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Abstract 

Spiking neural networks (SNNs) are a new generation of deep learning models inspired by 

biology, which belong to a subset of deep learning and have a strong biological basis to support 

them. It has received more and more attention from researchers in recent years due to its 

advantages of high efficiency, energy saving, and high interpretability. However, compared 

with traditional ANNs, SNNs are still in the early stage of research and still face many problems. 

 

In this thesis, we first analyze the reasons of the poor performance of SNNs in image 

classification and propose a new interpretable spiking neuron to improve the learning ability 

of the network for big datasets. In addition, we propose a new method of adversarial defense 

to enhance the robustness of SNNs against tiny noise. Besides, we also propose a new training 

algorithm for optimizing the speed of the SNN in the training and inference process. 

 

In addition to the study of SNN algorithms, we also apply SNN to specific application problems. 

To address the problem of redundancy in event camera datasets, we propose a SNN-based mask 

network that selectively deletes redundant pulse signals, thus reducing the space occupied by 

the dataset and facilitating transmission. Finally, we combine SNNs with engineering problems, 

and since SNNs are good at handling timing signals, we use SNNs to achieve high-precision 

classification of tactile signals collected by tactile sensors. 

 

In summary, SNNs are positioned as ANNs with biological plausibility, i.e., they have the 

interpretability of biological networks and some characteristics of ANNs. In this thesis, we 

work on developing different algorithms for the speed, accuracy, and robustness of SNNs and 

design SNNs for problems under a variety of different domains. 
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1 Introduction 

1.1 Spiking neural network and its challenge 

Spiking neural networks (SNNs) are artificial neural networks that more closely mimic 

biological neural networks. In addition to neurons and synaptic states, SNNs incorporate the 

concept of time into their operational model. The idea is that instead of transmitting information 

at each propagation cycle (as in a typical multilayer perceptron network), neurons in SNNs 

transmit information when the membrane potential reaches a specific value, called the 

threshold. When the membrane potential reaches threshold, the neuron activates and generates 

a signal that is transmitted to other neurons, which in turn increase or decrease their potential 

in response to this signal. 

 

One of challenges of SNNs is how to train and optimize the parameters.  Currently, the existing 

training methods of SNNs can be classified into three types: (1) unsupervised learning (2) 

indirect supervised learning (3) direct supervised learning. The first one is inspired by the 

weight modification of synapses between biological neurons. For example, spike time-

dependent plasticity (STDP) [1-3]. Since it relies mainly on local neuronal activity rather than 

global supervision, STDP-based unsupervised algorithms have so far been limited to shallow 

SNNs, yielding accuracies significantly lower than those provided by ANN on complex 

datasets such as CIFAR-10 [4-6]. The second approach is to first train an ANN and then convert 

it to a SNN version with the same network structure, where the rate of the SNN neurons can be 

approximated as the analog output of the ANN neurons. ANN-to-SNN conversion has achieved 

the state-of-the-art (SOTA) SNNs for image recognition tasks that performs close or even better 

than the conventional ANNs [7], however, the inference time of SNNs converted from ANNs 

still requires a lot of time (about several thousand time steps) and memory, leading to increased 
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latency as well as decreased energy efficiency, which diminish the benefits of spiking [7-9]. In 

addition, ANN-to-SNN is only suitable to static datasets currently, not neuromorphic datasets. 

The last one is the direct supervised learning, which adopts mainly the same gradient descent 

algorithm with ANNs. Spikeprop pioneered the gradient descent method to train multilayer 

SNNs [10, 11]. It assumes that each neuron spikes once in a given time period to encode the 

input signal, and minimizes the difference between the network output and the desired signal 

by calculating the gradient associated with these firing times. As a result, the result is low 

latency. Despite these advantages, the use of only a single spike per neuron has its limitations 

and is less suitable for processing temporal stimuli such as electroencephalography (EEG) 

signals, speech or video [12]. Other subsequent works like Tempotron [13], ReSuMe [14], and 

SPAN [15] can emit multiple spikes, but they can only be applied to single-layered networks. 

An approach treated the membrane potential as a differentiable signal to solve the problem of 

non-differentiation of spikes and proposed a straightforward BP algorithm to train deep SNNs 

with multiple spikes [16]. Recently, Wu et al. proposed a spatiotemporal back-propagation 

training framework for SNNs, which introduces a differentiable surrogate function to 

approximate the derivative of spike activity [17]. This method combines both the spatial 

domain and the temporal domain in the training phase and has yielded best results for deep 

convolutional SNNs in small-scale image recognition datasets such as digit classification on 

the MNIST. However, for large-scale tasks, it has not been able to outperform the conversion-

based approach or ANNs in terms of accuracy [7]. In addition, since SNNs introduce a temporal 

dimension, direct training of SNNs often takes several times more training time than training 

an ANN, which seriously consumes computational resources. 

 

To improve the performance of SNNs and decrease gaps between ANNs and  SNNs, Wu et al. 

proposed neuron normalization [17]. This mechanism can balance the firing rate of each neuron 
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and avoid the loss of important information. Cheng et al. added the lateral connections between 

neighboring neurons and get better accuracy [18]. Some researchers have revised the neuron 

model’s parameters to improve the accuracy. For example, the learnable membrane time 

constants in Leaky Integrate-and-Fire (LIF) neurons were utilized to make the charging and 

leakage process more flexible [19, 20], and an adaptive threshold spiking neuron model was 

proposed to enhance learning capabilities of SNNs [21].  

 

In summary, research on SNNs is still in its early stages. In this thesis, we research and develop 

the algorithms for the following main problems faced by SNNs: 

1. SNN performance remains low compared with the corresponding ANN architecture. 

2. The training speed of SNNs is slow. 

3. SNNs are vulnerable to network attacks and noise and lack specific defense approaches. 

 

1.2 Noise role in biological neural system 

Noise sources also widely exist in the brain. It is well known that neurons can react differently, 

even when the same stimuli are given [22, 23]. They are comprised of intrinsic sources such as 

open-close fluctuation of membrane resistance and extrinsic source triggered mainly by signal 

transmission and network effects [24].  

 

External noise 

When an organism receives external stimuli, these external sensory stimuli are generally noisy, 

and these noises come from thermodynamic or quantum mechanical properties. For instance, 

thermodynamic noise affects all types of chemical sensing (including smell and gustation) 



4 

 

because molecules diffuse into the receptor at random rates and because receptor proteins have 

a limited capacity to precisely count the amount of signalling molecules [25, 26]. In a manner 

similar to vision, photons that enter the photoreceptor at a rate determined by a Poisson process 

must be absorbed. This sets a physical cap on contrast sensitivity in vision, which is diminished 

under low light conditions when fewer photons reach the photoreceptor [27]. 

 

Cellular noise 

Neuronal trial-to-trial variability is influenced by a number of variables. Changes in the internal 

states of neurons and neural networks, as well as random events inside neurons and neural 

networks, are examples of these [28, 29]. Each neuron has noise that builds up as a result of 

randomness in the cellular machinery that processes information [23]; this noise can then get 

greater as a result of nonlinear calculations and network interactions. Numerous stochastic 

processes operate at the biochemical and biophysical levels in neurons. 

 

Electrical noise and action potentials (APs) 

Both carrying APs and performing local computations employ the membrane potential. The 

mechanisms underlying variations in resting membrane potential [30, 31] (membrane-potential 

fluctuations) and AP threshold [32] have only lately come to light, despite the fact that these 

variables have long been researched. Even in the absence of synaptic inputs, electrical noise in 

neurones results in variations in membrane potential. Channel noise [33-35], which is created 

when voltage- or ligand-gated ion channels randomly open and close, is the main source of this 

electrical noise. The fluctuation of the AP threshold at nodes of Ranvier [36] and the 

dependability of AP initiation in membrane patches can both be explained by channel noise, 
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according to stochastic models [37, 38]. Furthermore, patch-clamp experiments in vitro 

demonstrate that membrane-potential fluctuations caused by channel noise in the dendrites and 

the soma are significant enough to impact AP timing [39-42]. Channel noise can have an impact 

on the start and spread of APs. 

 

Synaptic noise 

Another significant source of brain noise is synapses. Gradient potentials in the postsynaptic 

neurone cause a spontaneous action potential when neurotransmitter-containing vesicles 

randomly exocytose and bind to the postsynaptic membrane [43]. It is regarded as the source 

of noise with the highest amplitude in the cerebral cortex [44].  

 

Benefits of noise 

Although there exist so many random noise sources in neurons and synapses, experiments 

prove that noise is essential in neural activities and plays a vital role in processes such as 

decision-making, signal detection, and memory [45], and the nervous system can respond 

accurately and reliably and shows good robustness under different levels of noise [46-48]. In 

addition, the neural network formed in the presence of noise will be more robust and explore 

more states, which will help learn and adapt to the changing dynamic environment [49, 50]. 

For instance, stochastic resonance is a mechanism by which the presence of a certain amount 

of noise can improve the capability of threshold-like systems to receive and transmit weak 

(periodic) signals [51, 52]. Few signals are detected at low noise levels because the sensory 

signal does not push the system over the threshold. The response is dominated by the noise at 

high noise levels. However, for intermediate noise strengths, the noise permits the signal to 
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cross the threshold without obstructing it. Numerous sensory systems have shown stochastic 

resonance-type effects since they were originally discovered in the visual neurones of the cat 

[53]. These include crayfish mechanoreceptors [54], shark multimodal sensory cells [55], 

cricket sensory neurones [55], and human muscle spindles [56]. Both passively electrically 

induced paddlefish [57] and human balance control [58] have been used to directly illustrate 

and regulate the behavioural consequences of stochastic resonance. Additionally, sub-threshold 

inputs have little impact on the system's output in spike-generating neurones. Such threshold 

nonlinearities can be transformed by noise, which increases the likelihood that sub-threshold 

inputs will exceed the threshold the closer the inputs are to the threshold. As a result, when 

averaged over time, this noise effectively creates a smoothed nonlinear [37]. According to 

research on contrast invariance of orientation tuning in the primary visual cortex [59], this 

makes spike initiation easier and can enhance neural-network behaviour. Additionally, 

neuronal networks that have grown up in a noisy environment will be more resilient and explore 

more states, which will aid in learning and adaptation to the shifting requirements of a dynamic 

environment [50, 60]. 

 

1.3 Noise role in artificial neural networks 

Noise is not only widespread in biological neural systems, but in current artificial neural 

networks, a large number of cases have been implemented by introducing noise and 

randomization into neural nets to achieve a wide variety of learning tasks. 

 

Generalization 
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When you start studying neural networks, one of the first things you learn is what overfitting 

and underfitting are. When you train a neural network with a tiny dataset, the network typically 

memorises the training dataset rather than learning generic aspects of our data, therefore it can 

be difficult to create a model that perfectly generalises your data. This is especially true when 

you have a little dataset. Because of this, the model will perform well with training data but 

poorly with fresh data (for instance: the test dataset). A tiny dataset offers a poor description 

of our problem, making it challenging to learn from. Getting more data requires a lot of effort. 

However, there are situations when you can use certain procedures to improve the performance 

of your model.  

 

An important role of noise in artificial neural networks is to generalize the network and prevent 

overfitting. Data augmentation [61] improves the network's ability to generalize the data and 

enhances network robustness by making random changes to the input, for example, rotating, 

stretching, or adding random noise to the input image in computer vision. In addition to adding 

noise to the input, noise can be added in multiple locations, such as in weights, labels, or a 

separate network layer. In [62, 63], noise is applied to neural network weights rather than 

hidden layers. It is also possible to think of stochastic ensemble learning [64] and learning with 

stochastic depth [65] as noise injection methods for weights or architecture. Dropout [66] is 

another operation that introduces randomization. It randomly cuts the connections between 

neurons during the training process to avoid overfitting the network to the data. 

 

Robustness 

Another important application area of noise is in the robustness of networks. Adversarial 

attacks [67-69] attack the network by adding imperceptible noise to the input image, prompting 
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the network to produce incorrect outputs. For this type of adversarial attacks, researchers have 

also proposed randomization-based defenses. For example, [70] adds a random noise layer to 

the network to disrupt adversarial attacks. [71-74] add samples with noise in the training 

process for adversarial training, thus improving the resistance of the network to attacks. 

 

Imgae generation 

Noise also has a wide and important application in the field of image generation. For example, 

the variational autoencoder [75], when the latent space is obtained from the encoder input, 

enables the decoder to sample the latent space by introducing noise, and thus generates more 

reasonable generation samples. Like generative adversarial network [76], random Gaussian 

noise is used as input to generate specific objects through the generator. The recently popular 

diffusion model [77] can be used for a variety of image generation tasks by gradually adding 

Gaussian noise while gradually learning and removing it through the neural network. 

 

1.4 Preface 

In this chapter, we introduce the background of spiking neural network and its facing 

challenges currently, and we also present the presence and role of noise in the biological 

nervous system and its application in artificial neural networks. The following chapters of this 

thesis are broadly structured as Figure 1.1 shows. 

 

Chapter 2-4 focus on the algorithms’ development of SNN: 
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• Chapter 2 develops a bio-inspired neural model dynamically adjusting the surrogate 

gradient curve in spiking neural networks. The proposed neural model can greatly 

improve classification accuracy on different visual datasets. 

• Chapter 3 presents a neural oscillation model-based approach integrating noise 

distribution to improve the robustness of SNNs and defend against adversarial attacks. 

Proposed neural models are robust to various gradient-based adversarial attacks. 

• Chapter 4 introduces a noise-based ensemble learning algorithm to accelerate the 

training and inference of SNN. The approach introduces noise distribution to replace 

membrane potential during training. Compared to the previous training methods, ours 

can reduce training time by 65%-75% and achieves more than 100 times faster 

inference speed. 

 

Chapter 5-6 apply SNNs on different specific problems: 

• Chapter 5 presents the application of a two-layer biological plausible SNN on 

processing tactile signals. Collected tactile signals of surface roughness by a bionic 

tactile sensor and recognized them by a biologically plausible unsupervised neural 

network. Proposed a data augmentation approach to learn surface features in the case 

of a few samples. 

 

 

Figure 1.1 Flowchart of the thesis organization 
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• Chapter 6 develops a data-dependent sampling and reconstruction network consisting 

of a spiking neural network for adaptive sampling and another network for data 

reconstruction. Tested the proposed network using event camera data and verify its data 

compression capability. 

 

Chapters 7 and 8 provides the summary for this thesis and discussed about the future work for 

research complement. 
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2 KLIF: An optimized spiking neuron unit for tuning 

surrogate gradient slope and membrane potential 

Abstract 
 

Spiking neural networks (SNNs) have attracted much attention due to their ability to process 

temporal information, low power consumption, and higher biological plausibility. However, it 

is still challenging to develop efficient and high-performing learning algorithms for SNNs. 

Methods like artificial neural network (ANN)-to-SNN conversion can transform ANNs to 

SNNs with slight performance loss, but it needs a long simulation to approximate the rate 

coding. Directly training SNN by spike-based backpropagation (BP) such as surrogate gradient 

approximation is more flexible. Yet now, the performance of SNNs is not competitive 

compared with ANNs. In this chapter, we propose a novel k-based leaky Integrate-and-Fire 

(KLIF) neuron model to improve the learning ability of SNNs. Compared with the popular 

leaky integrate-and-fire (LIF) model, KLIF adds a learnable scaling factor to dynamically 

update the slope and width of the surrogate gradient curve during training and incorporates a 

ReLU activation function that selectively delivers membrane potential to spike firing and 

resetting. The proposed spiking unit is evaluated on both static MNIST, Fashion-MNIST, 

CIFAR-10 datasets, as well as neuromorphic N-MNIST, CIFAR10-DVS, and DVS128-

Gesture datasets. Experiments indicate that KLIF performs much better than LIF without 

introducing additional computational cost and achieves state-of-the-art performance on these 

datasets with few time steps. Also, KLIF is believed to be more biological plausible than LIF. 

The good performance of KLIF can make it completely replace the role of LIF in SNN for 

various tasks. 
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2.1 Introduction 

Artificial neural networks (ANNs) have achieved remarkable success in many domains in 

recent years. Record accuracy at tasks such as image recognition [78-80], image segmentation 

[81], and language translation [82] has been achieved. However, their success is highly 

dependent on high-precision digital conversion [8], which requires large amounts of energy 

and memory. Therefore, deploying conventional ANNs on embedded platforms with limited 

energy and memory is still challenging.  

 

Spiking neural networks (SNNs), regarded as the third generation of neural networks, were 

inspired by the biological neural system, and they mimic how information is transmitted in the 

human brain [83]. Unlike conventional ANNs, spiking neurons communicate and compute 

through discrete-time sparse events rather than continuous values. Due to being event-driven, 

SNNs are more efficient in terms of energy and memory consumption on embedded platforms. 

So far, SNNs have been used for kinds of tasks, such as image[84] and voice recognition [85]. 

 

One of the challenges in SNNs is how to train and optimize the network parameters.  Currently, 

the existing training methods of SNNs can be classified into three types: (1) unsupervised 

learning, (2) indirect supervised learning, (3) direct supervised learning. The first one is 

inspired by the weight modification of synapses between biological neurons. A classic example 

is the spike time-dependent plasticity (STDP) [1-3]. Since it relies mainly on local neuronal 

activity rather than global supervision, STDP-based unsupervised algorithms have been limited 

to shallow SNNs with ≤5 layers, yielding accuracy significantly lower than those provided by 

ANNs on complex datasets such as CIFAR-10 [4-6]. 
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The second approach is to train an ANN model firstly and then convert it to SNN with the same 

network structure, where the firing rate of the SNN neurons can be approximated as the analog 

output of the ANN neurons. For image recognition tasks, ANN-to-SNN conversion has led to 

state-of-the-art (SOTA) SNNs that perform close or even better than the conventional ANNs 

[7]. However, SNNs converted from ANNs still require a lot of inference time (about several 

thousand time steps) and a large amount of memory, leading to increased latency and decreased 

energy efficiency, which diminishes the benefits of spiking models [7-9]. The last SNN training 

technique is direct supervised learning, which adopts mainly the same gradient descent 

algorithm as in ANNs. Spikeprop pioneered the gradient descent method to train multilayer 

SNNs [10, 11]. It assumes that each neuron fires once in a given time window to encode the 

input signal and minimizes the difference between the network output and desired signal by 

calculating the gradient associated with these firing times. 

 

Nevertheless, the use of only a single spike per neuron has its limitations and is less suitable 

for processing temporal stimuli such as electroencephalography (EEG) signals, speech, or 

video [12]. Other subsequent works like Tempotron [13], ReSuMe[14], and SPAN [15] can 

utilize multiple spikes, but they can only be applied to single-layer networks. An approach 

treated the membrane potential as a differentiable signal to solve the problem of non-

differentiation of spikes and proposed a straightforward BP algorithm to train deep SNNs with 

multiple spikes [16]. Recently, Wu et al. proposed a spatiotemporal backpropagation training 

framework for SNNs, introducing a differentiable surrogate function to approximate the 

derivative of spiking activity [17, 86, 87]. This method combines the spatial and temporal 

domains in the training phase and has yielded the best results for deep convolutional SNNs in 

small-scale image recognition datasets such as digit classification on the MNIST. However, for 
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large-scale tasks, it has not been able to outperform the conversion-based approach or ANNs 

in terms of accuracy [7]. 

 

To further improve the performance of SNNs and decrease gaps between ANNs and SNNs, 

Wu et al. proposed neuron normalization. This mechanism can balance the firing rate of each 

neuron and avoid the loss of important information. Cheng et al. added the lateral connections 

between neighboring neurons and obtained better accuracy [18]. Some researchers have revised 

the neuron model’s parameters to improve the accuracy. For example, the learnable membrane 

time constants in Leaky Integrate-and-Fire (LIF) neurons were utilized to make the charging 

and leakage process more flexible [19, 20], and an adaptive threshold spiking neuron model 

was proposed to enhance the learning capabilities of SNNs [21].  

