
0

A case study of the Introduction of Computer Science in NZ schools1

TIM BELL, University of Canterbury

PETER ANDREAE, Victoria University of Wellington

ANTHONY ROBINS, University of Otago

For many years computing in New Zealand schools was focused on teaching students how to use computers,
and there was little opportunity for students to learn about programming and computer science as formal
subjects. In this paper we review a series of initiatives that occurred from 2007 to 2009 that led to program-
ming and computer science being made available formally as part of the National Certificate in Educational

Achievement (NCEA), the main school-leaving assessment, in 2011. The changes were phased in from 2011
to 2013, and we review this process using the Darmstadt model, including describing the context of the
school system, the socio-cultural factors in play before, during and after the changes, the nature of the new
standards, the reactions and roles of the various stakeholders, and the teaching materials and methods that
developed. The changes occurred very quickly, and we discuss the advantages and disadvantages of having
such a rapid process. In all these changes, teachers have emerged as having a central role, as they have been
key in instigating and implementing change.

Categories and Subject Descriptors: K.3.2 [Computer and Information Science Education]: Computer
Science education

General Terms: Design

Additional Key Words and Phrases: High school, Computer science education, Darmstadt model

ACM Reference Format:

Tim Bell, Peter Andreae, and Anthony Robins, 2014. A case study of the Introduction of Computer Science
in NZ schools. ACM Trans. Comput. Educ. 0, 0, Article 0 (2013), 30 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

In 2011 New Zealand introduced Computer Science as a mainstream subject available
to students in their final three years of high school [Bell et al. 2010; Bell et al. 2012].
Like several other countries, prior to this introduction the focus had been on teaching
students to use computers rather than to be developers; at best, some schools taught a
little programming.

The new Computer Science content that was introduced not only covers a much
improved programming focus but also gives students the chance to explore a range
of computer science topics beyond programming, including algorithms and complex-
ity, human-computer interaction, encryption, artificial intelligence, formal languages,

1This case study is partly based on prior studies: [Bell et al. 2010; Bell et al. 2012; Thompson et al. 2013;
Thompson and Bell 2013]

Authors’ addresses: Tim Bell, Department of Computer Science and Software Engineering, University of
Canterbury; Peter Andreae, School of Engineering and Computer Science, Victoria University of Wellington;
Anthony Robins, Computer Science Department, The University of Otago.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:2 T. Bell et al.

computer graphics and more. These topics are not intended to be covered in a great
deal of detail; the emphasis is on breadth rather than depth, with the main goal being
to enable students to understand what computer science is about, and thus to help
them make informed career choices with an understanding of computer science that is
beyond just programming [Denning and McGettrick 2005]. The topics that appear in
the standards are loosely based on the ACM/IEEE computer science curriculum [Cas-
sel et al. 2008; Sahami et al. 2013], and provide students with an overview of the kinds
of topics that computer scientists have expertise in.

In addition to making the subject visible in schools, the changes were delivered in
a way that provided assessment that could count towards academically-oriented qual-
ifications (e.g. entrance to university), as previously the qualifications available were
not appropriate for the more academic students, and thus such students were often
advised to avoid computing at school, which in turn provided them with the wrong im-
pression of the nature of the discipline of computer science as a non-academic subject.

The new content was phased in very quickly, and a significant challenge with this
wide range of topics and highly compressed timescale has been to prepare teachers
to deliver a range of material that few of them have encountered before. Teaching
programming (which few teachers were experienced with) presents a unique set of
challenges well known in the Computer Science Education literature, and many of the
topics outside of programming lacked a body of coherent resources for teaching.

In this paper we will look at how these challenges were addressed and identify
lessons learned from the changes, we will report on the current state of uptake of
the new standards and the reactions of the various stakeholders, and we will make
recommendations for others going through similar transitions. Some of the statistics
reported here are from a survey of teachers at the start of 2012 [Thompson et al. 2013],
which was repeated in May 2013 [Thompson and Bell 2013], asking the same questions
to see how teachers’ views had changed, and to collect data on the new standards that
had been made available between the two surveys. We refer to them below as the 2012
and 2013 surveys respectively; the 2012 survey reflects the situation after one year of
teaching the standards, and the 2013 survey was late enough in the year to pick up
information on the full three years over which the new content was released. The sur-
veys were announced through a national digital technology teachers’ mailing list, and
comparative statistics were made by taking only submissions from teachers in schools
that made submissions to both surveys. More details about the methodology and initial
results are available in the earlier report [Thompson et al. 2013].

This paper addresses the main issues using headings from the “Darmstadt
model” [Hubwieser et al. 2011], with specific subsections for each of the issues in the
model. Table I lists the sections where each is discussed.

Section 2 introduces the context of computing in New Zealand high schools, and
the process by which computer science was introduced. Section 3 gives details about
the new content, and Section 4 discusses the process by which it was implemented.
Section 5 reviews issues surrounding assessing the subject in the New Zealand context,
and Section 6 reviews how various stakeholders responded to the new standards. We
conclude with a summary of key issues and lessons learned from the process of the
change in Section 7.

2. COMPUTING IN NZ SCHOOLS

After some initial use of computer programming as part of the maths curriculum from
1974–1985, the curriculum became dominated by teaching students how to use com-
puters. Added to this, the confusion of computing education with computer aided ed-
ucation (CAE), which has evolved into “e-learning,” meant that computers in schools
were heavily in demand, but were not associated with teaching computing as a disci-

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:3

Table I. Index of sections relating to the Darmstadt model

Category Section
Educational or school system 2.1
Specific socio-cultural related factors (history of ICT and CS in school,
age, gender, social and Immigration background of students, family
socialization, public opinion, techno-economic development)

2.2

Research, funding, education policies, quality management 2.3
Intended learning objectives, competencies or standards 3.1
Intended knowledge about computer science 3.2
Curriculum issues 3.3
Education, qualification and professional experience of teachers 4.1
Motivation of students and teachers 4.2
Applied, proposed or developed media (textbooks, soft- or hardware
tools, visualization or other didactical software, unplugged media)

4.3

Applied or proposed teaching methods 4.4
Technical infrastructure 4.5
Examination and certification of students 5.1
Related extracurricular activities 6.1
Results, outcomes or consequences 6.2

pline. This heavy use of computers for purposes other than teaching computer science
gave decision makers false confidence that computing education was being addressed
in the education system, and made it difficult for those who were concerned about
teaching computer science to make a case for change. Combined with the view held
among some computer scientists that teaching programming badly might do more
harm than good, it was not unusual for academics to advise that computing not be
taught at all [Koblitz 1996]. The vocationally-oriented courses that transpired also led
to a view among academically oriented students that they should avoid computing at
school, as the qualifications available were not suitable for entrance to university or
getting scholarships, and by the time they were leaving school they would be doing
well in other subjects and be more naturally inclined to carry on in those subjects.

In this section we first review the context of education in New Zealand, and then
look at the process that led to computer science being introduced as an academically
rigorous subject in schools.

2.1. Educational or school system

The population of New Zealand is around 4.4 million people, with 342 secondary
schools and 155 “composite” schools (schools that are a mixture of primary and sec-
ondary classes, typically small rural schools that might not offer all year levels). Be-
cause New Zealand is relatively small, is independent, and has a unified education
system under the control of the Ministry of Education, the country is able to introduce
innovations in education relatively quickly. In the case of computer science, the time
from when a panel was convened to look at concerns about the lack of computer science
in schools, to the time when computer science started being taught was 2 years and 2
months. The fast time frame was partly due to the opportunity to build on a framework
that had already been developed, but also was driven by a sense that the window of
opportunity needed to be seized while there were government officials and contractors
who understood the issues and had permission to act, teachers who were willing to
help make changes, and support for change from tertiary education institutions and
industry. All of this occurred in an environment where the various stakeholders were
willing to work in partnership with each other.

Schooling in New Zealand is generally divided into primary (“Year 1” to “Year 8”),
and secondary (“Year 9” to “Year 13,” often referred to as high school). Students start
school on their 5th birthday, so the typical age group of a Year can be crudely estimated
by adding four to the year number (e.g. Year 9 students are typically around 13 years

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:4 T. Bell et al.

old). The main school leaving qualification for students is the “National Certificate of
Educational Achievement” (NCEA), which is the main focus in Years 11 to 13 of high
school for most students. The NCEA qualification is flexible, and can be endorsed in
various ways depending on combinations of small modules (referred to as “standards”)
that students pass. The standards that are used for assessing NCEA are typically
equivalent to a few weeks of work in a course, with students usually taking about
5 courses at a time. The standards are usually taken in years 11 to 13 of a student’s
schooling, which are categorised as levels 1 to 3 for assessment, and confusingly, the
curriculum on which teaching is based is referred to as levels 6 to 8.

In New Zealand two separate agencies manage high school assessment and teaching
respectively. The standards for assessment are managed by the New Zealand Qualifi-
cations Authority (NZQA), which is a government agency that is responsible for qual-
ity assurance of assessment for secondary and non-university tertiary qualifications.
It works closely with the Ministry of Education, which is responsible for shaping and
resourcing the education system, and in this context provides resources and support
for teaching the subjects.

The NCEA qualification allows schools to put together courses to suit local inter-
ests and the needs of students, based on a selection of the relatively small assessment
standards (note that the standards only specify the knowledge or skills that are to be
assessed; this obviously influences the content to be taught, but there is a separation in
principle). Students gain credits by achieving the standards, which are generally worth
3 to 6 credits each. One credit corresponds to about 10 hours total of teaching, home-
work and assessment. Several standards are grouped together for a course to make
up about 18 to 24 credits; 80 credits must be passed each year to be awarded NCEA
(amongst other requirements), with students typically gaining about 100 credits; 120
credits corresponds to a full workload in a year. The combinations of standards are
flexible, so (for example), a computing course might combine a programming standard
with a web page standard to investigate web programming, but the same program-
ming standard might be combined with an electronics standard in a different course
to explore robotics. Full details of the requirements for NCEA are available from the
NZQA website.2 There are two types of standards: unit standards, and achievement
standards. Unit standards are competency based, having a simple pass/fail outcome,
and are generally associated with a skill that a student can either demonstrate or
not. Achievement standards can be passed at three levels: Achieved (A), Merit (M),
and Excellence (E). Achievement standards tend to be favoured by more academically-
oriented students, and are important for gaining entrance to university and applying
for scholarships. Unit standards are primarily associated with Polytechnics and Pri-
vate Training Establishments, but high schools have been able to offer many of them.

The New Zealand school year starts in January/February (the end of summer), and
student results are released in January of the following year, so the academic year
corresponds to the calendar year. The changes discussed here were introduced in the
2011 to 2013 school years, so at the time of writing (mid 2013) all of the changes have
been introduced, but student results are available for only the first two years. The two
teacher surveys that we have used reflect the situation at the end of the first year of
changes (start of 2012), and part way through the third year (May 2013), by which
time all the standards were available.

2.2. Specific socio-cultural related factors

In this section we explore the origins of the new computer science standards, and how
public perception lagged behind the changes. Socio-cultural factors are affected by mis-

2www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:5

understandings about what computer science is (both in the school system and with
the general public), nervousness among teachers at having to teach new topics that are
outside of their experience and have not been taught before, and the range of confusing
terminology surrounding the discipline — even the word “technology” is understood
in some contexts to mean only digital devices, whereas the New Zealand curriculum
adopts a broad definition of “intervention by design to expand human possibilities.”
Combined with the strong views that many people hold about education, and the im-
portance of getting curriculum design right, these factors inevitably create tensions,
and a key element of the successful deployment of a new curriculum in New Zealand
is that the many parties involved have taken the time to listen to each other and find
commonalities that have made progress possible.

2.2.1. History of ICT and CS in schools. From 1974 to 1985, programming was able to be
taught in NZ high schools through the maths curriculum. However, it did not emerge
as a discipline connected to computer science, and despite concerns being raised [Sallis
et al. 1990; Brown 1998; Savidan 2003], the subject in schools became dominated by
using computers as a tool. One local approach to foster interest in schools, started in
1995, was the University of Waikato scholarship for final year school students, who
could take written and practical exams to win a scholarship that included access to
advanced courses at the university. This has continued to the present, but is mainly of
interest to students in the Waikato region.

