ON AN INVERSE PROBLEM FROM MAGNETIC RESONANCE ELASTIC IMAGING

David J.N. Wall1, Peter Olsson2, and Elijah E.W. van Houten3

\textit{Department of Mathematics and Statistics}
\textit{University of Canterbury}
\textit{Private Bag 4800}
\textit{Christchurch, New Zealand}

\textbf{Report Number: UCDMS2006/9} \hspace{1cm} \textbf{SEPTEMBER 2006}

1 Biomathematics Centre, Department of Mathematics & Statistics, University of Canterbury, Christchurch, New Zealand (David.Wall@canterbury.ac.nz)
2 Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden (Peter.Olsson@chalmers.se)
3 Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand (Eli.vanHouten@canterbury.ac.nz)
ON AN INVERSE PROBLEM FROM MAGNETIC RESONANCE ELASTIC IMAGING

DAVID J.N. WALL*, PETER OLSSON†, AND ELIJAH E.W. VAN HOUTEN‡

Abstract. The imaging problem of elastography is an inverse problem. The nature of an inverse problem is that it is ill-conditioned. We consider properties of the mathematical map which describes how the elastic properties of the tissue being reconstructed vary with the field measured by Magnetic Resonance Imaging (MRI). This map is a nonlinear mapping and our interest is in proving certain conditioning and regularity results for this operator which occurs naturally in this problem of imaging in elastography. In this treatment we consider the tissue to be linearly elastic, isotropic and spatially heterogeneous. We determine the conditioning of this problem of function reconstruction, in particular for the density and stiffness functions.

We examine the Fréchet derivative of the nonlinear mapping, which enables us to describe the properties of how the field affects the individual maps to the density and stiffness functions. We illustrate how use of the implicit function theorem can considerably simplify the analysis of Fréchet differentiability and regularity properties of this underlying operator.

We present new results which show that the stiffness map is mildly ill-posed, whereas the density map suffers from medium ill-conditioning. Computational work has been done previously to study the sensitivity of these maps but our work here is analytical. The validity of the Newton-Kantorovich methods for the computational solution of this inverse problem is directly linked to the Fréchet differentiability of the appropriate nonlinear operator, which we justify.

Key words. inverse problem, elastography, Fréchet differentiability

AMS subject classifications. 74J25, 45Q05, 45A05, 45E99

1. Introduction. This paper is concerned with developing the mathematical theory specifying the inverse problem from Magnetic Resonance (MR) elastography [8, 16]. A unique feature of this medical imaging technique is that it measures the field internally.

Our primary concern is with the conditioning of the inverse problem. To determine this it is necessary to look at the mathematical mapping properties prescribed by the physical phenomenon, namely elastodynamics. The explicit representation of this nonlinear map for the problem considered here is impossible, rather the map is described implicitly by the equations of elastodynamics. To generate a representation of the linearization of this map we use the implicit function theorem, a technique we have used in the past [6].

The first problem to ask might be: How to solve the inverse problem computationally? This is not addressed here although some of our formulations could be utilized computationally. The standard techniques currently used for this inverse problem range from finite element based optimization methods to direct operations made on filtered data [19, 13, 16, 8].

In this paper we address the mathematical formulation of the inverse problem with the aim of producing theoretical results on the conditioning of the inverse problem to aid the understanding of the results obtained from the aforementioned computational techniques. Associated with this is the central question necessary to be able to compare different techniques for solving the imaging problem of: How ill conditioned is the inverse problem? In this paper we consider the problem of conditioning of the inverse operator. All properties of the problem are determined by the mathematical properties of the map from the measured displacement field to the material functions which are required to be determined. This map is intrinsically tied to the equivalent map from the true displacement field to the material functions. Mathematically this can be stated as $T^{-1} : u \to v$. Here u is the true vector displacement field and v is the set of functions that are required to be reconstructed. It is important to realize this map is in general nonlinear, and this is true for all the inverse problems considered here. Associated with this map is its inverse $T : v \to u$, which maps the material functions to the displacement field. This is also a nonlinear map and may be described as a direct problem. This map can not be written explicitly but is determined implicitly from the mathematical equations describing the elastodynamic problem. It should be observed that the associated problem of determination of u given v is linear in the case considered here.

* Biomathematics Centre, Department of Mathematics & Statistics, University of Canterbury, Christchurch, 1, New Zealand (David.Wall@canterbury.ac.nz)
† Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden (Peter.Olsson@chalmers.se)
‡ Department of Mechanical Engineering, University of Canterbury, Christchurch, 1, New Zealand (Eli.vanHouten@canterbury.ac.nz)
In many inverse problems the operator \(T \) is a smoothing operator and by that we mean \(v \) can have have rapid variation or abrupt jumps but the effect on the displacement field is minimal. Perhaps this can be stated more clearly using the spatial frequency ideas by saying that the high frequency components of \(v \) have minimal effect on \(u \), when compared to low frequency components. In the forward map this does not cause a problem in the calculation of \(u \), but when the map is inverted as in the inverse problem it is not so straightforward. Another way of putting this in function space terminology is the operator \(T \) is a compact operator, and therefore for the inverse problem \(T^{-1} \) is unbounded.

For solution of the inverse problem it is important to first appreciate that the map \(T \) should be at least continuous, and a further requirement which is necessary in order to utilize iterative computational techniques for this nonlinear problem is that the nonlinear map be differentiable. This paper addresses all of the aforementioned questions. A recent publication [4] shows that the inverse map for a related time dependent problem, with boundary data, for the reconstruction of density and stiffness is Lipschitz continuous. We also note that time dependent inverse problems are usually better conditioned than their time harmonic counterparts.

Another question which may be asked is: What form of incident radiation should be specified to uniquely and best determine the various unknown material functions? This is an open question for most of the problems under consideration here. However, this question is of central importance to the reconstruction required in MR elastography techniques. Associated with this question is the uniqueness question: Is the inverse problem uniquely determined? Because of the nonlinearity of the map \(T \) uniqueness of solution of the inverse problem is a very difficult question and is not addressed here, but see [3].

In § 2 we derive the integral equation representation needed in the rest of the paper. The problem we analyze here is effectively converted to a scattering problem so that we do not have to worry about boundary effects. We claim that this makes no essential difference to the nature of our results and it adds transparency in that it reduces the complexity of the calculations. The boundary effects are analyzed in another publication.

In § 3 analysis of the direct problem map is performed, and this enables us to derive the Frechet derivatives of the nonlinear operator in § 4. These are given in equations (4.6), and (4.14) and are central to our analysis and also provide an explicit analytic expression for the partial Frechet derivatives of the map \(T \). These are the underlying partial derivatives utilized in any Newton-Kantorovich method for solving the inverse problem. The full Frechet differential is given in equation (4.23). Furthermore in § 4 the analysis of the conditioning of the inverse problem is found from these partial derivatives.

We shall define many integral operators in this paper and the notation scheme we chose is to use the variations on the symbols \(K \) and \(L \) for weakly and singular integral operators, respectively.

2. Fundamental Equations. Our concern here is with the problem when the media is isotropic, compressible, and linear. However the interest is in applying this technique to more general media so we keep the formulation as general as possible.

The mechanical state in the medium in \(\mathbb{R}^3 \), which has a spatially varying density \(\rho(x) \) and its elastic properties are described by a spatially varying stiffness tensor \(C(x) \), is defined by the elastic state \((\mathbf{r}, \mathbf{u}) \) where \(u(x) \) denotes the elastic displacement of the media and \(\mathbf{r}(x) \) denotes its resulting Cauchy stress tensor. The dynamic situation for time harmonic behaviour, \(\exp(\mathrm{i} \omega t) \), with angular frequency \(\omega \) in the medium is described by Navier's equation as

\[
\tau_{ij} + \omega^2 \rho(x)u_j = -\rho(x)f_i,
\]

where \(f \) is the body force producing the motion. Here we have used the comma notation to denote derivatives with respect to a Cartesian coordinate system; all subscripts in the sequel are to take on values from \(\{1, 2, 3\} \) as is appropriate for Cartesian coordinates in \(\mathbb{R}^3 \). As the medium is elastic the stress tensor is related to the displacement \(u \) by the stiffness tensor, \(C \), through Hooke's law as

\[
\tau_{ij} = C_{ijkl}(x)u_{kl}.
\]

Here we initially will assume for the medium that it is nothing more than a non-homogeneous, linearly elastic solid, so ensuring that only the basic symmetry properties are satisfied by \(C \).
Inverse MRI elastography

In order to write an integral representation for the displacement field in the medium we first introduce the Green state \([\Sigma, G]\), appropriate to a medium where the material parameters are homogeneous, and where the Green displacement tensor \(G_{ij}\) and its corresponding Green stress tensor \(\Sigma_{ijk}\) satisfy

\[
\Sigma_{ijk} + \omega^2 \rho^i \delta_{jk} = -\delta_{ij} \delta(x - x').
\]

Once again the Green stress tensor is related to the Green displacement by the stiffness tensor through Hooke’s law as

\[
\Sigma_{ijk} = C_{ijkl} G_{kl}(x, x').
\]

We emphasize here that the background material defining the state of the Green tensors, the mass density \(\rho^0\), and stiffness tensor \(C^0\) is homogeneous with appropriate material constants. This Green stress tensor with a constant background material will be used extensively in this paper. It will be necessary to calculate the stress with a Green tensor through the formula (2.4) but with different stiffness tensors, and so where it is necessary to assure the reader as to the dependence on a particular stiffness we append a superscript on the stress symbol to denote the stiffness under discussion as in (2.4).

We should note that when taking derivatives of the Green functions, which are of two arguments, the derivative notation is: if the derivative is with respect to a primed coordinate then we denote it by an appropriate primed index.