 

In this chapter, we propose a novel spiking neural unit KLIF to replace the commonly adopted 

LIF model in SNNs. KLIF adds a learnable scaling factor that dynamically updates the slope 

and width of the surrogate gradient curve during training and accelerates the convergence. It 

also incorporates a ReLU activation function that selectively delivers membrane potential to 

spike firing and resetting. We verified our model on both classic static MNIST, Fashion-

MNIST, CIFAR-10 datasets widely used in ANNs as benchmarks and neuromorphic N-

MNIST, CIFAR10-DVS, DVS128-Gesture datasets. Experiments show that SNN with KLIF 

improves the test accuracy on all datasets and outperforms the SOTA accuracy.  

 

In summary, our main work is: 

1. We propose a novel spiking neural unit KLIF which can improve accuracy of models on 

different visual tasks by adaptive surrogate gradient descent and potential rectification.   
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2. We independently analyse the impact of the learnable scaling factor and rectified function. 

Our experiments show that the scaling factor and the ReLU activation function can 

independently contribute to improving accuracy of models.   

3. We improve the coding layers of SNNs, which contributes to convergence and accuracy 

improvement of models. 

 

 

2.2 Method 

In Sec. 2.2.1, we first briefly review the LIF model and then give the dynamic equations of 

KLIF. In Sec. 2.2.2 and Sec. 2.2.2-2.2.3, we explain the benefits that KLIF brings. Finally, 

network structures and coding layers used in SNN models, including encoding and decoding, 

are clarified in Sec. 2.2.4. 

 

 k-based leaky Integrate-and-Fire model  

 
 

Figure 2.1 Structure of spiking neurons. (a) leaky Integrate-and-Fire (LIF) model. (b) 𝑘-based 

leaky Integrate-and-Fire (KLIF) model. The dotted box represents the dynamic of function 𝐹𝑡. 
It incorporates a scaling factor 𝑘 and an activation function 𝑅𝑒𝐿𝑈. 
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The LIF model is one of the fundamental computing units of SNNs. It is a simplified model of 

biological neurons and describes the non-linear relationship of input and output. The sub-

threshold dynamics of the LIF spiking neuron can be modeled using Equation (2.1). 

𝜏
d𝑉(𝑡)

d𝑡
= −(𝑉(𝑡) − 𝑉reset) + 𝑋(𝑡) 

              (2.1)                                                 

Where 𝑉(𝑡) is the membrane potential of the neuron and 𝜏 is the time constant, 𝑋(𝑡) is defined 

as the weighted sum of the input spikes for each time step. 

 

When a neuron receives inputs from the previous layer, its membrane potential will 

accumulate. Once the potential value exceeds the neuron's threshold, the neuron will fire a 

spike and promptly restore the reset potential 𝑉reset which is set to be 0 in this paper. To 

simulate the dynamic actions of LIF neurons discretely in time, we use the difference Equations 

(2.2)-(2.4) to approximate the continuous dynamic process [19].  

𝐻𝑡 = 𝑉𝑡−1 +
1

𝜏
(𝑉reset − 𝑉𝑡−1) +

1

𝜏
𝑋𝑡 

             (2.2)                             

𝑆𝑡 = {
1,   𝑖𝑓 𝐻𝑡 > 𝑉𝑡ℎ
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                           (2.3) 

𝑉𝑡 = 𝐻𝑡(1 − 𝑆𝑡) + 𝑉reset𝑆𝑡 = 𝐻𝑡(1 − 𝑆𝑡) 

       (2.4)                                                  

Where 𝐻𝑡 and 𝑉𝑡 represent the membrane potentials before and after triggering a spike at time 

𝑡, respectively. 𝑋𝑡 denotes the external input, and 𝜏 denotes the time constant with a value 

of 2. 𝑉𝑡ℎ denotes the firing threshold, which is 1 in this paper. 𝑆𝑡 denotes the output of a neuron 
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at time 𝑡, which equals 1 if there is a spike and 0 otherwise. With Equations (2.2)-(2.4), we 

describe the charging, firing, and resetting actions of the LIF neuron. Figure 2.1(a) illustrates 

the dynamics of the LIF neuron.  

 

Unlike the LIF model, we propose the 𝑘-based spiking neural unit (KLIF) which adds a 

function 𝐹𝑡  (Equation (2.5)) between charging 𝐻𝑡  and firing 𝑆𝑡  into the LIF model (Figure 

2.1(b)). The function consists of a scaling factor 𝑘 and an activation function ReLU. As shown 

in Figure 2.1(b), a spiking neuron accumulate first its potential at time 𝑡, then the accumulated 

potential is multiplied by 𝑘 and passes through the ReLU function before being compared with 

the firing threshold. The dynamics of KLIF can be described by Equations (2.2) and (2.5)-(2.7). 

𝐹𝑡 = ReLU(𝑘𝐻𝑡) 

                               (2.5)                                                                                      

𝑆𝑡 = {
1,   𝑖𝑓 𝐹𝑡 > 𝑉𝑡ℎ
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                          (2.6)                                                                                   

𝑉𝑡 = 𝐹𝑡(1 − 𝑆𝑡) + 𝑉reset𝑆𝑡 = 𝐹𝑡(1 − 𝑆𝑡) 

      (2.7)      

In section 2.3, we will discuss the reason for choosing ReLU. Compared with the LIF model, 

KLIF brings two benefits: adaptive surrogate gradient descent and membrane potential 

regulation.  

 

 

 Adaptive surrogate gradient descent  
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As we all know, ANNs are trained by gradient-based backpropagation (BP), which uses 

gradient information to optimize the synaptic connections and neuron parameters. 

Unfortunately, gradient-based optimization fails in SNNs because the firing action is non-

differentiable, as described in Equation (2.3). The derivative of 𝑆𝑡 is infinite at 𝐻𝑡 = 𝑉𝑡ℎ, and 

the derivative is 0 at other places, as shown in Figure 2.2(a). An approach called surrogate 

gradient descent was proposed to address this issue [86]. The trick is to replace the derivative 

of the non-differentiable step function with an approximate differentiable function. It provides 

surrogate gradients that can be utilized to optimize the parameters of SNN efficiently during 

backpropagation. The differentiable function could have several forms [88]. The similarity 

among them is that their primitive function approximates the shape of the step function. Values 

of the differentiable function are relatively big around the threshold, while those away from 

the threshold tend to approach 0.  

 

 

Figure 2.2 Derivative approximation of the non-differentiable spike activity. (a) step 

activation function of the spike activity and its original derivative function which is infinite 

value at H = 1 and zero value at other points. (b) scaling factor 𝑘 to adjust the slope of the 

surrogate gradient curve 
𝜕𝑆

𝜕𝐹
. 
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It has been confirmed that the type of curves of the surrogate derivative is not critical to the 

accuracy and the convergence speed of SNNs, but the proper curve steepness has an impact 

[86]. The earlier works all set the steepness empirically and do not consider the adjustment of 

the curve anymore during training [86]. In contrast, our work proposes the learnable scaling 

factor 𝑘 which can automatically change during the training process to fit the training data 

precisely. 

 

The loss function 𝐿 is defined by the mean squared error (MSE). Under the principle of chain 

rule [89], we can calculate the gradients of the scaling factor 𝑘𝑖 in the 𝑖-th layer in the network 

according to Equation (2.8). 

∑
𝜕𝐿

𝜕𝑘𝑖
𝑡

=∑
𝜕𝐿

𝜕𝑺𝑡
𝑖
 
𝜕𝑺𝑡

𝑖

𝜕𝑭𝑡
𝑖

𝜕𝑭𝑡
𝑖

𝜕𝑘𝑖
𝑡

 

                        (2.8)                                                                                      

𝑆𝑡
′
=
𝜕𝑆𝑡
𝜕𝐹𝑡

≈
𝛼

2(1 + (
𝜋
2 𝛼

(𝐹𝑡 − 𝑉𝑡ℎ))2)
=

𝛼

2(1 + (
𝜋
2 𝛼

(ReLU(𝑘𝐻𝑡) − 𝑉𝑡ℎ))2)
 

=

{
  
 

  
 

𝛼

2 (1 + (
𝜋
2 𝛼𝑉𝑡ℎ)

2
)
,               𝐻𝑡 < 0

𝛼

2(1 + (
𝜋
2 𝛼𝑘 (𝐻𝑡 −

𝑉𝑡ℎ
𝑘
))

2

)

, 𝐻𝑡 ≥ 0
 

            (2.9)                       

In this paper, we use the derivative of arctangent 𝑔′(𝑥) =
α

2(1+(
π

2
α𝑥)

2
)
  in place of the derivative 

of the step function in Equation (2.9). 𝛼 is a constant which equals 2. In Equation (2.9), the 

value of the surrogate gradient 𝑆𝑡
′  depends on the size of the parameter 𝑘. When 𝑘 is large, the 

steepness of the surrogate gradient curve is steep; conversely, it becomes flat, as shown in 
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Figure 2.2(b). SNNs can adjust the gradient information by changing 𝑘 during training, which 

is more reasonable than setting it artificially. In addition, 
𝑉𝑡ℎ

𝑘
 in Equation (2.9) can be regarded 

as a new threshold that also depends on 𝑘. When 𝑘 is large, the threshold is high; conversely, 

it becomes low. We use 𝑘 as a shared parameter with the neurons in the same layer in SNNs. 

This feature not only saves memory but also is biologically plausible as the neighboring 

neurons tend to have similar properties [19]. Notably, the parameter 𝑘 should be larger than 0, 

and cannot be too large as well, which leads to a very steep gradient curve. In practice, we find 

that the value of 𝑘 rarely becomes too small or too large as a shared parameter decided by all 

neurons in one layer, but just in case, we still give a boundary of it from 0.5 to 5. For the 

initialization, we set the values of 𝑘 in all layers to 1.  

 

From one perspective, the adaptive surrogate function based on parameter 𝑘 makes models 

more flexible during training.  By optimizing the value of 𝑘, it is possible to find the best 

slope and width of the surrogate function, which can speed up the convergence of the model 

and improve the ability to fit the training data. Since each layer has a separate 𝑘, which makes 

the surrogate function’s slopes different for each layer. From another perspective, the 

parameter 𝑘 also scales the accumulated potential 𝐻𝑡 at each time step. With the increase or 

decrease of 𝑘, the potential will be amplified or reduced. It makes the charging process of 

neurons more controllable.  

 

 

 Activation function ReLU 

In addition to the scaling factor 𝑘, KLIF also incorporates an activation function, ReLU. 

ReLU keeps all the positive potentials and resets all negative potentials to 0. As 𝑘  is 

consistently less than 1, which may cause a negative potential to be an even larger negative 
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value, it would reduce firing possibility and lead to dead neurons. ReLU limits the membrane 

potential from being too low to fire spikes. Also, the introduction of  ReLU could save 

memory [90] for SNN quantitative representation when running on customed neuromorphic 

devices because 1) ReLU resets all negative potentials to zero, and 2) some gradients in 

backpropagation (BP) become zero due to ReLU. Figure 2.1(b) shows the feedback loop of 

KLIF.  

 

 

 Encoding and decoding schemes 

Coding layers used by SNNs are critical and decide the performance of SNNs. For the 

encoder, a popular method that transforms input images to spike train is rate coding. 

Generally, the pixel intensity of real-valued images is proportional to the firing rate in a period 

in rate coding. However, the conventional rate coding needs a long simulation time to present 

the information of images, so it is limited in training deep SNNs which have high memory 

requirements.  An encoding layer that directly uses the first convolutional layer to encode the 

image information was shown to reduce the simulation time significantly and achieve a good 

 

Figure 2.3 Encoder and decoder of SNNs 
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performance [17]. Thus, we adopt a similar method to build our encoder. The difference is 

that we use three parallel convolutional layers rather than one convolutional layer. We add up 

the values of the corresponding positions of the three convolutional layers before input to 

spiking neurons. We adopt a voting strategy proposed in [27] for the decoder to decode the 

output information. It divides neurons in the output layer into several neuron populations, and 

each population is assigned a label. The highest determines the output class by counting the 

average firing rate of every population over a given time window. Figure 2.3 shows the 

structure of the encoder and decoder. 

 

 

2.3 Results and discussions 

We test the proposed KLIF for classification tasks on both static datasets MNIST, Fashion-

MNIST, and CIFAR-10, and neuromorphic datasets N-MNIST, CIFAR10-DVS, and DVS128-

Gesture. We train SNNs by the Adam[91] optimizer with the learning rate 1e-4 and the cosine 

annealing [92] learning rate schedule with 𝑇𝑚𝑎𝑥 = 100.  

Table 2.1 Network structures and training details for different datasets. 

Dataset 
Simulation 

time 
Epoch Network structure 

MNIST 

and 

Fashion-

MNIST 

8 100 
(128C3+128C3+128C3)(encoding)-128C3-MP2-

2048FC-(100FC-AP10)(decoding) 

N-MNIST 10 100 
(128C3+128C3+128C3)(encoding)-128C3-MP2-

2048FC-(100FC-AP10)(decoding) 

CIFAR-10 10 200 
(128C3+128C3+128C3)(encoding)-(256C3-256C3-

256C3-MP2)*2-2048FC-(100FC-AP10)(decoding) 

CIFAR10-

DVS 
15 100 

(128C3+128C3+128C3)(encoding)-(128C3-MP2)*3-

512FC-(100FC-AP10)(decoding) 

DVS128- 

Gesture 
12 200 

(128C3+128C3+128C3)(encoding)-(128C3-MP2)*4-

512FC- (110FC-AP10)(decoding) 

Note: nC3—Convolutional layer with n output channels, kernel size = 3 and stride = 1, 

MP2—2D max-pooling layer with kernel size = 2 and stride = 2, AP10—1D average-

pooling layer with kernel size = 10 and stride = 10, FC—FC layer. The symbol ()*n indicates 

the n repeated structures. 
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 Comparison of LIF and KLIF 

We compare the test accuracy of SNN models on all six datasets when using LIF and KLIF, 

respectively (Figure 2.4). The network architectures and training details for different datasets 

are listed in Table 2.1. The hyperparameter selection like the number of filters and output 

feature maps are referenced in [19] which produces the best classification accuracy on 

different visual datasets. Except for the encoder, we use the same network architectures as 

those used in [19]. The batch normalization operation is used to change the input distribution 

after each convolutional layer. Before each fully connected layer, a dropout operation with 

the drop probability P = 0.5 is added to prevent overfitting. We keep the same hyperparameters 

and the network structure on both SNNs with different spiking neurons.  

Figure 2.4 The test accuracy of KLIF v.s. LIF neurons on different datasets during training. 
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As shown in Figure 2.4, the test accuracy of the SNNs with KLIF neurons is always higher 

than that with LIF neurons， which verifies the validation of KLIF. In contrast, the accuracy 

gap is more significant on more complex datasets like CIFAR-10, CIFAR10-DVS, DVS128-

Gesture than the simple Fashion-MNIST. Table 2.2 summarizes the results of existing state-

of-the-art results. Our method achieves or approximates the best results in almost all datasets, 

with only no more than 10 time steps on static datasets and 15 time steps on neuromorphic 

datasets. Notably, accuracy listed in [19] is based on models trained for 1000 epochs, while 

ours are 100 or 200 epochs. With the same 100 epochs, the performance of our models is still 

better than that in [19] after verification. 

 

Figure 2.5 shows the change of 𝑘 in each layer during training on CIFAR-10 and DVS128-

Gesture. It demonstrates that 𝑘 in each layer tends to converge during training. Figure 2.6 is 

the distribution of firing rate comparison between the model with LIF and model with KLIF 

for neurons in each layer after 100 epochs training on CIFAR-10. Compared with LIF, the 

model with KLIF has a higher firing rate in most layers. It means that the KLIF neurons in 

the model are more active than LIF neurons. The result is likely to be related to the 

amplification of membrane potentials because most 𝑘 values are larger than 1 in Figure 2.5. 

Besides, the presence of ReLU limits the lower bound of the membrane potential to 0, which 

makes it easier for neurons to accumulate to the threshold value in a short time and thus to 

fire spikes. Especially for LIF, in case the initial value of the membrane potential is at a small 

negative value, this makes a neuron hard to be triggered. 

 

Table 2.2 Comparison between our work and the state-of-the-art methods on different 

datasets. 

Author Method SNN accuracy 
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MNIST 
Fashion-

MNIST 

CIFAR-

10 
N-MNIST 

CIFAR10

-DVS 

DVS128-

Gesture 

Hunsberger et 

al.[93] 
ANN-SNN 98.37% - 82.95% - - - 

Lucas et al.[94] - - - - 92.90%   

Rueckauer et al.[95] ANN-SNN 99.44% - 88.82% - - - 

William et am.[9] ANN-SNN 99.53% - 88.01% - - - 

Christoph et al.[96] ANN-SNN - - 92.42% - - - 

Wu et al.[17] Spike-based BP - - 90.53 99.53% 60.5% - 

Zhang et al.[97] Spike-based BP 99.62% 90.13% - - - - 

Lee et at.[16] Spike-based BP 99.59% - 90.95% 99.09% - - 

Shrestha et al.[98] Spike-based BP 99.36% - - 99.2% - 93.64% 

Kaiser et al.[99] Spike-based BP - - - 96% - 95.54% 

Cheng et al.[100] Spike-based BP 99.5% 92.07% - 99.45% - - 

He et al.[101] Spike-based BP - - - 98.28% - 93.40% 

Xing et al[102] Spike-based BP - - - - - 92.01% 

Wu et al.[86] Spike-based BP 99.42% - - 98.78% 50.7% - 

Fang et al.[19] Spike-based BP 99.72% 94.38% 93.5% 99.61% 74.8% 97.57% 

Ours (with LIF) Spike-based BP 99.61% 94.28% 91.02% 99.48% 68.4% 93.06% 

Ours (with KLIF) Spike-based BP 99.61% 94.35% 92.52% 99.57% 70.9% 94.1% 

 

 

 

 Ablation study  

In section 2, we introduce the scaling factor 𝑘 and ReLU function. Here we analyze their 

influence on models’ accuracy, respectively. We selected two more commonly used network 

architectures for our ablation study: SNN version of VGG-16 and ResNet-18, which can 

demonstrate that the improved performance comes from KLIF's 𝑘 and ReLU rather than a 

certain network architecture. We trained both networks with 100 training epochs and 6 time 

steps under four conditions: the accuracy of LIF, only with 𝑘, only with ReLU, and KLIF. In 

VGG-16, the accuracy is 78.45%, 82.96%, 81.04%, and 85.53%, respectively. In ResNet-18, 

a similar conclusion can be summarized. The result clearly shows the big accuracy gap 
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between LIF and KLIF and also indicates the benefits of 𝑘  and ReLU, respectively. In 

contrast, using 𝑘 alone achieves better results than using ReLU alone in both networks. 

 

 

Finally, the impact of the coding layers on the models’ accuracy is tested. We incorporate our 

coding layers in both models. The test accuracy of the SNNs with our coding layers is always 

 

Figure 2.5 The change of scaling factor 𝑘𝑖  in the 𝑖-th layer during training on a. CIFAR-10 and 

b. DVS128-Gesture. 

 

 

 

Figure 2.6 The distribution of firing rate for neurons in each layer during training on CIFAR-10. 

 

a b
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higher than that without our coding layers, as shown in Table 2.3, showing the validity of the 

coding layer. 

 

 Biological plausibility of KLIF 

Biologically, neurons regulate the ion concentration difference inside and outside the 

membrane through the opening and closing of ion channels, thereby regulating the magnitude 

and range of the membrane potential. LIF neurons cannot regulate input currents and their 

internal potentials during training. In contrast, the parameter 𝑘  and ReLU regulate the 

magnitude and range of the membrane potential, respectively, which is more biologically 

plausible. 

 

In Equation (2.5), 𝐹𝑡 is a scaled and rectified version of 𝐻𝑡 at time t. So when computing the 

new 𝑉𝑡+1, that will be injected in Equation (2.2) at the next time step. The scaling could also 

be canceled to maintain the original potential accumulation. Thus, Equation (2.7) could be 

changed by dividing by 𝑘 on the right-hand side: 

𝑉𝑡 =
𝐹𝑡
𝑘
(1 − 𝑆𝑡) + 𝑉reset𝑆𝑡 = 

𝐹𝑡
𝑘
(1 − 𝑆𝑡) 

      (2.10)    

Table 2.3 Ablation Study of KLIF.on CIFAR-10 

Neuron VGG-16 ResNet-18 

LIF 78.45% 85.24% 

KLIF 85.53% 89.12% 

Only with k 82.96% 87.2% 

Only with ReLU 81.04%  86.66% 

KLIF(without coding layers) 85.53% 89.12% 

KLIF(with coding layers) 86.64% 89.88% 
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When we use this form as the expression of KLIF*, the accuracy (see Table 2.4) on 

aforementioned datasets does not change a lot compared with using KLIF. 

