Automorphisms of Baer-Levi Semigroups

Inessa Levi, G. R. Wood
University of Canterbury

R. P. Sullivan
University of Western Australia

November 1981

Department of Mathematics
University of Canterbury
Christchurch
New Zealand

7. (September 1977) WAYLEN, P.C. Green functions in the early universe.

8. (November 1977) BEATSON, R.K. The asymptotic cost of Lagrange interpolatory side conditions in the space \(C(T) \).

10. (November 1977) BREACH, D.R. On the non-existence of \(5-(24,12,6) \) and \(4-(23,11,6) \) designs.

13. (September 1978) BRYANT, P.J. Nonlinear wave groups in deep water.

14. (September 1978) BREACH, D.R. Some \(2-(2n+1,n,n-1) \) designs with multiple extensions.

AUTOMORPHISMS OF BAER-LEVI SEMIGROUPS

Inessa Levi, R. P. Sullivan and G. R. Wood

Let T_X be the semigroup, under composition, of all transformations of the set X to itself, and G_X be the group, inside T_X, of all bijections of X. An automorphism ϕ of a semigroup S in T_X is said to have the inner automorphism property (i.a.p.) if the automorphisms of S are precisely those of the form $\phi(f) = hfh^{-1}$, for all f in S, where h is an element of G_X. There is a readily stated unsolved problem concerning T_X: determine all subsemigroups S of T_X which have the inner automorphism property.

Amidst research on this problem there are two landmarks, the works of Schreier [5] and Fitzpatrick and Symons [2]. Schreier showed that if S contains the semigroup of all constant maps I_X, then S has the i.a.p., while Fitzpatrick and Symons showed that for semigroups S containing G_X the i.a.p. holds.

A large family of semigroups (first considered in [1]) which are disjoint from I_X and G_X are the Baer-Levi semigroups. In this paper we show that such semigroups
also possess the i.a.p.

The family of Baer-Levi semigroups are defined in the following way. Let $|X|$, the cardinality of the set X, be p, and q be an infinite cardinal less than or equal to p. Then

$$BL(p,q) = \{ f \in \mathcal{T}_X : f \text{ is one-to-one and } |X \setminus R(f)| = q \}$$

is the Baer-Levi semigroup of type (p,q). All congruences on $BL(p,p)$ were found by Sutov [6], while those on $BL(p,q)$ were found by Lindsey and Madison [3].

Let $B(p,q) = \{ A \subseteq X : |A| = p \text{ and } |X \setminus A| = q \}$. We call $B(p,q)$ the family of all Baer-Levi sets of type (p,q). We view $B(p,q)$ as a partially ordered set, the order being given by set inclusion. A central part of our proof is a result of independent interest concerning $B(p,q)$, so we present it in the form of a lemma. For this we need a definition: a bijection H of $B(p,q)$ is said to be induced by the bijection h of X if $H(A) = h(A) = \{ h(x) : x \in A \}$ for every A in $B(p,q)$.

Lemma: Let H be a bijection of $B(p,q)$. Then H is induced if and only if H and H^{-1} are order-preserving.

Proof: If H is induced it is clear that H and H^{-1} are order-preserving. We show the converse in four steps.
1. Let \(A, B \in B(p,q) \) with \(A \subseteq B \) and \(|B \setminus A| \) finite.

Then \(|B \setminus A| = |H(B) \setminus H(A)| \).

If \(|B \setminus A| = n \), then \(|\{S: A \subseteq S \subseteq B\}| = 2^n \).

But \(H \) and \(H^{-1} \) are order preserving bijections so
\[|\{H(S): H(A) \subseteq H(S) \subseteq H(B)\}| = 2^n \] also. Thus
\[|\{T: H(A) \subseteq T \subseteq H(B)\}| = 2^n \] and hence \(|H(B) \setminus H(A)| = n \).

2. Given \(x \in X \) there exists a \(y \in X \) such that
\(H(B \cup \{x\}) = H(B) \cup \{y\} \) for every \(B \in B(p,q) \) with \(x \notin B \).

For brevity we write \(B \cup \{x\} \) as \(B \cup x \) in future. Take \(A \in B(p,q) \) with the given \(x \) not in \(A \). Step 1 and the fact that \(H \) is order preserving together imply
\(H(A \cup x) = H(A) \cup y \) for some \(y \) in \(X \).