In 1995 a new school curriculum was introduced that included “technology” as a
learning area, and ICT was defined within that area with a broad and literal view
of it being about “information” and “communication,” but there were concerns that
schools were not engaging with the topic [Savidan 2003]. Some progress had been
made towards a broader and deeper approach to computing in the curriculum, such
as the “Fluency in IT” (FITNZ) project [Clear and Bidois 2005], but mapping such
proposals onto a new national technology curriculum that was being released in 2007
was proving to be problematic.

Around this time the only national assessment available in computing was through
unit standards, and these tended to be focused on applied computing rather than the
discipline of computing and developing new systems — the titles of unit standards
include “Produce simple desktop published documents using templates,” “Produce a
spreadsheet from instructions using supplied data” and “Find information using the
Internet.” Some programming unit standards were available e.g. “Create and use sim-
ple command sequences in a computer language” (a level 1 standard), and “Create a
computer program to provide a solution” (level 3). However, these standards did not
expose students to the richness of the discipline of computer science, and had a fairly
dated view of what a program might be.

Another problem with the unit standards was that they were a simple pass/fail as-
sessment and are generally associated with skills-based courses. For academically ori-
ented students this was unattractive because it did not afford the opportunity to build
up a portfolio of grades that could be used to distinguish their achievements when
applying for university and/or scholarships. Academically inclined students favoured
achievement standards, available for subjects such as maths and physics, where stu-
dents could get a grade of Achieved, Merit or Excellence, and could demonstrate their
ability as a high achiever.

Also at this time, industry and universities were developing an acute awareness that
the number of students studying computer science had plummeted since the year 2000,
as it had in other western countries, and that a dire shortage of skilled graduates was
looming.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:6 T. Bell et al.

Two major changes were initiated in 2007. The first was a new curriculum for New
Zealand schools3, which provided general guidelines in eight learning areas, one of
which was technology. Technology had been introduced to the curriculum in 1995, but
had significant revision for the new curriculum released in 2007. The learning area of
technology provided generic assessment tools for teaching subjects ranging from food
technology to digital technology, which meant that computing was not a subject area
of its own, and the same kind of assessment criteria had to be used for a large range
of technologies (such as meal planning and software development).

The second change in 2007 was that the FITNZ project [Clear and Bidois 2005]
project led to a new “Digital Technologies Guidelines” project4 which piloted new mate-
rial for teaching computing-related topics in schools. The DTG project proposed seven
“strands” for computing in schools: Electronics & controls, Programming & software,
Digital information, Digital media, Digital infrastructure, Digital society, and Digital
concepts & tools. From 2007 to 2010 the DTG guidelines were piloted in three phases,
with 14, then 60 and finally 120 schools.

However, in 2008 after the first phase of the DTG, and as the generic technology cur-
riculum was being considered, concerns were raised by teachers, industry and tertiary
institutions.

Industry and tertiary concerns were raised through a report released in April 2008
from the New Zealand Computer Society [Grimsey and Phillipps 2008] (the NZCS
is the main national organisation for computing professionals; it has since changed
its name to the Institute of IT Professionals NZ, or IITP). The report addressed two
main questions: how appropriate the assessments in the technology curriculum were
for preparation for a degree in computer science, and how appropriate they were for
students who were going to be computer users. The main concerns in the report were
around the use of generic “technology” standards that were designed to cover a range
of technologies, with broad titles such as “Develop a technological solution to address
a given brief” and “Present an outcome developed through technological practice,” and
the use of language that refers to physical materials that does not obviously relate
to computing, such as “batch production” of the final product. There was also concern
about the cognitive level required by the standards, and the assumption that “the
food technologist, the wood worker, computer scientist and IT technician use the same
cognitive skills in each of their disciplines.” The computing requirements could be in-
terpreted as a major software engineering project, which is quite a different enterprise
to, say, designing and building a wind turbine for charging batteries on a boat. The
report concluded that computer science should not be taught as a part of the technol-
ogy curriculum, and pressed for computer science to have its own specific standards
that relate to topics beyond programming, giving many examples from international
sources (such as the CSTA and ACM curricula) including algorithms, AI, the limits of
computation, and user interface design. It also recommended that the subject be made
available in a way that would “appeal to brighter students.”

Concerns were also raised through a national teachers’ association; in a newsletter
on 15 May 2008 the Post-Primary Teachers’ Association (PPTA) announced in a bul-
letin “members on the group have become concerned about the workload expectations
around the DTG, the tight and unsympathetic timelines and the lack of relevance of
the resources they are being required to develop,” and advised members to not partici-
pate “pending assurances about the development of a better process.” However, by the
end of June it was reported that “teachers have now withdrawn their protest after the
ministry agreed to tackle some of their concerns.”

3http://nzcurriculum.tki.org.nz/Curriculum-documents/The-New-Zealand-Curriculum
4http://dtg.tki.org.nz/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:7

In August 2008 a second report appeared that had been commissioned by the Min-
istry of Education and written by three teachers [Carrell et al. 2008]. It considered
the state of computing education, particularly in the context of the recent changes and
the “disparity between graduate numbers from tertiary education and the employment
needs of industry,” a phenomenon that was also a concern in the US and UK with plum-
meting enrolments in computer science at a time when demand for graduates was
growing. The report observed that “there is a lack of teacher confidence because the
subject Computing is perceived to be second rate, is uncoordinated, under resourced,
unsupported, lacking in a professional body, and in dire straits.” It recommended that
a solution could be built on the existing work done on the DTG, and in the curriculum
computer science should have its own standards, either in a separate learning area,
or as a separate set within the technology curriculum. The issue of teacher profes-
sional development was also raised: “investment in teachers in our subject area is long
overdue,” and there was a call for a national subject association to support teachers.

These concerns resulted in the Ministry of Education calling together a “Digital
Technologies Experts Panel” (DTEP) representing industry, tertiary and High Schools,
to develop a plan to address the issues raised in these two reports. The panel first met
in November 2008, and by mid 2009 it had produced a body of knowledge and rec-
ommendations for a way forward5. The panel’s report included a joint announcement
between the panel and Ministry of Education, indicating that the recommendations
were broadly accepted and would be actioned urgently (to be used in schools in 2011).

The DTEP report distinguished between “ICT as a discipline” and “ICT as a tool,”
noting that the discipline was needed for the country to be an innovator. It recom-
mended that a new area called “Digital Technologies” should be developed, which ide-
ally would be a learning area of its own, but because of the time this would take,
should initially sit within the Technology curriculum, but with its own achievement
standards.

The general structure of the DTG areas was kept, but the Programming & software
area was renamed “Programming and Computer Science” to make computer science
visible as a discipline, and to indicate that it is more than programming. Retaining
the term “computer science” in the title required some vigilance, as decision makers
editing the standards might not see any difference between “programming” and “com-
puter science,” and thus remove the latter in the interest of conciseness; or educators
involved in the process might be comfortable with programming but concerned about
introducing unknown topics that seem overly academic, and prefer to make it less visi-
ble. For similar reasons, when a four-letter abbreviation was required a case was made
to call it “PRCS” rather than the initial “PROG” that was chosen. It was helpful to have
simple examples on hand to demonstrate what is meant by computer science, and in-
dustry advocates who had achieved well because of their computer science background
were also helpful.

Building on the DTG, rather than starting from scratch, meant that the new ma-
terial could be delivered taking advantage of the existing momentum achieved by the
DTG. The DTEP report also called for assessment standards that were academically
challenging and would help students to meet entrance standards for tertiary study,
and urgent professional development for teachers.

At the same time, the Ministry of Education was in the middle of an extensive
review of all curriculum areas which involved revising or rewriting all the Achieve-
ment Standards used in secondary schools, with significant changes in the Technology
area. Most importantly, they were introducing a range of new knowledge and skills

5The body of knowledge, DTEP report and press release are available from http://technology.tki.org.nz/
Curriculum-support/Knowledge-and-Skills-documents

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:8 T. Bell et al.

standards to complement the generic standards. In response to the recommendations
from the DTEP and other reports, it introduced a new subject of Digital Technologies
into the Technology curriculum area and formed groups to write new resources and
new Achievement Standards for Digital technologies, alongside the revision of exist-
ing standards in other parts of technology.

A key result of all this work was a matrix of assessment standards6 that includes
a set of generic technology standards, but has specific standards in four areas of tech-
nology: Construction and Mechanical Technologies (focuses on making and knowing
how to make products and devices), Design and Visual Communication (focuses on
where visual literacy and creative thinking is developed, using visual communication
techniques), Digital Technologies (focuses on applying and knowing about computer
science, electronic and digital applications), and Processing Technologies (focuses on
formulating and knowing how to formulate processed products).

The Digital Technologies standards allow schools to offer a range of different com-
puting related courses, but most importantly allow academically strong courses that
address programming and computer science in a way that will lead into academic study
in computer science and software engineering at the tertiary level. Furthermore, some
of the generic technology standards can be used within a digital technologies context
and be combined with the Digital Technologies standards to put together a course that
teaches subject knowledge, and then applies or reflects on it in a practical environ-
ment. An example of a generic standard that could be used this way is “Demonstrate
understanding of the ways a technological outcome, people, and social and physical
environments interact,” in which students might look at issues such as privacy and
equity in a digital environment.

2.2.2. Public opinion. A significant challenge for schools has been to shake off the per-
ception of computing, arising from the previous curriculum, as a non-academic subject
that is not appropriate for students heading for tertiary qualifications, and containing
little that most students do not know already. Some of the new courses are now too
challenging for those who would have been encouraged to take computing previously,
and it has been important to keep options in place for those who do need to learn how
to use computers rather than develop new systems. At the same time, it has been hard
to change the perception of the courses fast enough to attract a new group of students,
including those who are heading for university qualifications. For example, for schools
that were reported in both the 2012 and 2013 surveys, 45% reported that a significant
number of students took the course who lacked the academic ability to do it well in the
first survey, and in 2013 the figure was 46% for the same schools (although we note
that the number who felt they attracted a significant number of highly capable stu-
dents rose from 41% to 50%.) It is a challenge to communicate the changes clearly to
students and their parents because they are getting information from a wide variety of
sources, such as career counsellors, deans, principals, parents and the press, and not
all of those sources will necessarily understand the changes.

A strong media campaign is required to address this; in New Zealand there were a
number of press releases and public articles announcing the changes and explaining
their value to students, industry and the country, but there were still two parallel
public perceptions. For example, in March 2012, over a year after the new standards
had been deployed, a teacher was quoted in the media saying “the current ministry-
provided ICT curriculum for senior students (Years 11, 12, and 13) focuses on outdated
and ‘static’ IT skills, instead of general ‘IT thinking’ like programming theory, strategy,
and logic; which would prepare students for higher education in ICT and careers in

6Available from http://ncea.tki.org.nz/Resources-for-aligned-standards/Technology

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:9

the sector,” 7 and in April 2013 a student wrote an opinion piece that appeared in a
major newspaper saying that “Information and communications technology (ICT) has
been trampled by English, maths and the sciences as a subject that yields no value in
progressing to the next stage of education.” 8

Having champions in the media (such as high-achieving industry people) is a valu-
able way to address misunderstandings about the courses, but another issue is that
their terminology may not match the courses that are being offered. The key phrase
that was needed to promote the changes in schools was “Computer Science and Pro-
gramming,” since that is the name of the standards that were put in place, but often
media articles would mention terms like ICT, Information Science, computing, cod-
ing and software engineering, all of which are legitimate terms, but do not link di-
rectly to the offerings in schools. One initiative to address this was a brochure and web
site made available to schools to help them promote the connection between the new
courses and the employment opportunities for students.9 Also, the Ministry of Educa-
tion is launching a “Vocational Pathways” project to help students become more aware
of the options available to them.10

2.3. Research, funding, education policies, quality management

From the early 1990s the CS Unplugged project (at the University of Canterbury in
Christchurch, University of Waikato in Hamilton and Victoria University in Welling-
ton) had developed experience in communicating computer science without using
computers, and in environments where little time was available to learn program-
ming [Bell et al. 1995; Bell et al. 2012b]. While this did not drive the changes, it had
provided a base of expertise working with schools that provided confidence that ad-
vanced topics from computer science could be communicated to school students with-
out first requiring them to have significant programming skills, and was influential
in making it possible to have computer science as a separate standard that was not
dependent on programming standards. Also, because it had been used with primary
school children who were able to work with concepts from computer science, it gave
some confidence that high school students would be able to do so as well.

