \infty \), they are also sufficient. The characterization rests upon the structure of the fixed point set of \(T \), and it is best possible as is demonstrated through examples.

Key words and phrases: Newton's method, Newton map, discrete dynamical system, fixed point set, attracting fixed point.

1 Introduction

Newton's method (NM) for computing successive approximations of zeros of functions is one of the most widely used methods in all of applied mathematics; variants and generalizations also play a prominent role in numerous other disciplines [2, 3, 8, 10, 11]. Conceptually, NM becomes especially transparent within a dynamical systems context. The purpose of this brief note is to characterize, in the simplest possible setting, the local properties of the dynamical systems thus encountered.

*Partially supported by a Humboldt Fellowship.
†Partially supported by a National Security Agency Grant.
Throughout, let $f : I \to \mathbb{R}$ be a differentiable function, defined on some open interval $I \subset \mathbb{R}$, and denote by N_f its associated NM transformation, that is

$$N_f(x) = x - \frac{f(x)}{f'(x)}, \quad \forall x \in I : f'(x) \neq 0; \quad (1)$$

for N_f to be defined for every $x \in I$, set $N_f(x) := x$ whenever $f'(x) = 0$.

NM for finding roots (zeros) of f, i.e., real numbers x^* with $f(x^*) = 0$, amounts to picking an initial point $x_0 \in I$ and iterating N_f, thus generating the sequence

$$x_n = N_f(x_{n-1}) = N^n_f(x_0), \quad \forall n \in \mathbb{N};$$

here and throughout, for any map $T : I \to \mathbb{R}$ and any $n \in \mathbb{N}, T^n(x) = T(T^{n-1}(x))$, provided that $T^{n-1}(x) \in I$, and $T^0(x) = x$. Note that $N_f(x) = x$ precisely if $f(x)f'(x) = 0$. Thus for $f(x_n)f'(x_n) = 0$, and only then, does NM terminate at x_n: If $f(x_n) = 0$, a root has been found, and otherwise (1) breaks down due to a horizontal tangent to the graph of f at x_n (see Figure 1).

![Figure 1](image)

Figure 1: Visualizing NM: The first few iterates x_1, x_2, x_3 are found graphically, both by means of tangents to the graph of f (broken line) and via the graph of N_f (solid line). Note how the point x_2 with $f'(x_2) = 0$ causes N_f to have a discontinuity.

Clearly, if (x_n) converges to x^*, say, and if N_f is continuous at x^*, then $N_f(x^*) = x^*$, i.e., x^* is a fixed point of N_f, and $f(x^*) = 0$. (The trivial alternative $f \equiv$ const. is tacitly excluded here, see Lemma 3 below.) It is this correspondence between the roots of f and the fixed points of N_f that suggests that NM be studied as a dynamical system. Under a mild assumption, each (isolated) fixed point x^* is attracting, that is, $\lim_{n \to \infty} N^n_f(x_0) = x^*$ for all x_0 sufficiently close to x^*. (For x_0 further away from any root, the sequence (x_n) may exhibit a considerably more complicated long-term behavior [2, 3, 11].) This aspect of NM is put into perspective by the main result of the present note, Theorem 10 below, which completely characterizes the local dynamical properties of N_f.}

2
The definition of a Newton map given below entails a relationship between the analytic properties of a function \(f \) and its associated NM transformation \(N_f \), respectively. It is a simple fact, rarely alluded to in studies of NM, that generally these properties are quite independent. On the one hand, the \(C^1 \) function \(f(x) = |x|^{3/2} \), which is not \(C^2 \), has a \(C^\infty \) NM transformation, namely \(N_f(x) = \frac{1}{3} x \). On the other hand, \(N_f \) may lack decent analytic properties even if \(f \) is smooth.

Example 1. It is easily seen that the function
\[
 f(x) = \begin{cases}
 \exp(-x^{-2} + |x| + \cos(x^{-2})) & \text{if } x \neq 0, \\
 0 & \text{if } x = 0,
 \end{cases}
\]
is \(C^\infty \), and both \(f \) and \(f' \) vanish only at \(x^* = 0 \). Nevertheless
\[
 -1 = \liminf_{x \to 0} N_f(x) < \limsup_{x \to 0} N_f(x) = 1,
\]
hence \(N_f \) is not even continuous at \(x^* \).