 

Similarly, the ReLU function limits membrane potentials above the resting potential, which 

is not biologically plausible, as biological neurons can go way below the resting potential.  

Therefore, we replace the ReLU function in KLIF with the CELU and leaky ReLU. These 

functions keep the same as the ReLU in the positive part and sets the negative membrane 

potential as a small negative value, which is more biological plusible. The result in Table 2.5 

shows that the test accuracy of SNN with KLIF(CELU) and KLIF(leaky ReLU) are still better 

than that with LIF. While the accuracy using KLIF(CELU) is slightly lower than that using 

KLIF(ReLU), the accuracy using KLIF(leaky ReLU) is not worse than that using 

KLIF(ReLU). The results also demonstrate the robustness of KLIF to different activation 

functions. In a sense, KLIF is more biologically plausible than LIF, because in LIF, the 

potential can be infinitely negative [46], which is inconsistent with the fact that biological 

Table 2.4 Accuracy of using KLIF/KLIF* 

Neuron 

SNN accuracy 

MNIS

T 

Fashion-

MNIST 

CIFAR-

10 

N-

MNIST 

CIFAR

10-DVS 

DVS128-

Gesture 

KLIF 99.61% 94.35% 92.52% 99.57% 70.9% 94.1% 

  KLIF* 99.6% 94.31% 91.93% 99.27% 70.6% 94.1% 

 

 

Table 2.5 Accuracy of using KLIF with different activation functions on CIFAR-10 

Neuron VGG-16 ResNet-18 

LIF 78.45% 85.24% 

KLIF(ReLU) 85.53% 89.12% 

KLIF(CELU) 84.55% 88.7% 

KLIF(leaky ReLU) 85.9% 89.11% 
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neurons follow, while KLIF is more biologically meaningful by limiting the bounds of the 

negative values to fluctuate within a certain range through the activation function. 

 

2.4 Conclusion 

For a long time, there has been a relatively big performance gap between ANNs and SNNs. 

Kinds of methods like ANN-to-SNN conversion and direct training with spike-based BP 

attempt to reduce the gap. Overall, the spike-based BP is not as good as the conversion method 

regarding models’ accuracy. However, the conversion from ANNs is based on the rate coding 

and usually needs a long inference time to approximate the original accuracy of ANNs, which 

is not efficient.  More research is currently focused on how to train high-precision SNNs 

directly like ANNs.  

 

In this work, we proposed the 𝑘-based spiking neural unit KLIF.  It incorporates the learnable 

scaling factor 𝑘 and the activation function ReLU. Our experiments show that the SNN with 

KLIF neurons outperforms that with LIF neurons in various visual datasets. We also verify that 

the scaling factor and activation function can independently contribute to improving accuracy 

of models. The SNN updates its learnable surrogate gradients by the scaling factor over the 

training. The ReLU contributes to the selective delivery of positive membrane potentials. 

Furthermore, our coding layers with three summed convolutional layers for SNN only needs 

several time steps to run, which speeds up the convergence of models and improve accuracy 

of models.  
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3 Adversarial Defense via Neural Oscillation inspired 

Gradient Masking 

Abstract 

Spiking neural networks (SNNs) attract great attention due to their low power consumption, 

low latency, and biological plausibility. As they are widely deployed in neuromorphic devices 

for low-power brain-inspired computing, security issues become increasingly important. 

However, compared to deep neural networks (DNNs), SNNs currently lack specifically 

designed defense methods against adversarial attacks. Inspired by neural membrane potential 

oscillation, we propose a novel neural model that incorporates the bio-inspired oscillation 

mechanism to enhance the security of SNNs. Our experiments show that SNNs with neural 

oscillation neurons have better resistance to adversarial attacks than ordinary SNNs with LIF 

neurons on kinds of architectures and datasets. Furthermore, we propose a defense method that 

changes model’s gradients by replacing the form of oscillation, which hides the original 

training gradients and confuses the attacker into using gradients of ‘fake’ neurons to generate 

invalid adversarial samples. Our experiments suggest that the proposed defense method can 

effectively resist both single-step and iterative attacks with comparable defense effectiveness 

and much less computational costs than adversarial training methods on DNNs. To the best of 

our knowledge, this is the first work that establishes adversarial defense through masking 

surrogate gradients on SNNs. 
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3.1 Introduction 

Spiking neural networks (SNNs) recently attracted more and more attention due to their 

biological plausibility. In addition to neurons and synapses, SNNs incorporate the concept of 

time into models. Neurons in SNN receive spike trains as inputs, and these spike trains will 

increase or decrease their membrane potentials. Unlike conventional artificial neural networks 

(ANNs), the neurons of SNNs transmit information only if their membrane potential reaches a 

specific firing threshold. Information is sent to the next-layer neurons in the form of spike 

trains. These characteristics may underline the information transmission and processing in the 

brain. It is therefore regarded as the next-generation neural network [103]. Like the brain 

working fast and efficiently,  SNN is also proved to have much better power efficiency [104] 

and shorter latency [105] compared with ANNs. Besides, researchers also noticed their 

promising capability in processing dynamic and noisy information [106-108]. SNNs have been 

applied in various tasks such as spike pattern recognition [109], optical flow estimation [110], 

and sparse representation [111]. Since SNNs are being widely deployed in neuromorphic 

devices such as IBM TrueNorth [112] and Intel Loihi [112], the security aspect of SNNs 

becomes vital. 

 

In ANNs, models are vulnerable to adversarial attacks that deceive the model into producing 

the wrong outputs by adding imperceptible perturbations into the clean input. This results in 

ANNs having catastrophic consequences in certain tasks, such as medical diagnosis and self-

driving cars. These attacks are most based on gradients to generate perturbations, such as Fast 

Gradient Sign Method (FGSM) [67], Basic Iterative Method (BIM) [113], and Projected 

Gradient Descent (PGD) [114]. Therefore, it is important to improve the robustness of the 

model and resist the aforementioned adversarial attacks. Several adversarial defense methods 
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were proposed, such as ensemble training [115], denoising [116], and adversarial training 

[114].  

 

Despite its popularity in ANNs, adversarial attacks rarely receive any attention in the SNN 

domain. One reason may be the non-differentiability of spiking events, making supervised 

learning of SNNs difficult. Some relevant studies of adversarial attacks on SNNs concentrate 

on gradient-free attack methods (e.g., trial-and-error input perturbation [117, 118]) or spatial 

gradient-based ANN-to-SNN conversion methods [119]. The computational complexity of the 

former methods is relatively high due to the absence of the gradient's guidance. The latter lacks 

temporal components, which leads to inefficient attacks [106]. Recently, a supervised learning 

algorithm using a surrogate function to approximate the derivative of spike activity [17, 86, 88] 

exhibited success in training high-performance SNNs and raised the opportunity to realize 

spatiotemporal adversarial attacks on SNNs based on gradients [120].  

 

Adversarial defense against adversarial attacks is still in its initial stage for SNNs. There are 

few literatures devoted to adversarial defense methods for SNNs. In [121], the authors 

demonstrate that the simulation time and threshold of SNNs impact the robustness to 

imperceptible perturbations. However, they do not propose a defense method to resist the 

interference of adversarial samples effectively. In this work, we propose a specific adversarial 

defense method for SNN based on a novel bio-inspired approach, where neural oscillation is 

harnessed for the first time to enhance performances of SNNs under adversarial attacks 

significantly. We first present a neural oscillation neuron model to train models. The gradients 

of models will be masked by an alternative neural oscillation after training, thus creating 

interference in the gradient-based generation of the adversarial samples and effectively 
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enhancing the robustness of the SNNs. We have verified the effectiveness of our defense 

method on CIFAR-10 and CIFAR-100 datasets [122].  

 

In summary, our main contributions are: 

1. We propose a novel neural oscillation neuron that is bio-plausible and robust. It blurs the 

gradients of the SNNs model and interferes with the effect of perturbations on SNNs.  

2. We derive an alternative neural oscillation neuron through the neural oscillation neuron. The 

neuron, being very 'weak', is able to attenuate the attack capability of adversarial samples, thus 

indirectly enhancing the robustness of the network. 

3. Based on two types of neurons, we propose a defense strategy that uses the ‘fake’ neuron to 

confuse the attacker and thus achieve adversarial defense. The developed defense method can 

effectively resist kinds of adversarial attacks, such as FGSM and PGD. 

 

The rest of this chapter is organized as follows. Section 3.2 provides some preliminaries of 

SNNs and adversarial attacks. The experimental setup and our neural oscillation models are 

discussed in Section 3.3. Section 3.4 validates the validation of our defense methodology. 

Section 3.5 concludes this article. 

 

3.2 Preliminaries 

 SNNs and biological neural oscillation 

SNNs adopt spike trains as information carriers between neurons. Every spiking neuron in a 

SNN receives and emits spikes. The LIF neuron model is a popular bio-inspired simplified 

model for describing the dynamics of spiking neurons. The dynamics of the LIF model are 

defined [19] by  
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𝐻(𝑡) = 𝜆 ∗ 𝑉(𝑡 − 1) + ∑𝑤𝑖𝑥𝑖(𝑡)

𝑖

 

                                      (3.1)            

𝑆(𝑡) = {
1,        𝐻(𝑡) > 𝑉𝑡ℎ
0,        𝐻(𝑡) ≤ 𝑉𝑡ℎ

 

                                                 (3.2)                  

𝑉(𝑡) = 𝐻(𝑡)(1 − 𝑆(𝑡)) + 𝑉reset ∗ 𝑆(𝑡) 

                                  (3.3)     

where 𝐻(𝑡) and 𝑉(𝑡) represent the membrane potentials before and after triggering a spike at 

time 𝑡, respectively. 𝑉𝑡ℎ  denotes the firing threshold, which is 1 in this paper. 𝑉reset is the 

resting potential, which is 0. 𝑆𝑡  denotes the output of neurons at time 𝑡, 𝑤𝑖𝑥𝑖(𝑡) is the i-th 

weighted pre-synaptic input at time 𝑡, and 𝜆 is the decaying time constant, which is 0.5.  

 

According to Equations (3.1) - (3.3), when a neuron receives spikes from the previous-layer 

neurons, its membrane potential will increase. Once the potential value surpasses the neuron’s 

firing threshold, the neuron will fire one spike and promptly be reset to the initial potential 

𝑉reset.  

 

The biological nervous system generates rhythmic patterns of activity called neural oscillation 

[123]. Neural oscillations are thought to be associated with many cognitive functions such as 

information transfer, perception, motor control, and memory.  Such oscillation is mainly 

triggered by the interaction of individual neurons. In individual neurons, neural oscillation can 

manifest as the oscillation of membrane potentials or as rhythmic action potentials. This kind 

of spontaneous activity plays an important role during brain development, including 

synaptogenesis and network formation. Even though neural oscillations are ubiquitous in 
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biological neurons, the current common spiking neuron models for deep learning, such as IF 

and LIF models, do not include this oscillatory mechanism, and there is no literature that 

develops adversarial defense of deep learning models using neural oscillation. 

 

 Adversarial attacks 

Adversarial attacks [124] introduce imperceptible perturbation into the input data to mislead 

the model's classification result. Adversarial attacks can be classified as targeted and non-target 

attacks according to adversarial goals. A targeted attack is when the attacker attempts to 

misdirect the model to a class that is different from the true class, while a non-target attack 

means that the attacker attempts to mislead the model by predicting any of the incorrect classes 

[125].  

 

In gradient-based adversarial attacks, for a clean image 𝑥 belonging to class 𝑘 and a trained 

SNN model 𝑀, the adversarial image 𝑥𝑎𝑑𝑣of 𝑥 needs to satisfy the following two criteria: 

1). The difference between 𝑥𝑎𝑑𝑣 and 𝑥 is imperceptible, i.e., ||𝑥𝑎𝑑𝑣 − 𝑥||𝑝 ≤ 𝜖 

2). The model misclassifies 𝑥𝑎𝑑𝑣, i.e., 𝑀(𝑥𝑎𝑑𝑣) ≠ 𝑘 

where the distance metric ||. ||𝑝 denotes the 𝑝-norm quantifying the similarity, and 𝜖 reflects 

the maximum allowable perturbation on the image. 

 

There are various kinds of adversarial attack algorithms that generate adversarial samples to 

deceive the model. In this work, we adopt four typical adversarial attacks to evaluate our 

defense model. 

 

Fast Gradient Sign Method (FGSM) [67] is the most basic approach for generating 

adversarial samples, which aims at finding a perturbation that maximizes its cost function for 
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the perturbed input [120]. This approach generates adversarial samples by perturbing once the 

clean image 𝑥  by the amount of 𝜖 along the input gradient direction: 

𝒙𝒂𝒅𝒗 = 𝒙 + 𝜖 ⋅ sign(∇𝑥ℒ(𝒙, 𝒚)) 

                   (3.4)                              

Here, ℒ  represents the cost function of the model, and ∇𝑥(∗) is the model's gradient with 

respect to a clean sample of 𝒙. 𝒚 is the label corresponding to 𝒙.  

 

Basic Iterative Method (BIM) [113] is an iterative version of FGSM and generates the 

adversarial samples as: 

𝒙𝒎 = clip𝜖 (𝒙𝒎−𝟏 +
𝜖

𝑖
⋅ sign (∇𝑥𝑚−1(ℒ(𝒙𝒎−𝟏, 𝒚))) 

 (3.5)                                        

where 𝒙𝟎 is the clean image, 𝒙𝒎 is an adversarial sample in the 𝑚-th iteration, and 𝑖 is the 

iteration number. clip𝜖(∗) represents element-wise clipping of the argument to the range [𝒙 −

𝜖, 𝒙 + 𝜖].   

 

Momentum Iterative Method (MIM) [126] is similar to BIM but is extended to promote the 

stability of gradient direction through the addition of a momentum term: 

𝑔𝑚 = μ ⋅ 𝑔𝑚−1 +
∇𝑥𝑚−1ℒ(𝒙𝑚−1, 𝑦)

||∇𝑥𝑚−1(ℒ(𝒙𝑚−1, 𝑦))||1
 

            (3.6)                                

𝒙𝑚 = clipϵ (𝒙𝑚−1 +
ϵ

𝑖
⋅ sign(𝑔𝑚)) 

              (3.7) 
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𝜇 is the decaying factor. 

 

Projected Gradient Descent (PGD) is one of the strongest iterative adversary attacks. It starts 

from a random position in the clean image neighborhood 𝒰(𝒙, 𝜖). Its expression is described 

as: 

𝒙𝑚 = 𝑐𝑙𝑖𝑝𝜖 (𝒙𝑚−1 + 𝛾 ⋅ 𝑠𝑖𝑔 𝑛 (𝛻𝑥𝑚−1ℒ(𝑥𝑚−1, 𝑦))) 

 (3.8)   

where 𝑚 is the iterative number, and γ is the step size.  

 

3.3 Experiments 

 Datasets and Models 

We conduct the experiments on SNN versions of VGG-16 and ResNet-18 for CIFAR-10 and 

ResNet-18 for CIFAR-100. All models were trained by surrogate gradient-based BP with 

maxpool layers replaced by average pooling. Bias terms are not included in SNNs. After the 

convolution layer, we add a batch normalization layer to change the input distribution. Before 

the fully connected layer, a dropout layer with the probability of P = 0.5 is used to prevent 

overfitting. 

 

For both CIFAR-10 and CIFAR-100 datasets, all data are normalized to [0,1]. SNNs are 

trained for 100 epochs with cross-entropy loss and Adam [91] optimizer. The initial learning 

rate is set to 1e-4, and the cosine annealing [92] learning rate schedule with 𝑇𝑚𝑎𝑥 = 100 adjusts 

the learning rate over training. A total of 8 timesteps are used for all SNNs. We measure the 

attack success rate of adversarial sample crafting on 1000 samples randomly selected from 

each dataset.  
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Due to the discontinuity of the spiking activity, when training the model, we use the derivative 

of the Atan function as the surrogate gradient function (see  Equation (3.9), α = 3 ) to 

approximate the derivative of spiking activities. 

𝑦(𝑥) =
𝛼

2(1 + (
𝜋
2 𝛼

(𝑥 − 𝑉𝑡ℎ))
2

)

 

                      (3.9) 

 Neural oscillation neuron 

Inspired by the biological neural oscillation, we add random oscillation noise in the LIF 

 

Figure 3.1 The training process of the model with alternative neural oscillation neurons at 

time 𝑡. The model trained first with neural oscillation neurons can be regarded as a 'teacher 

model'. It provides the labels for a 'student model' which replaces neural oscillation neurons 

with alternative neural oscillation neurons. The 'student model' keeps the same trained 

weights and fits spike trains 𝑺′𝑗(𝑡) of student model to 𝑺𝑗(𝑡) of teacher model by learning 

variables 𝑎 and 𝑏 in each layer. 
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neuron. We refer to the new neuron as the neural oscillation model. Its dynamic can be 

described by Equations (3.1) and (3.10) - (3.13). 

𝑃(𝑡) = 𝑓(𝐻(𝑡) + 𝛾(𝑡)) 

                     (3.10) 

𝑆(𝑡) = {
1,         𝑃(𝑡) > 𝑉𝑡ℎ
0,         𝑃(𝑡) ≤ 𝑉𝑡ℎ

 

                  (3.11)                        

𝑉𝑡 = 𝑃(𝑡)(1 − 𝑆(𝑡)) + 𝑉reset𝑆(𝑡) 

           (3.12)  

𝑓(𝑥) = {
−0.03𝑥, 𝑥 < 0

𝑥,             𝑥 ≥ 0
 

                   (3.13)   

𝛾(𝑡) is an independent uniformly-distributed random noise in a range of [𝑎, 𝑏] for neurons in 

each layer, which is [-0.2,0.8] in this paper. 𝑓(𝑥) is a piece-wise linear function 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 

whose gradients are defined as -0.03 if 𝑥 ≤ 0 and gradients are 1 if 𝑥 > 0.   

 

 Alternative Neural oscillation neuron 

We train and then save SNN with neural oscillation model, then we copy the model and replace 

the neural oscillation neuron with a new neural model called alternative neural oscillation. The 

new neural model changes the noise item 𝛾𝑖(𝑡) in Equation (3.10) to a Sine function of the 

membrane potential 𝐻(𝑡), as Equation (3.14) describes. The firing and reset actions keep the 

same as Equations (3.11) and (3.12). 

𝑃(𝑡) = 𝑓(𝐻(𝑡) + sin(𝐻(𝑡) + 𝑐) + 𝑑) 

         (3.14) 
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Variables 𝑐 and 𝑑 are learnable parameters shared by all layers in the network. The mapping 

function sin(𝐻(𝑡) + 𝑐) + 𝑑 is selected here to fit the noise in neural oscillation (More details 

of the mapping function selection can be found in the supplementary). We freeze all weights 

of the model with alternative neural oscillation and only keep parameters 𝑐 and 𝑑 learnable. 

The model as the student model was trained again to learn each layer's output of the saved 

model with neural oscillation neurons, which is regarded as the teacher's model. Here we define 

the loss function Equation (3.15) to minimize the difference between the spike trains 𝑺𝑗(𝑡) and 

𝑺′𝑗(𝑡) between neural oscillation and alternative neural oscillation in 𝑗-th layer at time 𝑡.  

𝐿 =  ∑ ∑
1

2
(𝑺𝑗(𝑡) − 𝑺𝑗

′(𝑡))2
𝑗𝑡

 

              (3.15) 

In this way, the accuracy of models changes slightly (see Table 3.1). In experiments this process 

requires only 1-3 training epochs, besides, weight parameters are frozen and few parameters 

are learnable, thus adding almost no additional training time. The details of noise range [𝑎, 𝑏] 

and values of 𝑐 and 𝑑 obtained by training can be found in the supplementary. The process of 

generating alternative neural oscillation neurons is presented in Figure 3.1. 