Research on teaching introductory programming had been carried out at the univer-
sity of Otago since the early 2000s, which provided considerable background to inform
the design of school programming standards [Robins et al. 2003; Rountree et al. 2004;
Garner et al. 2005; Robins 2010].

Similarly from the mid 2000s various initiatives to promote robotics in schools had
been independently established, the main one being RoboCup Junior11, which runs
annual regional and national competitions for schools involving hundreds of pupils.
Robotics promotes programming and a range of other engineering and technology
skills, and this practical experience with schools (at both primary and secondary lev-
els) informed the design of the new programming standards.

Research underpinning the changes in the technology learning area of the school
curriculum, focusing on the broad area of technology more than computing in partic-
ular, includes a review of teachers adapting to the 1995 introduction of technology in
the curriculum [Compton and Jones 1998] and reviews and case studies and the de-
velopment of a framework for technology assessment [Compton and Harwood 2003;
Compton and France 2007]. The research previously mentioned that focuses more on

7http://computerworld.co.nz/news.nsf/news/govt-failing-ict-teachers-says-tech-educator
8http://www.stuff.co.nz/technology/digital-living/8577142/Education-not-in-sync-with-IT-goal
9Published on http://csanz.ac.nz
10http://youthguarantee.net.nz/vocational-pathways/
11http://www.robocupjunior.org.nz/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:10 T. Bell et al.

computing and computer science in the curriculum [Clear and Bidois 2005; Grimsey
and Phillipps 2008; Carrell et al. 2008] provided the data to drive political change.

The computer science standards have been tracked through two major research
projects: a detailed analysis of student work [Bell et al. 2012a] and a survey of teach-
ers to identify good practices and issues during the transition [Thompson et al. 2013].
Outcomes from this research are discussed below, including results from an updated
survey of the teachers.

Student work is assessed by the NZQA government agency, which tracks student
performance and makes general statistics publicly available online.12 Some of these
statistics are reported later in this document.

Funding, of course, bears on the deployment of the new standards in several ways.
The development of the new standards required a budgetary commitment from the
Ministry of Education, which included costs for bringing together experts to develop
the standards, exemplars and guides. There has been little central government fund-
ing for schools for professional development (PD) of teachers specifically relating to
the transition. All schools are expected to set aside some of their budget for PD, and
it is up to each individual school how to deploy it, with predictably variable results,
particularly given that administrators might not understand how much help teachers
might need to teach the new standards. (There is also a limited contestable pool for
whole school programmes, but this cannot be applied to PD within a specific subject
area.) There has, however, been indirect support from the Ministry of Education in
various ways as described in Section 4.1. Some sponsorship for PD has been forthcom-
ing from industry, particularly from Google Inc. for funding the CS4HS PD workshops,
also described in Section 4.1, and development of the “CS Field Guide” (Section 4.3).

3. DETAILS OF THE NEW STANDARDS

In this section we describe the eight new achievement standards that comprise the
“Programming and computer science” strand of Digital Technologies, and discuss some
of the issues that arose around details of the standards.

3.1. Intended learning objectives, competencies or standards

The official source for the new standards is the New Zealand Qualifications Authority
(NZQA), and all Digital Technologies standards can be accessed via http://www.nzqa.
govt.nz/ncea/assessment/search.do?query=Digital+Technologies.

Table II summarises the “Programming and computer science” standards. There is
a stream of the standards that focus on programming (1.45, 1.46, 2.45, 2.46 and 3.46),
and another stream that are focused on topics from computer science (1.44, 2.44 and
3.44). In principle the computer science standards can be taught without the program-
ming standards, but most classes combine them, or teach only programming. For ex-
ample, in the 2013 survey, only 17.7% of teachers reported teaching the 3.44 standard
without the 3.46 standard, and at level 1 the corresponding proportion was only 9.1%.
In contrast, 80.0% of the teachers using 3.46 (programming) are also using 3.44.

The programming standards are all “internal,” which means that they are assessed
by the teacher, with external auditing (moderation) to ensure consistency. The com-
puter science standards are all “external,” which means that the they are assessed by
an anonymous appointed marker (or group of markers), organised by NZQA. There are
requirements for a minimum number of external credits on a student’s record to meet
various criteria and endorsements; it is therefore important that the computer science
standards are external, since this encourages teachers to include them in their courses

12http://www.nzqa.govt.nz/studying-in-new-zealand/secondary-school-and-ncea/
secondary-school-statistics/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:11

Table II. Achievement standards in the “Programming and computer science” strand of Digital Technologies

DT
num-
ber

NZQA
Standard
number

Title Credits Assessment

Level 1
1.44 AS91074 Demonstrate understanding of basic concepts

from computer science
3 External

1.45 AS91075 Construct a plan for a basic computer program
for a specified task

3 Internal

1.46 AS91076 Construct a basic computer program for a
specified task

3 Internal

Level 2
2.44 AS91371 Demonstrate understanding of advanced con-

cepts from computer science
4 External

2.45 AS91372 Construct a plan for an advanced computer
program for a specified task

3 Internal

2.46 AS91373 Construct an advanced computer program for
a specified task

3 Internal

Level 3
3.44 AS91636 Demonstrate understanding of areas of com-

puter science
4 External

3.46 AS91637 Develop a complex computer program for a
specified task

6 Internal

(although the external credits might be obtained in standards other than these ones,
since there are few rules about how standards can be combined to create a course).
The external assessments are done by students submitting reports that should reflect
their experience with the topic, rather than an exam. This is discussed further in Sec-
tion 5.1.

Each credit represents a nominal 10 hours of student work (both in and out of class
time), each standard is usually 3 or 4 credits, and about 18 to 24 credits are required
to make up a course, so even if a class does all the programming and computer science
standards for a level it will typically only be about half a course. The difference can
be made up with either generic technology standards (looking at broader issues in
computing, or technology in general), or with other digital technology standards, such
as electronics, media (including web design) and information. The small number of
credits means that it is a lot easier to slip a computer science standard into a course
even if they are not the main focus (for example, a course on web design could use them
to create a coherent course that includes programming and interface evaluation), and
this has the benefit of exposing more students to the topic, even if they would not have
chosen it themselves (although we note that in the surveys many teachers commented
that the number of credits is too low for the amount of work required).

Each of the computer science standards covers topics in computer science, generally
corresponding to areas of the ACM/IEEE curriculum [Sahami et al. 2013]. Table III
identifies the main topics for each standard. For 1.44 and 2.44, all topics must be
addressed by a student to achieve the standard. For 3.44, students need only look
at two of the topics in detail; since the goal of the standards is to give students an
understanding of what computer science is, the process of choosing the two topics will
usually be an opportunity to review the breadth of the field, without creating too much
“busy” work for students to look at each of the topics in detail.

The goal of the computer science topics is that students should understand the main
issues, even if they do not have the skill to work with software that uses the concepts.
For example, with the 1.44 algorithms topic students should find out that the differ-
ence between algorithms such as quicksort and selection sort, or binary search and
sequential search, is not just a linear factor, and can have a huge impact on perfor-

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:12 T. Bell et al.

Table III. Topics in the computer science standards

DT number Topic Level of detail
1.44 Algorithms Understanding the difference between a program and an algo-

rithm, and evaluating two different algorithms for the same
problem, for example, by timing selection sort and quicksort
for various values of n

1.44 Programming lan-
guages

Understanding the role of compilers, interpreters, and
high/low level languages

1.44 User interfaces Evaluating usability based on activities such as observing a
user completing a task using a think-aloud approach

2.44 Data representa-
tion

Binary, representation of numbers, text, images, and sound,
and especially the implications of the choice of the number of
bits (e.g. 8/16 bit characters, 16/24 bit colour)

2.44 Coding Covers encryption, error detection/correction, and compres-
sion, at the level of evaluating software and systems that use
these techniques on practical systems (for example, measur-
ing the amount of compression for various kinds of images and
compression methods)

2.44 Usability heuris-
tics

Evaluating an interface in the light of usablity heuristics such
as those given by Nielson (useit.com)

3.44 Formal languages Familiarity with the notation for simple languages such as
regular expressions and their corresponding Finite State Ma-
chines (using provided software to convert between the two)

3.44 Network communi-
cation protocols

Understanding the issues being addressed to ensure reliable
communication of data between two parts of a network in the
face of different kinds of threats and failures

3.44 Complexity and
tractability

Understanding that there are problems that cannot feasibly
be solved using computers, and the exponential costs that can
arise from brute force exhaustive searches

3.44 Intelligent systems Understanding the role of various concepts in AI, such as the
Turing test, and experimenting with implemented systems,
such as chatbots and machine learning

3.44 Software engineer-
ing

Understanding the challenge of “programming in the large,”
and the kind of processes (e.g. agile) used to create software

3.44 Graphics and vi-
sual computing

Understanding the kinds of techniques used to create and un-
derstand images, such as transforms, simple rendering tech-
niques, and image processing algorithms.

mance and scalability. However, they are not required to implement the algorithms,
although more capable students could be encouraged to do so. It would be reasonable
for students to understand how selection sort works through animations or physical
demonstrations, and they might even be able to understand the principle of quick-
sort, but the key concept being taught is that the wrong algorithm can be significantly
slower than a carefully chosen one. Likewise, for usability the main goal is for students
to become sensitive to how even the most polished interface can have usability issues,
and that this is an important area to master when designing interfaces, but they are
not required to design and implement an interface.

The list of topics at level 3 can look daunting to teachers without a background in
computer science, but there are ways to approach each topic without requiring a strong
background, and yet still understanding the key issues surrounding the topic.

The programming standards represent a progression from introductory work at level
1 (often taught using Scratch), through to the equivalent of an introductory university
course at level 3. Level 1 addresses tasks that involve input and output, and can be ex-
pressed as a single procedure (or method/function) program using sequence, selection
and iteration, but only requires simple data (no arrays, lists, or structures). Level 2
addresses tasks that involve multiple procedures and also use an indexed data struc-
ture. Level 3 requires the use of basic object-oriented programming concepts (classes

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:13

and objects with encapsulation, but not inheritance) and a simple GUI implementation
with event handling.

For level 1 and 2, the tasks are split into two parts: designing a program for a task,
and implementing a design as a program. The “design” standards (1.45 and 2.45) in-
volve producing an “algorithmic structure” which can be written in informal English,
pseudocode, or a graphical format. The “implementation” standards involve construct-
ing a working program in a programming language and testing and debugging it. The
two would normally be taught together, but having separate standards makes it possi-
ble for a student show their relative strengths in the two areas (for example, a student
might not be able to come up with a good design, but could show that they can imple-
ment a program given a design, and thus get credit for the 1.46 standard only even
though they attempted both). This split is somewhat controversial, and the reasons for
it and the problems with it will be discussed in a later section.

At levels 1 and 2, drag-and-drop languages are allowed (Scratch is popular at level
1, with many schools moving to text-based languages at level 2). At level 3, students
must use a text-based programming language (Python is the most popular language
at levels 2 and 3).

3.2. Intended knowledge about computer science

Part of the purpose of the new topics being introduced to schools is to provide students
with some grounding in CS concepts, but the primary goal is giving them exposure to
the topic, providing the opportunity for them to find out if it is something they might
be passionate about. Significant factors in the declining interest in CS amongst school
students in western countries include the widespread misunderstanding of the subject
and the career [Woratschek and Lenox 2009; Tucker 2010], and the confusion of the
discipline of computing with learning how to use the computer as a tool. Providing a
lightweight overview of the topic is intended to counter this by giving students the
opportunity to explore a broad range of areas of computer science without taking the
risk of committing too much time to engage with the subject. The relatively small
number of credits also helps because the material can be integrated in existing courses
rather than having to be a course in itself.

Another important reason to keep the amount of content fairly light is that uni-
versities currently accept students with little or no computing background, so if some
students who happened to do CS at high school had done up to three substantial years
on the topic, this could create a diversity of incoming students that would be difficult to
cater for. If the first year university course starts with introductory programming then
the specialist students would be bored, and if it assumes three years of CS background,
it would be beyond what less-prepared students could cope with. The net effect could
be to significantly reduce the number of students taking CS at university level!