In order to analyze various integral operators that appear in our analysis knowledge of the properties of the kernels of the integral operators is essential. It turns out that these can be determined from knowledge of the Green function for an isotropic homogeneous medium so for explicit representation we discuss here the Green state for an isotropic medium. Furthermore, as is made apparent in Appendix 7, the dominant singularity of the kernels is determined by the static or time independent Green state. For completeness the nature of this singularity is discussed further in Appendix 7. The homogeneous isotropic medium can be described by the Lamé parameters \(\lambda\) and \(\mu\) so that the stiffness tensor becomes

\[
C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}).
\]

Then by Fourier transformation of (2.3) and (2.4) a concrete representation for the Green tensors can be found as

\[
G_{ij} = \frac{1}{4\pi \rho^0 \omega^2} \left[\partial_k \partial_l \left(\delta_{ik} \delta_{lj} g^{kl}(x, x') - \partial_i \partial_l \left(\delta_{ik} \delta_{lj} g^{kl}(x, x') - g^{kl}(x, x') \right) \right) \right],
\]

where \(g^{kl}(x, x') = \delta^{kl} - x^l x^k / |x - x'|\). The pressure and shear wave numbers are given respectively by

\[
\begin{align*}
\kappa &= \frac{\rho \omega^2}{\rho^0 (\lambda + 2\mu)}, \\
\kappa' &= \frac{\rho \omega^2}{\rho^0 \mu}.
\end{align*}
\]

We make the assumption that the heterogeneous region is a bounded simply connected region \(\Omega \subset \mathbb{R}^3\), such that the surface \(\mathcal{S} = \partial \Omega \in \mathbb{R}^3\). Then we will form our integral representation for the displacement field by the Betti-Rayleigh reciprocity principle which is derived via standard means by using the divergence theorem. Consider the tensor state formed from \([r, u]\) and \([\Sigma, G]\)

\[
p_{ij} = \Sigma_{ijk} u_k - \tau_{ij} G_{kj},
\]

with the divergence of this quantity given by

\[
\partial_{ij} = \Sigma_{ijk} u_k + \Sigma_{ijk} u_j - \tau_{ij} G_{kj} - \tau_{ij} G_{kj}.
\]

Now using the symmetry properties satisfied by the stiffness tensor it is seen that

\[
\tau_{ij} G_{kj} = C_{ijkl}(x) G_{lk} u_j.
\]

With use of the Navier equations (2.1), (2.3), the equation (2.4) plus the equation (2.8) in (2.7), together with the divergence theorem applied over a region bounded by a sphere with surface \(S_m\), of very large
radius, and a sphere with surface S_2 of radius E, both centred about x', we find that

\[
\int_{S_1 \cup S_2} t_k(x, x') dS = \int_\Omega \rho(x) f_j(x) G_{jk}(x, x') dV + \omega^2 \int_\Omega \left(\rho(x) \hat{u} \right)_j(x') G_{jk}(x, x') dV \\
+ \int_\Omega \left(C_{ijkl} - C_{ijkl} \right) G_{ikl}(x, x') u_{j}(x') dV
\]

where the traction in the surface integral is $t_k(x, x') = [n_1 n_{1j} G_{ikl}(x, x') u_{j}(x)]$ with the appropriate orientation of the normal vector n_1 on the surfaces. The first term on the right-hand-side of this equation generates the incident displacement field in the medium Ω, generated by the body sources f, and we denote this field by u_{inc}. It is assumed here that this field is known, however this may not be the case without use of a dummy replacement. Another way is to use the fact that on the boundary of Ω the surface tractions are zero however this further complicates the problem in that the fundamental Green state cannot be used. However it does not change much of the analysis shown here as the Green state is modified only by a non-singular part. We further make the assumption that the scattered fields by the enclosing surface S_2 are negligible; this assumption can be removed straightforwardly if Ω is enlarged to \mathbb{R}^3 and the fields are made to satisfy radiation conditions. With this we are enabled to write the integral representation (2.9) as

\[
u_k(x) = u_{inc}(x) + \omega^2 \int_\Omega \bar{p}(x') (x) G_{ikl}(x', x) u_{j}(x') dV \\
- \int_\Omega \bar{C}_{ijkl}(x') G_{ikl}(x', x) u_{j}(x') dV
\]

where $\bar{p} = \rho - \rho_0$ is the difference density function and

\[
\bar{C}_{ijkl}(x) = C_{ijkl}(x) - C^0_{ijkl}
\]

is the difference stiffness tensor. The surface integral over S_2 about the point $x' = x$ on the left-hand-side of equation (2.9) provides the term on the left-hand-side of (2.10); see Appendix 7.0.5.

We observe that the kernels in the integrals in (2.10) have a weak singularities, of order 1 and 2, as $x \rightarrow x'$, in the first and second integrals, respectively, and so are integrable (see Appendix 7.0.3). Equation (2.10) can be converted into an integro-differential equation for u by restriction of $x \in \Omega$. It then provides a means of solving the direct problem of calculation of the displacement field within Ω, given the material parameters and the incident field; this is considered extensively in § 3. When the problem is two dimensional and the stiffness tensor is isotropic the equation can be solved as two uncoupled equations depending upon the nature of the incident field; for an isotropic two-dimensional Lamé material these equations have been solved numerically by [12] for spatially varying material functions.

We next introduce the Green state \bar{G}_{ij}, appropriate to a medium where the material has the same heterogeneous properties as in (2.1), and (2.2), and where the Green displacement tensor \bar{G}_{ij} and its corresponding Green stress tensor \bar{S}_{ij} satisfy

\[
\bar{S}_{ij}(x) + \omega^2 \rho(x) \bar{G}_{ij} = -\delta_{ij} \delta(x - x').
\]

Once again the Green stress tensor is related to the Green displacement by the stiffness tensor through Hooke’s law as

\[
\bar{G}_{ij}(x, x') = C_{ijkl}(x) \bar{G}_{kl}(x, x').
\]

We observe that the differentiation is with respect to the first argument of \bar{L}, which is similar to (2.4). Then by similar techniques to those used earlier we can write the integral representation as

\[
\bar{G}_{ij}(x, x') = G_{ik}(x, x') + \omega^2 \int_\Omega \bar{p}(x'') G_{ik}(x'', x') \bar{G}_{jk}(x''', x') dV'' \\
- \int_\Omega \bar{C}_{ijkl}(x'') G_{ikl}(x'', x) \bar{G}_{jkl}(x''', x') dV''', \quad x \neq x'.
\]
where the indicated partial derivatives are with respect to the first argument. We observe that the two Green
tensors in the first integral in this equation have a weak singularities of order 1, and so when $x = x'$ this
integral is integrable. The second integral is not defined when $x = x'$, however its integral with respect
to either x or x' over Ω is, and that is the context we use it in § 4 to obtain simple representations for the
Fréchet derivative of the inverse problem maps.

We now briefly examine the symmetry properties satisfied by the Green tensors that will be useful in
the rest of the paper. First we note that all the displacement and stress Green tensors previously defined are
symmetric in both their indices and arguments i.e. they satisfy equations of the form $G(x, x') = G(x', x)$,
$G_{ij} = G_{ji}$. Moreover, as the homogeneous Green tensor’s defining equation satisfies the translational
invariance property plus the symmetry condition on their argument it follows that the argument of these
tensors is $|x - x'|$, and this will mean that they are not differentiable when $x = x'$.

When using symmetry properties to examine (2.14) we observe the k and n indices can be interchanged
on the Green tensors in the first integral on the right-hand-side of (2.14). Also, due to symmetry properties
satisfied by the stiffness tensor, the indices rs and ji can be interchanged on the Green tensors in the second
integral on the right-hand-side of (2.14). Furthermore because of the symmetry properties with respect
to the indices it follows that the indices k and n can be interchanged on the Green tensors in the second
integral on the right-hand-side of (2.14) and this is similar for the first two terms in the equations.

It is observed that although we have not used any symmetry properties satisfied by the Green tensors
in equations (2.10) and (2.14); they will be used extensively in the rest of the paper.

We next introduce various integral operators that are necessary in discussing the inverse problem and
provide existence and uniqueness results for the various direct problems needed in § 4.

3. Mathematical details of the direct problem. Prior to examination of the inverse problem it is
necessary to setup appropriate notation and to assemble results concerning the various direct problems that
are essential in our subsequent development.

The analysis in this paper is simplified by working in Sobolev spaces. Although many of our results
should be extended to classical spaces we do not attempt that here. Here our discussions are to present
the difficulties and nature of MR elastographies as a tool to probe structures in biological tissues. Much of
this information is readily available through utilizing Sobolev space theory and pseudo differential operator
theory.

Prior to providing existence theory for the direct problem we must ensure that the direct problem as
stated has a unique solution.

Lemma 3.1. The direct problem as stated in (2.1) and (2.2), for an isotropic stiffness tensor, has a
unique solution with $C^2(Q)$.

Proof. This has been provided by [9] for the scattering problem as considered here; see also [22]. □

3.1. Difference density. The simplest problem arises when the difference density $\bar{\rho}$ differs from zero
but the stiffness tensor is as the background stiffness C_0; then from (2.10) an integral equation for the
determination of u is

$$
u_k(x) = \nu_k^{inc}(x) + \omega^2 \int_{\Omega} \bar{\rho}(x') G_k(x', x) u_j(x') dv', \quad x \in \Omega. \quad (3.1)$$

We define, from the previous equation, the vector-valued linear integral operators

$$K(x) = \omega^2 \int_{\Omega} G_k(x', x') u_j(x') dv', \quad K_{ij}(\cdot) = K_{ij}(\cdot), \quad (3.2)$$

where we have used a restriction bar to denote the Cartesian component of the vector valued operator and
the symmetry property satisfied by G. Observe that the integral operator defined in (3.1) can be considered
to have two operands, and in order to distinguish between these two, and we will need to in the sequel, we
append the material function as a subscript to the operator symbol in (3.2). Then the solution to the direct
problem of determination of the scattered displacement field from knowledge of the incident field and the
density difference is found from the solution of the linear Fredholm integral equation of the second kind

$$(\mathbb{I} - K_{ij}) u = u^{inc}, \quad x \in \Omega. \quad (3.3)$$
3.1. Integral Equation Solution. To study the inverse problem we first need existence and regularity results for the direct problem. These are provided by the results in this section.