 

 Adversarial defense strategy 

Now we have two models with different neurons. The two models have approximate output 

and inference accuracy but with different gradients. For neural oscillation model, we calculate 

the gradients 
𝜕𝑆(𝑡)

𝜕𝐻(𝑡)
, when 𝐻(𝑡) + 𝛾𝑖(𝑡) ≥ 0, 

𝜕𝑆(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
≈

𝛼

2(1 + (
𝜋
2 𝛼

(𝐻(𝑡) + 𝛾𝑖(𝑡) − 𝑉𝑡ℎ))
2

)

 

        (3.16) 
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when 𝐻(𝑡) + 𝛾𝑖(𝑡) < 0, 

 

𝜕𝑆(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
≈

−0.03𝛼

2(1 + (
𝜋
2 𝛼

(𝐻(𝑡) + 𝛾𝑖(𝑡) − 𝑉𝑡ℎ))
2

)

 

    (3.17) 

For alternative neural oscillation model, when 𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 ≥ 0, the gradients 

𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
 is 

𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆′(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
≈

𝛼(1 + co s(𝐻(𝑡) + 𝑎))

2 (1 + (
𝜋
2 𝛼

(𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 − 𝑉𝑡ℎ))
2

)

 

  

 

Figure 3.2 (a). The solid and dotted orange lines represent 
𝜕𝑆

𝜕𝐻
 of neural oscillation model 

when 𝛾 is -0.2 and 0.8, respectively. The red line is 
𝜕𝑆′

𝜕𝐻
 of alternative neural oscillation 

model. (b). Partial enlargement of graph (a) in the green dashed circle.  
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(3.18) 

when 𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 < 0, 

𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆′(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
=

−0.03𝛼(1 + co s(𝐻(𝑡) + 𝑎))

2 (1 + (
𝜋
2 𝛼

(𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 − 𝑉𝑡ℎ))
2

)

 

(3.19) 

We plot both models’ gradient distributions of VGG16 for CIFAR-10. As we see, the gradient 

distribution using alternative neural oscillation is distinguished from the gradient distribution 

using neural oscillation. The gradient distribution of the alternative neural oscillation has the 

bigger amplitude and the sharper shape than that in Figure 3.2(a). On the other hand, in Figure 

3.2(b), we zoom in on the part of the dashed circle in Figure 3.2(a) and observe the gradient, 

and it could be seen that gradients vary greatly at the same H value between neural oscillation 

neuron and alternative neural oscillation neuron. 

 

Our defense strategy is to disguise and hide the real neurons in the model, which confuses the 

attacker to generate attack samples and attack with the gradients of the ‘fake’ neurons, which 

deviate from the real gradients and thus reduce the efficiency of the attack. We validate the 

effectiveness of this defense method based on the alternative neural oscillation in Section 3.4. 

 

3.4 Results 

We train SNN with the LIF model as the benchmark model to facilitate the comparison of the 

validation of our approach. The maximum perturbation size ε in all attacks is 8/255. For 

iterative attacks, for example, PGD-𝑖, 𝑖 indicates the number of iterative steps. All attacks are 

non-target attacks. 

 

 Robustness analysis of neural oscillation model 
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We first test the robustness of the neural oscillation model against adversarial attacks. As 

shown in scenario 1 of Table 3.2, when attackers are fully aware of the structure, parameters, 

and form of the neural oscillation model, they use adversarial samples to attack networks. The 

results are presented in Table 3.3. Neural oscillation neuron always performs better than LIF 

neuron in terms of robustness in all three models/datasets under four attacks. The reason is that 

we introduce randomization. When noise is added to the neurons, this interferes with the 

validity of the perturbations superimposed in the input images. As illustrated in Figure 3.2(a), 

when noise 𝛾𝑖 is different values, the gradient curve changes accordingly. This causes gradient 

value blurring and reduces the effectiveness of the generation of adversarial samples. Besides, 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 leads gradients in specific sections to be small negative values, which makes it 

possible to cause the gradient's direction to blur. For example, in Figure 3.2(b), when H = 0.18 

(green dashed line), the gradient of neuron with 𝛾𝑖 = 0.8 is positive, while the gradient of 

neuron with 𝛾𝑖 = −0.2 is negative. Thus, this randomness includes not only randomization in 

the value of the gradient but also the direction of the gradient. 

 

 Robustness analysis of alternative neural oscillation model 

We then investigate the performance of alternative neural oscillation model with respect to 

robustness. As indicated in scenario 2 of Table 3.2, when attackers are fully aware of the 

structure, parameters, and form of the alternative neural oscillation model, they use adversarial 

samples to attack networks. The experimental results in Table 3.4 suggest that the alternative 

neural oscillation neurons have better robustness than LIF neurons under different adversarial 

attacks. And they are also more robust compared to neural oscillation neurons. The reason is 

that the alternative neural oscillation neuron replaces the random noise as a function of 𝐻(𝑡), 

which leads gradients 
𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
 to be too steep (see Figure 3.2(a)). The steep gradients make the 

network back propagation optimization parameters unstable (gradient vanishing and 
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exploding). According to the definitions of attack methods in section 3.2, the generation of 

adversarial samples depends entirely on the exact gradient information so the unstable gradient 

makes the generated adversarial samples less aggressive and reduce the effectiveness of 

adversarial attacks. We have placed extra experimental results and argued this conclusion in 

the supplementary material. 

 

Table 3.1 Top-1 Accuracy (%) on clean images using two kinds of oscillation neurons  

 

Model/Dataset Neural oscillation 
Alternative neural 

oscillation 
Accuracy loss 

VGG-16/CIFAR-10 88.59 87.38 1.21 

ResNet-18/CIFAR-10 92.59 92.35 0.24 

ResNet-18/CIFAR-100 67.58 67.05 0.53 

 

Table 3.2 Neuron model summary under different attack scenarios 

 

Scenario 
Attackers know the 

real neuron model 

Neuron model chosen by 

attackers to generate 

adversarial samples 

The real neuron model used 

for inference 

Scenario 1 

Yes 

Neural oscillation Neural oscillation 

Scenario 2 
Alternative neural 

oscillation 

Alternative neural 

oscillation 

Scenario 3 

No 

LIF Neural oscillation 

Scenario 4 
Alternative neural 

oscillation 
Neural oscillation 

Scenario 5 Neural oscillation 
Alternative neural 

oscillation 

 

Table 3.3 Top-1 classification accuracy (%) under the scenario 1 attack 

 
Models/Datasets VGG-16/CIFAR-

10 

ResNet-

18/CIFAR-10 

ResNet-18/CIFAR-

100 

 benchmark ours benchmark ours benchmark ours 

Clean  88.6 88.59 92.2 92.59 65.7 67.58 

FGSM 14.2 30.9 35.5 44.9 12.6 17.2 

PGD-5 3 14.7 5.8 21.7 1.3 4.3 

BIM-5 1.9 14.3 5.9 21.4 1.4 4.5 

MIM-5 2.8 14.9 8.8 22.3 1.6 3.1 

 

Table 3.4 Top-1 classification accuracy (%) under the scenario 2 attack 
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Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10 

ResNet-18/CIFAR-

100 

 benchmark ours benchmark ours benchmark ours 

Clean  88.6 87.38 92.2 92.35 67.04 67.05 

FGSM 14.2 52.2 35.5 66.9 12.6 45.1 

PGD-5 3 28.1 5.8 57.1 1.3 39.3 

BIM-5 1.9 31.6 5.9 59 1.4 39.8 

MIM-5 2.8 30.8 8.8 53.4 1.6 33.2 

 

Table 3.5 Top-1 classification accuracy (%) under the scenario 3 attack 

 
Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10 

ResNet-18/CIFAR-

100 

 benchmark ours benchmark ours benchmark ours 

Clean  88.6 88.59 92.2 92.59 67.04 67.58 

FGSM 14.2 40.1 35.5 71.9 12.6 47.7 

PGD-5 3 40.8 5.8 79.3 1.3 56 

BIM-5 1.9 36.2 5.9 71.8 1.4 56.7 

MIM-5 2.8 26.7 8.8 67.6 1.6 49.4 

 

Table 3.6 Top-1 classification accuracy (%) under the scenario 4 attack 

 

Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10 

ResNet-18/CIFAR-

100 

 benchmark ours benchmark ours benchmark ours 

Clean  88.6 88.59 92.2 92.59 67.04 67.58 

FGSM 14.2 56.5 35.5 69.5 12.6 43.7 

PGD-5 3 45 5.8 66.8 1.3 48.4 

BIM-5 1.9 41.4 5.9 68.5 1.4 51.4 

MIM-5 2.8 35.4 8.8 59 1.6 40.8 

 

Table 3.7 Top-1 classification accuracy (%) under the scenario 5 attack 

 

Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10 

ResNet-18/CIFAR-

100 

 benchmark ours benchmark ours benchmark ours 

Clean  88.6 87.38 92.2 92.35 67.04 67.05 

FGSM 14.2 28.4 35.5 42.1 12.6 13.8 

PGD-5 3 12.1 5.8 19.2 1.3 4 

BIM-5 1.9 12.5 5.9 19.4 1.4 2.6 

MIM-5 2.8 13 8.8 20.2 1.6 2.4 

 

Table 3.8 White-box robustness (accuracy (%)) on CIFAR-10 using the ResNet-18 

(𝝐=8/255) 

Defense Clean FGSM PGD-20 
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Standard [114] 84.44 61.89 47.55 

MMA [71] 84.76 62.08 48.33 

Dynamics [127] 83.33 62.47 49.40 

TRADES [73] 82.90 62.82 50.25 

MART [74] 83.07 65.65 55.57 

Ours (scenario 4) 92.59 69.5 71.1 

 

 Validation of defense  

Scenarios 1 and 2 are both white-box attacks, where attackers are fully aware of all information 

about the network. Sometimes attackers only know part of the network, i.e. a grey-box attack. 

In this section, we test the validity of our defense strategy of masking real neurons with false 

neurons, thus tricking the attacker into generating attack samples with bias and reducing the 

efficiency of the attack. We consider three scenarios which are summarized in Table 3.2: 

Scenario 3: Attackers are aware of the structure and parameters but do not know the form of 

neural model. Attackers use the LIF model to generate adversarial samples; however, neural 

oscillation is the real neural model for inference. 

Scenarios 4 and 5: Attackers are aware of structure, parameters and know either the form of 

neural oscillation or the form of alternative neural oscillation. Attackers use the known ‘fake’ 

neurons to generate adversarial samples. The other neural model is as the real neuron of 

network for inference.     

 

For scenario 3, Table 3.5 shows the top-1 accuracy of both benchmark and our method. The 

result demonstrates that our defense performance for both single-step attacks and iterative 

attacks on all three models is significantly better than SNNs. Since attackers do not know the 

specific expression of the neuron, this causes a significant decrease in the attack efficiency of 

the generated sample perturbations. For scenario 4, similar results to scenario 3 in Table 3.6 

are observed: our method performs much better than benchmark against both single-step attack 

and iterative attack in all models and datasets. The results indicate that gradients of alternative 
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neural oscillation neurons lead to a decreased attack success rate by masking original training 

gradients. For scenario 5, our method is still more robust to adversarial samples than 

benchmark in Table 3.7. However, it is worth noting that the defense of scenario 5 is much 

weaker when comparing the defense ability of scenario 4. When attackers know the expression 

of neural oscillation neuron, even though we replace them with the alternative neurons for 

inference, attackers can still generate effective adversarial samples to attack our networks. In 

other words, when attackers use alternative neural oscillation neuron to generate adversarial 

samples, the neuron, being very 'weak', is able to attenuate the attack capability of adversarial 

samples, thus indirectly enhancing the robustness of networks. 

 

In fact, if we directly discard the neural oscillation neuron after training the model and replace 

it with the alternative neural oscillation neuron, then deploy the model in hardware devices, it 

is easy for attackers to be fooled by the ‘fake’ neuron.  

 

Table 3.8 compares alternated neural oscillation with some advanced adversarial training 

defense methods in ANN. The adversarial training requires a large number of samples to retrain 

the model, and it is impractical to introduce all unknown attack samples into adversarial 

training, which would consume much time and computational resources, leading to the 

limitation of adversarial training. Our method only requires additional learning of a new 

oscillatory form through introducing only two parameters, which defends against most 

gradient-based adversarial attacks and is more efficient. 

 

As neural oscillations are essential to many neural activities in the biological nervous system, 

SNN integrated with oscillation mechanism is more bio-plausible (In the supplementary we 

shows the spontaneous spike firing of our neural oscillation model, which is similar to the 
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biological neural oscillation). Various mechanisms of the biological neural system provide a 

basis for optimizing the SNN, while these mechanisms integrated into the SNN also help us to 

better understand the biological neural system. 

 

3.5 Discussion and conclusion 

In this chapter, we integrate brain-inspired neural oscillation into the SNN neural model and 

propose the neural oscillation neural model and alternative neural oscillation neural model. We 

verified that both neural models have better robustness than the LIF neuron. And we also use 

alternative neural oscillation neuron as the ‘fake’ neuron to defend against various gradient-

based attacks. The experiments illustrate that our defense method can effectively resist both 

single-step attack and iterative attack.  

 

Our method belongs to the class of methods that introduce randomization to enhance network 

robustness, but it is very different from the randomization currently used in ANNs. While 

previous literatures, such as [70], usually use random perturbations to disturb the generated 

samples, our method only introduces randomization over training and it is replaced by fitting a 

specific function during inference, which causes instability of the gradient. Therefore, our 

trained model has no randomization after training process, and the advantage of this approach 

is that when the attacker is fully aware of the neuronal model, the previous defense method 

only needs to remove the randomization to achieve an effective attack model, while our method 

cannot effectively attack the model after removing the fitting function. The attacker must work 

harder to find the original noise distribution in order to attack the model effectively. Thus, our 

method is more deceptive, which will make it difficult for the attacker to detect anomalies in 

the network. 
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There are still some limitations to our method. Since most of the current attacks are gradient-

based attacks, our defense method was originally developed based on gradient-based attacks, 

so we did not test its effectiveness on other attack types. This part could be further explored in 

the future. Certainly, the neural oscillation model only partially mimics the form of biological 

neural oscillation; thus, further research might be conducted to integrate more complex neural 

oscillation forms in SNNs. 

 

3.6 Supplementary 

 Parameter values for reproducibility 

Table 3.9 shows the noise range and parameters c and d. In our work, we picked [a,b] in the 

range [-0.2,0.8]. The noise is generally selected not to exceed the threshold 𝑉𝑡ℎ (otherwise it 

may lead to a reduction of accuracy) and is mainly concentrated between 𝑉𝑡ℎ  and the 

𝑉reset.There is no mandatory range size for the selection of these hyperparameters, and we 

actually tried different ranges and were able to obtain similar defensive effects. For noise type, 

in the main paper we use the random uniform noise, we have also tried the Gaussian noise, and 

it can also be fitted by different equations to generate the alternative neural oscillation neuron.  

 

Table 3.9 Noise range [a,b] and values of 𝑐 and 𝑑 of alternative neural oscillation model 

Model/Dataset [𝑎, 𝑏] 𝑐 𝑑 

VGG-

16/CIFAR-10 

[-0.2,0.8] 

-0.1441 -0.1762 

ResNet-

18/CIFAR-10 
-0.1019 -0.2221 

ResNet-

18/CIFAR-100 
-0.1564 -0.1687 

 

 Neuron performance testing 
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Figure 3.3 depicts the accuracy of the SNNs on the corresponding architecture/dataset when 

using either neural oscillation neuron or alternative neural oscillation neuron. In Figure 3.3(a), 

the VGG-16 network composed of alternative neural oscillation neurons cannot even be 

optimized. In Figure 3.3(b), the alternative neural oscillation neuron significantly decreases the 

network optimization's speed and accruracy. Thus, the results indicate that alternative neural 

oscillatory neurons have worse performance than neural oscillatory neurons, which tend to lead 

to instability of the gradient (e.g. gradient vanishing or explosion), and hence make the network 

less capable of optimization. When an attacker generates the adversarial samples with such 

neurons, the adversarial samples also become less powerful. 

 
 

Figure 3.3 Accuracy on (a)VGG-16/CIFAR-10 (b)ResNet-18/CIFAR-10 when using neural 

oscillation neuron (blue curve) and alternative neural oscillation neuron (orange curve) 

 

 
Figure 3.4 (a) Curve of function F to fit the noise item on VGG-16/CIFAR-10. (b) Gradient 

curve 
𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
 when using different F. 

 

（a） （b）

F

(a) (b)
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Table 3.10 Top-1 classification accuracy (%) under the scenario 4 attack 

Models/Datasets VGG-16/CIFAR-10 

 benchmark F1 F2 F3 F4 

          Clean 88.6 87.38 86.12 87.7 86.64 

          FGSM 14.2 56.5 68.9 50.7 36.8 

          PGD-5 3 45 68.8 34.6 22.7 

          BIM-5 1.9 41.4 69.3 32.9 15 

          MIM-5 2.8 35.4 60.4 31.4 20.6 
 

 
Figure 3.5 Spontaneous spike firing of neural oscillation neuron. 

 

 Function selection of alternative neural oscillation 

In the main paper, we use the sin(𝐻(𝑡) + 𝑐) + 𝑑 to fit the random uniform noise item 𝛾(𝑡). In 

practice, the function can be of many different forms, such as Equations (3.20)-(3.23). These 

equations all fit the random noise term 𝛾(𝑡) well after training parameters 𝑐 and 𝑑. 

𝐹1 = 𝑠𝑖𝑛(𝐻(𝑡) + 𝑐1) + 𝑑1 

                 (3.20) 

𝐹2 = 𝑥 ∗ 𝑠𝑖𝑛(𝐻(𝑡) + 𝑐2) + 𝑑2 

           (3.21) 

𝐹3 = 𝑒(𝑥+𝑐3) + 𝑑3 

                               (3.22) 
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𝐹4 =
1

1 + 𝑒−𝑐4𝑥
+ 𝑑4 

                               (3.23) 

We draw the F curves in Figure 3.4(a) and the corresponding gradient curves Figure 3.4(b) 

when different F is chosen, respectively. Table 3.10 compares the effectiveness of the defense 

when using different F. As we see, F2 provides the best defense against all kinds of attacks, 

while F4 is the worst. And the gradient curve of F2 shown in Figure 3.4(b) is the steepest, 

when the gradient curve of F4 is the flattest. These results argue our view that the steep gradient 

causes instability in the network, which weakens the effectiveness of generated adversarial 

samples. 

 

 Firing property of neural oscillation neuron  

Neural oscillation arises from the spontaneous spike firing behavior of biological neurons. This 

spontaneous behavior is not influenced by external stimuli. In our proposed neural oscillation 

neural model, the inclusion of random noise allows the neuron to generate spontaneous spike 

firing in the absence of input, as shown in Figure 3.5. This property makes our model more 

bio-plausible.
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4 A noise based novel strategy for faster SNN training 

Abstract 

Spiking neural networks (SNNs) are receiving increasing attention due to their low power 

consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two 

main methods, artificial neural network (ANN)-to-SNN conversion and spike-based 

backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN 

conversion, it requires a long inference time to approximate the accuracy of ANN, thus 

diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically 

consumes dozens of times more computational resources and time than their ANN 

counterparts. In this chapter, we propose a novel SNN training approach that combines the 

benefits of the two methods. We first train a single-step SNN by approximating the neural 

potential distribution with random noise, then convert the single-step SNN to a multi-step SNN 

losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy 

after conversion. The results show that our method considerably reduces the training and 

inference times of SNNs while maintaining their high accuracy. Compared to the previous two 

methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster 

inference speed. We also argue that the neuron model augmented with noise makes it more 

bio-plausible.    
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4.1 Introduction  

Spiking neural networks (SNNs) recently attracted increasing attention due to their biological 

plausibility. The SNN incorporates the concept of time into the model, and neurons in the SNN 

receive input spike trains that either increase or decrease their membrane potential. Through 

temporal accumulation, membrane potential may reach a specific firing threshold and neurons 

transmit information by firing discrete spike trains to neurons in the next layer. These 

characteristics emulate the information transmission and processing in the brain. It is therefore 

regarded as the next-generation neural network [103]. 