Importantly, starting small enabled the topics to be deployed quickly, reducing the
time needed for teacher training, developing supporting resources, and administrating
the new programme. In the long-term when CS has become well established at high
school this may become less of an issue, and computer science in schools could grow
more into a more substantial programme, to be comparable with subjects like physics,
where a substantial high school background is usually assumed for students who wish
to study it at university.

The process of designing the standards was informed by similar initiatives over-
seas, and considerable attention was paid to discussions that led to curricula such as
the US CS principles project [Astrachan et al. 2012], the Exploring Computer Science
course [Goode and Margolis 2011], and the UK curriculum changes [Furber 2012], as
well as programmes in Israel [Gal-Ezer et al. 2009] and Korea [Yoo et al. 2006], where
computer science was already well established in schools.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:14 T. Bell et al.

3.3. Curriculum issues

Here we explore three curriculum issues that come up as a result of the changes.

3.3.1. Workload and preparation. The number of credits that each standard is worth has
been the topic of considerable debate. NZQA has guidelines that restrict the number of
credits, and the benefit of a lower number of credits is that the standard can be more
easily combined with others to expose more students to the topic. However, teachers
have repeatedly reported that the amount of work done by students to meet the new
standards is out of proportion with other learning areas. This may be partly due to
the subject being new, and the effort required by all involved in this unfamiliar area is
higher, and it will also be affected by the fact that students are meeting the topic for
the first time quite late in their schooling (whereas other subjects such as maths will
have been gradually scaffolded from very early on).

Some have taken an optimistic view, that the subject will be seen as challenging
but worthwhile; in the 2013 survey comments one teacher observed: “. . . most (by far)
students do cope, and even if they really want [Merit or Excellence] but don’t actually
think at that level (like I said, it is hard), they accept that just having the Standard
means an awful lot.”

The focus of the changes has been on NCEA, as this is where standards are set.
However, since this only touches the last three years of school, the next challenge will
be to introduce some of the concepts earlier, which can significantly reduce the pressure
on students once they reach NCEA, and also provides more awareness of the subject
earlier on. In the 2013 survey one teacher commented: “This year my year 9 students
did the the same HTML learning as my year 11 students using the CodeAvengers
website and they produced equal results in less time.” Younger students can be more
open to learning the new ideas, partly because of their developmental stage, and partly
because they are not under pressure to learn for assessment.

Teachers are permitted to teach this material earlier, and it can fit into existing
broad curricula guidelines, but in the absence of formal guidance it is up to each indi-
vidual to work out how to achieve it. Once the advanced curriculum has settled it is
likely that more work will be done to explore more structured approaches to introduce
programming and computer science earlier in the curriculum.

3.3.2. Choice of programming language. The choice of programming language has been
left to teachers, and this has been useful since they can choose languages that will
work in their context. This choice of languages was reported in both the 2012 and
2013 teacher surveys. For level 1 programming (Year 11) the most popular language
has been Scratch, and this increased from being used by 47% of teachers in 2012 to
62.4% in 2013. Python was the second most popular language, increasing from 4.1%
in 2012 to 25% in 2013; this is most likely due to it being popular beyond level 1,
and only few teachers choosing to use it at the introductory level rather than starting
with Scratch and then switching. JavaScript was not used by any respondents in 2012,
but 16.3% were using it in 2013, almost certainly due the recent availability of the
online “CodeAvengers” lessons that were written specifically for the standards (see
Section 4.3).

Beyond level 1, the 2013 preferences for languages were Python (53.8%), JavaScript
(13.8%) Visual Basic (10.0%), Java (8.8%), C# (4.8%) and PHP (2.5%). JavaScript was
the one language for which interest changed noticeably between the two years, and
again this could be put down to the availability of a ready-packaged resource for
teaching it. The choice of languages reflects the availability of resources (particularly
the Python and Java textbooks and the CodeAvengers system, both described in Sec-
tion 4.3).

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:15

There are some questions around the transition from a drag-and-drop language
(such as Scratch or AppInventor) to a text-based language, as this is not a trivial step.
A text based language is not required until level 3, but if a drag-and-drop language is
used at level 2 then students have a lot of catching up to do in their final year. In par-
ticular, AppInventor may be more motivating for level 2 students, but if they intend
to advance to level 3, they would be advised to learn a text-based language instead.
This reflects concern elsewhere that languages like Scratch may get students into bad
habits [Meerbaum-Salant et al. 2011], although if a drag-and-drop language was not
permitted for level 1 then the uptake would likely have been significantly less.

3.3.3. Split programming standards. The separation of the programming standards into
two parts (design and implementation) has caused much discussion. The design com-
ponent (e.g. 1.45) involves specifying variables and their types, the program structure,
and how the program should be tested. The implementation component (e.g. 1.46) in-
volves implementing the program in a suitable language, documenting the program
(which might be comments in the code), and debugging it.

The two are clearly interdependent, and the intention is that students would do both
together, and ideally intertwined (i.e. design and implement more than one program).
The benefit of the separation is that a student can get credit for one even if they do
not achieve sufficiently well with the other, but the level 3 standard combines both
aspects, since by that level one would expect that students could do both tasks. At
level 1, weaker students in the class might focus only on the implementation, and be
provided with substantial design guidance.

Another reason for a split is purely political: as a general policy, the ministry officials’
strong guidance was that each standard should be 3 or 4 credits, corresponding to 30
or 40 hours of learning and assessment time. Given that a first course in programming
is typically several times larger than this, to get a reasonable number of hours on the
topic it would need to be spread across more than one standard.

The split also makes it easier for teachers who are teaching a broad course across
several strands of digital technologies to include at least some component of program-
ming and computer science. For example, it is more likely that a small programming
standard could be included in an embedded electronics course or a digital media course.
For such teachers, especially those without a background in programming or computer
science, a single large standard might have been perceived as too much of a commit-
ment.

A pedagogical reason for the particular split into “design” and “implementation” was
to emphasise the importance of design by having half the credits associated with the
design process. This was intended to counter the tendency of new programmers to
jump into coding without thinking carefully, and to spend all their time attempting to
modify their program until it works. A related pedagogical argument for this split is
that many students find the design aspect particularly difficult when they start pro-
gramming and need large amounts of help. Since students either get all the credits for
a standard or none, splitting the standards in this way means that a student who failed
the algorithm design component could be provided with a design outline which would
still allow them to attempt the implementation standard to get part of the credits, and
gain some appreciation for what programming is about.

Teaching the implementation standard in isolation appears to have happened, with
12% of teachers in the 2013 survey reporting that they are teaching 1.46 but not 1.45.
This is reflected in the student results from 2012 (details appear in Table IV in Sec-
tion 4.2.1), with 2,531 students attempting the 1.45 standard, but 3,865 (53% more)
attempting 1.46. We note that this does not mean that students were not taught both
areas, but may have been advised to only take the assessment on the implementation.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:16 T. Bell et al.

At level 2 the difference is not so great, with only 6% of teachers offering only 2.46
without 2.45, and 1,171 students attempting 2.45 and 1,482 (27% more) attempting
2.46. At level 3 students are required to take both combined.

A counterargument to the split approach is that at this level students should be able
to design and implement simple programs, so that making it possible to do just the im-
plementation standard will lead to students who have experienced a very limited and
inadequate version of “programming.” It is intended that the material in the matching
standards be covered together, but as long as it is split into separate standards this
can never be guaranteed. A problem in practice is that, as noted above, standards can
be passed at different levels. The requirements specified for both plan (e.g. 1.45) and
program (e.g. 1.46) are different at each level, and reasonably specific. Hence there is
a problem with those students who are attempting the implementation standard (e.g.
1.46) in isolation (or after having failed the planning standard). Although the official
advice is that students should be given Excellence level plans, there is some confu-
sion about this, since, for example, a student who is combining the two standards and
working at a Merit level would have a worse plan (their own Merit level plan) than one
who had failed the 1.45 standard, or else would have to abandon their own plan and
use a given one. Clearly the quality of the plan supplied will significantly influence the
quality of the program produced, and thus contribute to determining student achieve-
ment. In their current form the standards do not address this difficult question, and as
a result there is uncertainty in schools about how to deal with this, which can lead to
inconsistent grading between schools. From a pedagogical perspective this seems quite
unsatisfactory.

4. IMPLEMENTATION

In July 2009 the DTEP panel recommended an urgent deployment of new achieve-
ment standards, and by January 2011 students were attending classes that used the
new standards. This rapid deployment left very little time for teachers to prepare, and
although ideally a designated programme for new teachers would have been put in
place [Ragonis et al. 2010], there was neither the time nor resources to recruit new
teachers, so the pressure was on for existing teachers to upskill. To add to the chal-
lenge, during that period the city of Christchurch experienced a series of major earth-
quakes that closed schools and universities for several weeks, and brought about major
disruption that continues to the present (it has been claimed to be the fourth largest
insurance event in world history, and the most damaging earthquake was on 22 Feb
2011, the month that schools had just started classes using the new standards).

In this section we review issues relating to the implementation.

4.1. Education, qualification and professional experience of teachers

The 2012 survey [Thompson et al. 2013] found that 60% of the digital technology teach-
ers were aged 50 or older. This means that it is an experienced group (68% had 10 years
or more classroom experience), which they were able to use to make decisions about
deploying the new standards. However, few had significant computing qualifications,
with 47% reporting only rudimentary programming skills and 12% unable to program,
and only 56% reported having any specific qualification in the computing field. 22%
had some sort of computing degree, which provided a core of teachers who could assist
with peer support.

The survey found that teachers generally had a low level of self-confidence, with
only 64% feeling any confidence about teaching the programming standards, and 44%
feeling any confidence about teaching computer science.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:17

Considerable effort was put into helping teachers develop confidence and competence
with the new standards. Below is a list of the main efforts, in decreasing order of use
by teachers as reported in the 2013 survey [Thompson and Bell 2013]:

Teachers’ association. A national teachers association, the “New Zealand Associa-
tion for Computing, Digital and Information Technology Teachers” (NZACDITT),
was formed in March 2009, and from the start played a key role in teacher prepa-
ration and advocacy. Teachers were able to share ideas, resources and concerns
through a discussion group and a website, as well as local and national meetings.
National CS4HS (computer science for high school) workshops. The CS4HS events
are annual two- and three-day workshops sponsored by Google Inc., held at a uni-
versity and run by university staff and experienced teachers. These have been run
internationally to engage teachers in computer science and computational think-
ing in general [Blum and Cortina 2007; Bort and Brylow 2013], but the NZ events
started in December 2011, and were very specifically focused on the new standards.
Local teacher organisation meetings. Clusters of teachers (sometimes already
started as part of the DTG, or even existing prior to that) organised regular meet-
ings to share ideas.
Peer support. Many teachers valued individual peer support from a colleague (pos-
sibly in the same school or nearby).
Formal course. Some teachers had undertaken personal study in a formal course. A
long term course is particularly valuable for learning programming, as this is not
easily learned in a short block course (in fact, Peter Norvig has argued that it takes
some years13).
Official events. Several events were organised by the Ministry of Education, such
as professional development meetings.
University contacts. A network of university contacts was set up, where one aca-
demic at each of the country’s eight universities was nominated as a local contact
who could provide advice to local teachers, including finding senior students who
could speak to classes.
Personal study. Some teachers undertook personal study using informal resources,
such as online training.
Industry visits to schools. Industry programs were set up for school visits, where
schools can arrange for professionals to talk to a class. Two programmes are avail-
able in New Zealand: FutureInTech14 initiated by IPENZ (Institution of Profes-
sional Engineers New Zealand), and ICT-Connect15, run by the IITP (formerly
called NZCS, the organisation that sponsored the report that called for curriculum
changes [Grimsey and Phillipps 2008]).
Online resource guide. A guide was developed early in the transition process,
funded jointly by the Ministry of Education and all computer science departments
in New Zealand universities [Murugesh et al. 2010]. The guide was published on
the NZACDITT website.16

Online “CS Field guide”. An online site that is intended to have a similar role to a
student textbook was developed, called the “Computer Science Field Guide”. It is an
open-source interactive site that is being developed to provide information at the
level required for the new computer science standards, including notes for teachers.
Initially just over a third of the new topics were supported by the site, with more

13http://norvig.com/21-days.html
14http://www.futureintech.org.nz/
15http://www.ictconnect.org.nz/
16The material can be found at http://nzacditt.org.nz/resources by selecting the “Programming and CS”
search option.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:18 T. Bell et al.

being added so that eventually it will cover all the material in the computer science
standards.17

Helpline. A confidential “helpline” was piloted through the universities, where
teachers could ask questions that they might not be comfortable asking in public
because of their lack of confidence. It has had a little use, but most teachers seem to
be comfortable with asking questions in the NZACDITT forum (which has fostered a
supportive environment), or by approaching experts directly (such as the university
contacts).
University study. A post-graduate education course that is available for teachers to
learn by distance, and obtain a formal qualification in teaching computer science.
University students in class. Some teachers have obtained professional develop-
ment funding from their school which they have used to hire a senior computer
science student to teach beside them in the class. The teacher provides the class-
room management skills, and they learn from the student in an authentic context.