Theorem 3.2. For the direct problem with the only non-zero material difference function the density function and if \(p \in X^p, X^p = \{ p : p \in L^2(\Omega), 0 < p < M \} \), \(u^{\text{inc}} \in H^3(\Omega)^3 \), then there exists a unique solution \(u \in H^3(\Omega)^3 \) of (3.3). Moreover

\[
\|u\|_{H^3(\Omega)^3} \leq C\|u^{\text{inc}}\|_{H^3(\Omega)^3} \tag{3.4}
\]

for some constant \(C \).

Proof. The existence of the solution for (3.3) follows from standard Reisz-Schauder theory. To apply this theory the compactness of \(K_p : H^3(\Omega)^3 \rightarrow H^3(\Omega)^3 \) is required. First consider \(K \) which is an integral operator with a weak singularity, of order 1 (see Appendix, equation 7.5), it follows \(K : L^2(\Omega)^3 \rightarrow L^2(\Omega)^3 \) is bounded [11, Ch. IV]. Then as the imbedding \(L^2 \rightarrow L^6 \), for \(\Omega \), is compact* and the composition of a compact and a bounded operator is compact, namely \(K \), we have the first compactness. Now consider the operator \(B_p = \overline{p}u, p \in X^p \) with \(B_p : H^3(\Omega)^3 \rightarrow H^3(\Omega)^3 \) then it follows that \(B_p \) is a bounded operator, and again as the composition of a compact and a bounded operator is compact it follows \(K_p \) is a compact operator.

To complete the proof, the Fredholm alternative theorem shows uniqueness implies existence, and the required uniqueness is given by Lemma 3.1. Therefore we have boundedness of \((I - K_p)^{-1} \) which will be required when discussing the inverse problem.

We consider the operator \(K \) for fixed \(u \) as a mapping of \(p \), and furthermore define the operator \(B_p = \overline{p}u \) for fixed \(u \) with \(B_p : X^p \rightarrow H^3(\Omega)^3 \), and note that \(u \) is bounded from the last theorem, it then follows that \(Ku \) is a compact map of \(p \) as \(Ku : X^p \rightarrow H^3(\Omega)^3 \). This fact will also be of use in § 4.1.1.

3.2. Difference stiffness tensor. The next order of difficulty is when the difference stiffness is non-zero, but the difference density is zero. Then from (2.10) an integro-differential equation for the determination of \(u \) is

\[
u_k(x) = u^{\text{inc}}(x) - \int_\Omega \overline{C}_{,i}(x',x)G_{,i}(x',x)u_{,j}(x') \, dV', \tag{3.5}
\]

\[
u_k(x) = u^{\text{inc}}(x) - K^\Omega \overline{u}_{,j} \quad x \in \Omega. \tag{3.6}
\]

Notice that the weakly singular integral operator \(K^\Omega \) defined in (3.5) can be considered to map both \(\overline{C} \) and \(u \), and we separate the two maps by denoting the material property mapping by appending a subscript to the integral operator; this will be important in later sections. The integral operator is therefore defined by

\[
K^\Omega \overline{u}_{,j} = \int_\Omega \Sigma^\Omega_{i,j}(x',x)u_{i}(x') \, dV', \tag{3.7}
\]

where we have used the difference stress tensor \(\Sigma^\Omega \), the stress tensor as defined in (2.4) but with the difference stiffness as defined in (2.11).

Notice that the kernel in equation (3.7) is weakly singular; in fact the singularity is of order 2 (see Appendix 7). We shall utilize this equation later in § 4 to analyze the derivative of the map \(T \). However, existence theory for the solution of such an equation is not easily handled so we shall look at properties of a regularized equation.

The equation (3.5) can be converted into an integral equation for the Jacobian \(w_k - u_k \) by differentiation of both sides of the equation; this is a left regularizer. Rather than work with the resulting 3\(^2 \) equations we choose to work with a right regularizer for the equation (3.5), and this corresponds to integration of the integral term by parts so we arrive at

\[
u_k(x) + \int_{S,OS} n_i \Sigma^\Omega_{i,j}(x',x)u_{j} \, dS' = u^{\text{inc}}(x) + \int_\Omega \Sigma^\Omega_{i,j}(x',x)u_{j}(x') \, dV',
\]

\[
u_k(x) + \int_{S,OS} n_i \Sigma^\Omega_{i,j}(x',x)u_{j} \, dS' = u^{\text{inc}}(x) + \int_\Omega \partial_j[\overline{C}_{,i}(x')G_{,i}(x',x)]u_{j}(x') \, dV', \quad x \in \Omega. \tag{3.8}
\]

*[1, Ch. VI] By the Rellich-Kondrachov theorem with \(\Omega \) bounded and satisfying the cone property.
Inverse MRI elastography

Here the kernel of the volume integral has a singularity of order 3 (see Appendix 7), and so the integral on the right-hand-side must be treated as a singular operator. Now on performing the surface integrations in (3.8) (see Appendix 7.0.5) we find

$$\alpha u_k(x) - \int_\Omega \Sigma_{jR,P}^x(x',x) u_j(x') dV' = u^{inc}_k(x), \quad x \in \Omega,$$

(3.9)

where again $\alpha(\overline{C}(x)) > 0$ is a function of the stiffness tensor $\overline{C}(x)$ and it is evaluated in the next section for an isotropic medium. The integral in (3.9) defines the integral operator

$$L_C(c)|_k = \int_\Omega \Sigma_{jR,P}^x(x',x)c_j dV',$$

(3.10)

which we will examine in detail in the next section.

We have presented in this section three different formulations for solution of the direct problem. We choose to develop existence theory for the direct problem specified from the singular integral representation given by (3.9). Then the solution u to the direct problem of determination of the scattered displacement field from knowledge of the incident field and the difference stiffness can be found from the solution of the second kind singular integral

$$(\alpha I - L_C)u = u^{inc}, \quad x \in \Omega.$$

(3.11)

It is important to observe at this stage that it is not the direct problem we are mainly concerned with here but rather the inverse problem, but we need appropriate equations on which to be able to apply the implicit function theorem so yielding results for the inverse problem.

3.2.1. Isotropic stiffness tensor and Integral Equation Solution. We restrict the formulation in this section to the case when the stiffness tensor is of the form

$$C_{jln} = \lambda(x)\delta_{lj}\delta_{ln} + \mu(x)(\delta_{ln}\delta_{jn} + \delta_{jm}\delta_{ln})$$

(3.12)

which shows explicitly that there are two spatially-varying functions describing the stiffness in the medium, which we denote generically by the set $\overline{\sigma} = (\overline{\lambda}, \overline{\mu})$. For the results presented in this section $\overline{\sigma}$ only takes on one of its possible values; the other one is assumed to be zero. The case for both differing from zero is treated in § 3.3.

Now we define from the vector-valued integral operator appearing in (3.11), the operators

$$L_\sigma u_k = \int_\Omega \Sigma_{jR,P}^x(x',x) u_j(x') dV', \quad \overline{\sigma} = (\overline{\lambda}, \overline{\mu}).$$

(3.13)

Where we have appended the subscript σ to the integral operator L_σ because similar to (3.2) this integral operator can be considered to have two operands, first the material function $\overline{\sigma}$ and secondly the displacement field. Observe we have in effect defined two integral operators here through $\overline{\sigma}$. The specific form of the divergence of the difference stress tensor defined through (2.4), but with stiffness (2.11), and appearing in (3.13) is

$$\Sigma_{jR,P}^x = \xi_1^x(\overline{\lambda}) + \xi_2^x(\overline{\mu})$$

(3.14)

where the ξ, the kernels, of the integral operators L_σ are also considered as operators on $\overline{\sigma}$ and are given by

$$\xi_1^x(\overline{\sigma}) = (G_{B,R,P}\overline{\sigma} + G_{B,R,F})(\overline{\sigma}(x'),x)$$

$$\xi_2^x(\overline{\sigma}) = ((G_{B,R,F} + G_{B,R,F})\overline{\sigma} + (G_{B,F,R} + G_{B,F,R})(\overline{\sigma}(x'),x).$$

(3.15)

In (3.14) the difference stiffness terms being defined as

$$\overline{\lambda} = \lambda(x') - \lambda^0, \quad \overline{\mu} = \mu(x') - \mu^0.$$
Observe that in these kernels a partial derivative operator operates on $\bar{\sigma}$ because we took the derivative of u in equation (3.5), and so for the case consider here (3.9) can be rewritten by utilising the definition of (3.13) as

$$(aI - L_\sigma)u = u^{\text{inc}}, \quad \bar{\sigma} = (\lambda, \mu), \quad x \in \Omega. \quad (3.16)$$

The function a is given in (7.9) in Appendix 7.0.5 and from this we see that with positive difference material functions $a > 1$. Furthermore, examination of (7.9) shows that requirement that $a > 0$ amounts to the requirement that the wave equation for inhomogeneous material is elliptic; an obvious requirement. We observe when both of these difference functions become zero the equation (3.16) becomes trivial.

We require that

$$C \in \mathcal{F}^\epsilon(\mathcal{Q}) \quad (3.17)$$

for some constant C.