 

Since SNNs use non-differentiable spikes as information carrying agents, gradient-based 

backpropagation (BP) that uses gradients to optimize synaptic connections and neuron 

parameters in ANNs is not directly applicable in SNNs. Thus, one of the main challenges is to 

train and optimize the network parameters in SNNs. At present, the available methods for 

training SNNs can be divided into three categories: (1) unsupervised learning, (2) indirect 

supervised learning, (3) direct supervised learning. 

 

In the first approach, weights are modulated to mimic synaptic interactions between biological 

neurons. A classic example is the spike time-dependent plasticity (STDP) [1-3]. However, due 

to the reliance on local neuronal activity rather than global supervision, STDP-based 

unsupervised algorithms have been limited to training shallow SNNs and can only produce low 

accuracy on complex datasets [4-6].  

 

In the second approach, an ANN model is first trained and then converted to a SNN with the 

same network structure, where the firing rate of the SNN neuron is approximated as the analog 
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output of the ANN neuron. The ANN-to-SNN conversion has produced state-of-the-art (SOTA) 

performance in image recognition tasks [7].  

 

The last approach is direct supervised learning, which uses a similar gradient descent technique 

used in ANNs to train SNNs directly. SpikeProp [128] was the first BP-based supervised 

learning method for SNNs that uses a linear approximation to overcome the SNNs' non-

differentiable threshold-triggered firing mechanism. Further works include Tempotron [13], 

ReSuMe [14], and SPAN [15]. However, they could only be used for training single-layer 

SNNs. A surrogate gradient algorithm proposed by [86] introduces a differentiable surrogate 

function to approximate the derivative of spiking activity. It executes spatio-temporal BP in 

the training phase and is widely applied to train deep SNNs. 

 

Although the ANN-to-SNN conversion and surrogate gradient-based algorithm can train deep 

SNNs, there are some limitations. For the ANN-to-SNN conversion, training an ANN model 

is fast. Nevertheless, the approach requires considerable inference time (from hundreds to 

thousands of time steps) to approximate the analog outputs [93, 95, 96, 129, 130], which leads 

to high memory consumption, larger latency and decreased energy efficiency, diminishing the 

benefits of SNNs [7-9]. For the surrogate gradient-based algorithm, although it is possible to 

train SNNs with arbitrary time steps, the fewer the time steps, the lower the accuracy of the 

trained model would be. Training high accuracy SNNs with this approach often requires many 

times more training time and computational resources than training ANNs. 

 

In this chapter, we propose a novel SNN training method that combines the ANN-to-SNN 

conversion and direct training using the surrogate gradient. The method consists of two phrases: 

single-step SNN training and conversion to multi-step SNN. Specifically, during the training 
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phase, a single-step SNN augmented with Gaussian noise is trained by surrogate gradient-based 

BP and then converted losslessly to a multi-step SNN model to promote its generalization 

capability. Our training technique greatly reduces not only training and inference time but also 

achieves a high accuracy, which significantly improves the operating efficiency of SNN. 

 

The following summarizes the primary contributions of this paper: 

1) We propose a novel SNN training algorithm by introducing a noise distribution, which 

speeds up the training and inference time of SNN. 

2) We compare our method’s training and inference time with those of current methods. The 

experiments demonstrate that our method is 3-5 times faster for training than the surrogate-

gradient based method, and more than 100 times faster than the ANN-to-SNN conversion for 

inference.  

3) We argue that introducing noise in SNN has biological plausibility. 

 

Figure 4.1 Three steps of our method to train a SNN model. Step 1, single-step SNN training 

with noise distribution 𝑁𝑛𝑜𝑖𝑠𝑒. Step 2, copy N single-step SNNs and ensemble them together.  

𝑁𝑛𝑜𝑖𝑠𝑒 varies over time-step t. Step 3, establish the temporal correlation among N different 

models. 

 

 

4.2 Methods 
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The leaky Integrate-and-Fire (LIF) model is a fundamental unit in SNNs. It is a simplified 

representation of biological neurons that describes the non-linear relationship between input 

and output. The LIF neuron receives spikes over a specific period and it integrates them into 

its membrane potential, whose dynamics are governed by     

𝐻(𝑡) = 𝜆 ∙ 𝑉(𝑡 − 1) +∑𝑤𝑖
𝑖

∙ 𝑆𝑖(𝑡) 

                                 (4.1) 

𝑆(𝑡) = {
1,   𝐻(𝑡) > 𝑉𝑡ℎ
0,   𝐻(𝑡) ≤ 𝑉𝑡ℎ

 

                                         (4.2) 

𝑉(𝑡) = 𝐻(𝑡)(1 − 𝑆(𝑡)) + 𝑉reset ∙ 𝑆(𝑡) 

                             (4.3) 

where 𝐻(𝑡)and 𝑉(𝑡) represent the membrane potentials before and after triggering a spike at 

time 𝑡, respectively. 𝜆 represents the decay factor with a value of 0.5. 𝑆(𝑡) denotes the output 

of a neuron at time 𝑡, which equals 1 if there is a spike and 0 otherwise. 𝑤𝑖 ∙ 𝑆𝑖(𝑡) is the 

weighted input of 𝑖-th neuron in the last layer at time step 𝑡. When the membrane potential of 

the LIF neuron reaches the firing threshold 𝑉𝑡ℎ  (=1), the neuron fires one spike and the 

membrane potential is reset to the resting potential 𝑉reset (here is 0).  

 

 Training single-step SNN and converting to multi-step SNN  

We first train the single-step SNN with 𝑇 = 1 and then convert it to a multi-step SNN with 

𝑇 = N. When the total simulation step 𝑇 = 1, the time dimension disappears and the network 

propagates forward only once. Consequently, the single-step SNN is actually an ANN with a 

Heaviside step function used as the activation function. Equation (4.1) is formulated as 
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𝐻 =∑𝑤𝑖
𝑖

∙ 𝑆𝑖 

                                                    (4.4) 

Comparing Equations (4.1) and (4.4), the output of the multi-step SNN depends on both the 

input and the accumulated potential, while the output of a single-step SNN depends only on 

the input.  

 

Due to the absence of the potential accumulation term in Equation (4.4) compared with 

Equation (4.1), we introduce a noise distribution 𝑁𝑛𝑜𝑖𝑠𝑒 representing the missing accumulated 

membrane potential during training the single-step SNN in order to perform the conversion 

into a multi-step SNN later, as Equation (4.5) shows. In particular, we assume that 𝑁𝑛𝑜𝑖𝑠𝑒 is a 

Gaussian distribution and distributes in each layer of the network independently. Thus, the 

dynamic of the neuron in a single-step SNN could be described by  

𝐻 = 𝑁𝑛𝑜𝑖𝑠𝑒 +∑𝑤𝑖
𝑖

∙ 𝑆𝑖 

                                         (4.5) 

Our method consists of three following steps:  

Step 1: Train the single-step SNN with Gaussian noise (see step 1 in Figure 4.1). 

Step 2: Extend the temporal dimension from 𝑇 = 1 to 𝑇 = N by directly modifying the value 

of 𝑇. This action means that we copy 𝑁 single-step SNN and ensemble them together (see step 

2 in Figure 4.1). For each individual, the inputs are the same. The average output of all 

individuals is the output of the ensemble model. 

Step 3: Add the potential accumulation term using Equation (4.6) to establish the temporal 

correlation (see step 3 in Figure 4.1). The dynamic of SNN model after step 2 is formally 

different from the real SNN’s dynamic because it lacks the process of potential accumulation 
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and the temporal correlation among different time step 𝑡. Consequently, we must add the item 

𝜆 ∙ 𝑉(𝑡 − 1) to keep the formal consistency with Equation (4.1). We decompose 𝑁𝑛𝑜𝑖𝑠𝑒 into: 

𝑁𝑛𝑜𝑖𝑠𝑒 = 𝑁( λ ⋅ 𝑉(𝑡 − 1)) + 𝑁𝑛𝑜𝑖𝑠𝑒
′  

                             (4.6) 

 𝑁𝑛𝑜𝑖𝑠𝑒  could be represented as the addition of two Gaussian distribution items: the 

accumulated membrane potential distribution and the new noise distribution.  

 

For the first item, we normalize λ ⋅ 𝑉(𝑡 − 1)  according to Equations (4.7) - (4.9) to 

approximate a Gaussian distribution ( λ ⋅ 𝑉(𝑡 − 1)).  

𝐴 =  λ ⋅ 𝑉(𝑡 − 1) 

                                                (4.7)                                

𝐴̂ =
𝐴 − μ

σ
 

                                                          (4.8) 

𝑁( λ ⋅ 𝑉(𝑡 − 1))  =   
𝐴̂

𝛼 ⋅ 𝑚𝑎𝑥(𝑎𝑏𝑠(𝐴̂))
+ 𝛽   

                       (4.9)     

Equation (4.8) converts the membrane potential distribution to a standard normal distribution 

approximately. μ and σ are the mean and standard deviation of 𝐴, respectively. Equation (4.9) 

guarantees that the potential distribution in each layer have the mean 𝛽 and distributes between 

the interval (−1/𝛼, 1/ 𝛼). By changing the values of 𝛼 and 𝛽, we are able to change the mean 

and range of the distribution. (𝑚𝑎𝑥() and 𝑎𝑏𝑠() represent taking the maximum value and 

absolute value, respectively.) 
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For the second item 𝑁𝑛𝑜𝑖𝑠𝑒
′ , we simply set it as a random Gaussian distribution. The mean and 

range of  𝑁𝑛𝑜𝑖𝑠𝑒
′  also depends on 𝛼 and 𝛽, because we need to ganrantee that the addition of 

two items in Equation (4.6) almost have the same mean and range as 𝑁𝑛𝑜𝑖𝑠𝑒 to avoid conversion 

loss.  

 

The reason why we must introduce and keep the random noise distribution is that introducing 

the noise is equivalent to ensemble an infinite number of random models and helps promote 

accuracy during conversion to multi-step SNN. Because we introduce a random distribution 

when training single-step SNNs, the model generalizes well under different “assumed previous 

membrane potentials”. As we increase the time step, the SNN with 𝑇 simulation steps can be 

seen as a model consisting of  𝑇 sets of models.  

 

It is well known that a SNN model with more simulation steps 𝑇 can increase performance. 

However, training a SNN with large 𝑇  directly would increase not only the training and 

inference time but also the memory by 𝑇 folds, so it is not very practical. The approach that we 

suggest can instantly construct a SNN model with large 𝑇 with much less memory cost. The 

idea of introducing noise to generate an ensemble model was proposed in [70] and used for 

adversarial defense of ANN models. To the best of our knowledge, we are the first to use it in 

training and inference acceleration of SNNs. 

 

4.3 Results and discussions 

We conduct our experiments as Table 4.1 shows. SNNs are trained with MSE loss and Adam 

[91] optimizer. The initial learning rate is set to 1e-4. The cosine annealing warm restart [92] 
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learning rate schedule with 𝑇𝑚𝑎𝑥 = 100 adjusts the learning rate over training. Unless specified, 

all results are generated by default for 𝛼 = 4, 𝛽 = 0.5, and 𝑁𝑛𝑜𝑖𝑠𝑒 in the range [0, 1]. 

Table 4.1 Network structures and training epoch for different datasets. 

Dataset Epoch Network structure 

MNIST 100 
 

64C3-AP2-128C3-AP2-128C3-AP2-

512FC-10FC 

 
Fashion -MNIST 200 

CIFAR-10 
1000 VGG-16 

800 ResNet-18 

Note: nC3—Convolutional layer with n output channels, kernel size = 3 and stride = 1, AP2—

2D average-pooling layer with kernel size = 2 and stride = 2, FC—Fully connected layer.  

 

 

Figure 4.2 Inference accuracy of models on different datasets with T = 1, 5, 10 while training 

with 𝑁𝑛𝑜𝑖𝑠𝑒. 

 

 

 Inference accuracy 
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In Figure 4.2, we plot the inference accuracy of single-step SNNs on different datasets and the 

inference accuracy of multi-step SNNs with total simulation step 𝑇 = 5 and 𝑇 = 10, respectively. 

It can be shown that as 𝑇 increases, the accuracy of the SNN improves dramatically. The 

simulation step 𝑇 could be directly converted to any values in real time. 

 

Figure 4.3 Training speed of SNNs when directly training an SNN(T=10) by the surrogate 

gradient approach versus training a 10-step SNN by our approach. 

 

 

 Comparison of training and inference time with related work 

In Figure 4.3, we compare the training speed of SNNs when training an SNN(T=10) with a 

surrogate gradient versus training a single-step SNN and then extending to a 10-step SNN. 

Clearly, our method is substantially faster than directly training an SNN(T=10) using the 

surrogate gradient, and in the same amount of time, it achieves higher accuracy.  
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To intuitively assess the difference in training time, we selected a benchmark inference 

accuracy for each model and halted training when the benchmark inference accuracy was 

achieved. The benchmark inference accuracy of the three models is 92%, 88%, and 90%, 

respectively. As shown in Figure 4.4, on FashionMNIST our method takes only 135s to reach 

the benchmark accuracy when SNN(T=10) takes 528s, which saves about 75% of the time. In 

CIFAR10/VGG-16, our method requires 3132s, whereas SNN(T=10) requires 9900s, a time 

savings of about 70%. In CIFAR10/ResNet-18, our model requires 7290s while SNN(T=10) 

requires 19998s, a time savings of approximately 65%. Also, with single-step SNN, we can 

choose a larger batch size and thus achieve faster parallel training. It is more convenient and 

feasible for groups that lack sufficient computational resources. 

 

For inference time, we compare current advanced methods listed in Table 4.2 with our method. 

As demonstrated, the accuracy of extending to multi-step SNN (no more than 10 time steps) is 

able to attain an approximate accuracy of ANN-to-SNN conversion methods. In contrast, 

 

Figure 4.4 Training time of SNNs when directly training an SNN(T=10) by the surrogate 

gradient approach versus training a a 10-step SNN by our approach. The benchmark 

inference accuracy of the three models  is 92%, 88%, and 90%, respectively. 
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ANN-to-SNN conversion requires hundreds to thousands of time steps, which is hundreds of 

times slower than our method. Compared with spike-based BP methods, our method also 

requires fewer time steps to reach close accuracy.  

Table 4.2 Inference time comparison between our work and related work 

Author Method 
Inference 

time 
MNIST 

Fashion

MNIST 

CIFAR1

0 

[17] Spike-based BP 12 - - 90.53% 

[131] Spike-based BP 10 - - 93.44% 

[18] Spike-based BP 20 99.50% 92.07% 93.5% 

[9] Spike-based BP 1 99.53% - 84.67% 

[129] ANN-SNN 2500 - - 91.46% 

[4] ANN-SNN 2048 - - 91.36% 

[132] ANN-SNN 2500 - - 91.89% 

[16] ANN-SNN 50/100 99.59% - 90.95% 

[96] Hybrid 500 - - 92.42% 

[133] Hybrid 200 - - 92.02% 

Ours  Hybrid 5 99.61% 93.89% 91.82% 

Ours  Hybrid 10 99.64% 94.07% 92.07% 

 

 

Figure 4.5 The impact of 𝛼 on CIFAR10/VGG-16 and CIFAR10/ResNet-18. The black dotted 

line represents the accuracy of trained single-step SNN. 

 

 

 The impact of 𝜶 
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With Equations (4.6) and (4.9), we know that the parameter 𝛼 controls the range of noise 

fluctuation 𝑁𝑛𝑜𝑖𝑠𝑒
′ . Here, we attempt to alter the value of 𝛼  to observe how the model's 

performance varies.  

 

We plot the conversion accuracy for different values of 𝛼 in Figure 4.5. When 𝛼 is equal to 2, 

the potential range is [0,1], so the noise term 𝑁𝑛𝑜𝑖𝑠𝑒
′  does not exist any more. It can be seen that 

there is a very slight improvement in accuracy with increasing time steps. In contrary, when 

𝑁𝑛𝑜𝑖𝑠𝑒
′  is present, the accuracy improvement is obvious and the different 𝛼 values make models 

converge to close accuracy. These results indicate that noise plays the vital role in enhancing 

the accuracy of conversion. 

 

When 𝛼  is positive infinity, the range of noise 𝑁𝑛𝑜𝑖𝑠𝑒
′  is [0, 1], membrane potential item 

disappears and the result equals to the outcome of step 2. We can see that the conversion from 

step 2 to step 3 has minor accuracy gap according to the figures.  

 

 

 The impact of noise type 

In the previous sections, all of our experiments were performed by training the SNN model 

with Gaussian noise. In order to investigate whether it is only the uniform noise that brings the 

improvement of model accuracy, we replace the Gaussian noise with uniform noise during 

training to observe the effect of the noise type on models. As shown in Figure 4.6, we trained 

CIFAR-10 with uniform noise on both VGG-16 and ResNet-18 models. Models trained by 

uniform noise behave the same as with uniform noise, i.e., the accuracy is significantly 

improved when models are extended to multi-step SNNs. For single-step SNNs, models with 

Gaussian noise reach the higher accuracy than those with uniform noise. But after conversion, 

the gap is not obvious any more. 
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 Biological plausibility of uniform noise distribution in neuron 

It is believed to be more biologically plausible when we keep some part of noise during 

conversion, as there exists lots of kinds of noise in biological neural system. We plot the 

dynamic of the spiking neuron in Figures 4.7(a) and (b). Figure 4.7(a) depicts the neural 

potential dynamic in the absence of input. The potential oscillates between the reset potential 

and the threshold, but no spikes fire. In Figure 4.7(b), when a neuron receives inputs, it begins 

to accumulate potential and fires spike. Such behavior is thought to be similar to the form of 

subthreshold neural oscillation mechanism in biological neurons. Neural oscillations are 

 

Figure 4.6 Inference accuracy of models on different datasets with T = 1, 10 while training 

using Gaussian noise and uniform noise, respectively. 
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rhythmic patterns of activity generated by the neurological system [123]. Many cognitive 

activities, including information transfer, perception, and memory, are believed to be related 

with neural oscillations. These oscillations are mostly caused by the interaction between 

individual neurons. Neural oscillation can emerge as oscillating membrane potentials or 

rhythmic action potentials in individual neurons. Subthreshold membrane potential oscillations 

are membrane oscillations that are below the firing threshold and hence cannot directly initiate 

action potentials. However, they can aid in sensory signal processing. As a result of 

subthreshold membrane potential oscillations, sensory systems, particularly for vision and 

smell, evolve. Subthreshold membrane potential oscillation (see Figure 4.7(c)) in the visual 

system helps process visual input and adjust to sensory input [134]. Additionally, oscillatory 

activity influences excitatory postsynaptic potentials, refining post-neural activities [135]. 

 

Figure 4.7 (a) Neural potential dynamic in the absence of input. (b) Neural potential dynamic 

when receiving input. (c) Subthreshold membrane potential oscillation. Source: Figure (c) is 

cited from [136]. 

 

（c）

（a） （b）
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4.4 Discussion and conclusion 

We have used the proposed method to handle static vision problems in previous sections. For 

dynamic vison problems, such as videos’ data, which include time series information, we 

should feed all the information into the network at once and use a 3D convolutional network 

rather than a 2D convolution network to deal with the input.  

 

In this chapter, we propose a novel way of training SNNs that achieves accuracy improvement 

in multi-step SNNs by fitting the neural network to noise, which greatly spares the training and 

inference time of SNNs and allows fast training of SNNs with arbitrary simulation time 

compared to previous methods. Our approach combines the advantages of both direct training 

of SNN and ANN-to-SNN conversion. With a good balance of accuracy and training time, and 

a great saving of computational resources, this method can be used to train large SNNs quickly 

or SNN pre-training. The inclusion of noise is also proved to be more consistent with the 

dynamic mechanism of biological neurons. These points make our method promising for 

training deep SNNs in the future.  
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5 Spiking sampling network for image sparse 

representation and dynamic vision sensor data 

compression 

Abstract 

Sparse representation has attracted great attention because it can greatly save storage re- 

sources and find representative features of data in a low-dimensional space. As a result, it may 

be widely applied in engineering domains including feature extraction, compressed sensing, 

signal denoising, picture clustering, and dictionary learning, just to name a few. In this chapter, 

we propose a spiking sampling network. This network is composed of spiking neurons and it 

can dynamically decide which pixel points should be retained and which ones needs to be 

masked according to the input. Our experiments demonstrate that this approach enables better 

sparse representation of the original image and facilitates image reconstruction compared to 

random sampling. We thus use this approach for compressing massive data from the dynamic 

vision sensor, which greatly reduces the storage requirements for event data. 
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5.1 Introduction 

Sparse signal representation has been demonstrated to be a highly effective technique for 

obtaining, representing, and compressing high-dimensional signals. Important signal classes, 

such as audio and images, have sparse representations with respect to a particular basis (e.g., 

Fourier and wavelet bases) or the concatenation of them. Furthermore, efficient and 

demonstrably successful techniques based on convex optimization or greedy pursuit are 

available for computing such high-fidelity representations [137]. 