From the 2013 survey it was clear that resourcing for professional development (PD)
is a major issue, with only 42% reported receiving “good” financial support to under-
take PD, 50% reported receiving “partial” support, and 7% were expected to fund their
own PD. In the free-form comments, one of the most often mentioned issues was a
lack of time or opportunities for professional development, with some teachers feel-
ing overwhelmed or exhausted by the changes. Others have reported enjoying the new
opportunities and stimulation of more interesting topics to teach.

Free-form comments in the survey indicated a high value was placed on ready-to-
use content. Although many disparate resources have been identified, teachers bene-
fit greatly from material designed specifically for the local standards. Some local re-
sources for this were mentioned favourably, including the CodeAvengers online pro-
gramming lessons18, Python and Java workbooks written specifically for the new stan-
dards19, and the online “Computer science field guide”20.

4.2. Motivation of students and teachers

4.2.1. Student motivation. The main evidence of student interest is the number who
have participated in the assessments. Table IV shows the number of students who
attempted each of the new standards in 2012 (the level 3 standards were not available
until 2013), with the largest uptake being level 1 programming, where 3,865 students
attempted the 1.46 standard. There were about 61,000 students in New Zealand in
year 11 in 2012, which means about 6% of those students have attempted a standard in
programming. Given that there are 497 schools in New Zealand that might have year
11 students (in 2012), and that the membership of NZACDITT is about 216 people (in
July 2013), and that the membership includes teachers who are not teaching the new
standards, many students will not have had the opportunity to attempt the standard
at their school, and so this number is as much an indication of availability as student
interest.

The pass rates for the new standard (around 70%) are typical for NCEA, although
we note that the number of Excellence grades is higher for the programming standards
than for computer science. This may be partly due to the nature of the topic (program-
ming courses often have bimodal outcomes [Robins 2010]. Note also that at each level
more students attempt the implementation standards (1.46 and 2.46) than planning

17Student access is currently through http://csfieldguide.org.nz/.
18http://www.codeavengers.com/
19http://www.cs.otago.ac.nz/schools/
20http://csfieldguide.org.nz/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:19

Table IV. Students sitting and grades achieved for programming and computer science standards in 2012

Standard Number Not Achieved Achieved Merit Excellence
of results # % # % # % # %

1.44 Basic concepts 953 307 32.2 365 38.3 166 17.4 115 12.1
1.45 Plan program 2,531 738 29.2 850 33.6 447 17.7 496 19.6
1.46 Implement program 3,865 1,070 27.7 1,314 34.0 792 20.5 689 17.8
2.44 Advanced concepts 693 208 30.0 300 43.3 136 19.6 49 7.1
2.45 Plan program 1,171 377 32.2 377 32.2 191 16.3 226 19.3
2.46 Implement program 1,482 474 32.0 399 26.9 268 18.1 341 23.0

(1.45 and 2.45), a difference of 1,334 at level 1 and 311 at level 2. These students may
have been given a plan to implement, but we do not know what level of plan they are
being given, so this is an unknown influence on outcomes. A further factor may be
the method of assessment, where programming is assessed internally during the year,
whereas computer science is a report handed in at the end of the year. The analysis of
student work for 1.44 revealed that some had clearly run out of time or made a rushed
attempt, presumably by leaving the work too late [Bell et al. 2012a].

Participation increased between 2011 and 2012; in 2011 there were 2,213 students
who passed the 1.46 programming standard, and in 2012 there were 2,795, a 26%
increase. Computer science increased by a larger percentage, from 440 to 646 (47%),
probably reflecting a more cautious uptake with the unknown subject in the first year.
Also, the number achieving level 2 programming in 2012 (1,008) was only 46% of those
achieving level 1 the previous year (2,213), indicating a large number who have just
dabbled in the subject, while the number of students achieving computer science in-
creased 10% from 440 achieving 1.44 in 2011 to 485 achieving 2.44 in 2012 (level 1 is
not a strict pre-requisite for level 2), which shows a substantial increase in interest
in that area, probably helped by the better provision of resources by the second year.
While the numbers seem small, this would represent a significant proportion of com-
puter science enrolments in New Zealand universities, and bodes well for increased
numbers if the students continue in the subject.

4.2.2. Teacher motivation. Adoption of the new standards was not compulsory, but many
teachers took on the new standards; the 2012 survey [Thompson et al. 2013] showed
that the main motivation of the early adopters was to provide better opportunities
for students (90%), although most also indicated that they were personally interested
in the subjects (62%), that they thought it was good for the country (45%) or simply
the right thing to do (47%). Only 8% were motivated by school management’s require-
ments, reflecting the grass-roots nature of the changes.

4.3. Applied, proposed or developed media

For level 1 programming (1.45 and 1.46) the Scratch language (which was the most
popular) already has a lot of teaching resources available, and free online resources
are appearing for other languages. Two other resources were developed to support the
new programming standards. One is a set of four programming textbooks21, one for
each of level 2 and 3, each in Python and Java (more than 100 schools in New Zealand
signed up to receive them by July 2013). The other is the “CodeAvengers” interactive
website22, which offers lessons in JavaScript that cover the programming standards
for level 1, 2 and 3 (about 65 schools have signed up for the CodeAvengers JavaScript
courses by July 2013).

21http://www.cs.otago.ac.nz/schools/
22http://www.codeavengers.com

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:20 T. Bell et al.

Both of these resources were initially offered at no charge while they were being
developed, with a gradual release of sections as they became available. They are now
available at a nominal fee (except CodeAvengers level 1 is free).

For the computer science topics, the task of developing resources to support teach-
ers has largely fallen on the universities, and the computer science departments
in the main universities in New Zealand contributed to developing support mate-
rial [Murugesh et al. 2010], initially producing a list of thousands of resources that
could be used to teach these topics at high school level, plus guidance for teachers.
The resource guide included resources and teaching guides from the CSTA repository
(http://csta.villanova.edu), CITIDEL (http://www.citidel.org), CS4FN (http://cs4fn.org),
CS Unplugged (http://csunplugged.org) and CS Inside (http://csi.dcs.gla.ac.uk/). Other
sources included suggestions gleaned from teacher mailing lists and guides for teach-
ing computer science in other countries. Some of these resources were originally in-
tended for outreach, and would need to be adapted for teaching a course that is being
assessed [Bell et al. 2012a].

This collection became overwhelming, and spurred the development of an online
“textbook” (funded by Google Inc.), which was released as a beta version in January
2013. It is an on-line open-source interactive resource that covers the topics at an
appropriate level for school students and provides extensive guidance for teachers23.
The “Field Guide” currently has just enough material to cover topics that teachers need
the most help with, but ultimately it will be broadened to cover all of the computer
science topics for NZ schools, and beyond, as resourcing permits.

Another source of resources (the best of which are being collected into the “Field
guide”) was a course on CS education being run at Canterbury university for fourth
year students [Bell and Lambert 2011]. The purpose of the course was to give the
students a general background in communicating their discipline, but for their major
project students were encouraged to develop a resource to meet a pressing need for
delivering the new curriculum, and this resulted in teaching plans for level 1 and 2
computer science that have been widely used in New Zealand, as well as resources
to help deliver specific topics. Students in the course were motivated by their own
experience in high school to improve the situation in schools, and found it rewarding
when their assigned work ended up having a positive effect for hundreds of students.

4.4. Applied or proposed teaching methods

While teachers are free to use whatever teaching methods are appropriate for their
environment, most will appreciate strong guidance and ready-to-use resources, partic-
ularly given the large amount of new material that they need to learn themselves, and
then prepare to teach. This was particularly important because of the short lead-in
time to prepare for teaching the new material, and the lack of prior training teachers
had in the new topics. The more pre-packaged teaching material was, the easier it was
for teachers to adopt it, and so there was a strong motivation to deliver such material
to teachers to support the changes. The result of this was the books and on-line re-
sources described in Section 4.3; these resources gradually appeared and were refined
during the time that the standards were phased in.

Teaching methods for the computer science topics were heavily driven by the nature
of the assessment, which was required to be a personalised report of 14 pages max-
imum (see Section 5.1 for more details). Because the writing of the report isn’t done
under exam conditions, students need to show authenticity by personalising the expe-
rience (an early examiner’s report says that they need to hear the “student voice” in the
document). To teach this effectively, the teacher needs to guide the student on choos-

23http://csfieldguide.org.nz/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:21

ing a personal example such as using their own alarm clock to evaluate for usability
heuristics, or testing the speed of algorithms using their own data sets. These person-
alised examples give the student an authentic experience where they are working with
a real digital system (not necessarily one that they have programmed themselves), but
are looking at the computer science behind it, and using it as an example to explain
concepts to the examiner (such reporting on a friend struggling to set the time on an
alarm clock, and articulating the usability issues). As long as the teacher has sensi-
tised the student to the issues that need to be investigated, and makes sure they have
chosen a sufficiently rich example, the learning will follow from the student’s experi-
ence. An analysis of student projects for the 1.44 standard found that the teacher’s
guidance had an important influence on the student’s opportunity to understand and
articulate the computer science concepts [Bell et al. 2012a].

4.5. Technical infrastructure

The new standards were designed in a way that they could utilise existing infrastruc-
ture without significant costs for new software, and often more importantly, without a
lot of time required to deploy new systems. The widespread use of restrictive security
in school systems means that getting new software installed can be a major undertak-
ing, and some teachers have reported that technical staff in their schools are reluctant
to have students compiling their own programs and running them within the school
network because of security risks. Workarounds include running the operating system
off a USB stick so that the teacher has full control over the programs available.

Much of the software that supports the standards can be run in a browser, and this
is a useful trend as it makes it a lot easier for teachers and students to deploy the
software. For example, an in-browser version of Scratch has recently been released
in beta, and teaching resources such as “Interactive Python”24 run the programming
language locally using JavaScript in the browser. The CodeAvengers site developed
for the new standards uses JavaScript, which again is already available on standard
computer setups. The “CS Field guide” was written using only HTML5 and JavaScript,
which is compatible with most recent web browsers.

Easily deployed software (particularly if it is free, operating system independent and
trivial to install) also makes it more likely that students can transfer their work back
and forth from home.

When recommending resources, software that could run on multiple operating sys-
tems was favoured, and this is common with the languages that are popular in schools,
although, for example, Visual Studio is not simple to get running on Linux or MacOS.
The operating systems used in schools are decided locally, and not necessarily by those
teaching programming and computer science. In the survey of teachers 78% reported
using Windows exclusively, 8% used MacOS exclusively, 8% used a mixture of Linux
and Windows, and 5% used a mixture of MacOS and Windows.

Some bandwidth may be needed for resources such as the “CS Field guide,” which
contains a number of videos and detailed graphics images, although it is being devel-
oped in a way that it could be delivered offline so that schools with limited bandwidth
(e.g. rural schools) could download it once or obtain it on physical media to share lo-
cally.

24http://interactivepython.org

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:22 T. Bell et al.

5. ASSESSMENT

5.1. Examination and certification of students

The achievement standards are presented as small collection of criteria that are in
three groups: those required for Achieved, Merit and Excellence respectively. Typically
there are two to four criteria (or “bullet points”) for each of these grades. To be given
an Excellence grade, a student must meet all the criteria for the two lower grades as
well, although with the external computer science assessment a “holistic” approach
is taken, so if, for example, a student meets all criteria for all grades except one for
“achieved,” they might be given a “merit” grade based on their overall performance.