Theorem 3.3. For the direct problem with the only non-zero material difference function the isotropic stiffness tensor; with $a = \epsilon_0$, if $u^{\text{inc}} \in H^1(\mathcal{Q})$, then there exists a unique solution $u \in H^1(\mathcal{Q})$ of (3.16). Moreover

$$(3.18)$$

where $0^0 = \pm 1$.

Proof. The integral equation (3.16) we consider here can be thought of as singular in the sense that it is not of second kind with a compact operator. To prove this result we will have to utilize singular integral equation theory [14], [11, Ch. IV] [24, Ch. IX] or more generally pseudo differential operator theory [21, 9].

This theory involves use of Fourier analysis and we shall sketch the proof.

The mapping properties of the integral operators we are studying are determined by the principal singular part of the kernel [21]. Moreover for such operators the principal symbol is determined from the Fourier transform of the most singular part of the kernel of the integral operator, and this ensures that the principal symbol contains the least negative power (or most positive power) of $|\xi|$. This is because it is this part of the the symbol that determines the mapping properties of the integral operator in the scale of Sobolev spaces [21].

We now consider the principal part of the integral operator L_σ, which we define as A_0 and write as

$$(3.19)$$

where from Appendix 7 and (3.15) $k_{ij} = \frac{\Gamma_{ij}}{\bar{\sigma}}$, $k_{ij}^0 = (\Gamma_{ij} + \Gamma_{ij}^0)$, and $\Gamma_{ij}^0 = (\Gamma_{ij}^0 + \Gamma_{ij}^0)$. It follows that $L_\sigma = A_0 + T$, where T is a compact operator in the space $L^2(\mathcal{Q})$. It is now convenient to remove the integrand term $\bar{\sigma}(x')$ from the integral (3.18) so we redefine $u = w^0$, with $\bar{\sigma} > 0$, and this modifies the first term in (3.16) to $\gamma \sigma = \alpha \sigma$. It now follows that the principal matrix-valued symbol of the vector valued operator defined in (3.16), with the modified (3.18), is

$$\Phi_{ij}^\sigma = \gamma \sigma(\sigma)\delta_{ij} - \text{sym } A_0 \frac{\theta}{\|\theta\|}, \quad (3.20)$$

where $\theta = \xi/|\xi|$. As A_0 corresponds to a singular integral operator of form (3.18) its symbol is of order 0, homogeneous in θ, and it is one of the Fourier transforms listed in (7.12) and (7.13). Furthermore, what is important to the development is the determinant of Φ^σ is positive and it can be shown to be

$$\det \Phi^\sigma = \gamma \sigma^2(\gamma \sigma + |\xi|^2) > |\sigma| > 0, \quad \forall |\xi|, \quad (3.20)$$

where $\gamma \sigma > 0$ as is seen from the definition of γ and (7.9). From this result follows that the integral equation (3.16) admits a two-sided regularizer (see [14, Ch. IX]) with symbol $[\Phi^\sigma]^{-1}$. To see this consider the singular operator B_0 formed with the symbol $[\Phi^\sigma]^{-1}$, then by the multiplication rule for symbols [14, Ch. IX, § 7] the symbols of A_0B_0 and B_0A_0 are 1, which implies $A_0B_0 = I + T_1$ and $B_0A_0 = I + T_2$ where I
Inverse MRI elastography

is the unit operator and T_1 and T_2 are compact operators. Furthermore as the symbol of A_0 is real its adjoint operator has the same symbol. These results are true when the symbol of the full operator of L_0 is used.

The two-sided regularization property implies that the operator (3.18) is a Fredholm operator and is normally solvable by Noether and Atkinson theorems. As the matrix-valued symbol Φ is symmetric the operator A_0 has zero index [14, Ch. XIV, § 3], [24, Ch. IX, §6]. The regularizer $(\Phi^*)^{-1}$ and its adjoint are equivalent regularizers, and therefore the index of the Fredholm operator is zero as the dimension of the deficit and the nullity are equal. We observe that the operator A_0 which corresponds to the static problem has a six-dimensional kernel; it is formed by the possible translations and rotations with basis $\{e_i, \delta \times e_i, i \in \{1, 2, 3\}\}$. But dynamic equilibrium of the measurement apparatus will require that any applied forces ensure that these possible null space solutions are not present. It should be remarked that the operator corresponding to the principal symbol used above differs from the operator L_0 by a compact operator (on $H^1(\Omega)^3$). This implies that standard Riesz-Schauder theory can be applied to the regularized form found from L_0 by use of B_0. This means that if (3.16) has a unique solution, and therefore the kernel of the operator is zero, the theorem is proved; Lemma 3.1 provides this fact.

As we have previously stated the mapping properties of the integral operator (3.18) are determined by its symbol. It is seen that the symbol is of order zero and is C^∞-function, hence by [14, Ch. IX] $L_0 : H^p(\Omega)^3 \to H^p(\Omega)^3$ as a bounded operator, for some p, furthermore from the above theory the inverse operator $(\alpha I - L_0)^{-1}$ maps as a bounded operator onto the same spaces. □

We observe that (3.19) and (3.20) imply the existence of a Gårding inequality

$$||u|| \leq C(||L_0 u|| + ||T u||),$$

with T a compact operator and $C > 0$ associated with γ_T.

The weakly-singular formulation given by (3.5) is important in § 4. So equivalently, for this isotropic medium, we can define from (3.5) the vector-valued operator

$$\mathcal{X}_\gamma u|_k = \int_\Omega \Sigma_{ik}^{\gamma}(x', \lambda) u_j(x') \, dV', \quad \overline{\sigma} = (\lambda, \mu),$$

from (3.7). It should be observed that \mathcal{X}_γ is a linear integral operator on $\overline{\sigma}$ and an integro-differential operator on u. The specific form of the stress tensor defined in (2.4), but with stiffness given by (3.12), is

$$\Sigma_{ik}^{\gamma} = \bar{\lambda} k_{ik} + \bar{\mu} \delta_{ik},$$

where the kernels k, of the operator \mathcal{X}_γ are now

$$k_{ik} = G_{ik,r} \delta_{ij}, \quad \bar{\mu} = (G_{ik,r} + G_{ik,r}).$$

We note for future use that when the above sets of kernels are slightly modified by replacement of G by \overline{G} in their representation, and the order of the argument of \overline{G} is interchanged, we surmount the symbol with a tilde; as \tilde{k}.

Observe that similarly to our previous notation the subscript $\overline{\sigma}$ is attached to the integral operator \mathcal{X}_γ as an operand because this integral operator can be considered to have two operands. So for the case consider here (3.5) can be written

$$(1 + \mathcal{X}_\gamma) u = u^{\overline{\gamma}}, \quad \overline{\sigma} = (\lambda, \mu), \quad x \in \Omega.$$

(3.23)

We make the comment that although we derived the integral equation (3.16) after (3.6) it makes more sense to think of (3.16) as the fundamental equation, and (3.23) as the right regularized equation.

To study the inverse problem we first need existence and regularity results for the direct problem when one of the stiffness differences differs from zero in turn, and this is provided in the next result. First we can reduce the requirements on $\overline{\sigma}$, as in this formulation there is no differential operator on $\overline{\sigma}$, and now require $\mathcal{X}^{\overline{\sigma}} = [\overline{\sigma} : \overline{\sigma} \in H^p(\Omega), 0 < \overline{\sigma} < M]$.

\[\text{\ldots}\]
COROLLARY 3.4. For the direct problem with the only non-zero material difference function the isotropic stiffness tensor, and if \(\sigma \in X^D \) and \(u^{\infty} \in H^p(\Omega)^3 \), then there exists a unique solution \(u \in H^1(\Omega)^3 \) of (3.23). Moreover

\[
||u||_{H^1(\Omega)^3} \leq C||u^{\infty}||_{H^p(\Omega)^3}
\]

(3.24)

for some constant \(C \).

Proof. We observe for the right regularization of equation (3.5), as given by (3.16), that every solution of (3.16) is a solution of (3.5), but to avoid missing some solutions of (3.5) we require the right regularizer to have an image which is dense in the domain of the original operator in (3.23); that this is so follows directly as the simplest function space a solution of (3.5) can be is \(H^1(\Omega)^3 \). The bound on the inverse operator then follows directly from Theorem 3.3.0.

For use later in § 4.2.1 we notice the operator defined in \(\mathcal{K}_{\Omega} u \) for fixed \(u \) can be considered as a mapping \(\Omega \rightarrow \mathcal{K}_{\Omega} \mathcal{K}^{-1} \mathcal{K}_{\Omega} u \), and furthermore by an argument similar to that following Theorem 3.2 it can be shown that it is a compact map of \(\Omega \rightarrow \mathcal{K}_{\Omega} : \mathbb{R} \rightarrow H^p(\Omega)^3 \).

3.3. Difference stiffness and density for an isotropic medium. We now consider the direct problem of determination of \(u \) when the density and all stiffness functions, namely \(\rho(x) \) and \(\sigma(x) \) are known, and differ from the Green state parameters. The integral equation for the determination of the displacement field in this case can be written from the formulations presented in the last two sections as

\[
(a K - K \rho - L \rho) u = u^{\infty}, \quad x \in \Omega.
\]

(3.25)

It is noticed we have used the singular integral formulation for the stiffness functions. The analysis of this equation is similar to the case proven in Theorem 3.3. The existence and uniqueness of this problem is central to the elastography direct problem.

THEOREM 3.5. For the direct problem with non-zero material difference functions in density and isotropic stiffness then if \(\rho \in X^D \), \(\sigma \in X^D \) of theorem 3.3, \(u^{\infty} \in H^p(\Omega)^3 \), then there exists a unique solution \(u \in H^1(\Omega)^3 \) of (3.25). Moreover

\[
||u||_{H^1(\Omega)^3} \leq C||u^{\infty}||_{H^p(\Omega)^3}
\]

(3.26)

for some constant \(C \).