We show \(H(B \cup x) = H(B) \cup y \) for every other \(B \in B \) with \(x \notin B \). This is done in three stages.

i) Case \(B \subseteq A \): Let \(H(B \cup x) = H(B) \cup z \). Now \(B \cup x \subseteq A \cup x \) so \(H(B \cup x) \subseteq H(A \cup x) \) or \(H(B) \cup z \subseteq H(A) \cup y \) so \(z \in H(A) \cup y \).

But \(z \notin H(A) \) (for then \(H(B \cup x) \subseteq H(A) \) whence \(B \cup x \subseteq A \), since \(H^{-1} \) is order preserving, a contradiction), so \(z = y \).

ii) Case \(A \cap B \in B(p,q) \): For this case we need the following small result: if \(H(C \cup x) = H(C) \cup y \), then
\(H(C \cup D \cup x) = X(C \cup D) \cup y \), where \(C \in B(p,q) \), \(C \cup D \in B(p,q) \), \(C \cap D = \phi \) and \(x \notin C \cup D \). The proof is as follows.
Suppose $y \in H(C \cup D)$. Certainly $H(C) \subseteq H(C \cup D)$ so $H(C \cup x) \subseteq H(C \cup D)$, hence $C \cup x \subseteq C \cup D$, a contradiction, so $y \not\in H(C \cup D)$. Now let $H(C \cup D \cup x) = H(C \cup D) \cup z$. We have $C \cup x \subseteq C \cup D \cup x$ so $H(C \cup x) \subseteq H(C \cup D \cup x)$ or $y \in H(C \cup D \cup x) = H(C \cup D) \cup z$. Since $y \not\in H(C \cup D)$, $y = z$.

Returning to the case $A \cap B \in B(p, q)$, we know $H((A \cap B) \cup x) = H(A \cap B) \cup y$ from i). Letting $C = A \cap B$ and $D = B \setminus A$ in the small result now gives $H(B \cup x) = H(B) \cup y$ as required.

iii) Case $A \cap B \not\in B(p, q)$: Suppose $q < p$. Then either $|A \cap B| = p$ and $|(A \cap B)'| \neq q$, whence $|A \cap B'| = |A' \cup B'| \neq q$, contradicting $|A'| = |B'| = q$, or $|A \cap B| < p$, whence $|(A \cap B)'| = |A' \cup B'| = p$, so one of $|A'|, |B'|$ is p, again a contradiction. Thus in this case we have $q = p$.

Then we can find a $C \in B(p, p)$ with $x \not\in C$ such that $A \cap C$ and $B \cap C \in B(p, p)$. Then $H(A \cup x) = H(A) \cup y$ implies $H(C \cup x) = H(C) \cup y$, using ii) and $A \cap C \in B(p, p)$. But in turn this implies $H(B \cup x) = H(B) \cup y$, using ii) and $B \cap C \in B(p, p)$.

We are now able to produce the required bijection of X:

Definition: Given $x \in X$, define a mapping $h : X \to X$ by $h(x) = y$, where $H(B \cup x) = H(B) \cup y$ for some $B \in B(p, q)$ with $x \in B$.
3. \(h \) is a well-defined bijection of \(X \).

Step 2 ensures \(h \) is well-defined. Now suppose \(h(x) = h(x') = y \), say and take \(B \in \mathcal{B}(p,q) \) with \(x, x' \in B \). Then

\[
H((B \cup x) \cup x') = H(B \cup x) \cup y = H(B) \cup y = H(B \cup x).
\]

Since \(H \) is one-to-one we must have \(x = x' \), so \(h \) also is one-to-one.

Finally, take \(y \in X \) and \(C \in \mathcal{B}(p,q) \) with \(y \in C \).
Consider \(H^{-1}(C \cup y) = H^{-1}(C) \cup x \), for some \(x \). Then

\[
H(H^{-1}(C) \cup x) = C \cup y \hspace{1cm} \text{so} \hspace{1cm} h(x) = y, \hspace{1cm} \text{or} \hspace{1cm} h \text{ is onto.}
\]

4. \(H \) is induced by \(h \).

We must show \(H(A) = h(A) \), for each \(A \in \mathcal{B}(p,q) \), where \(h(A) = \{h(x) : x \in A\} \). From the definition of \(h \) we at once have \(h(A) \subseteq h(A) \). Take \(y \in H(A) \).
Then \(H^{-1}(H(A) \setminus y) = A \setminus x \), for some \(x \in A \), so

\[
H(A \setminus x) = H(A) \setminus y \hspace{1cm} \text{or} \hspace{1cm} h(x) = y. \hspace{1cm} \text{Thus} \hspace{1cm} H(A) \subseteq h(A), \hspace{1cm} \text{so} \hspace{1cm} \text{equality follows.}
\]

THEOREM: \(BL(p,q) \) has the inner automorphism property.