 

Sparse representation is not only widely used in signal processing but is also useful for vision 

tasks. In the past few years, sparse representation has been applied in face recognition [138-

144], image super-resolution [145], motion and data segmentation [146], denoising and 

painting [147-149], background modeling [150, 151], photometric stereo [152], and image 

classification [153, 154]. In almost all these applications, the use of sparse representation has 

achieved impressive results. 

 

The capacity of sparse representations to reveal semantic information is influenced in part by 

a simple but crucial attribute of the data: despite the images' (or their features') naturally high 

dimensionality, images belonging to the same class demonstrate degenerate structure in many 

applications. In other words, they are situated on or close to low-dimensional subspaces, 

submanifolds, or stratifications. If a collection of representative samples is obtained for this 

low-dimensional distribution, we could anticipate that a typical sample will have a sparse 

(potentially learnt) representation over this basis. If appropriately computed, such a sparse 

representation might naturally encode semantic visual information [155]. 
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In deep learning, many works have attempted to introduce sparse coding into neural networks. 

They usually mask certain input information randomly, which can be considered as a certain 

kind of sparse coding. BERT and GPT, for instance, are very effective pre-training techniques 

for NLP. In order to train models to anticipate the missing information, these techniques hold 

out a piece of the input sequence. There are tons of evidence that these techniques generalize 

very well and that the pre-trained representations perform admirably across a wide range of 

downstream tasks.  

 

Methods exist for encoding masked images pick up representations from masked images that 

have been distorted. Convolutional networks are used by the Context Encoder [156] to fill in 

significant missing sections. iGPT [157] guesses unknown pixels based on pixel sequences. 

In the ViT study [158], masked patch prediction for unsupervised learning is considered. The 

most recent technique for predicting discrete tokens arises from BEiT. MAE [159] tries 

different masking methods to train the autoencoder which can be adopted to serve as the pre-

training model. In most cases, the mask is a randomly generated sampling matrix. Recovering 

signals from fewer data gathered by a random measurement matrix is efficient. However, they 

constantly have issues with unclear quality of reconstruction [160].  

 

Spiking neural networks (SNNs) are receiving increasing attention due to their low power 

consumption and bio-plausibility. Neurons in SNNs receive spike trains that either increase 

or decrease their membrane potential over time. When the membrane potential exceeds a 

certain threshold, the neuron fires one spike to next layer’s neurons and reset its potential. 

These characteristics are similar to the way the brain transmits and processes information. It 

is therefore regarded as the next-generation neural network [103]. 
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Since the spiking neural network (SNN) naturally outputs only 0 and 1 state values, we shall 

design a spiking autoencoder that generates a binary mask based on the input, where 0 means 

a certain pixel is not sampled and 1 means that the pixel is sampled at the input stage. Such a 

mask is multiplied with the input image to obtain the sampled image. 

 

In this chapter, we propose a novel sampling network based on spiking neural networks, which 

is able to dynamically sample the input images, retain the valid pixels and remove the 

redundant pixels to output a sparse representation of the inputs. We validate its advantages 

over random sampling for network reconstruction on MNIST and CIFAR-10 datasets. 

Besides, we apply it to the compression of data generated by event cameras, which greatly 

reduces the space needed for data storage. 

 

 
Figure 5.1 Architecture of the spiking sampling network. The output of spiking sampling 

network is a mask of the same size as the input. 

 

5.2 Methods 

 Leaky Integrate-and-Fire (LIF) model 

SNNs adopt spike trains as information carriers between neurons. Every spiking neuron in a 

SNN receives and emits spikes. The LIF neuron model is a popular bio-inspired simplified 

model for describing the dynamics of spiking neurons. The dynamics of the LIF model are 
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defined by [26]. 

 

𝐻(𝑡) = 𝜆 ∗ 𝑉(𝑡 − 1) + ∑𝑤𝑖𝑥𝑖(𝑡)

𝑖

    

(5.1) 

𝑆(𝑡) = {
1,   𝐻(𝑡) > 𝑉𝑡ℎ
0,   𝐻(𝑡) ≤ 𝑉𝑡ℎ

 

                                         (5.2) 

𝑉(𝑡) = 𝐻(𝑡)(1 − 𝑆(𝑡)) + 𝑉𝑟𝑒𝑠𝑒𝑡 ∗ 𝑆(𝑡) 

                             (5.3) 

where 𝐻(𝑡) and 𝑉(𝑡) represent the membrane potentials before and after firing a spike at time 

𝑡, respectively. 𝑉𝑡ℎ denotes the firing threshold, which is 1 in this paper. 𝑉𝑟𝑒𝑠𝑒𝑡 is the resting 

potential which is 0. 𝑆(𝑡) denotes the output of a neuron at time 𝑡, 𝑤𝑖𝑥𝑖(𝑡) is the 𝑖-th weighted 

pre-synaptic input at time 𝑡, and 𝜆 is the decaying time constant with a value of 0.5. 

 

 Architecture and training of spiking sampling network 

Figure 5.1 illustrates the architecture of the spiking sampling network. It is actually an 

autoencoder composed of spiking neurons. The neurons of all layers except the last layer have 

predefined thresholds 𝑉𝑡ℎ = 1. In the last layer, the threshold of the neurons is not a fixed value 

but varies dynamically with the input. The spiking neurons in the last layer only accumulate 

potentials over time and do not fire spikes until the last time step 𝑇. At instant 𝑇, we rank the 

accumulated potentials of all neurons from largest to smallest, and if we need to sample 𝑁 

pixel points, the Nth largest potential is used as the threshold 𝑉𝑡ℎ so that the number of neurons 

that fire spikes is 𝑁. 
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Figure 5.2 Comparison between random sampling and spiking sampling on (a) MNIST and 

(b) CIFAR-10. (c) Sampled pixels by spiking sampling network on CIFAR-10.  

 

The output of the spiking sampling network is a sampling mask that has the same size as the 

input. This sampling mask will be multiplied by the actual input image to preserve the selected 

pixels. These pixels will be used as input to the main reconstruction network that is used for 

reconstructing the original image. 

 

In contrast to the commonly used random sampling, our sampling scheme is implemented by 

a spiking neural network whose parameters can be optimized via back propagation. Thus, the 

network is able to automatically sample different pixel points for different inputs, depending 

on the main vision task. 

 
 

(c) 
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Figure 5.3 Different sampling rate comparison of random sampling and spiking sampling on 

MNIST 

 

 

 
 

Figure 5.4 (a) Compression of N-MNIST dataset. (b) Classification validation of compressed 

N-MNIST dataset. 

 

 Data compression of dynamic vision sensor 
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Dynamic Vision Sensor (DVS), also called the event camera, is based on the principle of 

biosensing, which means that they report only the ON/OFF triggering of luminance in the 

observed scene [161]. Unlike conventional RGB cameras, which acquire raw data in a two-

dimensional matrix, in event cameras, each pixel works independently and asynchronously, 

reporting changes in luminance as they happen or remain inactive while light intensity is 

constant [162]. In real-time interaction systems like robotics, drones, and autonomous driving, 

the DVS's distinctive features provide benefits over traditional vision sensors. In the near 

future, cloud and edge computing will be used to execute the majority of the services that do 

object/gesture recognition or classification. Therefore, in order to interpret visual data, these 

services would need to send spike events to cloud or edge servers [163]. Real-time 

transmission is also necessary in many circumstance. Despite the inherent compression 

offered by the neuromorphic sensing technology, further compression of the generated data 

may be advantageous for sending such data over Internet of Things (IoT), Internet of Things 

(IoV), and Industrial IoT (IIoT) situations [161]. Since the data storage and transmission 

bandwidth for onboard DVS processing and transmission are both limited, the compression 

of neuromorphic spikes is still a difficult problem that needs quick solves. 

 

5.3 Experiments 

 Image reconstruction comparison 

In Figure 5.2, we compare the effect of random and spiking sampling on image reconstruction 

at a sampling rate of 10%. We conduct the experiments on MNIST and CIFAT-10 datasets. 

The details of hyper-parameter selection and network architectures are listed in the appendix. 

We can see that for random sampling, the sampling positions are uniformly distributed over 

the entire image. The spiking sampling, on the other hand, changes the sampling positions, 

depending on the input. For the MNIST dataset, the spiking sampling focuses on sampling 
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over the figures while ignoring the surrounding background, and for the CIFAR-10 dataset, 

the sampling density is relatively small in the parts of the image with clean areas and increases 

in the areas with complex texture. For MNIST, spiking sampling reconstructs images more 

clearly than that of random sampling. For CIFAR-10, the color and shape of the reconstructed 

images using the spiking sampling network are more accurate than those from random 

sampling. Consequently, the pixels sampled by the spiking sampling are significantly more 

conducive to image reconstruction. Notably, the spiking sampling network does not tend to 

sample high pixel values, but it tends to sample more pixel points in regions where the pixel 

values vary drastically and allocate fewer sampling points in regions where the pixel values 

vary sparsely as the Figure (c) shows. This shows that the spiking sampling can effectively 

make the sparse representation of images. 

 

Figure 5.3 shows the difference between reconstructed images with random sampling and 

SNN sampling at different sampling rates, respectively. It can be seen that random sampling 

at 10% sampling rate can no longer correctly distinguish all the reconstructed digits (e.g., digit 

4), while using SNN sampling at 5% sampling rate can still clearly reconstruct all the images. 

At a sampling rate of 1%, random sampling is completely useless, while SNN sampling is still 

able to reconstruct some of the digits. Even with few sampling points, SNN sampling is still 

able to distribute the sampling points over the numbers to be reconstructed, effectively 

providing a sparse representation of the image. This indicates that the SNN network really 

learns the pixel points that are useful for reconstructing the image. 
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Figure 5.5 (a) Test classification accuracy on N-MNIST with different sampling method and 

rate. (b) data size comparison after different compressing rate by spiking sampling. The 

numbers on the bars represent the average number of spikes retained per sample for the dataset. 

 

 Event data compression 

A spike event is composed of four basic elements, represented by a tuple {X, Y, t, p}: the 

spatial addresses X and Y, the timestamp t and the polarity p. The unique spike emission 

mechanism enables DVS to meet low bandwidth, low power, and low latency requirements. 

The unique spike emission mechanism enables DVS to meet the requirements of low 

bandwidth, low power consumption and low latency. At the same time, it also brings a huge 

amount of data. As an example, the commonly used handwritten numeric dataset MNIST only 

occupies about 11MB of storage space after compression, while the N-MNIST event dataset 

generated by MNIST still requires more than 1GB of storage space even after compression. 

Large datasets often require tens or even hundreds of GB of storage space, which puts a lot of 

storage pressure. 

 

Since the output of DVS is very different from traditional frame-based image sequences, 

existing computer vision techniques cannot be directly applied to neuromorphic spike event 
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sequences. Integrating the original event stream into frame data is a common processing 

method. Therefore, we first render the spatio-temporal coordinates {X, Y, t} and polarity p of 

the neuromorphic sequences into frames before inputting them to the network. This rendering 

technique can be referenced in [26]. 

 

After training, we keep the spikes corresponding to the sampled pixels and remove the spikes 

corresponding to the unsampled pixels in the N-MNIST dataset based on the masks generated 

by the spiking sampling network (see Figure 5.4(a)). 

 

To verify the validity of our retained event data, we do the classification task on the censored 

event dataset by a classification network (see Figure 5.4(b)), and the result is shown in Figure 

5.5(a). It can be seen that when we use SNN sampling, the classification accuracy has only a 

slight accuracy loss at both 5% and 10% sampling rates, while the event data retained using 

random sampling causes a large accuracy loss on N-MNIST. Figure 5.5(b) shows the data size 

compared to the original N-MNIST dataset when it samples 5% and 10% by random sampling 

and spiking sampling network, respectively. Since spiking sampling focuses more on the 

spike-dense region in the image, it retains more spikes than random sampling at the same 

sampling rate, and the corresponding compression rate is somewhat smaller. Comparing 

Figures 5.5(a) and (b), the data size is reduced by 84% and 88% at a sampling rate of 10% 

and 5%, respectively, with a slight loss of accuracy, indicating that the spiking sampling 

network is able to sparsely represent the event dataset effectively. 
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Figure 5.6 Reconstruction comparison of 10% random sampling and 10% spiking sampling 

on the main reconstruction network trained by random sampling. 

 

 Specificity and universality 

In section 2.2, we know that image recovery needs to go through two steps, sampling and 

reconstruction. From the previous section, it can be verified that sampling method has a great 

impact on the reconstruction result. The main reconstruction networks obtained by taking 

different sampling methods for training also differ. In this section, we verify the sensitivity of 

the main reconstruction network to the sampling methods. 
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Figure 5.7 Reconstruction comparison of 10% random sampling and 10% spiking sampling 

on the main reconstruction network trained by spiking sampling. 

 

After training, we are able to obtain two reconstruction networks, which target random 

sampling and spiking sampling reconstruction, respectively. Now we do both kinds of 

sampling separately and input the sampled pixels to the same reconstruction network to 

compare the reconstructed results. Figure 5.6 shows the output difference of main 

reconstruction network trained by random sampling, when we use random sampling and 

spiking sampling for test. We can see that even if we use random sampling during training, 

the quality of the image reconstructed by spiking sampling is no worse than random sampling 

during test. This shows that the main reconstruction network trained with random sampling 

has the good universality, and it is less sensitive to different sampling methods. Figure 5.7 

shows the output difference of main reconstruction network trained by spiking sampling, 

when we use random sampling and spiking sampling for test. Random sampling has a great 

impact on this main reconstruction network, and the reconstructed images are poor. It 
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demonstrates that the main reconstruction network trained with spiking sampling is more 

susceptible to the influence of the sampling method and therefore it is more specific to the 

sampling method. Therefore this sampling method has more potential applications in terms of 

data privacy and security. 

 

In summary, we conclude that spiking sampling enables higher reconstruction quality, but 

lead main reconstruction network to be specific with the sampling method; while random 

sampling makes the reconstruction process more difficult, but make main reconstruction 

network have better universality on the sampling method. 

 

5.4 Discussion and conclusion 

In this chapter, we propose a novel sparse representation method by a spiking sampling neural 

network. Different methods of compressing event data have also been proposed in some 

literatures [162-166]. The main differences between our method and these compression 

methods are 1) we directly use a SNN to sample the dataset. The end-to-end approach is much 

simpler; 2) we retain the pixel points of the original image without various linear and nonlinear 

transformations; 3) the compressed pixels are able to retain spatial information. We verify on 

static datasets that the network is able to learn sparse features of each sample independently 

by training. Compared to random sampling, the spiking sampling network performs better in 

image reconstruction. Our method can be applied to compress dynamic datasets with large 

amounts of data, which can greatly reduce the storage space and speed up data transfer.  

 

5.5 Supplementary 

Network and training details. Table 5.1 shows network structures for image reconstruction on 
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MNIST and CIFAR-10 and data compression on N-MNIST. Models are trained with MSE 

loss and Adam optimizer. The initial learning rate is set to 1e-4. SNN is trained by surrogate 

gradient [30]. The simulation time of SNN is 3 steps. For reconstruction, we trained models 

100 epochs; for classification, we trained the model 20 epochs.  

 

Table 5.1 Network structures for image reconstruction on MNIST and CIFAR-10 and data 

compression on N-MNIST 

Dataset Network Structure 

MNIST 

SNN: 16C3P1-MP2-4C3P1-MP2-16CT2S2-1CT2S2 

Main network: FC784-FC256-FC64-FC20-FC64-FC256-

FC784 

CIFAR-10 

SNN: 16C3P1-MP2-4C3P1-MP2-16CT2S2-1CT2S2 

Main network: 12C4S2P1-24C4S2P1-48C4S2P1-96C4S2P1-

48CT4S2P1-24CT4S2P1-12CT4S2P1-3CT4S2P1 

N-MNIST 

SNN*: 12C4S2-24C4S2P1-48C4S2P1-96C4S2P1-

48CT4S2P1-24CT4S2P1-12CT4S2P1-2CT4S2 

Main network*: 64C3P1-64C3P1-64C3P1-64C3P1-2C3P1 

Classification network: 128C3-128C3-MP2-FC2048-FC100-

FC10 

Note: nCm—Convolutional layer with n output channels, kernel size = m and stride = 1, 

nCm—transposed convolutional layer with n output channels, kernel size = m and stride = 

1, MP2—2D max-pooling layer with kernel size = 2 and stride = 2, FC—FC layer. * 

represents all convolutional layers are 3D layers. 
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6 A Spiking Neural Network with Spike-timing-dependent 

Plasticity for Surface Roughness Analysis 

Abstract 

Spiking neural network (SNN) utilizes spike trains for information processing among neurons, 

which is more biologically plausible and widely regarded as the third-generation artificial 

neural network (ANN). It has the potential for effectively processing spatial-temporal 

information and has the characteristics of lower power consumption and smaller calculation 

load compared with conventional ANNs. In this work, we demonstrate the feasibility of 

applying SNN to classify tactile signals collected by a bionic artificial fingertip that touches a 

group of real-world metal surfaces with different roughness levels. A two-layer SNN is adopted 

and trained using an unsupervised learning method with spike-timing-dependent plasticity 

(STDP). Experiments show that the trained SNN can categorize the input tactile signals into 

different surface roughness of metal textures with more than 80% accuracy. This work lays the 

foundation of applying SNNs to more complex tactile signal processing in robotics, 

manufacturing, and other engineering fields. 
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6.1 Introduction 

Surface roughness is one important object property closely related to wear resistance, fatigue 

strength, vibration and has an important impact on the service life and reliability of mechanical 

products [167]. Tremendous efforts have been made to recognize the surface texture using 

artificial tactile sensors or artificial fingers [168-171]. For example, reference [169] developed 

a silicon MEMS-based capacitive tactile sensor array to differentiate between surface textures, 

including polycotton and nylon. Reference [172] fabricated a 2 × 2 array of four 

microelectromechanical systems (MEMS) tactile microsensors based on microfabrication 

technology, which was embedded in a polymeric packaging with fingerprint-like structures. In 

recent years, a growing body of literature discriminates different surfaces by tactile sensors 

combined with machine learning[173-175]. Support vector machines (SVM) and k-nearest 

neighbors (kNN) were applied to classify surface roughness through extracting a series of 

features of samples[174]. In the literature [173], multi-sensor fusion was incorporated with 

machine learning to recognize surface roughness.  

 

With the development of artificial intelligence, deep learning, especially neural networks are 

widely studied recently. SNN is a special class of ANN, where neurons communicate by spike 

train[176]. It is considered as the third generation of ANNs [177] because SNN is generally 

based on more biologically plausible neuronal models, i.e., more capable of capturing the 

complex temporal dynamics just like biological neurons [178]. Potential advantages, e.g., 

energy-efficient and less delay, occur compared with a conventional neural network such as 

Convolutional Neural Network (CNN) due to its event-based triggered property. In addition, 

SNN also demonstrated the ability to capture the time correlation between time variables in 

streaming data. Thus, a considerable amount of research on SNNs has been explored recently, 
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especially attempts have been made to deal with classification problems using SNNs [132, 179-

182]. 

  

Several attempts have been made to discriminate rough surfaces by a biomimetic fingertip with 

piezoelectric sensors [173-175]. In the previous work [175], analog tactile signals generated 

from polyvinylidene difluoride (PVDF) films are fed as input to the Izhikevich neurons to 

obtain spike trains, and two distinct decoding schemes based on k-nearest neighbors (kNN) are 

used for surface roughness discrimination. However, this method distinguishes surfaces with 

only 77.6% classification accuracy. It is possible to get higher surface roughness discrimination 

accuracy (with an overall 80% accuracy) only for rougher surfaces (Ra > 1 µm) [174]. Sensor 

fusion including piezoelectric sensors and optical sensors [173] can extract more information 

from sampled signals and has a better ability to distinguish smoother surfaces (Ra < 1 µm). 