Proof. The integral equation (3.25) can be analyzed by singular integral equation theory (e.g. [14]) in a similar manner to that used Theorem 3.3. This is because using pseudo differential operator theory on the compact operator \(K \) has no effect on the existence result. The only major difference is the symbol of the integral operator defined in (3.25) is

\[
\Phi_\theta = (\gamma + \gamma_\rho)(x)\delta_{\theta} + \text{sym (principal part } L_{\theta}^{\infty}(\theta) + \text{sym (principal part } L_{\theta}^{\infty}(\theta)),
\]

(3.27)

where the symbol of the principal part of \(L_{\theta}^{\infty} \) is one of the Fourier transforms listed in (7.12) and (7.13). Furthermore, what is important is the determinant of \(\Phi_\theta \) which can be shown to be

\[
\det \Phi = (\gamma + \gamma_\rho)^2(\gamma + \gamma_\rho) + |\xi|^2 > 0, \quad \forall |\xi|.
\]

(3.28)

where \(\gamma \) is discussed prior to (3.19).

It follows immediately that the integral equation (3.25) admits a two-sided regularizer (see [14, Ch. IX]) with symbol \((\Phi_\theta)^{-1} \). The regularization property with the symbol given in (3.27) implies as previously that the operator (3.18) is a Fredholm operator, it is normally solvable and has index zero.

This implies once again that standard Riesz-Schauder theory can be applied to the regularized form of the operator equation. This means that provided (3.25) has a unique solution and therefore the kernel of the operator is zero the theorem is proved; Lemma 3.1 provides this fact. \(\Box \)

We will need the result that the weakly singular version of the equation (3.25), as formulated in (2.10), and which we write as

\[
[I - K \rho + \mathcal{K}_{\Omega} + \mathcal{K}_{\Omega} u(x) = u^{\infty}(x), \quad x \in \Omega
\]

(3.29)
Inverse MRI elastography

has a unique bounded solution and this is provided by:

Corollary 3.6. For the direct problem with non-zero material difference functions in density and isotropic stiffness then if \(\rho \in \mathcal{X}^\rho, \zeta \in \mathcal{X}^\zeta \) of corollary 3.4, \(u^\text{meas} \in H^2(\Omega)^3 \), then there exists a unique solution \(u \in H^1(\Omega)^3 \) of (3.29). Moveover

\[
\|u\|_{H^1(\Omega)} \leq C\|u^\text{meas}\|_{H^0(\Omega)}
\]

for some constant \(C \).

Proof. This follows from similar reasoning as Corollary 3.4. \(\Box \)

4. Inverse problems. The inverse problem of elastic constitutive function reconstruction is considered here. We will show that linearization of the various inverse operators is equivalent to an appropriate order of differentiation. Furthermore, it is shown that these inverse problems are always ill-posed for realistic measurement data. This is because data that is measured, can generally only be placed in the function space \(L^2 \), or at most \(C \), and in these function spaces various differentiation operators are unbounded.

The nonlinear inverse problem can be stated mathematically as finding \(\nu \in \mathcal{P} \), where \(\mathcal{P} \) is the material parameter function space, such that the difference equation

\[
F(\nu) = u(x; \nu) - u^\text{meas}(x) = 0, \quad x \in \Omega,
\]

is satisfied. Here \(u \) is the solution of (2.1), \(u^\text{meas} \) is the measured displacement field, and \(\nu \) are the material functions to be determined. In practice \(u^\text{meas} \) is subject to experimental errors and can only be measured on a finite set, say \(M \in \Omega \). Hence (4.1) is replaced by

\[
\min_{\nu} \|F(\nu)\|, \quad x \in M,
\]

in a suitable norm. The Newton-Kantorovich method for equation (4.1) amounts to iteratively solving the following operator equation, for the update function \(s \),

\[
F'(\nu)s = u'(\nu)s = -F(\nu),
\]

where \(u'(\nu)s \) is the Fréchet derivative of \(u \) with respect to \(\nu \). From this equation it is seen that it directly utilizes the Fréchet derivative of the the map \(T : \nu \rightarrow u \), which is fundamental to the inverse problem and we analyze it here.

Although there are many implicit forms for the operator \(T \) the mapping properties are unique once the function spaces have been fixed. This means that although we use integral operators to derive properties of the map through its linearization, the results are identical to whatever other formulation is used for the inverse problem; given the same function spaces.

In what follows we drop the bar on the material difference functions for simplicity of notation with no loss of detail.

4.1. Inverse problem for difference density. The implicit functional

\[
\xi(\rho, u) = u(\rho; x) - K_\rho u(\rho; x) - u^\text{inc}(x) = 0,
\]

which is obtained from the integral representation for the direct problem equation (3.3) can be utilized with the implicit function theorem (see [6] for the version we use) to obtain the Fréchet derivative of the mapping \(T : \rho \rightarrow u \). Here in the inverse problem \(u \) is to be measured throughout \(\Omega \). First appropriate function spaces for the mapping \(\xi \) must be defined, so note \(\xi : \mathcal{X}^\rho \times H^2(\Omega)^3 \rightarrow H^0(\Omega)^3 \) with \(\mathcal{X}^\rho = \{ \rho : \rho \in H^0(\Omega), \rho > 0 \} \). We can then prove the following result for the partial Fréchet derivative with respect to \(\tilde{\rho} \).

Lemma 4.1. The map \(T : \rho \rightarrow u \) from \(\mathcal{X}^\rho \), to \(H^2(\Omega)^3 \) is Fréchet differentiable with respect to \(\rho \), with Fréchet differential

\[
(T'(\rho))s = u'(\rho)s = ([I - K_\rho]^{-1}K_\rho u(\rho)
\]

\[
= \omega \int_{\Omega} u(\rho; x') \cdot \tilde{G}(x, x')s(x')dV'
\]

(4.5)
where \tilde{G} is the Green function pertinent for the density difference ρ, see (2.12).

Proof. Observe $u'(\rho)$ a linear operator, the Fréchet derivative with $s \in \mathcal{X}^p$. To prove differentiability of \mathcal{R} we check the conditions of the implicit function theorem on the functional ξ. Theorem 3.2 assures us that there is only one solution u in $H^p(\Omega)^3$; then we proceed as follows:

We must show ξ is continuous in ρ and u, so consider

$$\varphi = \xi(\rho + \delta \rho, u + \delta u) - \xi(\rho, u) = \delta u - \mathcal{K}(\rho \delta u + u \delta \rho + \delta \rho)$$

then

$$||\delta \varphi|| \leq ||\delta u|| + ||K|| ||\delta \rho|| ||u|| + ||\rho|| ||\delta u|| + ||\rho|| ||\delta \rho||.$$

Here and in the sequel of this section we leave the explicit index off the norms as they are all considered to be $H^p(\Omega)$ or $H^p(\Omega)^3$ as appropriate. On using the boundedness of \mathcal{K} and u as implied in theorem 3.2, it follows $\delta \varphi = o(1)$ with respect to δu and $\delta \rho$, and the continuity result follows.

To now show ξ_ρ is continuous in ρ and u consider first the partial Fréchet derivative of (4.4) with respect to ρ, which is given through

$$\xi_\rho(\rho, u)s = -\mathcal{K}_s u,$$

because (3.2) is linear in ρ, also note $s \in \mathcal{X}^p$. Then

$$||\xi_\rho|| = ||\xi_\rho(\rho + \delta \rho, u + \delta u) - \xi_\rho(\rho, u)|| = ||\mathcal{K}_s|| ||\delta u||$$

$$\leq ||\mathcal{K}_s|| ||\delta u|| ||s||$$

it therefore follows ξ_ρ is continuous in ρ and u.

The partial Fréchet derivative of ξ with respect to u is

$$\xi_u(\rho, u)s = (1 - \mathcal{K}_u)s$$

as (4.4) is linear in u, with again $s \in H^p(\Omega)^3$. In a manner similar to the above ξ_u can be shown to be continuous in ρ and u.

The only further condition necessary for the application of the implicit function theorem is that $[\xi_\rho(\rho, u)]^{-1}$ is bounded and this has been proven in theorem 3.2. The explicit expression for the Fréchet derivative is given by the implicit function theorem as (4.5).

The more useable form of equation (4.6) can be obtained from (4.5) by use of the integral equation satisfied by the Green function \tilde{G}, namely (2.14) when $\mathcal{C} = C_0$, so that

$$G = (1 - \mathcal{K}_p)\tilde{G}.$$

Substitution of the above expression for G in the kernel of \mathcal{K}_p in (4.5) and interchange of the order of integration between \mathcal{K}_p and \mathcal{K}_u, together with the symmetry properties of the Green tensors, yields the alternative form of the differential

$$u'_p(\rho) = \omega^2 \int_{\Omega} u_p(\rho, x')\tilde{G}_p(x, x')s(x')dV' = \mathcal{K}_u u.$$

Where we have for future use defined a new integral operator which has been slightly modified from (3.2) by the replacement of G by \tilde{G}. See § 4.2 for more details on the evaluation of (4.6) for a similar calculation, albeit for a more difficult case, and we have now finished. \(\Box\)

Observe from the differential in (4.6) that the update equation for the increment function s in any Newton-Kantorovitch scheme requires inversion of the operator in this equation. This means that the update is found through inversion of a first kind integral operator which are well known to be ill-posed in most cases. The mapping properties of this operator will be discussed further in the next section.

The evaluation of \tilde{G} in a computation algorithm is computationally expensive. However in an electromagnetic version of this inverse problem the equivalent Green function has been used as the basis of an algorithm [20].
4.1.1. Mapping properties of the inverse density map T^{-1}. First note that the Fréchet derivative at a difference density of zero is more simply evaluated than (4.6). When $p = 0$ the Fréchet differential is given by

$$u'_0(p) = \omega^2 \int_{\Omega} G_0(x, x') u^{inc}(x') s(x') \, dV = K_0 u^{inc},$$ \hspace{1cm} (4.11)$$

this linearisation is in fact what is known as the Born approximation, and it provides a straightforward method, but limited use, of solving the inverse problem by a modified Newton method.