Exemplars of work are provided by NZQA as guidance to teachers on the kind of
standard that is expected, although this is a double-edged sword as it can make teach-
ers and students feel constrained to follow the exemplar closely, and at an extreme
they may feel pressure use the exemplar as a template in which to substitute their
own numbers or observations. This kind of work is not acceptable, but because the ex-
emplars are publicly available on the NZQA website, markers need to be aware that
students inevitably have access to them.

The internal assessment of programming means that the teacher can observe the
process that a student uses to program, including how independently a student is
working once they have learned to program. In fact, independence is required in the
2.45 and 2.46 standards in order for a student to be given a merit grade; if they require
too much help from the teacher they may only get an achieved grade at best.

Due to various resource constraints and timetabling issues, assessment for the ex-
ternal computer science standards could not be done by tests or exams, and so they are
assessed by submitting written reports or projects [Bell et al. 2012a]. For many top-
ics, this is pedagogically desirable, and allows students to engage in more interesting
and engaging learning tasks. It also has the useful side effect of encouraging students
to develop their written communication skills. However, the report based assessment
has placed much higher demands on teachers and those who were writing resources,
since it requires a lot more guidance to help students produce work that genuinely re-
flects an understanding of computer science, and especially on personalising a report
so that it is clear that the student has done independent work rather than just copied
or paraphrased standard information. Furthermore, for some topics (particularly pro-
gramming languages in the 1.44 standard), a test or exam would have been an easy
means of assessment, so the need for a report has required a lot of creativity to develop
appropriate tasks.

The issue of choosing suitable tasks for the external standards is examined in depth
in a project that analysed the projects submitted by 151 students for the 1.44 standard
in 2011 [Bell et al. 2012a]. The analysis of the student work found that teacher profes-
sional development and support was essential so that teachers could provide students
with good projects. For example, for the algorithms topic in the 1.44 standard, students
would find quite dramatic differences if they compare two contrasting algorithms such
as binary search and linear search for large inputs, but 10% of the students had com-
pared two O(n2) sorting algorithms (such as bubblesort and insertion sort), which have
very similar performance. Some mistook the “cost” of an algorithm as being its num-
ber of lines of code (which was meaningless to plot for different values of n), and others
took the broad interpretation that any program is an algorithm, and evaluated their
own programs (such as a bouncing ball), which again were unlikely to have interesting
asymptotic performance.

Personalisation of their work was another issue; running one’s own experiment is
not hard, and makes for an authentic report, but some simply chose to paraphrase
authoritative sources, sometimes in a way that demonstrated that they did not under-

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:23

stand what they were writing. A related issue is that if the prompts from the teacher
sound like an exam question, they are likely to encourage a terse exam-like response.

Generally students did not do so well when they were trying to do the evaluations
on their own software. The computer science standards do not require that students
write the software, and it is quite legitimate to evaluate existing systems. In fact,
some students who implemented their own algorithms introduced bugs that prevented
them from seeing the true behaviour (even binary search is notoriously hard to get
right [Pattis 1988]), and students who evaluated interfaces that they had developed
understood the interface too well to invoke confusing behaviour in it.

The length of the reports is limited to 14 pages; some teachers had complained that
this is too long, although it is a maximum, and in the analysis of student work one
student obtained an Excellence grade with under 7 pages of writing; the average Ex-
cellence report had about 10 pages of writing (not including padding such as a table of
contents). Most students did not seem to be unduly constrained by the limit, and 91%
of the submissions used 11 pages or fewer.

6. RESPONSE TO THE NEW STANDARDS

The new standards have increased awareness of computer science in New Zealand,
and many students are now engaged with the subject who previously at best would
have had only limited exposure to programming.

6.1. Related extracurricular activities

The creation of programming and computer science standards for schools has been ac-
companied by extracurricular activities, some of which are connected to or have become
connected to the changes in schools.

One extra-curricular activity that existed before the standards came about is the
“Programming Challenge for Girls”25 (pc4g), an annual one-day programming chal-
lenge using the Alice language, for year 10 girls. This continues to be popular, and is
now seen as an advertisement for classes teaching the new programming and com-
puter science standards, since it is the year before students take NCEA. The event
includes professional development time for teachers while the girls complete the chal-
lenge, and then a talk to the girls about computer science while their work is being
marked. Finding time for professional development is difficult for teachers, and this
model gives them some “free time” while their students are being occupied, which has
been particularly valuable with the rapid introduction of the new standards.

The CodeAvengers project has resulted in “Code Camp” for students that is based
around the resource, and this has provided another opportunity for students to engage
with programming in schools.

A large New Zealand software company started a competition called “Codeworx”26

based around the Raspberry Pi, to help enthuse students about the new opportunities.
Information is provided on how projects could be used to achieve the new standards,
so that students can compete for a prize and complete achievement standards at the
same time.

At Canterbury University a “Computer Science Club”27 started in 2012 for younger
students who would like to learn the material taught in the standards, but were too
young to do so. The club grew rapidly with very little advertising, and developed a
program loosely based around the topics in the new standards, using a badge system

25http://www.pc4g.org.nz/
26http://codeworx.co.nz/
27http://computerscienceclub.org/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:24 T. Bell et al.

in a project led by Dr. Peter Denning and Susan Higgins.28 The club is now being
considered for use in some schools, including as a recruitment tool for engaging with
students from “feeder” schools.

At the University of Otago a popular robotics club for school students has started
in 2012, with an emphasis on programming for robotics. Robotics and programming
projects have also been offered over many years in University outreach programs such
as Hands-on Science, and the Otago University Advanced School Sciences Academy.

As well as the RoboCup Junior New Zealand competition noted above, various other
programming competitions and related activities also occurred or are starting. These
had been running prior to the changes, and some teachers are now beginning to use
robotics with the new standards. As well as programming, they can cover the new
electronics standards, as well as some of the generic technology standards.

6.2. Results, outcomes or consequences

Here we review the effect of the changes from the point of view of the various stake-
holders in the changes: teachers, students, universities and industry. Overall there has
been enthusiastic support and participation from champions in each of these groups,
but the transition is a challenging time and has required considerable personal com-
mitment from some. A particularly valuable outcome is that the different stakeholders
have been engaged in a much higher level of communication with each other and their
relationships have been strengthened: teachers have spent considerable time work-
ing with universities getting professional development and advice; universities have
been more engaged with the details of what is being taught in the classroom; indus-
try have sent staff to speak in schools to support teachers; university students have
mentored both school students and teachers; universities have collaborated with in-
dustry to urgently address the need for resources to deliver the new standards; and
education officials have engaged with all these groups to get advice. Many direct rela-
tionships have been formed between all these groups, which result in students getting
more holistic guidance and a better sense of the opportunities available because their
teachers are better connected.

6.2.1. Teachers. Teachers have emerged as the lynchpin in the success of the changes:
they have considerable freedom to choose whether or not to offer a particular standard,
they have been active in lobbying school management to introduce the new content,
they are the ones who have to deliver the material at the “chalkface,” much of the
professional development has been delivered by teachers since they understand the
context best, and the national association of teachers (NZACDITT) has had a crucial
role, for which the work has necessarily fallen on the teachers themselves.

Understandably it has been a challenging and emotional time for many teachers:
while many see the changes as an opportunity to improve their status, many have lit-
tle or no training in the new topics, and this creates a lot of uncertainty and even a
potential threat to them continuing in their job, as well as making them feel that what
they have been teaching in the past has not been valued. Valuing teachers, most of
whom have decades of teaching experience and yet can feel like outsiders, is an impor-
tant component of the success of the changes [Ni and Guzdial 2012]. With the rapid
introduction of the changes, support material for teachers was delivered late (partic-
ularly in the first year — for example, exemplars of student work were not available
until halfway through 2011), and this meant teachers were taking on a major risk by
adopting the new standards.

28http://cyberadventurers.org/

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:25

Professional development opportunities make a big difference to teachers’ views of
the subject. In the surveys, a teacher who had not attended any PD event commented
“A pity that all that money was spent on a piecemeal range of standards that are far too
academic for learners,” whereas another remarked on how the PD had changed their
view of the difficulty of the material: “Teaching Computer Science that appeared diffi-
cult on paper but was interesting and NOW I’ve had some PD (CS4HS) 2012 should be
delivered better.” Providing good professional development for teachers is strongly in
the interests of both universities and industry, and partnership arrangements with the
Ministry of Education have arisen from this motivation to address the urgent needs.

The transitional period is demanding on teachers, and for those who engaged with
the new standards, considerable personal time and effort was required. In the 2013
survey eight of the comments noted that the transitional period was difficult (“Hope-
fully, the work load will ease as courses settle in”), but showed hope for the long term
(“I am now into my third year with the [Year 11] students and feel really confident
delivering the standards”).

Two respondents mentioned that management and colleagues do not understand
the new courses (“Educating other staff (still) that this is not a typing class,” “Manage-
ment, both Senior and Departmental do not understand the importance of the topic
in terms of content and job opportunities. The digital technology [achievement stan-
dards] are viewed as being ‘too hard’ and there is a push to return to [unit standard]
work where students gain credits for doing rather than thinking.”

Educating school management is an ongoing challenge, and is an important element
for the success of computer science in schools.

6.2.2. Students. We have already observed that thousands of students have achieved
the new standards (Table IV), and that numbers are increasing, particularly in the
computer science standards (Section 4.2), and that these numbers are significant com-
pared with the number of students who currently study computer science at university,
although the first students from these courses will not arrive at university until 2014,
and it may take a couple of years until the full impact can be measured.

Because courses adopting the new standards will be more academically oriented
compared with the previous skills focussed courses, a major challenge for schools is
to attract the right kinds of students to the new courses, particularly those heading
for university qualifications, while still catering for weaker students who are after
some basic computing skills. In larger schools this can be achieved by having a choice
of courses, but in small schools one teacher may end up having to work with a wide
variety of students in the same class. This was the topic that was mentioned the most
in the comments in the 2013 survey. Of the 16 comments on this, 5 were positive (“For
the first time in many years [I] have a Year 13 programming class with very able
students”), but another 6 had attracted students who expected the older style of course
about using computers (“not what the students expected, they are still thinking the old
. . . courses that their brothers took”). The remainder had mixed experiences, and/or
had to deal with classes that had a wide range of abilities.

The risk is that if the new nature of the course is not advertised properly, it may
attract weak students who fail, class sizes then drop, and there is a risk of losing the
teaching position, so the net effect is a decrease in computing being taught in that
school. In the 2013 survey 53% of the teachers reported that a significant number
of students who took the course lacked the academic ability to do it well, and 25%
of teachers reported that the changes have led to significantly fewer students taking
digital technologies. 40% reported that their course is attracting an increasing number
of capable students, so while the changes appear to be successful in many schools, there
are also schools where the message does not seem to be getting through to students.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:26 T. Bell et al.

6.2.3. Universities. An immediate result of the changes is that universities have be-
come considerably more engaged with schools, both helping teachers with professional
development, advising education officials on the new standards, and preparing and
helping to deliver new materials in the classroom. As well as professional develop-
ment events, university students have become involved in developing resources for
schools and providing help for teachers [Bell and Lambert 2011], and universities are
beginning to put formal teacher training courses into place to help them teach the
new standards. One model that holds a lot of promise is to have carefully selected
university students work in the classroom with teachers; this provides professional
development for the teacher, experience for the university student, and a link to the
university for the school students. Such arrangements could be made through univer-
sity “work integrated learning” courses, so the university student also gets credit for
the work.

In 2014 universities will need to adapt their entry level courses for the new stu-
dents who will be coming through. Because the changes essentially bring students to
the level of a first course in computer science, the focus will be on transitions through
the first year of university, with some students being offered direct access to advanced
classes, and the possibility of scholarships being based on the new achievement stan-
dards. One model that appears to be popular with students is for a university to offer a
parallel first-year course that is worth the same credit as the traditional introductory
course, but gives better prepared students more challenging projects to work on. Such
students enjoy the opportunity for a challenge, they get to work with other advanced
students, and the class is a good entry to have on their CV.