Since \(N_f \) may fail to be continuous even if \(f \) is \(C^\infty \), in order to ensure the applicability of NM, some explicit assumption on the smoothness of \(N_f \) has to be imposed. To neatly formulate such conditions, let \(N_\infty = \mathbb{N} \cup \{\infty\} \) and stipulate that \(\infty^{-1} := 0 \) as well as \(\infty \pm j = \infty \) and \(j < \infty \) for all \(j \in \mathbb{N} \). In view of (1), for \(N_f \) to be \(C^l \) for some \(l \in N_\infty \), one might demand that \(f \) be at least \(C^{l+1} \), but this assumption has just proved neither necessary nor sufficient. Simply imposing further conditions on \(N_f \) also seems problematic as long as it is not clear whether any such condition can be met for a reasonably large class of functions. Thus it is inevitable to address in some generality the following inverse problem: Given a \(C^1 \) map \(T \), does there exist a function \(f \) such that \(T = N_f \)?

Definition 2. Let \(I \subset \mathbb{R} \) be an open interval, and \(l \in N_\infty \). A map \(T \in C^l(I) \) is called a *Newton map* (associated with \(f \)), if \(T = N_f \) for some differentiable function \(f : I \to \mathbb{R} \).

Evidently, not every \(T \in C^l(I) \) is a Newton map, not even if \(l = \infty \), as the trivial example \(T(x) = -x \) shows, for which every \(f \) with \(N_f = T \) lacks differentiability at \(x^* = 0 \).

As will become clear shortly, the question raised above does not have a satisfactory answer for finitely differentiable maps. However, in the smooth case, i.e. for \(l = \infty \), there is a simple characterization of Newton maps, as provided by Theorem 10. Statement and proof of this main result are preceded by a few simple preliminaries. For any map \(T \), denote by \(\text{Fix}(T) \) the set of fixed points of \(T \), that is, \(\text{Fix}(T) := \{x \in I : T(x) = x\} \), and say that \(\text{Fix}(T) \) is *attracting* if \(\lim_{n \to \infty} T^n(x_0) \in \text{Fix}(T) \) for all \(x_0 \) sufficiently close to \(\text{Fix}(T) \).

Lemma 3. Let \(f : I \to \mathbb{R} \) be differentiable, and assume that \(N_f \) is continuous. Then \(\text{Fix}(N_f) \) is either empty or a (possibly one-point) interval; in the latter case,
\[
 \limsup_{x \to x^*} \frac{N_f(x) - x^*}{x - x^*} = \delta \quad \text{for some } \delta \in [0, 1]
\]
holds for every \(x^* \in \text{Fix}(N_f) \).

Proof. It will first be proved that both sets \(Z_0 := \{x \in I : f(x) = 0\} \) and \(Z_1 := \{x \in I : f'(x) = 0\} \) of zeros of \(f \) and \(f' \), respectively, are (possibly empty or one-point) subintervals of \(I \). Moreover, if \(Z_1 \neq I \), that is, if \(f \) is not constant, then \(Z_1 \subset Z_0 \); in fact, the two
sets coincide unless \(Z_0 \) contains exactly one point, in which case \(Z_1 \) may be empty. Since \(\text{Fix}[N_f] = Z_0 \cup Z_1 \), the first part of the lemma follows immediately from this.

If \(Z_1 = I \) then \(\text{Fix}[N_f] = I \), so let \(Z_1 \neq \emptyset \) be different from \(I \). Pick \(a \in Z_1 \), assume \(f(a) \neq 0 \) and, without loss of generality, that \(b \) := \(\sup \{ x \geq a : f(y) = f(a) \text{ for all } y \in [a,x] \} \) belongs to \(I \). Clearly, \(f(b) = f(a) \) and \(f'(b) = 0 \), hence \(N_f(b) = b \). By the Mean Value Theorem there exists a sequence \(b_n \searrow b \) such that \(0 < |f'(b_n)| \leq 1 \) for all \(n \). But then

\[
\lim \inf_{n \to \infty} |N_f(b_n) - b| \geq \lim \inf_{n \to \infty} |f(b_n)| = |f(b)| = |f(a)| > 0,
\]
clearly contradicting the continuity of \(N_f \). Therefore \(f(a) = 0 \), hence \(Z_1 \subseteq Z_0 \). Since the set \(Z_0 \) is closed, it contains, with any two points, the whole segment joining these points. Thus \(Z_0 \) is an interval. If \(Z_0 \) is not a singleton then \(Z_0 \subset Z_1 \) and therefore \(Z_0 = Z_1 \). The latter equality also holds if \(Z_0 \) is one-point because \(Z_1 \neq \emptyset \). Finally, if \(Z_1 \) is empty then clearly \(Z_0 \) cannot contain more than one point.