We now examine the mapping properties of the linearization of operator T. For simplification of exposition we define the new integral operators

$$K_8(\cdot) = \partial_x u^{inc}$$

and

$$KNK(\cdot) = \partial_x u.$$

It is easily seen that as $p \to 0$ then $u \to u^{inc}$, $G \to G$, and $KNK \to K_8$. The linearization of the operator T about a difference density of zero can be used to examine the conditioning of the nonlinear operator T^{-1} near this value of p; this we will now do.

Equation (4.11) provides a definition of the operator $K_8 : H^p \to H^q$ and we wish to determine the values of p and q that determine the regularity of this operator in the scale of Sobolev spaces. The mapping properties of the operator is determined by the principal symbol of its kernel, and this is purely a property of the singularity of the Green tensor G near $x = x'$ and this has been calculated in Appendix 7. The principal symbol then is the Fourier transform of G which has been shown to be $|\xi|^{-2}$ in (7.10). It follows straightforwardly that $K_8 : H^p(\Omega) \to H^q(\Omega)$ and that its inverse operator K_8^{-1}, which is needed in any Newton type scheme for solution of the inverse problem, as regards to well-posedness is equivalent to second order differentiation. This will mean that the operator K_8^{-1} is unbounded and not continuous on function spaces $H^p(\Omega)$ because $H^2(\Omega)$ is compactly embedded in $H^p(\Omega)$. Regularization of this operator and hence T^{-1} is necessary to restore continuity for this problem and is of medium ill-posedness difficulty. Mollification is one of the several techniques available and it has been used for differentiation type operators in various inverse problems [15, 23, 18].

When we examine the mapping properties of the operator KNK only the singularities of the kernel need to be taken into consideration. This is seen by forming $G - G$, it follows because of the linearity of (2.1), that this difference satisfies a homogeneous partial differential equation and moreover it is in $C^2(\Omega)$. This implies the singular properties of G are the same as G and therefore it follows that the function space mapping property of KNK is identical to K_8. We therefore have the result:

Theorem 4.2. The linearization of the map $T^{-1} : u \to \rho$ is a continuous map from $H^p(\Omega)^3 \to H^q(\Omega)$, and is therefore equivalent to a second order differential operator. Furthermore it is an unbounded map from $H^p(\Omega)^3 \to H^q(\Omega)$.

Proof. This follows heuristically from above, and rigourously from the results stated below Theorem 3.2 where it was shown Ku mapping ρ is a compact operator into $H^p(\Omega)$ and this is also true for KNK.

4.2. Inverse problem for difference Stiffness. We are considering here the isotropic case when there are two functions describing the stiffness of the media. For simplicity we consider in this section the case when only one of the Lamé parameters differs, in turn, from the Green state case and consider the case of both differing in § 4.3. The implicit functional

$$\xi(\sigma, u) = u(\sigma, x) + \mathcal{X}_u u(\sigma, x) - u^{inc}(x) = 0, \quad \sigma = (\lambda, \mu),$$ \hspace{1cm} (4.12)$$

which is obtained from the integral representation for the direct problem equation (3.23) can be utilized with the implicit function theorem to obtain the Fréchet derivative of the mapping $T : \sigma \to u$. Here in the inverse problem u is to be measured throughout Ω. First appropriate function spaces for the mapping ξ must be defined, so note $\xi : \mathcal{X} \times H^1(\Omega)^3 \to H^0(\Omega)^3$ with $\mathcal{X} = \{ (\sigma, \mu) : \sigma \in H^0(\Omega), \sigma > 0 \}$.

Lemma 4.3. The map \(\mathbf{T} : \sigma \rightarrow \mathbf{u} \) from \(X^s \) to \(H^0(\Omega)^3 \) with \(\sigma \) chosen from \(\{ \lambda, \mu \} \) is Fréchet differentiable with respect to \(\sigma \), with Fréchet differential

\[
(T'(\sigma))\mathbf{s} = u'(\sigma)\mathbf{s} = ([I - \mathbf{K}^{-1}] G) \mathbf{s}
\]

(4.13)

\[
T'(\sigma)\mathbf{u} = \int_{\Omega} u_{ij}(\sigma, \mathbf{x'}, \mathbf{k}; \mathbf{x}) \mathbf{s}(\mathbf{x'}) dV'
\]

(4.14)

where the kernels \(\mathbf{k}_{ijk} \) involve \(\mathbf{G} \), which is the Green function pertinent for the stiffness difference \(\sigma \), see (2.14), and are given by (3.22) with \(\mathbf{G} \) replacing \(\mathbf{G} \).

Proof. Observe \(u'(\sigma) \) a linear operator, the Fréchet derivative with \(s \in X \). To prove differentiability of \(\mathbf{T} \) we check the conditions of the implicit function theorem on the functional \(\mathbf{G} \). Theorem 3.3 assures us that there is only one solution \(\mathbf{u} \) in \(H^0(\Omega)^3 \); then we proceed as follows:

We first show \(\xi \) is continuous in \(\sigma \) and \(\mathbf{u} \), by similar methods to those used in 4.1. Then to show \(\mathbf{\xi}_{\sigma} \) is continuous in \(\sigma \) and \(\mathbf{u} \) we consider first the partial Fréchet derivative of (4.12), with respect to \(\sigma \), which is given though

\[
\frac{\xi_{\sigma}(\sigma, \mathbf{u})}{\mathbf{s}} = -\mathbf{G}_{\mathbf{u}},
\]

(4.15)

because (3.21) is linear in \(\sigma \), also note \(s \in X^s \). Then it can be shown that \(\mathbf{\xi}_{\sigma} \) is continuous in \(\sigma \) and \(\mathbf{u} \) in a similar manner to previously.

The partial Fréchet derivative of \(\mathbf{\xi} \) with respect to \(\mathbf{u} \) is

\[
\frac{\mathbf{\xi}_{\mathbf{u}}(\sigma, \mathbf{u})}{\mathbf{s}} = (I + \mathbf{G}) \mathbf{s}
\]

(4.16)

as (4.12) is linear in \(\mathbf{u} \), with again \(s \in H^1(\Omega)^3 \).

In a manner similar that used in the last section \(\mathbf{\xi}_{\sigma} \) can be shown to be continuous in \(\sigma \) and \(\mathbf{u} \).

The only further condition necessary for the application of the implicit function theorem is that \([\mathbf{\xi}_{\sigma}(\sigma, \mathbf{u})]^{-1}\) is bounded and this has been proven in theorem 3.3. The explicit expression for the Fréchet derivative is given by the implicit function theorem as equation (4.13).

Equation (4.14) can be obtained by use of the integral equation satisfied by the Green function \(\mathbf{G} \) (2.14). This derivation is quite technical and we shall just sketch the derivation here. First we find it convenient to introduce a further modification of the operator defined in (3.7) by appending a tilde to the operator when the Green displacement tensor in its definition, \(\mathbf{G} \), is changed to \(\mathbf{G} \), cf. (2.12) and (2.13). So that the extended operator described is

\[
\tilde{\mathbf{K}}_{\mathbf{G}} \mathbf{u} = \int_{\Omega} \tilde{\mathbf{G}}(\mathbf{x}, \mathbf{x'}) \mathbf{u}(\mathbf{x'}) dV',
\]

(4.17)

with \(\tilde{\mathbf{G}}_{\mathbf{G}} \) defined through (2.13) as

\[
\tilde{\mathbf{G}}_{\mathbf{G}}(\mathbf{x}, \mathbf{x'}) = \mathbf{C}(\mathbf{x}') \mathbf{G}(\mathbf{x}, \mathbf{x'}). \tilde{\mathbf{G}}_{\mathbf{G}}
\]

(4.18)

We observe that a prime has been used as a pre-superscript on the stress tensor symbol to denote the fact that the derivative is on the second argument of \(\mathbf{G} \) when compared to (2.13). We shall carry out the calculation for the more general case of the stiffness tensor \(\mathbf{C} \) rather than just the isotropic case and to avoid confusion with symbols we will use the uppercase \(S \) for the increment in the stiffness tensor. We observe that the fundamental solution of (2.1) with stiffness tensor \(\mathbf{C}(\mathbf{x}) \) and with the difference density zero satisfies

\[
\mathbf{G} = (I + \mathbf{K}_{\mathbf{C}}) \mathbf{G}
\]

(4.19)

from (2.14). Then on substitution of the first term on the right-hand-side of this equation for \(\mathbf{G} \) into the representation of \(\mathbf{K}_{\mathbf{C}} \mathbf{u} \) yields

\[
\int_{\Omega} S_{ijk}(\mathbf{x'}) \mathbf{G}(\mathbf{x}, \mathbf{x'}) u_{ij}(\mathbf{x'}) dV' = \int_{\Omega} \tilde{\mathbf{G}}_{\mathbf{G}}(\mathbf{x}, \mathbf{x'}) u_{ij}(\mathbf{x'}) dV' = \tilde{\mathbf{K}}_{\mathbf{G}} \mathbf{u},
\]
and furthermore substitution of the second term of the right-hand-side of the equation (4.19) for G shows

$$\int_{\Omega} dV' S_{ijm}(x') u_{ij}(x') \partial_{\nu} \int_{\Omega} \tilde{\gamma}_{ik}(x', x) \tilde{G}_{lj}(x''', x') dV''.'$$

To first proceed formally we take the differentiation inside the integral

$$\int_{\Omega} dV' S_{ijm}(x') u_{ij}(x') \int_{\Omega} \tilde{\gamma}_{ik}(x, x''') \tilde{G}_{lj}(x'''', x') dV''.'$$

and interchange of order of integration plus take the s''-derivative out of the integral to find

$$= \int_{\Omega} \tilde{\gamma}_{ik}(x, x''') \partial_{\nu} \tilde{G}_{lj}(x'''', x') dV''.'$$

and we formally have the result. To provide the rigor we observe it is necessary to subtract and add a correction term when moving the derivatives into and out of the above integrals. In particular a correction term over a surface of a sphere surrounding the singularity must be subtracted from the volume integral when we moved the derivative ∂_{ν} into the weakly singular integral, e.g. see [14, page 242]. Equally, when we moved the derivative ∂_{ν} out of the integral a correction term over a surface of a sphere surrounding the singularity must be added to the volume integral; these two terms can be shown to cancel. The order of integration can be interchanged on the iterated integrals when the correction terms are present because the integrals interpreted as singular integrals are absolutely convergent [14, Ch. IX].