It is important to communicate to students that the new standards are valued by
universities, particularly because in the past students have often been advised to take
subjects like maths as preparation, and not computing classes. All eight New Zealand
universities have combined to produce a jointly endorsed information brochure for stu-
dents about the new standards and the transition to university29. Since the new stan-
dards are not available in all schools, universities will need to continue to provide an
entry path for students who have not taken the subject in secondary school.

6.2.4. Industry. Industry support has been essential for helping to drive the change,
and the process has provided increased communication between industry, schools and
universities.

Fortunately the industry input has not focussed on wanting particular languages
or skills taught, but primarily on growing the numbers of students interested in com-
puter science and related subjects. The contribution from industry (and industry or-
ganisations) has included lobbying for the changes, contributing to decisions about the
changes, funding much of the professional development and preparation of teaching re-
sources (although run independently by universities without requirements to promote
the use of particular software or products), and sponsoring competitions and events to
motivate students to study computing.

Direct contact between teachers and industry has helped teachers realise the impor-
tance of their role and develop confidence for adopting the new standards. Industry
organisations have also provided speakers and mentors to engage directly with stu-
dents and encourage them to study computer science.

Industry (and industry organisations) have an important role to play communicating
the importance of the new content to school management, students, and the public
(parents and other influencers), since authentic voices offering career pathways are a
key driver in having the changes adopted.

29Available from csanz.ac.nz

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:27

7. CONCLUSIONS

The introduction of computer science to New Zealand schools has occurred over a very
short period and has been very demanding on those involved, but has brought about
rapid deployment of much needed change.

Key observations from the process are:

Initiating change. The changes were brought about by reports from industry and
teachers who understood the needs and were sensitive to the school environ-
ment [Grimsey and Phillipps 2008; Carrell et al. 2008]. The reports provided a thor-
ough explanation of the current problems and suggested a constructive way forward;
a similar report brought about change in the UK a few years later [Furber 2012].
The adoption process was essentially a grassroots movement, driven by teachers
who had caught the vision and were empowered by the official changes to stan-
dards and support from industry and universities, but were primarily motivated
because it would be better for their students, because of their personal interest in
the topic, and because of the value to the country.
Window of opportunity. The political window of opportunity was seized, and those
involved worked as quickly as possible to develop proposals, create resources, and
support teachers. While this did mean that resources were not always available
when needed, and that the content may not have been as polished as it should have
been, it avoided losing the momentum for change.
Not too much content. The programming and computer science content represents
only about half a course for each of the final three years of high school, and keeping
the amount lower has been important to assist with widespread adoption, as it re-
duces teacher professional development needed, and makes it easier to include it as
part of a course in related topics. Despite the huge pressures on resource developers
and teachers alike caused by the rapid introduction, it still seems well worthwhile
to have taken advantage of the short window of opportunity that occurred, even if it
will take some time to iron out the problems and spread the content through a wider
number of schools. This prevented the proposed changes getting bogged down in
the development process, which could have ultimately resulted in no change. Early
adopters were effectively pilot programmes, and are now in a position to share with
colleagues what worked — and did not work — for them.
Publicity and media. Successful adoption means that students must appreciate
that the new standards are available, that they are academically challenging, and
that they are valued by universities and industry. A teacher may have caught the
vision, but because students have a lot of flexibility in their course choices, teachers
will need help educating those who have influence over student decisions about the
nature and purpose of the changes, including school management, counsellors and
parents. For this reason the media has an important role to play, and press releases
from education officials, industry and universities can help to keep the changes vis-
ible for the public. Misinformation can persist for years, and so frequent accurate
releases of information are important!
Ready-to-use resources for teachers. Teachers who are new to computer science have
a lot to assimilate, and the more they are provided with resources that are ready
to use and are pedagogically sound, the more likely they are to be able to deliver
the new courses well, which is needed for a positive cycle of adoption. This means
adapting resources intended for other contexts, and developing new resources, that
match the requirements exactly. It is healthy that a small selection of resources has
appeared so that there is some choice for teachers, but before they were available
teachers indicated that they were overwhelmed by the variety of choices available,
and having to construct a course from multiple disparate resources.

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:28 T. Bell et al.

Industry support. Support from industry has been essential for resourcing teacher
development, and it is impressive that most of the support has not been tied to
particular products, but simply to increase the overall skill base in New Zealand.
Having support from industry is also motivating for teachers, as it gives a clear
message that their work is valued by those who would like to employ their students
some years in the future.
Communication between stakeholders. The rapid changes have been made a lot eas-
ier because the various key stakeholders (industry, the secondary education system
and universities) have opened good lines of communication, and been prepared to
find compromises so that something could be deployed for the benefit of students,
rather than having it mired in discussions that could prevent change from ever
happening.
Curriculum level. Having programming and computer science start in the third to
last year of high school is useful, but the pressure on students and teachers is likely
to reduce as the new material filters down to lower levels, where it is not formally
assessed, but provides a chance for students to become familiar with the language
and culture of the subject.

In the process of introducing this new topic to New Zealand schools, much has been
learned, the attitudes of many teachers and officials have changed, and universities
and industry have become much more engaged with schools. Given the fast timeline,
the lack of resourcing, and the impact of the Canterbury earthquakes, the uptake of
the new standards has been remarkably high, and schools are now entering a period of
consolidation where best practices are being shared and resources are being polished
in the light of the experience during the transitional period.

APPENDIX

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors acknowledge the many New Zealand teachers who had the vision and courage to embrace the
changes and make them work for their schools, and the leadership of the NZACDITT teachers’ organisation.
We particularly acknowledge the input we have received through discussions with the following teachers
and officials: Alison MacDonald, Diana Beeby, Elizabeth Douglas, Gil Hunter, Jenny Baker, John Creighton,
Julie McMahon, Karen Fahy, Kim Stephen, Linda McCavana, Margot Phillipps, Maurice Alford, Max Ross,
Melinda Stevenson, Neil Leslie, Patrick Baker, Ron Elder, Tim Carrell, Vanja Venrooy, Vilna Gough-Jones,
Cheryl Pym, Geoff Keith, Geoff Gibbs, Niall Dinning, Scott Telfer, Tony Turnock, and Vicki Compton.

There has also been a number of university staff, students and industry representatives who have caught
the vision and played a key role, and we particularly acknowledge Ann McGrath, Caitlin Duncan, David
Thompson, Gordon Grimsey, Heidi Newton, Ian McCrae, Ian Witten, Jack Morgan, Janina Voigt, John Hine,
Linda Pettigrew, Lynn Lambert, Michael Trengrove, Michael Walmsley, Paul Matthews, Rhem Munroe,
Robert Sheehan, Ross Peterson, Ross Young, Sally-Ann Williams, Samuel Williams, Sandy Garner, Stephen
Corich, Stephanie Borgman, and Sumant Murugesh. We are grateful to David Thompson for assistance with
the teacher surveys reported here.

REFERENCES

Owen Astrachan, Ralph Morelli, Dwight Barnette, and Jeff Gray. 2012. CS principles: piloting a national
course. Proceedings of the 43rd ACM technical symposium on Computer Science Education, Raleigh, NC,
USA (2012), 319–320.

Tim Bell, Peter Andreae, and Lynn Lambert. 2010. Computer Science in New Zealand High Schools. In ACE
’10: Proceedings of the 12th conference on Australasian Computing Education (Australian Computer

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools 0:29

Science Communications), Tony Clear and John Hamer (Eds.), Vol. 32. Australian Computer Society,
Inc., Brisbane, Australia, 15–22.

Tim Bell, Peter Andreae, and Anthony Robins. 2012. Computer Science in NZ High Schools: The First Year
of the New Standards. In Proceedings of the 43rd ACM technical symposium on Computer Science Ed-
ucation, Raleigh, NC, USA, Laurie A. Smith King, David R. Musicant, Tracy Camp, and Paul Tymann
(Eds.). ACM, New York, 343–348.

Tim Bell, Gwenda Bensemann, and Ian H Witten. 1995. Computer Science Unplugged: capturing the inter-
est of the uninterested. In Proceedings of the 14th NZ Computer Conference. Wellington, New Zealand.

Tim Bell and Lynn Lambert. 2011. Teaching Computer Science Majors About Teaching Computer Science.
In Proceedings of the 42nd ACM technical symposium on Computer Science Education, Dallas, TX, USA
(SIGCSE ’11). ACM, New York, NY, USA, 541–546.

Tim Bell, Heidi Newton, Peter Andreae, and Anthony Robins. 2012a. The introduction of computer
science to NZ high schools: an analysis of student work. In Proceedings of the 7th Workshop in
Primary and Secondary Computing Education (WiPSCE ’12). ACM, New York, NY, USA, 5–15.
DOI:http://dx.doi.org/10.1145/2481449.2481454

Tim Bell, Frances Rosamond, and Nancy Casey. 2012b. Computer Science Unplugged and related projects
in math and computer science popularization. In The Multivariate Algorithmic Revolution and Beyond:
Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, Hans L Bodlaender, Rod
Downey, Fedor V Fomin, and Daniel Marx (Eds.), Vol. LNCS 7370. Springer-Verlag, Berlin, Heidelberg,
Heidelberg, 398–456. DOI:http://dx.doi.org/citation.cfm?id=2344236

Lenore Blum and Thomas J Cortina. 2007. CS4HS: an outreach program for high school CS teachers.. In
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2007,
Covington, Kentucky, USA, Ingrid Russell, Susan M Haller, J D Dougherty, and Susan H Rodger (Eds.).
ACM, 19–23. http://dblp.uni-trier.de/db/conf/sigcse/sigcse2007.html\#BlumC07

Heather Bort and Dennis Brylow. 2013. CS4Impact: measuring computational thinking concepts
present in CS4HS participant lesson plans. In Proceeding of the 44th ACM technical sym-
posium on Computer science education (SIGCSE ’13). ACM, New York, NY, USA, 427–432.
DOI:http://dx.doi.org/10.1145/2445196.2445323

M E Brown. 1998. The Use of Computers in New Zealand schools: A critical review. Computers in New
Zealand Schools 10, 3 (1998), 3–9.

Tim Carrell, Vilna Gough-Jones, and Karen Fahy. 2008. The future of Computer Science and Digi-
tal Technologies in New Zealand secondary schools: Issues of 21st teaching and learning, senior
courses and suitable assessments. Technical Report. http://dtg.tki.org.nz/content/download/670/3222/file/
DigitalTechnologiesdiscussionpaper.pdf

Lillian Cassel, Alan Clements, Gordon Davies, Mark Guzdial, Renée McCauley, Andrew McGettrick, Bob
Sloan, Larry Snyder, Paul Tymann, and B Weide. 2008. Computer science curriculum 2008: An interim
revision of CS 2001. Report from the interim review task force (2008).

Tony Clear and Graham Bidois. 2005. Technology Technology FITNZ : An ICT Curriculum Meta-Framework
for New Zealand High Schools. Bulletin of Applied Computing and Information Technology 3, 3 (2005).
http://www.naccq.ac.nz/bacit/0303/2005Clear\ FITNZ.htm

Vicki Compton and Bev France. 2007. Towards a new technological literacy: Curriculum development with
a difference. Curriculum Matters 3, 1 (2007).

Vicki Compton and Cliff Harwood. 2003. Enhancing technological practice: An assessment framework for
technology education in New Zealand. International Journal of Technology and Design Education 13, 1
(2003), 1–26.

Vicki Compton and Alister Jones. 1998. Reflecting on teacher development in technology education: Impli-
cations for future programmes. International Journal of Technology and Design Education 8, 2 (1998),
151–166.

Peter J Denning and Andrew McGettrick. 2005. Recentering computer science. Commun. ACM 48, 11 (Nov.
2005), 15–19. DOI:http://dx.doi.org/10.1145/1096000.1096018

Steve Furber (Ed.). 2012. Shut down or restart? The way forward for computing in UK schools. The Royal
Society, London. http://royalsociety.org/education/policy/computing-in-schools/report/

Judith Gal-Ezer, Orit Hazzan, and Noa Ragonis. 2009. Preparation of high school computer science teachers.
ACM SIGCSE Bulletin 41, 1 (March 2009), 269. DOI:http://dx.doi.org/10.1145/1539024.1508965

Sandy Garner, Patricia Haden, and Anthony Robins. 2005. My program is correct but it doesn’t run: a prelim-
inary investigation of novice programmers’ problems. In Proceedings of the 7th Australasian conference
on Computing education-Volume 42. Australian Computer Society, Inc., 173–180.