Assertion (2) is trivially true if \(x^* \) is an interior point of \(\text{Fix}[N_f] \). Without loss of generality therefore assume that \(x^* \) is a, say, right boundary point of \(\text{Fix}[N_f] = Z_0 \). Choose \(\delta > 0 \) so small that \(J := [x^*, x^* + \delta] \subseteq I \) and, for \(0 < t \leq \delta \), let

\[
h(t) := \frac{N_f(x^* + t) - x^*}{t} ; \tag{3}
\]
the function \(h \) is continuous on \([0, \delta]\), and \(h(t) \neq 1 \) for all \(t > 0 \). Since \(x \neq N_f(x) \) for \(x \in J \),

\[
\frac{f'(x)}{f(x)} = \frac{1}{x - N_f(x)}, \quad \forall x \in J,
\]
which after integrating both sides from \(x \) to \(x^* + \delta \), and using the auxiliary function \(h \) defined in (3), can be written as

\[
f(x) = f(x^* + \delta) \exp \left(-\int_{x-x^*}^{\delta} \frac{1}{1-h(t)} \frac{dt}{t} \right), \quad \forall x \in J . \tag{4}
\]
Assume \(f(x^* + \delta) > 0 \) without loss of generality. If \(h(t) > 1 \) for all \(t > 0 \) then (4) implies that \(f(x^*) \neq 0 \), contradicting \(x^* \in Z_0 \). Thus \(h(t) < 1 \) for all \(t > 0 \), and in particular

\[
\lim \sup_{x \to x^*} h(t) = \lim \sup_{x \to x^*} \frac{N_f(x) - x^*}{x - x^*} \leq 1 .
\]
Fix \(j \in \mathbb{N} \). Dividing (4) by \((x - x^*)^j = \delta^j \exp \left(-j \int_{x-x^*}^{\delta} t^{-1} dt \right) \) yields

\[
(x - x^*)^{-j} f(x) = f(x^* + \delta) \delta^{-j} \exp \left(\int_{x-x^*}^{\delta} \frac{j - 1 - jh(t)}{1-h(t)} \frac{dt}{t} \right), \quad \forall x \in J . \tag{5}
\]
To bound \(\lim \sup_{x \to x^*} h(t) \) from below, pick \(\varepsilon > 0 \) and assume that \(h(t) < -\varepsilon \) for all sufficiently small \(t > 0 \). In this case, (5) with \(j = 1 \) shows that

\[
(x - x^*)^{-1} f(x) \geq f(x^* + \delta) \delta^{-1} \frac{\varepsilon}{1+\varepsilon} (x - x^*) \frac{\varepsilon}{1+\varepsilon} \to \infty \text{, as } x \searrow x^* ,
\]
which clearly contradicts the differentiability of \(f \) at \(x^* \). Since \(\varepsilon > 0 \) was arbitrary, \(\lim \sup_{x \to x^*} h(t) \geq 0 \), and the proof is complete. \(\square \)

Remark 4. (i) Lemma 3 should be contrasted with the simple fact that for every closed set \(A \subseteq \mathbb{R} \) there exists a \(C^\infty \) map \(T \) with \(T(I) \subset I \) and \(\text{Fix}[T] = A \cap I \).

(ii) Under the conditions of Lemma 3 there is no analogue to (2) for the corresponding \(\text{liminf} \) which, as simple examples show, can be any number between, and including, the trivial bounds \(-\infty \) and \(\delta \).
As pointed out earlier, the applicability of NM rests on the correspondence between the roots of f and the fixed points of NJ and the attractiveness of the latter. Mere continuity of NJ does not guarantee that Fix[NJ] is attracting.