PROOF: \(BL(p,q) \) is certainly \(G_x \)-normal, so it suffices to show that every automorphism \(\phi \) of \(BL(p,q) \) has the form \(\phi(f) = hfh^{-1} \), for all \(f \in BL(p,q) \), and some fixed bijection \(h \) of \(X \). This is carried out in four steps. Throughout, \(f, g \) and \(k \) are elements of \(BL(p,q) \).
1. \(R(f) \subseteq R(g) \) if and only if for each \(k \) such that \(kg = g \) we have \(kf = f \).

Suppose \(R(f) \subseteq R(g) \). Then \(kg = g \) implies \(k \) is the identity on \(R(g) \), so also on \(R(f) \). Hence \(kf = f \).

Suppose now \(R(f) \nsubseteq R(g) \) (= \(A \) say). Let \(\{B_1, B_2, \ldots\} \) be a partition of \(A' \) such that \(|B_i| = q \), and \(k_i : B_i \to B_{i+1} \) an arbitrary bijection, for each \(i \geq 1 \).

Then \(k \), given by \(k(x) = x \) for \(x \in A \) and \(k(x) = k_i(x) \) for \(x \in B_i \), each \(i \), lies in \(BL(p,q) \) and has fixed points precisely \(R(g) \). Thus \(kg = g \), yet \(kf \neq f \).

2. \(R(f) = R(g) \) if and only if \(R(\phi(f)) = R(\phi(g)) \)

Using the result of step 1 we immediately have that \(R(f) \subseteq R(g) \) if and only if \(R(\phi(f)) \subseteq R(\phi(g)) \), from which step 2 follows.

Thus the automorphism \(\phi \) gives rise in a natural way to a mapping of \(BL(p,q) \):

Definition: Given \(A \in B(p,q) \), define \(H(A) = R(\phi(f)) \), where \(f \) in \(BL(p,q) \) is such that \(R(f) = A \).

3. \(H \) is a well-defined bijection of \(B(p,q) \), with \(H \) and \(H^{-1} \) order-preserving.

That \(H \) is well-defined is the content of step 2.

Suppose \(A \neq B, A, B \in B(p,q) \). Then if \(R(f) = A \) and \(R(g) = B \) we have \(R(\phi(f)) \neq R(\phi(g)) \), by step 2, so \(H(A) \neq H(B) \), or \(H \) is one-to-one. Now take \(B \in B(p,q) \).
and f such that $R(\phi(f)) = B$. If $A = R(f)$ we must have $H(A) = R(\phi(f)) = B$, so H is onto.

Finally, the definition of H, together with the fact that $R(f) \subseteq R(g)$ if and only if $R(\phi(f)) \subseteq R(\phi(g))$, ensures that H and H^{-1} are order-preserving.

4. ϕ is inner.

From the lemma we now have that H is induced by a bijection h of X. We show that $\phi(f) = hfh^{-1}$ for each f in $BL(p,q)$.

Take such an f and an $x \in X$ and suppose $f(x) = y$. Choose A and B in $B(p,q)$ such that $A \subseteq B$ and $B \setminus A = \{x\}$, together with p and q in $BL(p,q)$ such that $R(p) = A$ and $R(q) = B$.

Now $R(q) \setminus R(p) = B \setminus A = \{x\}$ so $R(\phi(q)) \setminus R(\phi(p)) = H(B) \setminus H(A) = \{h(x)\}$. On the other hand, $R(fq) \setminus R(fp) = \{y\}$ so $R(\phi(fq)) \setminus R(\phi(fp)) = \{h(y)\}$. But since $R(\phi(fq)) \setminus R(\phi(fp)) = R(\phi(f)\phi(q)) \setminus R(\phi(f)\phi(p))$ we must have $\phi(f)h(x) = h(y) = hf(x)$. Thus $\phi(f) = hfh^{-1}$.

On completion of this work the authors discovered that the result has been announced in [4]. Schein's quite different proof, yet to appear, involves showing that ϕ permutes the subsemigroups $S_x = \{f \in BL(p,q) : f(x) = x\}$, where $x \in X$.
REFERENCES