However, all these approaches are not simple and fast enough due to the complicated process 

before classification. 

 

This study makes a major contribution by building a simple and fast end-to-end SNN to 

discriminate surface roughness. Particularly, we firstly transfer sampled electric signals into 

spike train as inputs of two layers SNN; then, an unsupervised method is applied to update 

synaptic weights according to the firing rate between pre- and post-synaptic neurons; finally, 

we assign a class to each neuron according to the response of inputs. The remaining part of this 

chapter proceeds as follows: Section 6.2 presents methods for the combination of tactile sensor 

signals and SNN. In Section 6.3, we evaluate the proposed method on surface roughness 

discrimination and compare our method with previously proposed methods. Finally, we 

conclude with a further discussion in Section 6.4. 
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Figure 6.1 (a) The structure of designed biomimetic artificial fingertip. (b) Biomimetic 

fingertip sliding along the test surface. (c) Eight solid nickel test surfaces with different 

roughness values. 

 

6.2 Methods 

 Experimental Setup  

Due to the piezoelectric effect, one piezoelectric sensor is sensitive to mechanical force 

changes and could generate electrical signals that are proportional to the mechanical 

deformation of an object [183]. A bio-inspired tactile piezoelectric sensor was used to collect 

tactile datasets for each class of surface roughness.  

 

The tactile sensor was designed by mimicking FA-I type mechanoreceptors in human fingertips 

which are extremely sensitive to dynamic stimuli and vibrations [174, 184]. It includes two 

commercial 28 mm thick PVDF films that were cut into the size of 4 mm × 4 mm. The PVDF 

film is a class and common material for manufacturing tactile signals. It exhibits a high-

frequency response when sliding and is able to measure the lowest frequency about 0.01 Hz 

based on its property of piezoelectric effect, thus making them highly suitable for measuring 

vibrations. They are perpendicular to each other, and both were glued on the top of a 

polydimethylsiloxane (PDMS) cube. The PDMS cube was connected to one tip of a 4 mm × 4 

mm × 45 mm polymethyl methacrylate (PMMA) bar. The PMMA bar with soft cured PDMS 

cube and PVDF films sensor was covered by a layer of PDMS (Figure 6.1(a)). The size of our 
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tactile sensor is comparable to human fingertips. Compared with human fingertips, the PMMA 

bar, PVDF films, and PDMS layer function as bone, mechanoreceptors, and skin, respectively 

[174]. 

 

We collected the piezoelectric signals on the test samples. The test samples consist of eight 

solid nickel surfaces with roughness values (Ra) of 50 𝜇m, 25 𝜇m, 12.5 𝜇m, 6.3 𝜇m, 3.2 𝜇m, 

1.6 𝜇m, 0.8 𝜇m, 0.4 𝜇m (Figure 6.1(c)). The biomimetic fingertip was controlled to slide 

across different surfaces and generate vibratory stimuli. To simplify the operation and 

experimental setup, the sliding process was manually controlled at a speed of about 0.2 m/s. 

The discrimination result is expected to be further enhanced if the sliding speed and grip 

strength are controlled more precisely by devices like a robotic arm. The bio-inspired tactile 

sensor slid ten times on the surface of each test sample, which generated 80 time-series samples 

in total for each PVDF film. Analog outputs from the PVDF films are amplified via a custom 

amplifier and digitalized via DAQCard (USB-6225, National Instruments, USA) [184].  

 

 

Figure 6.2 Illustration of SNN network structure for tactile signal processing. 

 

 SNN architecture  
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We adopt a two-layer feedforward SNN for tactile signal classification. It consists of one input 

layer and one output layer (see Figure 6.2). The SNN was constructed, referring to the structure 

proposed previously [181]. Input patterns were coded as Poisson spike processes, and the firing 

rates are proportional to the intensities of the corresponding pixels in the images. Each Poisson 

spike train is fed to the excitatory neurons of the output layer with all-to-all connections. The 

output layer consists of the excitatory neurons and the inhibitory neurons. The connection from 

the excitatory neurons to inhibitory neurons is in a one-to-one fashion, i.e., each of the 

excitatory neurons is connected to one corresponding inhibitory neuron at the same position. 

At the same time, each inhibitory neuron inhibits all excitatory neurons except for the one from 

which it receives an input.  

 

 

Figure 6.3 (a) LIF neuron model. (b) Schematic of the classic STDP. 

 

 Neuron and synapse model  

For the dynamic neuron model, we chose the leaky integrate-and-fire (LIF) model, which was 

proposed based on the simplified model of biological neurons and widely used by SNN. The 

dynamic membrane potential 𝑢 in this model is described by Equations (6.1) - (6.5). 

𝜏
𝑑𝑢

𝑑𝑡
= 𝑢𝑟𝑒𝑠𝑡 − 𝑢 + 𝐼,         𝑢 < 𝑉𝑡ℎ        
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        (6.1) 

𝐼 = 𝑔𝑒(𝑢𝑒 − 𝑢) + 𝑔𝑖(𝑢𝑖 − 𝑢)  

                                (6.2) 

𝜏𝑔𝑒
𝑑𝑔𝑒
𝑑𝑡

= −𝑔𝑒 + ∑∑𝑤𝑖
𝑒

𝑘

𝑛

𝑖

𝛿(𝑡 − 𝑡𝑖
𝑘) 

                       (6.3) 

𝜏𝑔𝑖
𝑑𝑔𝑖
𝑑𝑡

= −𝑔𝑖 + ∑∑𝑤𝑗
𝑖

𝑘

𝑚

𝑗

𝛿(𝑡 − 𝑡𝑗
𝑘) 

                        (6.4) 

fire a spike & 𝑢 = 𝑢𝑟𝑒𝑠𝑒𝑡 ,      𝑢 ≥ 𝑉𝑡ℎ      

                   (6.5) 

where 𝜏, 𝜏𝑔𝑒and 𝜏𝑔𝑖are time constants, 𝑢  and 𝑢𝑟𝑒𝑠𝑡  are the membrane potential and resting 

membrane potential, respectively. 𝑢𝑒 and 𝑢𝑖 are the equilibrium potentials of excitatory and 

inhibitory synapses. 𝐼 is the total pre-synaptic input, 𝑛 and 𝑚 are the numbers of excitatory and 

inhibitory synapses, 𝑔𝑒  and 𝑔𝑖  are the excitatory and inhibitory conductance. 𝑤𝑖
𝑒  and 𝑤𝑗

𝑖  are 

the excitatory and inhibitory connection weights, respectively. 𝛿 is the pre-synaptic input that 

equals 1 at the moment of firing a spike; otherwise, it is 0. 𝑢𝑟𝑒𝑠𝑒𝑡  is the reset membrane 

potential once 𝑢 exceeds a given potential threshold 𝑉𝑡ℎ. All parameters chosen are set are 

within bio-plausible ranges.  

 

As shown in Figure 6.3(a), when a neuron receives pre-synaptic spikes, it will accumulate the 

membrane potential according to Equation (6.1); once the membrane potential of the neuron 

exceeds its membrane threshold 𝑉𝑡ℎ, the neuron will fire a spike and immediately restore the 

initial potential 𝑢𝑟𝑒𝑠𝑒𝑡. The neuron will be in a refractory period for the next few milliseconds, 
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which means the membrane potential will not change even if it receives spikes over this time. 

In this model, the firing threshold changes dynamically due to a dynamic threshold method 

adopted. The dynamic threshold is a bio-plausible feature initially discovered in the neural 

system [185-189]. The membrane threshold of each neuron depends on not only 𝑣𝑡ℎ but also 

an extra variable 𝜃 which slightly increases then exponentially decreases to the original value 

every time a neuron fires, which is described by Equations (6.6) - (6.7). The threshold of a 

neuron will be higher with more spikes fired, and in turn, more input is necessary in order to 

let the neuron spike. The purpose is to prevent a single neuron from firing too many spikes, 

thereby dominating the results in the output layer. 

𝑉𝑡ℎ = 𝑉𝑡ℎ  +  𝜃        

        (6.6) 

𝜏𝜃
𝑑𝜃

𝑑𝑡
= −𝜃        

        (6.7) 

where 𝜏𝜃 is the time constant of 𝜃. 

 

Synaptic weights from input neurons to excitatory neurons were updated using Spike-timing-

dependent plasticity (STDP). STDP is a widely used unsupervised learning algorithm in SNN. 

According to the Hebbian learning rule, the strength of the synaptic connection between two 

neurons should be increased or decreased in proportion to the product of pre-synaptic and post-

synaptic neuron activation[190]. STDP is considered an extension of Hebbian’s theory. Under 

the STDP process, the activity between two neurons, if the information of other neurons is 

received before its activity, the connection between the two neurons will be strengthened. 

Conversely, if the neuron itself becomes active before receiving information from other 

neurons, the connection between the two neurons will weaken. 
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The increment of weights ∆𝑊 can be expressed by Equation (6.8) according to the model of 

STDP [191, 192]. 

∆W = 

{
 

 𝐴+ exp (
−∆𝑡

𝜏+
),         ∆𝑡 ≥ 0 

−𝐴− exp (
∆𝑡

𝜏−
),       ∆𝑡 < 0

 

                      (6.8) 

where 𝐴+ and 𝐴− are learning rates, ∆𝑡 is the time difference between pre- and post-synaptic 

spikes, and  𝜏+ and 𝜏− are the time constants of the positive and negative time difference, 

respectively. 

 

Figure 6.3(b) shows the synaptic changes. In addition to the change of synaptic strength, we 

also use the synaptic scaling mechanism to increase the competition among synapses between 

the input and excitatory layers. Synaptic scaling is a homeostatic plasticity mechanism 

observed in many experiments, especially in visual systems and the neocortex [193]. The 

synaptic scaling normalizes the synaptic weights through Equation (6.9) after each sample is 

trained. 

𝑤𝑁 =  𝛽
𝑤

∑𝑤
𝑁𝑝𝑟𝑒 

                                    (6.9) 

where 𝑁𝑝𝑟𝑒 is the number of synapses connected to a single target neuron, and 𝛽 is a scaling 

constant which was set to 1 [193]. 
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It should be noted that STDP and synaptic scaling were only used for the connection between 

input and excitatory layers. All weights from the excitatory layer to the inhibitory layer were 

initialized to 10.4, and weights from the inhibitory layer to the excitatory layer were 17 [1]. 

These settings guarantee that inhibitory neurons can be triggered as long as they receive one 

spike. The excitatory-inhibitory weights would not change after initializing. For the values of 

the above variables, see Table 6.3 in the appendix. 

 

 Dataset 

When sliding laterally on eight test surfaces with different roughness values, the sample tactile 

signals generated by two PVDF films are shown in Figure 6.4. Each dataset includes 8 classes, 

and each class has 10 samples. For every class, the 10 samples were randomly split into 7 

samples as the training set, and the remained 3 samples as the testing set. In order to enhance 

the generalization ability of the model and avoid overfitting, we increase the number of training 

samples through data fragmentation. Specifically, for each class, we include samples 1-4 into 

group 1 and samples 5-8 into group 2. We firstly split each sample into four pieces of equal 

length (Figure 6.5). In this way, each sample in group 1 would have four pieces, while each 

sample in group 2 has three pieces. Then, for each time period, we pick one piece from a sample 

and combine them together. In total, for each class, we obtain 337 training samples. As a whole, 

 
 

Figure 6.4 Typical tactile signals generated by two perpendicular PVDF films when sliding on eight 

surfaces with different roughness values. PVDF1 is perpendicular to the sliding direction, while 

PVDF2 is parallel to the sliding direction. 
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the training set has 2696 samples, and the testing set remains to include 24 original samples. 

The split and combination of data are shown in Figure 6.5.  

 

 

 Input Encoding  

SNN exhibits the natural ability of spatiotemporal coding of input and thus holds the potential 

advantage of efficient coding through sparse activities, particularly for continuous 

spatiotemporal inputs. In the brain, it turns out that most of the information is encoded by the 

number of spikes in a short window [194]. Reference [195] demonstrates that spikes contain 

features of roughness and contribute to a firing rate code. So we encode the sampled tactile 

signals by rate coding. 

 

Firstly, We represent each sample as a 28×28 grayscale image. Therefore, there are a total of 

2696 training images and 24 test images. Then each image is coded as a Poisson spike train. 

The Poisson spike train is generated using Equations (6.10)-(6.12) [196]. 

𝑃{1 𝑠𝑝𝑖𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝛿𝑡} = 𝑟 ∗  𝛿𝑡 

                (6.10) 

𝑟 = 0.25 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

 
 

Figure 6.5 The split and combination of raw data. 
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                         (6.11) 

𝑁 = 𝑟 ∗ 𝑇 

                                  (6.12) 

Equation (6.10) describes the possibility of producing a spike during every time step. In the 

paper, each time step in the simulation has δt = 1 millisecond. The firing rate r in (6.11) is 

proportional to the intensity of the corresponding pixel on the image. Equation (6.12) derives 

the average number of spikes N generated by one pixel, which is equal to the product of r and 

the simulation time T. This conversion process may cause information loss. As mentioned in 

the paper [107], the longer the simulation time is, the less loss from the original static image to 

a rated-coded spike image the conversion loss is, which can also be seen in Figure 6.6. Different 

simulation time presents varying degrees of difference between an original image and its rate-

coded spike train. However, a long simulation time will cause a very long training process and 

more computation consumption. For our process, the simulation time was set as 350 ms in 

order to trade off training time and loss. The rate of generated spike train is initialized between 

0 and 63.75 Hz according to (11) since the maximum intensity of a pixel is 255. Specifically, 

while the excitatory neuron layer generates less than 5 spikes, the input firing rate increases by 

32 Hz and is presented again for 350 ms until no less than 5 spikes are emitted. It aims to 

guarantee that spikes can propagate to the deeper layer.   

 

 

Figure 6.6 An original static image is encoded into a spike map over various time steps using 

rate coding. 
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 Training and classification 

The presentation time of each input sample takes 350 ms for each sample. It is followed by a 

resting time of 150 ms to restore all variables of all neurons to their resting values except the 

weight and adaptive threshold. For the testing process, we set the learning rate to zero and used 

the SNN with trained weights and thresholds. We also assigned a label to each excitatory 

neuron in the output layer, which depends on its highest average numbers of fired spikes to all 

eight classes of surfaces over one presentation of the training set. Then the classification 

accuracy of the SNN on the test set is measured based on averaging the responses of each 

neuron per class and choosing the class with the highest average firing rate [181]. The number 

of neurons in the excitatory and inhibitory layer was set as 400. We trained the model with 1 

to 15 epochs of the training dataset. 

 

6.3 Results 

Figure 6.7 (a) shows the test result comparison between the augmented PVDF1 dataset and the 

augmented PVDF2 dataset. It reveals that there has been a steady accuracy after one epoch 

training and the trend increases slowly with more training epochs for both PVDF1 and PVDF2. 

After 15 iterative training, the test accuracy of the model on the PVDF1 dataset achieves 83.3%, 

in contrast with 54.17% on the PVDF2 dataset. Throughout the whole iteration process, the 

test performance of PVDF1 has been higher than that of PVDF2. This result suggests that SNN 

can better extract features to distinguish different categories with the PVDF1 dataset compared 

with the PVDF2 dataset.  

 

Figure 6.7 (b) compares the trend of test accuracy between the augmented PVDF1 dataset and 

the original PVDF1 dataset with the increasing number of training examples. There is a 

significant promotion after data augmentation. It states that splitting and combining segments 
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of signals effectively decreases the overfitting of SNN and promotes network generalization 

capability. 

 

In addition to the 400 neurons model, we also tested models with 100 and 1600 excitatory and 

inhibitory neurons. In each case, the highest classification accuracy of the model achieved 

66.7%, 83.3%, and 75%.  Figure 6.7 (c) compares the test result when using the different 

number of excitatory neurons in the output layer. While SNN with 100 excitatory neurons 

realizes the lowest accuracy, SNN with 400 output neurons reaches the best classification 

accuracy. As the number of output neurons continues to increase to 1600, the classification 

 

Figure 6.7 (a) Test accuracy comparison between augmented PVDF1 and augmented 

PVDF2 datasets with 15 training epochs. (b) Test accuracy comparison between augmented 

PVDF1 dataset and original PVDF1 dataset. (c) Test accuracy comparison among the 

different numbers of excitatory neurons in the output layer. (d) Test accuracy comparison 

among fusing both augmented PVDF data and single augmented PVDF data with 15 training 

epochs. 
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accuracy decreases instead. This result implies that there is no significant positive correlation 

between the number of output numbers and classification accuracy, which is different from the 

viewpoint of [1]. Besides, it is easy to find that for 100 and 400 neurons the models have a 

relatively fast convergence after executing only a few epochs and then improves slowly, while 

the model with 1600 excitatory neurons gradually converges with more iterations of the 

training set. 

 

 

We made a statistic on the classification results of epoch 11-15, because the test accuracy over 

those phases performs a stable classification accuracy. Table 6.1 represents the confusion 

matrix of the classification result. What can be clearly seen in this table is that surface 1 (Ra = 

50 μm), surface 2 (Ra = 25 μm), surface 3 (Ra = 12.5 μm) and surface 6 (Ra = 1.6 μm) can be 

identified accurately by our SNN model. Most misclassifications occur in surface 4 (Ra = 6.3 

μm) and surface 7 (Ra = 0.8 μm). Almost all surface 4 were recognized as surface 5 (Ra = 3.2 

μm), and the same confusion appeared between surface 7 and surface 8 (Ra = 0.4 μm). In order 

to observe the sampled tactile signal dataset in more detail, we have drawn the standard 

 

Figure 6.8 (a) Standard deviation features from the tactile signals of the two PVDF films when 

sliding on eight surfaces with different surface roughness values. (b) Sum of absolute values from 

the tactile signals of the two PVDF films when sliding on eight surfaces with different surface 

roughness values. 
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deviation distribution and the signal energy distribution from sampled tactile signals of two 

PVDF films in Figure 6.8(a) and (b). Equations (6.13) and (6.14) give their definitions. Both 

figures demonstrate that for tactile signals of PVDF1, surfaces 1, 2, 3, and 6 distribute their 

range with less overlap with others, while there are overlapping parts that are difficult to 

separate between surface 4 and surface 5 as well as between surface 6 and surface 7. Compared 

with tactile signals of PVDF1, tactile signals of PVDF2 have more serious overlap among 

different surfaces in Figure 6.8(a) and (b) so that it is difficult to separate a single class from a 

group of data. Thus, even though both signals of PVDF1 and PVDF2 are fused to predict the 

labels of samples, this method cannot play an effective role, which is also consistent with the 

result of Figure 6.7 (d). The results indicate that our tactile sensor has limited discriminative 

ability to effectively pick up the subtle differences of some specific surfaces. In the paper [184],  

features extracted from discrete wavelet transform in both datasets contribute to the test 

performance. This way may be explored through SNN with a new encoding method to do 

frequency domain analysis. 

𝑆(𝑥(𝑘)) = √
1

𝑁 − 1
∑(𝑥(𝑘) − 𝜇)2
𝑁

𝑘=1

       

        (6.13) 

𝐸(𝑥(𝑘)) = ∑𝑥2(𝑘) 

𝑁

𝑘=1

 

                (6.14) 

A comparison of various methods used for surface roughness discrimination is shown in Table 

6.2. Compared with the previous works on surface roughness classification [174, 184], this 

work is different in a few important aspects. First, the adopted SNN does not need the feature 

selection and extraction stage. While in the kNN or SVM, features need to be obtained first 
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[174, 184], SNN only requires converting the recorded waveform into gray images so as to 

generate Poisson spike trains as the input for classification, which is simpler and more efficient. 

Second, the SNN model inspired by the biological neuron structure and parameters used in the 

SNN model are all within bio-plausible ranges. Finally, the implementation of SNN on 

hardware is considered to have huge potential: 1. SNN is more hardware friendly than currently 

popular ANN because SNN uses more energy-efficient “accumulator” units rather than the 

energy-consuming “multiply-accumulator” [197]; 2. neurons in SNN were triggered only by 

spiking events. When there is no spike emission, SNN will be silent, which is energy efficient. 