Joanna Goode and Jane Margolis. 2011. Exploring Computer Science. ACM Transactions on Computing
Education 11, 2 (July 2011), 1–16. DOI:http://dx.doi.org/10.1145/1993069.1993076

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:30 T. Bell et al.

Gordon Grimsey and Margot Phillipps. 2008. Evaluation of technology achievement standards for use in
New Zealand secondary school computing education. Technical Report. New Zealand Computer Society
(NZCS), Wellington. http://www.nzcs.org.nz/news/uploads/PDFs/200805NCEAReport.pdf

Peter Hubwieser, Michal Armoni, Torsten Brinda, Valentina Dagiene, Ira Diethelm, Michail N Giannakos,
Maria Knobelsdorf, Johannes Magenheim, Roland Mittermeir, and Sigrid Schubert. 2011. Computer
science/informatics in secondary education. In Proceedings of the 16th annual conference reports on
Innovation and technology in computer science education-working group reports. ACM, 19–38.

Neal Koblitz. 1996. The case against computers in K-13 math education (Kindergarten through calculus).
The Mathematical Intelligencer 18, 1 (1996), 9–16. DOI:http://dx.doi.org/10.1007/BF03024811

Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of programming in scratch. In
Proceedings of the 16th annual joint conference on Innovation and technology in computer science educa-
tion (ITiCSE ’11). ACM, New York, NY, USA, 168–172. DOI:http://dx.doi.org/10.1145/1999747.1999796

Sumant Murugesh, Tim Bell, and Ann McGrath. 2010. A Review of Computer Science Resources to Support
NCEA. In First annual conference of Computing and Information Technology Research and Education
NZ (CITRENZ2010), Samuel Mann and Michael Veerhaart (Eds.). 173–181.

Lijun Ni and Mark Guzdial. 2012. Who AM I? Understanding High School Computer Science Teachers’ Pro-
fessional Identity. In Proceedings of the 43rd ACM technical symposium on Computer Science Education,
Raleigh, NC, USA. 499–504.

Richard E. Pattis. 1988. Textbook errors in binary searching. ACM SIGCSE Bulletin 20, 1 (Feb. 1988), 190–
194. DOI:http://dx.doi.org/10.1145/52965.53012

Noa Ragonis, Orit Hazzan, and Judith Gal-Ezer. 2010. A survey of computer science teacher preparation
programs in Israel tells us: computer science deserves a designated high school teacher preparation!. In
Proceedings of the 41st ACM technical symposium on Computer science education (SIGCSE ’10). ACM,
New York, NY, USA, 401–405. DOI:http://dx.doi.org/10.1145/1734263.1734402

Anthony Robins. 2010. Learning edge momentum: A new account of outcomes. Computer Science Education
20 (2010), 37 – 71. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.651

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and teaching programming: A re-
view and discussion. Computer Science Education 13, 2 (2003), 137–172.

Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004. Interacting factors that
predict success and failure in a CS1 course. In ACM SIGCSE Bulletin, Vol. 36. ACM, 101–104.

Mehran Sahami, Steve Roach, Ernesto Cuadros-Vargas, and Richard LeBlanc. 2013. {ACM/IEEE-CS} com-
puter science curriculum 2013: reviewing the {I}ronman report. In Proceeding of the 44th ACM tech-
nical symposium on Computer science education (SIGCSE ’13). ACM, New York, NY, USA, 13–14.
DOI:http://dx.doi.org/10.1145/2445196.2445206

Philip Sallis, D Ferguson, A Frampton, V Ham, A Milne, T McMahon, L Parker, N Parker, and V Ramsay.
1990. Report of the Consultative Committee on Information Technology in the school curriculum. (1990).

Val Savidan. 2003. ICT and the New Zealand secondary school curriculum. ACE Papers 12 (2003), 123–144.

David Thompson and Tim Bell. 2013. Adoption of new Computer Science high school standards by New
Zealand teachers. In The 8th Workshop in Primary and Secondary Computing Education (WiPSCE
2013), Maria Knobelsdorf, Ralf Romeike, and Michael E. Caspersen (Eds.). ACM, Aarhus, Denmark.
http://www.iitp.org.nz/files/wipsce-teachers-2013.pdf

David Thompson, Tim Bell, Peter Andreae, and Anthony Robins. 2013. The role of teachers in implementing
curriculum changes. In Proceeding of the 44th ACM technical symposium on Computer science education
(SIGCSE ’13). ACM, Denver, CO, 245–250.

Allen B Tucker. 2010. K-12 Computer science: Aspirations, realities, and challenges. In Lecture Notes in
Computer Science, Juraj Hromkovic, Richard Kralovic, and Jan Vahrenhold (Eds.). Springer, Chapter
Teaching F, 22–34.

Charles R Woratschek and Terri L Lenox. 2009. Student Attitudes and Perceptions Regarding Computing
and Its Related Disciplines. Information Systems Education Journal 7, 58 (2009), 3–22.

SeungWook Yoo, YongChul Yeum, Yong Kim, SeungEun Cha, JongHye Kim, HyeSun Jang, SookKyong
Choi, HwanCheol Lee, DaiYoung Kwon, HeeSeop Han, EunMi Shin, JaeShin Song, JongEun Park,
and WonGyu Lee. 2006. Development of an Integrated Informatics Curriculum for K-12 in Korea.
In Informatics Education — The Bridge between Using and Understanding Computers, Roland Mit-
termeir (Ed.). Lecture Notes in Computer Science, Vol. 4226. Springer Berlin / Heidelberg, 199–208.
DOI:http://dx.doi.org/10.1007/11915355-19

Received April 2013; revised July 2013; accepted November 2013

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

Online Appendix to:
A case study of the Introduction of Computer Science in NZ schools30

TIM BELL, University of Canterbury

PETER ANDREAE, Victoria University of Wellington

ANTHONY ROBINS, University of Otago

A. GLOSSARY AND WEB LINKS

This online appendix provides a glossary and web links to some of the key terminology
specific to CS education in New Zealand.

Achievement standard. An assessment standard that is given a grade of Not
Achieved, Achieved, Merit, or Excellence (compared with a unit standard which
is a pass/fail assessment). Several achievement standards are combined to assess a
course. See http://www.nzqa.govt.nz/qualifications-standards/standards/
AS91074. (Also known as 1.44) Level 1 Computer Science achievement standard:
Demonstrate understanding of basic concepts from computer science. http://www.
nzqa.govt.nz/nqfdocs/ncea-resource/achievements/2011/as91074.pdf
AS91075. (Also known as 1.45) Level 1 Program design achievement standard:
Construct a plan for a basic computer program for a specified task. http://www.
nzqa.govt.nz/nqfdocs/ncea-resource/achievements/2012/as91075.pdf
AS91076. (Also known as 1.46) Level 1 Program implementation achievement
standard: Construct a plan for a basic computer program for a specified task.
http://www.nzqa.govt.nz/nqfdocs/ncea-resource/achievements/2012/as91076.pdf
AS91371. (Also known as 2.44) Level 2 Computer Science achievement standard:
Demonstrate understanding of advanced concepts from computer science. http://
www.nzqa.govt.nz/nqfdocs/ncea-resource/achievements/2012/as91371.pdf
AS91372. (Also known as 2.45) Level 2 Program design achievement standard:
Construct a plan for an advanced computer program for a specified task. http:
//www.nzqa.govt.nz/nqfdocs/ncea-resource/achievements/2012/as91372.pdf
AS91373. (Also known as 2.46) Level 2 Program implementation achievement stan-
dard: Construct an advanced computer program for a specified task. http://www.
nzqa.govt.nz/nqfdocs/ncea-resource/achievements/2012/as91373.pdf
AS91636. (Also known as 3.44) Level 3 Computer Science achievement standard:
Demonstrate understanding of areas of computer science. http://www.nzqa.govt.nz/
nqfdocs/ncea-resource/achievements/2013/as91636.pdf
AS91637. (Also known as 3.46) Level 2 Programming achievement standard: De-
velop a complex computer program for a specified task. http://www.nzqa.govt.nz/
nqfdocs/ncea-resource/achievements/2013/as91637.pdf
CodeAvengers. Interactive online courses that teach the basics of web development
and computer programming (HTML5, CSS3, JavaScript) http://www.codeavengers.
com/
CS4HS. Computer Science for High School. A Google sponsored event for high
school teachers, run in many countries, but used in New Zealand to provide ur-
gently needed professional development for teachers. The event has been run annu-
ally starting in December 2011.

c© 2013 ACM 1539-9087/2013/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

App–2 T. Bell et al.

CS Field Guide. An on-line, open-source, free resource developed initially to meet
the urgent needs of teaching the new New Zealand achievement standards in com-
puter science. The student version is available at http://csfieldguide.org.nz/, and a
teacher version is available on request.
Digital Technologies standards. The term given to the grouping of new standards
for teaching computing in NZ schools; there are five general areas: Computer sci-
ence and programming, Digital information, Digital media, Digital infrastructure
and Electronics. http://dtg.tki.org.nz/
DTEP. Digital Technology Experts Panel. A committee representing stakeholders
formed in November 2008 to advise on Digital Technologies in schools, including
suggesting how learning could be structured and to make recommendations on as-
sessment standards. The report from the panel is available at http://technology.tki.
org.nz/Curriculum-support/Knowledge-and-Skills-documents
DTG. Digital Technologies Guidelines, a NZ Ministry of Education funded project
run from 2007 to 2010 to revise the computing curriculum in schools, http://dtg.tki.
org.nz/
FITNZ project. Fluency in IT project, a 2006 review of computing in NZ education,
aligning it with the needs of industry and tertiaries [Clear and Bidois 2005]. This
lead to the DTG project.
IITP. (Institute of IT Professionals, previously known as the New Zealand Com-
puter Society, NZCS. A national organisation that “works with government, the ed-
ucation sector and academia, the industry, the IT community and the public at large
to increase the education, professionalism and expertise of those working in the ICT
sector and advance education across the board in the interests of New Zealand.”
http://www.iitp.org.nz/
IPENZ. Institution of Professional Engineers New Zealand. “The professional body
which represents professional engineers from all disciplines in New Zealand.” www.
ipenz.org.nz
Ministry of Education. “The Government’s lead advisor on the New Zealand ed-
ucation system, shaping direction for sector agencies and providers.” http://www.
minedu.govt.nz/
New Zealand Curriculum. Official documents that “set the direction for student
learning and provide guidance for schools as they design and review their curricu-
lum.” http://nzcurriculum.tki.org.nz/Curriculum-documents
NCEA. National Certificate in Educational Achievement, the major school-leaving
qualification in NZ usually completed in the last three years of school. http://www.
nzqa.govt.nz/qualifications-standards/qualifications/ncea/
NZACDITT. New Zealand Association for Computing, Digital and Information
Technology Teachers. “An association with the goal of advocating for our subjects.
The aim of the association is to create a community of teachers where we can share
resources, communicate and speak with one voice to get our subject area recognised
and supported.” The NZACDITT maintains a forum for members, and a web site
that includes resource guides and shared resources. http://nzacditt.org.nz
NZCS. The name of the IITP before July 2012.
NZQA. The New Zealand Qualifications Authority, a government agency that man-
ages school and other non-university qualifications in NZ. http://www.nzqa.govt.nz/
Otago programming books. A series of four books, one for the level 2 and 3 pro-
gramming achievement standards, in Java and Python. http://www.cs.otago.ac.nz/
schools/
Technology. In the NZ curriculum this is defined as “intervention by design to ex-
pand human possibilities” http://seniorsecondary.tki.org.nz/Technology

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

A case study of Computer Science in NZ schools App–3

TKI. Te Kete Ipurangi (“the online knowledge basket”), the main online portal to
teaching information and resources from the Ministry of Education. http://www.tki.
org.nz/
Unit standard. A pass/fail assessment standard, usually developed by an indus-
try training organisation. See http://www.nzqa.govt.nz/qualifications-standards/
standards/
Year. This is the term equivalent to “grades” in the US; students start in Year 1
when they turn 5 years old, and the final year of school is Year 13 (when students
are typically around 17 or 18 years old).

ACM Transactions on Computing Education, Vol. 0, No. 0, Article 0, Publication date: 2013.