Example 5. Consider the C^1 function

$$f(x) = \begin{cases} |x|^{\frac{1}{3}} \exp(-\int_0^{|x|^{-1}} t^{-1} \sin t \, dt) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

for which the associated NM transformation

$$N_f(x) = \begin{cases} \frac{1 + 2 \sin(|x|^{-1})}{3 + 2 \sin(|x|^{-1})} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

is continuous yet obviously not C^1. The only fixed point of N_f, and correspondingly the only root of f and f', is $x^* = 0$. Since, for every $j \in \mathbb{N}$, the points $\pm \frac{2}{3}(4j - 1)^{-1}$ are 2-periodic, Fix[N_f] = {0} is not attracting.

Thus while Fix[N_f] is topologically simple whenever N_f is continuous, to make NM practical for approximating zeros, more smoothness is required. Only the case of N_f being at least C^1 will therefore be considered from now on. (For the same reason, the legitimate case $l = 0$ has been excluded from Definition 2.) Also, the properties of N_f, albeit not completely determined by the smoothness of f, do depend on the latter. To describe this dependence, for every $k \in \mathbb{N}_\infty$, define the set

$$A_k := \{0, \frac{1}{2}, \frac{2}{3}, \ldots, 1 - k^{-1}\} \cup [1 - k^{-1}, 1],$$

and note that $[0, 1] = \Delta_1 \supset \Delta_2 \supset \ldots \supset \Delta_\infty = \{1 - j^{-1} : j \in \mathbb{N}_\infty\}$.

Lemma 6. Let $f : I \to \mathbb{R}$ be differentiable, and assume that $N_f \in C^1(I)$. Then Fix[N_f] is either empty or an attracting (possibly one-point) interval. Moreover, if Fix[N_f] $\neq \emptyset$ and $f \in C^k(I)$ with $k \in \mathbb{N}_\infty$ then

$$N_f(x) \in \delta \text{ for some } \delta \in A_k.$$

Proof. The assertions are trivially true if f is constant or Fix[N_f] = \emptyset. Therefore assume that f is not constant and Fix[N_f] is not empty, hence a subinterval of I, by Lemma 3. If x^* is an interior point of Fix[N_f] then $N_f^\prime = 1$ in a neighborhood of x^*, and the assertion is again true. Thus assume without loss of generality that x^* is a right boundary point of Fix[N_f]. According to Lemma 3, $N_f^\prime(x^*) \in \Delta_1$, so x^* obviously is attracting from the right, unless perhaps for $N_f(x^*) = 1$. In the latter case, with the notations introduced in the proof of Lemma 3, the function h according to (3), supplemented by $h(0) := N_f^\prime(x^*) = 1$ is continuous on $[0, \delta]$ and can be written as $h(t) = 1 - H(t)$ where H is also continuous on $[0, \delta]$, and $H(t) \neq 0$ unless $t = 0$. With this, (4) takes the form

$$f(x) = f(x^* + \delta) \exp \left(-\int_{x^*}^{x^* + \delta} \frac{dt}{tH(t)} \right), \quad \forall \ x \in J.$$

Since $f(x^*) = 0$ and $f(x^* + \delta) \neq 0$, the integral $\int_0^\delta \frac{dt}{tH(t)}$ must diverge to $+\infty$. As H is continuous and, except possibly at $t = 0$, does not change sign, $H(t) > 0$ and so $h(t) < 1$ whenever $0 < t \leq \delta$. From $N_f(x^* + t) - x^* = th(t) < t$ and $h(0) = 0$ it follows that
If $x^* < N_f(x_0) < x_0$ and therefore $N_f^n(x_0) \setminus x^*$ provided that $x_0 \in J$. In other words, x^* is attracting from the right.

It remains to verify (7) for $f \in C^k(I)$. To this end, assume first that $k < \infty$ and $f(x^*) = f'(x^*) = \ldots = f^{(k)}(x^*) = 0$. In this case, since f is C^k, the left-hand side in (5) with $j = k$ tends to a finite limit as $x \searrow x^*$. Consequently,

$$\lim_{x \searrow 0} \int_x^t \frac{k - 1 - kh(t)}{1 - h(t)} \frac{dt}{t} < +\infty.$$

If $h(0) < 1 - k^{-1}$, then the integrand in (8) would eventually be positive near $t = 0$, which clearly is impossible. Therefore $h(0) \geq 1 - k^{-1}$. Since $h(0) \leq 1$ by the same argument,

$$N_f^n(x^*) = h(0) \in [1 - k^{-1}, 1] \subset \Delta_k.$$

If $k = \infty$ and $f^{(j)}(x^*) = 0$ for all $j \in \mathbb{N}$ then similar reasoning shows that $N_f^n(x^*) \in \bigcap_{j \in \mathbb{N}} [1 - j^{-1}, 1] = \{1\} \subset \Delta_\infty$.