To complete the derivation of (4.14) we first make the observation that (4.17) and (3.21) differ in which type of displacement Green tensor is used in their definition so that the kernels are as (3.22) with G replaced by \tilde{G}. Then to return to the isotropic case considered here we note that \tilde{G}_{ijm} has the same form as the right-hand-side of (3.12) (when C is replaced by S), so that insertion of this form into the right-hand-side of (4.17) yields the representation

$$\tilde{G}_{ij} = \int_{\Omega} s(x') u_{ij}(x', x') \tilde{G}_{lj}(x, x') dV.'$$

We repeat that here the weakly singular kernels \tilde{G}_{ijm} are given by (3.22) but using \tilde{G} instead of G, and s is the update in either λ or μ. We observe from this differential that the update equation for the increment function s in any Newton-Kantorovich scheme requires inversion of the operator in this equation. The properties of this operator will be discussed further in the next section.

4.2.1. Mapping properties of the inverse stiffness map T^{-1}

The Fréchet derivative at a difference stiffness of zero is more simply evaluated than (4.14). When both terms of Θ are zero the Fréchet differential is given by

$$u'(\sigma) = \Theta U^{\text{inc}}.$$

This linearization (also the Born approximation) provides a straightforward method, but of limited use in attempting solution of the inverse problem by a modified Newton method.

The linearization of the operator T about Θ equal to zero can be used to examine the conditioning of the nonlinear operator T^{-1} near this value of σ; this we will now do.
Similar to our discussion in § 4.1.1 equation (4.21) provides a definition of the Born operator mapping \(s \) into \(u \) and we wish to determine the regularity of this operator in the scale of Sobolev spaces. The mapping properties of the operator are determined by the principal symbol of its kernel and this is purely a property of the Green tensor \(G \) near \(x = x' \) and this has been calculated in Appendix 7. The principal symbol then is the Fourier transform of the appropriate part of \(\nabla G \) which has been shown to be \(\|e\|^{-1} \) in (7.11).

The kernel given by equation is a smoothing operator and it follows straightforwardly that \(L_B : H^0(\Omega)^3 \to H^0(\Omega) \) and that the inverse operator to the Born map is equivalent to first order differentiation.

When we examine the mapping properties of the operator \(\Delta u \), which is the Newton-Kantorovich map for the derivative of \(\sigma \) linearized about an arbitrary difference stiffness, we see by a similar argument to that used in § 4.1.1 that the mapping properties are the same as the Born map. We therefore have the result.

Theorem 4.4. The linearization of the map \(\Delta : u \to \sigma \), given by (4.14), is a continuous map from \(H^0(\Omega)^3 \to H^0(\Omega) \), furthermore it is equivalent to a first order differential operator and therefore is an unbounded map from \(H^0(\Omega)^3 \) to \(H^0(\Omega) \).

Proof. This follows heuristically from above, and rigourously from the results stated below Corollary 3.4 where it was shown \(\Delta u \) mapping \(\sigma \) is a compact operator into \(H^0(\Omega) \) and this is also true for \(\Delta u \). This means that considerable practical information can be found about \(\sigma \) from measurement of \(u \).

4.3. Inverse problem for multiple differences.

We consider here the inverse problem of determination of difference stiffness tensor and density. The map is \(T : v \to u \) from \(X = (X^p \times X^d \times X^s)^3 \), where \(v \in (\lambda, \mu, \rho) \). We now denote each of the linearisations with respect to \(\rho, \lambda, \) and \(\mu \) as \(T_{\rho}, T_{\lambda}, \) and \(T_{\mu} \), respectively, we see that the the gradient of the map \(T : v \to u \) from \(X \) to \(H^0(\Omega)^3 \) is given by

\[
(T'(\rho)u) = u'(\rho)u = [T_{\rho} \ T_{\lambda} \ T_{\mu}]s,
\]

where \(s = [s_{\rho} \ s_{\lambda} \ s_{\mu}]^T \) is a three-vector in \(X \). The appropriate expressions for the partial Fréchet derivatives in the 3-vector gradient operator is given by the results in lemmata 4.1-4.2.

Prior to discussing the mapping properties of the full Fréchet differential of \(T \) we provide the proof that (4.22) provides the linearization of the map \(T \).

Theorem 4.5. The map \(T : v \to u \) from \(X \), to \(H^0(\Omega)^3 \) for an isotropic stiffness is Fréchet differentiable with respect to \(v \), with a Fréchet differential given by

\[
(T'(\rho)u) = [(1 - K_\rho + K_\lambda) - K_\mu]\left(K_\rho + K_\lambda + K_\mu\right),
\]

and has gradient representation (4.22).

Proof. The implicit functional

\[
\xi(v; u) = u(v; x) - K_\rho u(v; x) - K_\lambda u(v; x) - K_\mu u(v; x) - u_{\text{inc}}(x) = 0,
\]

is used with the implicit function theorem in proving this theorem. Standard analysis similar to that we have provided earlier for the partial Fréchet derivatives shows this result. The only major difference in the condition necessary for the application of the implicit function theorem is to show that \([\xi_{\rho}(v; u)]^{-1} \) is bounded, and this was proven in Corollary 3.6.

The explicit expression for the Fréchet derivative is given by the implicit function theorem as (4.23). However, the more useful form is provided by the gradient of \(T \) in (4.22).

We have now completed examination of the operator \(T \) which maps the material functions into the displacement field. We have shown that this nonlinear mapping is bounded by Corollary 3.6 and that it is \(C^1 \)-continuous in appropriate function spaces in Theorem 4.5. Furthermore we have shown its linearization \(T \) is a compact operator which implies \(T^{-1} \) is unbounded.\(^1\)

4.3.1. Mapping properties of the inverse map \(T^{-1} \).

The ill-posed part of the map \(T^{-1} \) associated with \(K_\rho \) makes this full linearisation ill-posed and equivalent to second order differentiation.

\(^1\) We observe that this does not imply that \(T \) is necessarily compact in those spaces.
5. Discussion. In the last section we derived rigorous expressions for the partial Fréchet derivatives of the non-linear operator T with respect to v. That these are intuitively correct can be seen from the following argument. We first consider the difference density differing from zero, and then an equation for u which in some sense is equivalent to (3.1) is

$$u = u^{inc} + \tilde{G}u,$$

(5.1)

and this can be derived by similar techniques to those used in § 2. However, in this equation \tilde{G} is the difference density from the spatially varying true density and the spatially varying density ρ for which \tilde{G} has been calculated. Examination of

$$K_{pu}(x) = \omega^2 \int_{\Omega} \tilde{G}(x',x')u_j(x')dV'$$

shows that (5.1) appears linear in \tilde{G}, this of course is not true as both u and \tilde{G} depend upon ρ, but ignoring this then (4.6) would be the linearization of the operator T. Our analysis of § 4 shows that the second order effects of u and \tilde{G} can be neglected, and intuition is in fact true! Similar reasoning can be used to provide intuition arguments for (4.14).

We have examined the mapping properties of T with respect to ρ as given by (4.6). The kernel in K_{pu}, namely u_jG_{jk}, determines how a variation in ρ propagates its effect by changing the displacement field throughout Ω. It has been seen in § 4.2.1 that this is a smoothing effect that is equivalent to a double integration. This means the reconstruction of ρ from measurement of the displacement field is an inverse problem of medium difficulty.

When considering the mapping properties of T with respect to σ discussed in § 4.2.1 and as given by (4.14) the problem is not so ill-posed. Moreover for σ the kernel is $u_j\tilde{G}_{jk}$ in K_{nu} which describes how a variation of s in ρ propagates a change of the displacement field throughout Ω with the representation (4.14). This has been shown to be equivalent to an integration which means that the inverse problem is mildly ill-conditioned. For linear integral operator equations that are equivalent to first and second order differentiation, singular function decomposition shows that the inverse of such operators have condition numbers that increase as n and n^2, respectively, where n is the number of singular functions [10, Ch. 15]. We can use this to make the following observations about discrete versions of the our inverse problems. For the density reconstruction only problem, if we attempt to reconstruct 10^2-pixels along one dimension, i.e. 10^6 in the cube, this will mean that the matrix to be inverted will have a condition number of the order of 10^{12}; quite ill-conditioned. For the similar problem of just stiffness reconstruction, of either λ or μ, the condition number will be 10^6; not well conditioned but considerably better than for the density case.

When the full problem of elastic imaging is considered as in § 4.3 it is seen that the inverse problem is ill-posed dominated by the density reconstruction, and hence regularization is necessary to restore continuity of the solution to the measured data.

6. Conclusions and further work. We have developed a rigorous theory of MRI elastography. The simplistic approach is to just differentiate the displacement field and assume that the resultant strain field is explicitly related to the stiffness of the material; so yielding a strain image [7], but this is not always a realizable stiffness [2]. Our theory illustrates for just the stiffness case this is justified in a crude manner. The comparison can be made that in a sense this is similar to that of the difference in x-ray imaging between the full theory of CAT and shadow-grams.