Finally assume that $f(x^*) = f'(x^*) = \ldots = f^{(j)}(x^*) = 0$ yet $f^{(j+1)}(x^*) \neq 0$ for some j with $0 \leq j < k$. The same argument as before with k replaced by j shows that $N_f^n(x^*) \in [1 - (j + 1)^{-1}, 1]$. If $h(0) > 1 - (j + 1)^{-1}$ then (5) with j replaced by $j + 1$ would imply that $\lim_{x \searrow x^*} (x - x^*)^{-(j+1)} f(x) = 0$, which contradicts $f^{(j+1)}(x^*) \neq 0$. Thus $N_f^n(x^*) = h(0) = 1 - (j + 1)^{-1} \in \Delta_\infty \subset \Delta_k$.

Remark 7. Lemma 6 is best possible in the following sense: For every $k \in \mathbb{N}_\infty$ and $\delta \in \Delta_k$ there exists a C^k function f with $f \in C^1$ having a single fixed point x^* such that $N_f^n(x^*) = \delta$. For $k \in \mathbb{N}$ and $\delta \in \Delta_k \setminus \{1\}$ let $\gamma = (1 - \delta)^{-1}$ and consider the function

$$f(x) = \begin{cases} x^\gamma \left(1 + \frac{1}{2k+4} x^{(1+\gamma)(1+k)} \sin(x^{-\gamma})\right) & \text{if } 0 < |x| < 1, \\ 0 & \text{if } x = 0, \end{cases}$$

where, for non-integer γ, each argument x has to be replaced by $|x|$. Taking $I =]-1, 1[$, it is readily checked that $f \in C^k(I)$ and $N_f \in C^1(I)$. Moreover, $x^* = 0$ is the only fixed point of N_f in I, and $N_f^n(x^*) = 1 - \gamma^{-1} = \delta$. For $\delta = 1$, an example is provided by the C^k function $f(x) = \exp(-|x|^{-\gamma}) + \frac{1}{2} \exp(-(k + 4)|x|^{-\gamma}) \sin(\exp(|x|^{-\gamma}))$ for which $N_f \in C^1$, has $x^* = 0$ as its only fixed point, and $N_f^n(x^*) = 1$. Simple examples in the case $k = \infty$ are $f(x) = x^\gamma$ for $\delta < 1$, and $f(x) = \exp(-|x|^{-\gamma})$ for $\delta = 1$, respectively.

An important special case for which Lemma 6 can be strengthened is the case of a root of finite multiplicity. Recall that $x^* \in I$ is a root of $f \in C^k(I)$ of multiplicity $j \in \mathbb{N}$ if $f(x) = (x - x^*)^j g(x)$ for all $x \in I$, where $g \in C^k(I)$ and $g(x^*) \neq 0$.

Corollary 8. Let x^* be a root of $f \in C^k(I)$ of finite multiplicity j. Then, for some open interval $J \subset I$ containing x^*, $N_f \in C^{k-1}(J)$, and $N_f^n(x^*) = 1 - j^{-1}$; in particular, Fix $[N_f] \cap J = \{x^*\}$ is attracting.

Proof. Since $f(x) = (x - x^*)^j g(x)$ for some $g \in C^k$ with $g(x^*) \neq 0$,

$$N_f(x) - x^* = (x - x^*) \frac{(j - 1)g(x) + (x - x^*)g'(x)}{jg(x) + (x - x^*)g'(x)} = (x - x^*) h(x),$$

where h is C^{k-1} on some open interval $J \subset I$ containing x^*, and $N_f^n(x^*) = h(x^*) = 1 - j^{-1}$. Thus, for J chosen sufficiently small, Fix $[N_f] \cap J = \{x^*\}$, and the fixed point x^* clearly is attracting.

6
Lemma 6 contains necessary conditions for a map to be Newton. In general it would be too optimistic to expect that every $T \in C^1(I)$ whose fixed point set is attracting and satisfies (7) were a Newton map associated with some $f \in C^k(I)$.

Example 9. Let $I =]-1, 1[$ and consider the map

$$T(x) = \begin{cases} \frac{x}{\log |x|} & \text{if } 0 < |x| < 1, \\ 0 & \text{if } x = 0, \end{cases}$$

which has $x^* = 0$ as its only, attracting fixed point and, with $T'(x^*) := 0$, is C^1 on I. Obviously $T'(x^*) \in \Delta_k$ for all $k \in \mathbb{N}_\infty$. Suppose that $N_f = T$ for some $f \in C^k(I)$. Then, with some nonzero constant C,

$$f(x) = Cx(1 - \log x), \quad \forall x : 0 < x < 1.$$

Evidently, this function cannot be extended to even a differentiable function on I. Thus $N_f \neq T$ for every $f \in C^k(I)$. The fact that in this example T is barely C^1 is not important, as it is easy to find similar examples with T showing any finite degree of differentiability: For every $l \in \mathbb{N}$ (and $k \in \mathbb{N}_\infty$) there exist maps $T \in C^l(I)$ such that $T'(\text{Fix}[T]) = \{\delta\}$ with $\delta \in \Delta_k$, yet $N_f \neq T$ for all $f \in C^k(I)$.

Example 9 shows that there is no hope to reverse Lemma 6, not even if N_f is assumed to be more regular than C^1. However, the situation is much clearer for smooth maps, that is, for $l = \infty$. In this case, the converse of Lemma 6 does actually hold, i.e., the stated conditions are also sufficient.

Theorem 10. Let $k \in \mathbb{N}_\infty$, and suppose $T \in C^\infty(I)$. Then T is a Newton map, associated with $f \in C^k(I)$, if and only if $\text{Fix}[T]$ either is empty or an attracting (possibly one-point) interval, and

$$T'(\text{Fix}[T]) = \{\delta\}, \quad \text{for some } \delta \in \Delta_k. \quad (10)$$

Moreover, the function f is uniquely determined up to a multiplicative constant if either $\delta \in \{0, \frac{1}{2}, \frac{1}{3}, \ldots, 1 - k^{-1}\} \setminus \{1\}$ or the set $I \setminus \text{Fix}[T]$ is connected.

Proof. Only the sufficiency of the stated conditions, and the uniqueness assertion have yet to be proved. To this end, three cases will be distinguished; throughout let $g(x) := x - T(x)$.

Case 1: Assume that $\text{Fix}[T] = \emptyset$. Then g is nonvanishing and C^∞ on I, and so is

$$f(x) = \exp \left(\int_{\xi}^{x} \frac{dt}{g(t)} \right), \quad \forall x \in I,$$

where ξ is any point in I. Since g is C^∞ and does not vanish on I, the solution f of the first-order ODE $f'/f = 1/g$, or equivalently, $N_f = T$, is unique up to multiplication by a constant.

Case 2: Assume that $x^* \in \text{Fix}[T]$ and $T'(x^*) = \delta$ with $\delta \in \Delta_k \setminus \{1\}$. Clearly this implies that $\text{Fix}[T] = \{x^*\}$, and T can be written as

$$T(x) = x^* + \delta(x - x^*) + (1 - \delta)(x - x^*)^2h(x),$$

with a uniquely determined $h \in C^\infty$. Note that $(x - x^*)h(x) \neq 1$ for all $x \in I$. Let $\gamma = (1 - \delta)^{-1}$, pick points $x^-, x^+ \in I$ with $x^- < x^* < x^+$, and define $f : I \to \mathbb{R}$ by