The choice of elastic properties for imaging in elastography research remains an open question at this point; the use of the analytical methods described here will help to predict and understand the value and reliability of different parameterizations of elasticity imaging. Furthermore, results indicate significant work needs to be done to achieve effective multi-parameter reconstructive imaging. We are currently extending this work to include: the full elastic imaging problem incorporating boundary conditions and incompressible elasticity. By also incorporating non-isotropy and viscoelasticity the analysis will get closer to the real problem as studied by practitioners.

REFERENCES
The gradient of this function then follows as

\[\mathbf{G}^{(1)}_{ij} = \frac{1}{8\pi\mu(\mu + 2\lambda)} \left(\delta_{ij} - \frac{x_i x_j}{r^2} \right) \]

The gradient of this function then follows as

\[\mathbf{G}^{(0)}_{ijkl} = \frac{1}{8\pi\mu(\mu + 2\lambda)} \left(\delta_{ij} x_k - \frac{x_i x_k}{r^2} \right) \left(\delta_{ij} x_l - \frac{x_i x_l}{r^2} \right) \]
so that the divergence is

$$\Gamma_{ij}^0 = -\frac{2\mu}{8\pi\mu(\lambda + 2\mu)} \frac{x_i}{r^3}. \quad (7.2)$$

This means that the singular symmetric tensor kernel in $$k^0_{ij}$$ which can be found from the last formula is

$$\Gamma_{ij}^0 = \frac{2\mu}{8\pi\mu(\lambda + 2\mu)} \left(\frac{3x_jx_k}{r^5} - \frac{\delta_{jk}}{r^3} \right). \quad (7.3)$$

and in $$k^0_{ij}$$ it is $$\Gamma_{ij}^0 = \Gamma_{ij}^0$$, and

$$\Gamma_{ij}^0 = \frac{2(\lambda + \mu)}{8\pi\mu(\lambda + 2\mu)} \left(\frac{\delta_{ij}}{r^3} - \frac{3x_jx_k}{r^5} \right) = -\frac{(\lambda + \mu)}{\mu} \Gamma_{ij}^0. \quad (7.4)$$

7.0.3. Harmonic Green tensor. First observe that the fundamental Green function we have to work with is $$g^0 = e^{iR}/4\pi R$$, where $$R = |x - x'|$$. For convenience of notation, and without loss of generality, we move the origin of coordinates to $$x'$$ then $$R = r$$. The singularity of $$G$$ as $$r \to 0$$ is delicate because of the cancelation in the second term in (2.6) and it can be shown that

$$\lim_{r \to 0} G_{ij} = \frac{1}{8\pi\mu(\lambda + 2\mu)} \left(\frac{\lambda + 3\mu}{r} \frac{\delta_{ij}}{r} + (\lambda + \mu) \frac{x_jx_i}{r^3} \right) + c(\omega, \lambda, \mu)O(1)$$

$$= \Gamma_{ij}^0 + c(\omega, \lambda, \mu)O(1). \quad (7.5)$$

The gradient and second derivative of this tensor function then yields

$$\lim_{r \to 0} G_{ijkl} = \Gamma_{ijkl}^0 + O(1), \quad \lim_{r \to 0} G_{ijklm} = \Gamma_{ijklm}^0 + O(1),$$

so that the divergence is

$$G_{ij} = \Gamma_{ij}^0 + O(1) \quad \text{or} \quad G_{ij} = \frac{1}{\rho \omega^2 4\pi} \frac{x_jx_i^2}{r^3} + O(1).$$

These calculations imply that $$G$$ is $$O(r^{-1})$$, grad $$G$$ is $$O(r^{-2})$$ and grad grad $$G \to O(r^{-3})$$. Now if we define $$\bar{G} = G - \Gamma^0$$ then it is seen from the above calculations that this function $$\bar{G}$$ is more regular than $$G$$. We now need to calculate stress tensor $$\Sigma_{ij}^\epsilon$$ as $$r \to 0$$, which defined in (2.4) but has the stiffness as (2.11). This can be shown to be

$$\lim_{r \to 0} \Sigma_{ijk}^\epsilon = \frac{2}{8\pi(\lambda + 2\mu)} \left(\frac{\delta_{ij}x_k - \mu(\delta_{ik}x_j + \delta_{jk}x_i)}{r^3} - \frac{3x_jx_ix_k}{r^5}(\lambda + \mu) \right) + O(1). \quad (7.6)$$

In a similar manner we have

$$\lim_{r \to 0} \Sigma_{ijk}^\epsilon = \frac{1}{8\pi(\lambda + 2\mu)} \left(\frac{\delta_{ij}x_k - \mu(\delta_{ik}x_j + \delta_{jk}x_i)}{r^3} - \frac{3x_jx_ix_k}{r^5}(\lambda + \mu) \right) + O(1), \quad (7.7)$$

and so we finally see that $$\Sigma \to O(r^{-2})$$, and grad $$\Sigma \to O(r^{-3})$$.

7.0.4. Time dependent heterogeneous Green tensor. This tensor is defined through (2.12) and (2.13). The behaviour as $$x \to x'$$ for these tensors is more complicated than for those discussed in the last section. However, provided the $$\nu(x)$$ are all continuous functions, then by subtraction of (2.3) from (2.12) it can be shown that the singularities are of the same order as the homogeneous time-dependent ones.
7.0.5. Stress tensor surface integrals. We first consider here the integral formed by subtraction of the sphere of radius \(\varepsilon \) about the point \(x' \) in equation (2.9) in order to provide evaluation of the singular integrals, namely

\[
\lim_{\varepsilon \to 0} \int_{S_\varepsilon} [n_i \Sigma_{ijk}(x, x') u_j(x) - n_i \tau_{ij}(x) G_{jk}(x, x')] dS = \lim_{\varepsilon \to 0} \int_{S_\varepsilon} [n_i \Sigma_{ijk}(x, x') u_j(x)] dS,
\]

as \(G = O(1/r) \) and \(r \) is bounded. So we examine the integral on the right-hand-side but for generality we replace the \(\Sigma_{ijk} \) by \(\Sigma_{ijk}^{\varepsilon} \) and then using (7.6), shows this integral becomes

\[
-2 \pi \int_{S_\varepsilon} \frac{d\Omega_{x'}}{\varepsilon^2} u_j((-\lambda + \mu)(\lambda + \mu)^2) - \frac{n_i [\mu + 3(\lambda + \mu)]}{3(\lambda + 2\mu)} dS,
\]

(7.8)

where \(\lambda, \mu \) correspond to the difference stiffness parameters. Observe that when \(\mu = \lambda = \lambda \) the integral in (7.8) becomes \(u_j(x') \) as used in (2.10). When \(\mu = \lambda = 0 \) the integral is zero.

When we use the above equations for an isotropic medium in the expression for \(\alpha \) in (3.8) it can be seen that

\[
\alpha = 1 + \int_{S_\varepsilon} n_i \Sigma_{ijk}^{\varepsilon}(x, x') u_j(x') dS',
\]

\[
= \frac{2(\mu + \mu)}{3 \mu} + \frac{(\lambda + \lambda) + 2(\mu + \mu)}{3(\lambda + 2\mu)},
\]

(7.9)

where \(S_\varepsilon \) is a sphere of radius \(\varepsilon \) centred at \(x' \) and \(n_i \) is the \(i \)-th component of the unit normal to \(S_\varepsilon \).

7.0.6. Symbols of Green tensors. The existence theory for the singular integral operators uses the symbol of the integral operator which is given by the Fourier transform of the kernel and we list the dominant part of the Green tensors here. We need the symbol of the integral operators defined in § 3.2.1 and we evaluate them here. We should first note that the integral operators are defined over \(\Omega \) not \(\mathbb{R}^3 \), but this can be easily achieved by the standard trick of extending the domain of definition of the operand of the integral operator by zero on \(\mathbb{R}^3 \setminus \Omega \) and then the symbol of the operator is formed by the Fourier transform of principal singular part of the kernel. It is the principal singular part of the kernel that determines the symbol because it is that bit that determines the mapping properties of the integral operator with the lower order terms constituting a compact mapping in the Sobolev space in which the symbol acts. Fundamental to the calculation of the symbols is the knowledge of the Fourier transform of \(\Gamma^0 \) and by elementary means this can be shown to be

\[
\widehat{\Gamma^0}_{ij} = \frac{1}{\mu(\lambda + 2\mu)} \left(\frac{(\lambda + 2\mu)\delta_{ij} \| g \|^2 - (\lambda + \mu)\delta_j^k\delta_j^k}{\| g \|^4} \right),
\]

(7.10)

where the Fourier transform is denoted a hat. It is then easily found that

\[
\widehat{\Gamma^0}_{ij} = \frac{1}{(\lambda + 2\mu)} \frac{i\delta_j^k}{\| g \|^2},
\]

(7.11)

The principal part is therefore

\[
sym L_{ij}^{\varepsilon} = principal \ part \ \widehat{L}_{ij}^{\varepsilon} = F(\Gamma^0_{ij}^{\varepsilon}) = -\frac{1}{(\lambda + 2\mu)} \frac{i\delta_j^k}{\| g \|^2}
\]

(7.12)

\[
sym L_{ij}^{\varepsilon} = principal \ part \ \widehat{L}_{ij}^{\varepsilon} = F(\Gamma^0_{ij}^{\varepsilon} + \Gamma^0_{ij}^{\varepsilon})
\]

\[
= -\frac{1}{\mu(\lambda + 2\mu)} \frac{i\delta_j^k}{\| g \|^2}.
\]

(7.13)