$$f(x) := \begin{cases} c^+(x^+ - x^*)^\gamma \exp \left(-j_{x^+}^{x} \frac{dt}{g(t)} \right) & \text{if } x > x^+, \\ 0 & \text{if } x = x^*, \\ c^-(x^* - x^-)^\gamma \exp \left(j_{x^*}^{x^-} \frac{dt}{g(t)} \right) & \text{if } x < x^*, \end{cases} \quad (11)$$
here c^+, c^- are nonzero real constants. Since x^* is the only fixed point of T in I it follows that $f \in C^\infty(I \setminus \{x^*\})$, and $N_f = T$. By using the identity
\[
(x - x^*)^{-\gamma} = \left(x^+ - x^*\right)^{-\gamma} \exp\left(-\gamma \int_{x^+}^{x} \frac{dt}{t - x^*}\right), \quad \forall x > x^*,
\]
a short computation yields
\[
(x - x^*)^{-\gamma}f(x) = c^+ \exp\left(-\gamma \int_{x}^{x^+} \frac{h(t)dt}{1 - (t - x^*)h(t)}\right), \quad \forall x > x^*.
\]
An analogous computation for $x < x^*$ yields
\[
(x^* - x)^{-\gamma}f(x) = c^- \exp\left(\gamma \int_{x^-}^{x} \frac{h(t)dt}{1 - (t - x^*)h(t)}\right), \quad \forall x < x^*.
\]
Since the integrand $\frac{h(t)}{1 - (t - x^*)h(t)}$ is C^∞ on I, both one-sided limits for $|x - x^*|^{-\gamma}f(x)$, as x approaches x^*, are finite and nonzero. If $\delta = 1 - j^{-1}$ for some $1 \leq j \leq k$ then, for f to be C^j on I, these two one-sided limits have to be equal or, equivalently,
\[
c^- = (-1)^j c^+ \exp\left(-j \int_{x}^{x^+} \frac{h(t)dt}{1 - (t - x^*)h(t)}\right)
\]
must hold. In the latter case, for all $x \in I$,
\[
f(x) = c^+(x - x^*)^j \exp\left(-j \int_{x}^{x^+} \frac{h(t)dt}{1 - (t - x^*)h(t)}\right),
\]
which shows $f \in C^k(I)$. Since the two-parameter family defined in (11) contains all solutions of $N_f = T$ on $x < x^*$ and $x > x^*$ separately, the solution of $N_f = T$ is unique up to multiplication by a nonzero constant if $\delta \in \{0, \frac{1}{2}, \frac{1}{3}, \ldots, 1 - k^{-1}\}\{1\}$.

If, on the other hand, $\delta > 1 - k^{-1}$, and correspondingly $\gamma > k$, then $f \in C^k(I)$ for any choice of the constants c^+, c^-, and $f(x^*) = f'(x^*) = \ldots = f^{(k)}(x^*) = 0$.

Case 3: Assume that $T'(\text{Fix} [T]) = \{1\}$. If $\text{Fix} [T] = I$, then trivially T is the Newton map associated with $f \equiv 1$. Without loss of generality, therefore, assume that x^* is the right boundary point of $\text{Fix} [T]$. In this case
\[
T(x) = x - (x - x^*)^2 h(x),
\]
where $h \in C^\infty(I)$ and $h(x) > 0$ whenever $x > x^*$, and $h(x) = 0$ for all $x \in \text{Fix} [T]$; in particular, therefore, $h(x^*) = 0$. As before, pick $x^+ \in I$ with $x^+ > x^*$ and, analogously to (11), let
\[
f^+(x) := \begin{cases}
\exp\left(-\int_{x}^{x^+} \frac{dt}{g(t)}\right) & \text{if } x > x^*, \\
0 & \text{if } x \leq x^*.
\end{cases}
\]
Using (12), with γ replaced by j, and recalling that $g(t) = (t - x^*)^2 h(t)$, it follows that $\lim_{x \to x^*}(x - x^*)^{-j} f^+(x) = 0$ for all $j \in \mathbb{N}$. Thus $f^+ \in C^\infty(I)$ and $N_{f^+}(x) = T(x)$ whenever $x > x^*$ or $x \in \text{Fix} [T]$. If $\text{Fix} [T]$ has a left boundary point in I as well, then define f^- in a "mirrored" manner and let $f = c^+ f^+ + c^- f^-$ with nonzero constants c^+, c^-. Clearly, $f \in C^\infty(I)$ and $N_f = T$ for any choice of c^+, c^-. The assertion concerning uniqueness up to multiplication by a constant is now obvious from the three cases detailed above. \qed
Corollary 11. Suppose $T \in C^\infty(I)$. Then T is a Newton map, associated with $f \in C^\infty(I)$, if and only if $\text{Fix}[T]$ is either empty or an attracting (possibly one-point) interval, and

$$T'(\text{Fix}[T]) = \{1 - j^{-1}\}, \quad \text{for some } j \in \mathbb{N}_\infty. \quad (13)$$

Moreover, f is uniquely determined up to a multiplicative constant unless $j = \infty$ in (13) and the set $I \setminus \text{Fix}[T]$ is not connected.

The next corollary requires T to be not only C^∞ but even real-analytic. Recall that a map is real-analytic if it can be represented by its Taylor’s series in a neighborhood of every point in its domain. Real-analytic Newton maps are especially easy to characterize. Although analyticity is a strong assumption indeed, the class of real-analytic functions is of great historical [7, 11] and practical relevance, as it contains for example all rational and trigonometric functions and compositions thereof [1, 6]. If f is real-analytic then so is N_f, provided the latter map is continuous [1, 2].

Corollary 12. Let T be real-analytic on I, and $T(x) \neq x$. Then T is a Newton map, associated with a real-analytic function f, if and only if T has at most one fixed point in I, and, in case a fixed point x^* exists, $T'(x^*) = 1 - j^{-1}$ for some $j \in \mathbb{N}$. Moreover, f is unique up to multiplication by a constant.

Example 13. (i) For $f(x) = \exp(-x)$ and $f_j(x) = x^j$, $j \in \mathbb{N}$, clearly $N_f(x) = x + 1$ and $N_{f_j}(x) = (1 - j^{-1})x$, respectively. Thus all cases contained in Corollary 12 can occur.

(ii) The much-studied logistic map $F_\mu(x) = \mu x(1-x)$ is a Newton map associated with a real-analytic function on $I = [0, 1]$ if and only if $\mu \in M$, with $M := [\infty, 1] \cup \{1 + j^{-1} : j \in \mathbb{N}\}$. Indeed, $F_\mu = N_{f_\mu}$ with functions

$$f_\mu(x) = \left(\frac{x}{\mu x + 1 - \mu}\right)^{(1-\mu)^{-1}} \quad \text{for } \mu \neq 1,$$

and $f_1(x) = \exp(-x^{-1})$. Note that while f_μ is real-analytic on I for all $\mu \in M$, it is only in the trivial case $\mu = 0$ that f_μ could be extended to a real-analytic function such that $N_{f_\mu}(x) = F_\mu(x)$ for all $x \in \mathbb{R}$. Consequently, F_μ is not a Newton map on \mathbb{R} unless $\mu = 0$.
Remark 14. (i) It must be emphasized that Theorem 10 and Corollaries 11, 12 do not force the set $\text{Fix}[T]$ of a Newton map $T \in C^\infty(I)$ to attract all points in I. In fact, the map T may at the same time exhibit some stable dynamical feature other than a fixed point. For a concrete example consider the (real-analytic) function

$$f(x) = \frac{3 + x^2}{1 + x^2},$$

for which the associated Newton map

$$N_f(x) = \frac{-4x^3}{3 + x^4}$$

has the stable (in fact, super-attracting) 2-periodic orbit $\{\sqrt{3}, -\sqrt{3}\}$.

(ii) It is well known that if f is a rational function (i.e., a quotient of two polynomials) then N_f can be extended uniquely to (and studied appropriately as) a smooth function \tilde{N}_f on \mathbb{R}, the one-point compactification of \mathbb{R}. Albeit finite, $\text{Fix}[\tilde{N}_f]$ generally contains more than one point [2, 3]. Corollary 12, however, clearly still applies to $\text{Fix}[\tilde{N}_f] \cap I$ for every interval I on which f is real-analytic.

The above results about Newton maps have an immediate bearing on the distribution of the floating-point fractions of the iterates $x_n = N_f^n(x_0)$, that is, on the numerical data generated by NM. (See [9] for an account on the relevance of fraction parts distributions for practical computations.) In particular, this distribution depends significantly on the analytic properties of N_f discussed in this note; the interested reader is referred to [6] for details.

Acknowledgements

The first author wishes to thank the Johann Wolfgang von Goethe-Universität Frankfurt for its hospitality. The second author is grateful to the University of Leiden, and the Universität Bonn, for invitations to visit in April 2005, during which time some of this research was carried out.

References