SNNs exhibit the natural ability of spatiotemporal coding of input, and thus hold the potential 

advantage of efficient coding through sparse activities, particularly for continuous 

spatiotemporal inputs; 3. SNN with STDP learning rule is appropriate for online, on-chip 

learning.  

 

 

Table 6.2 The highest classification accuracy of different methods 

Feature Classifier Sensor Accuracy 

SD [174] kNN (k = 9) PVDF film 1 82.6% 

SF [174] SVM (RBF) PVDF film 1 71.2% 

SRa [174] SVM (RBF) PVDF film 1 & 2  78.8% 

Table 6.1 Classifier: SNN with 400 output neurons 
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PSM [174] kNN (k = 9) PVDF film 1 82.5% 

SD + PSM [174] kNN (k = 9) PVDF film 1 82.5% 

SF + PSM [174] SVM (RBF) PVDF film 1 72.7% 

SRa + PSM [174] kNN (k = 5) PVDF film 1 77.8% 

SD + PSM [174] 

Discrete wavelet transform 

[184] 

kNN (k = 7) 

ELM 

PVDF film 2 

PVDF film 1 & 2 

57.9% 

97.9% 

\ SNN (this paper) PVDF film 1 83.3% 

Note: Statistical features (SF); Signal roughness parameter Ra (SRa); Power spectral 

magnitudes (PSM); Extreme learning machine (ELM) 

 

6.4 Conclusion 

In this chapter, we have explored the possibility of performing tactile surface roughness 

discrimination with the biologically inspired SNN model. SNNs are very good at handling this 

time-space information because spiking neurons have a natural internal dynamic system that 

does not require back connections to handle spatio-temporal signals. Furthermore, due to the 

low power consumption and low latency of SNN, we can easily integrate the sensor and SNN 

into the embedded system to build a fast tactile classification system. The Ra value range of 

sampled surfaces is from 0.4 𝜇m to 50 𝜇m. Ultimately, the test result shows this method can 

reach the highest 83.3% accuracy by the PVDF1 dataset and 79.3% by both PVDF datasets. 

This method is robust and suitable for real-time surface roughness discrimination. The insights 

gained from this study may be of assistance to developing advanced neurorobotics combined 

with SNN. Further work needs to be done to explore whether SNN can better identify the signal 

in the frequency domain and by a new encoding method. 

 

6.5 Supplementary 

Table 6.3 lists the values of the SNN’s parameters.  
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Table 6.3 Parameters in SNN 
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7 Conclusions 

This thesis explores algorithms for brain-inspired SNNs and their applications. Compared to 

ANNs, SNNs are bio-interpretable, low-power, and low-latency. This is the basis for our focus 

on the study of SNN algorithms and their applications. 

 

Chapter 1 details the basics of SNNs and the current challenges, while we also summarize the 

forms of noise present in the brain and its role, and provide an introduction to the current 

applications of noise in artificial intelligence. 

 

It is still challenging to develop efficient and high-performing learning algorithms for SNNs. 

In Chapter 2, we propose a novel spiking neuron model (KLIF) to improve the learning ability 

of SNNs. The neuron model itself can update the slope and width of the surrogate gradient 

curve during training and selectively delivers membrane potential to spike firing and resetting, 

which is considered to be more biologically significant. We evaluated our model on both static 

and neuromorphic datasets. Experiments indicate that KLIF performs much better than current 

leaky integrate-and-fire (LIF) model, which is most frequently used in SNN, and achieves state-

of-the-art performance on those datasets without introducing additional computational cost. 

Also KLIF increases the firing frequency of individual spiking neuron. The good performance 

of KLIF can make it completely replace the role of LIF for various tasks. 
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In Chapter 3, we do a study for the robustness of impulsive neural networks. As more attention 

is paid to SNNs, security issues become increasingly important. However, there is still a lack 

of defense methods specifically designed for SNNs. Inspired by neural membrane oscillation, 

we propose a new bio-plausible neural model that emulates the subthreshold oscillation to 

enhance the security and robustness of SNNs. Our experiments show that SNNs with neural 

oscillation models have better resistance to adversarial attacks than ordinary SNNs on kinds of 

network architectures. Furthermore, we demonstrate the surrogate gradient can affect the 

effectiveness of adversarial attacks and propose a defense method based on neural oscillation 

by masking the original surrogate gradients to defend against different types of attacks. The 

results show that our defense method is comparable to those advanced adversarial training 

methods used on ANN but requires much less computational costs. To the best of our 

knowledge, this is the first work that establishes adversarial defense through modifying 

surrogate gradients on SNNs. As neural oscillations are essential to many neural activities in 

the biological nervous system, SNN integrated with oscillation mechanism is more bio-

plausible than conventional ANN. These findings contribute to our understanding of the 

relationship between SNN and the biological neural system and provide a basis for optimizing 

and developing SNN. 

 

Spike-based neuromorphic hardware promises to reduce the energy consumption of image 

classification and other deep-learning applications, particularly on mobile phones and other 

edge devices. However, direct training of deep spiking neural networks spends lots of time, 

and previous methods for converting trained ANNs to spiking neurons were inefficient because 

the neurons had to emit too many spikes. In Chapter 4, we propose a novel noise based method 

for faster and efficient SNN training. Our experiments show that ours can reduce training time 
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by 65%-75% and achieves an inference speed that is more than 100 times faster compared to 

the previous two methods. We also argue that the neuron model proposed in the paper makes 

it more bio-plausible. 

 

Sparse representation has attracted great attention because it can greatly save storage resources 

and find representative features of data in a low-dimensional space. As a result, it may be 

widely applied in engineering domains including feature extraction, compressed sensing, signal 

denoising, picture clustering, and dictionary learning, just to name a few. In Chapter 5, we 

propose a spiking sampling network. This network is composed of spiking neurons and it can 

dynamically decide which pixel points should be retained and which ones needs to be masked 

according to the input. Our experiments demonstrate that this approach enables better sparse 

representation of the original image and facilitates image reconstruction compared to random 

sampling. We thus use this approach for compressing massive data from the dynamic vision 

sensor, which greatly reduces the storage requirements for event data. 

 

In the Chapter 6, we apply SNNs to engineering issues in order to process tactile signals. In 

this study, we show that it is possible to use SNNs to categorise tactile signals obtained from a 

bionic artificial fingertip that makes contact with a variety of real-world metal surfaces of 

varying roughnesses. We use a two-layer SNN and train it with an unsupervised learning 

technique that takes into account STDP. The trained SNN can classify the input tactile signals 

into metal textures with various levels of surface roughness with an accuracy of over 80%, 

according to experiments. This establishes the groundwork for using SNNs in robotics, 

manufacturing, and other engineering domains to process more intricate haptic signals. 

 

In summary, this thesis proposes targeted algorithms for some important challenges faced by 
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current SNNs such as low training accuracy, slow training speed, and low robustness, while 

extending their SNNs from being mainly used for classification problems to engineering 

problems such as sparse coding, and processing of haptic signals. Some innovations in both 

theory and engineering are made to improve the usability and applications of SNNs.
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8 Discussion and Future Work 

Future improvements of this thesis can be developed in several areas. 

 

Chapter 3 proposes the defense method against adversarial attacks. These attack samples are 

generated based on gradients, so the defense is also to make the corresponding interference on 

the gradients to achieve the defense purpose. Currently, there are also some adversarial attacks 

that are not based on gradients, and Chapter 3 does not discuss and study for this part, which 

we will continue to study and research in the future. 

 

In addition, in addition to computer vision, natural language processing (NLP) is also a key 

area of focus for deep learning, especially like machine translation, text generation, etc. 

Although we have used SNNs to process temporal spike sequences in Chapter 5, most of the 

research in this thesis focuses on the processing of image by SNNs. In the future, we will 

combine SNNs with NLP, given their natural advantages for temporal data. 

 

In addition to the software aspects, the development of SNN-based brain-like chips is also a 

promising research direction at present. Companies like IBM, and others have specifically 

developed SNN-based brain-like chips to accelerate networks, and experiments have shown 

that they have very low power consumption and have great application scenarios in future 

embedded devices. In the future, we will design and execute our algorithms on hardware to 

obtain more comprehensive tests. 

 

SNNs still have difficulties in trade-offs between bio-plausibility and performance on large 

complex datasets. Incorporating working mechanisms inspired by brain mechanisms into 

SNNs, such as NeuCube [198], which mainly consists of a spike encoder, an unsupervised 
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module and a supervised module for classification and modelling, could be further combined 

with our proposed methods in previous chapters to explore the possibility of SNN development. 

Besides, constructing large models of networks based on spiking neurons is also one of the key 

directions for the development of SNNs in the future. 

 

While there has been significant progress in developing and understanding SNNs in recent 

years, there are still many open questions and research directions that can be pursued to further 

improve their effectiveness and understanding. Some potential research directions and 

questions for SNNs could be further researched in the future: 

• Development of more efficient learning algorithm 

• Investigation of the role of different neuron models 

• Exploration of different network topologies 

• Development of neuromorphic hardware 

• Investigation of the role of spatiotemporal patterns 

• Application to real-world problems 

 

In conclusion, SNNs are a promising area of research. Developing efficient learning algorithms, 

optimizing architectures, exploring new applications, developing specialized hardware, and 

integrating SNNs with other AI techniques are some of the key research directions that can be 

explored in the future. 
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APPENDIX A  

This part provides the details of code of SNN models and KLIF neural model discussed in 

Chapter 2: 

1. import torch   
2. import torch.nn as nn   
3. import torch.nn.functional as F     
4. from spikingjelly.clock_driven import functional, layer, surrogate   
5. import math   
6. from torchvision import transforms   
7. import numpy as np   
8. import matplotlib.pyplot as plt   
9. import random     
10. from spikingjelly.datasets import play_frame   
11.    
12.    
13.    
14. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")   
15. thresh = 1.0 # neuronal threshold         
16. lens = 0.5 # hyper-parameters of approximate function   
17. decay = 0.5 # decay constants   
18. num_classes = 10    
19. learning_rate = 1e-4   
20. alpha = 2.0   
21. num_epochs = 100 # max epoch           
22.    
23.    
24. # define approximate firing function   
25. class ActFun(torch.autograd.Function):   
26.     @staticmethod   
27.     def forward(ctx, input):   
28.         ctx.save_for_backward(input)   
29.         return input.gt(thresh).float()   
30.   
31.     @staticmethod   
32.     def backward(ctx, grad_output):   
33.         input, = ctx.saved_tensors   
34.         grad_input = grad_output.clone()   
35.         temp = alpha / 2 / (1 + (math.pi / 2 * alpha * (input-thresh)).pow_(2))    
36.    
37.         return grad_input * temp.float()   
38.    
39.    
40. act_fun = ActFun.apply     
41.       
42.    
43. class LIFNode(nn.Module):   
44.     def __init__(self):   
45.         super(LIFNode, self).__init__()   
46.         self.w = torch.nn.Parameter(torch.ones(1), requires_grad=True)   
47.         self.func = torch.nn.ReLU()    
48.            
49.     def forward(self, x, mem, spike,w):   
50.         mem = mem * (1. - spike) - mem * decay * (1. - spike) + decay*x         
51.         spike = act_fun(mem) # act_fun : approximation firing function   
52.            
53.         return mem, spike   
54.            
55.    
56. class CIFAR10(nn.Module):   
57.     def __init__(self):   
58.         super(CIFAR10, self).__init__()   
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59.         self.conv1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)   

60.         self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)   

61.         self.conv3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)   

62.         self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)   

63.         self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)   

64.    
65.         self.fc1 = nn.Linear(256*8*8, 2048,bias=False)   
66.         self.fc2 = nn.Linear(2048, 100,bias=False)   
67.            
68.         self.mem0 = LIFNode()   
69.         self.mem1 = LIFNode()   
70.         self.mem2 = LIFNode()   
71.         self.mem3 = LIFNode()   
72.         self.mem4 = LIFNode()   
73.         self.mem5 = LIFNode()   
74.         self.mem6 = LIFNode()   
75.         self.mem7 = LIFNode()   
76.            
77.         self.batch1 = nn.BatchNorm2d(256)   
78.         self.batch2 = nn.BatchNorm2d(256)   
79.         self.batch3 = nn.BatchNorm2d(256)   
80.         self.batch4 = nn.BatchNorm2d(256)   
81.         self.batch5 = nn.BatchNorm2d(256)   
82.         self.drop1 = layer.Dropout(0.5)   
83.         self.drop2 = layer.Dropout(0.5)   
84.            
85.         self.static_conv = nn.Sequential(   
86.             nn.Conv2d(3, 256, kernel_size=3, padding=1, bias=False),   
87.             nn.BatchNorm2d(256))    
88.         self.static_conv2 = nn.Sequential(   
89.             nn.Conv2d(3, 256, kernel_size=3, padding=1, bias=False),   
90.             nn.BatchNorm2d(256))    
91.         self.static_conv3 = nn.Sequential(   
92.             nn.Conv2d(3, 256, kernel_size=3, padding=1, bias=False),   
93.             nn.BatchNorm2d(256))    
94.            
95.            
96.    
97.     def forward(self, input, batch_size, time_window,train=True):   
98.         c0_mem = c0_spike = c0_sumspike = torch.zeros(batch_size,256, 32, 32, devic

e=device)   
99.         c1_mem = c1_spike = c1_sumspike = torch.zeros(batch_size,256, 32, 32, devic

e=device)   
100.         c2_mem = c2_spike = c2_sumspike = torch.zeros(batch_size,256, 32, 32

, device=device)   
101.         c3_mem = c3_spike = c3_sumspike = torch.zeros(batch_size,256, 16, 16

, device=device)   
102.         c4_mem = c4_spike = c4_sumspike = torch.zeros(batch_size,256, 16, 16

, device=device)   
103.         c5_mem = c5_spike = c5_sumspike = torch.zeros(batch_size,256, 16, 16

, device=device)         
104.    
105.         h1_mem = h1_spike = h1_sumspike = torch.zeros(batch_size, 2048, devi

ce=device)   
106.         h2_mem = h2_spike = h2_sumspike = torch.zeros(batch_size, 100, devic

e=device)   
107.         h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 10, device

=device)   
108.            
109.         input1 = self.static_conv(input)   
110.         input2 = self.static_conv2(input)   
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111.         input3 = self.static_conv3(input)   
112.            
113.         input = input1+input2+input3   
114.            
115.         spike_count = []   
116.    
117.         for step in range(time_window): # simulation time steps   
118.             c0_mem, c0_spike = self.mem0(input, c0_mem, c0_spike)     
119.     
120.             x = self.conv1(c0_spike)   
121.             x = self.batch1(x)   
122.             c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)    
123.             x = self.conv2(c1_spike)   
124.             x = self.batch2(x)   
125.             c2_mem, c2_spike = self.mem2(x, c2_mem, c2_spike)               

          
126.             x = F.max_pool2d(c2_spike, 2)   
127.                
128.             x = self.conv3(x)   
129.             x = self.batch3(x)   
130.             c3_mem, c3_spike = self.mem3(x, c3_mem, c3_spike)    
131.             x = self.conv4(c3_spike)   
132.             x = self.batch4(x)   
133.             c4_mem, c4_spike = self.mem4(x, c4_mem, c4_spike)    
134.             x = self.conv5(c4_spike)   
135.             x = self.batch5(x)   
136.             c5_mem, c5_spike = self.mem5(x, c5_mem, c5_spike)               

        
137.             x = F.max_pool2d(c5_spike, 2)   
138.                
139.             x = x.view(batch_size, -1)   
140.              
141.             x = self.drop1(x)   
142.             x = self.fc1(x)   
143.             h1_mem, h1_spike = self.mem6(x, h1_mem, h1_spike)   
144.                
145.             x = self.drop2(h1_spike)   
146.             x = self.fc2(x)   
147.             h2_mem, h2_spike = self.mem7(x, h2_mem,h2_spike)   
148.             x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)   
149.             h3_sumspike += x.squeeze(1)   
150.    
151.         outputs = h3_sumspike / time_window   
152.            
153.         return outputs   
154.            
155.    
156.       
157. class MNIST(nn.Module):   
158.     def __init__(self):   
159.         super(MNIST, self).__init__()   
160.         self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
161.         self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
162.    
163.         self.fc1 = nn.Linear(128*7*7, 2048,bias=False)   
164.         self.fc2 = nn.Linear(2048, 100,bias=False)   
165.            
166.         self.mem0 = LIFNode()   
167.         self.mem1 = LIFNode()   
168.         self.mem5 = LIFNode()   
169.         self.mem6 = LIFNode()   
170.    
171.         self.batch1 = nn.BatchNorm2d(128)   
172.    
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173.         self.drop1 = layer.Dropout(0.5)   
174.         self.drop2 = layer.Dropout(0.5)   
175.            
176.         self.static_conv1 = nn.Sequential(   
177.             nn.Conv2d(1, 128, kernel_size=3, padding=1, bias=False),   
178.             nn.BatchNorm2d(128))   
179.         self.static_conv2 = nn.Sequential(   
180.             nn.Conv2d(1, 128, kernel_size=3, padding=1, bias=False),   
181.             nn.BatchNorm2d(128))   
182.         self.static_conv3 = nn.Sequential(   
183.             nn.Conv2d(1, 128, kernel_size=3, padding=1, bias=False),   
184.             nn.BatchNorm2d(128))   
185.                
186.            
187.         self.w1 = torch.nn.Parameter(torch.randn(128,28,28), requires_grad=T

rue)   
188.         self.w2 = torch.nn.Parameter(torch.randn(128,14,14), requires_grad=T

rue)   
189.         self.w3 = torch.nn.Parameter(torch.randn(2048), requires_grad=True) 

  
190.         self.w4 = torch.nn.Parameter(torch.randn(100), requires_grad=True)   
191.    
192.    
193.    
194.     def forward(self, input,batch_size=50, time_window = 8):   
195.         c0_mem = c0_spike = c0_sumspike = torch.zeros(batch_size,128, 28, 28

, device=device)   
196.         c1_mem = c1_spike = c1_sumspike = torch.zeros(batch_size,128, 14, 14

, device=device)   
197.            
198.            
199.         h1_mem = h1_spike = h1_sumspike = torch.zeros(batch_size, 2048, devi

ce=device)   
200.         h2_mem = h2_spike = h2_sumspike = torch.zeros(batch_size, 100, devic

e=device)   
201.         h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 10, device

=device)   
202.            
203.         input1 = self.static_conv1(input)   
204.         input2 = self.static_conv2(input)   
205.         input3 = self.static_conv3(input)   
206.            
207.         input = input1+input2+input3   
208.            
209.         for step in range(time_window): # simulation time steps   
210.             c0_mem, c0_spike = self.mem0(input, c0_mem, c0_spike, self.w1)   
211.             x = F.max_pool2d(c0_spike, 2)   
212.                
213.             x = self.conv1(x)    
214.             x = self.batch1(x)   
215.             c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike, self.w2)    
216.             x = F.max_pool2d(c1_spike, 2)   
217.                
218.             x = x.view(batch_size, -1)   
219.                
220.             x = self.drop1(x)   
221.             x = self.fc1(x)   
222.             h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike, self.w3)   
223.                
224.             x = self.drop2(h1_spike)   
225.             x = self.fc2(x)   
226.             h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike, self.w4)   
227.                
228.             x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)   
229.             h3_sumspike += x.squeeze(1)   
230.         outputs = h3_sumspike / time_window   
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231.         return outputs   
232.         
233.          
234. class N_MNIST(nn.Module):   
235.     def __init__(self):   
236.         super(N_MNIST, self).__init__()   
237.         self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
238.         self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
239.    
240.         self.fc1 = nn.Linear(128*8*8, 2048,bias=False)   
241.         self.fc2 = nn.Linear(2048, 100,bias=False)   
242.            
243.         self.mem0 = LIFNode()   
244.         self.mem1 = LIFNode()   
245.         self.mem5 = LIFNode()   
246.         self.mem6 = LIFNode()   
247.    
248.         self.batch0 = nn.BatchNorm2d(128)   
249.         self.batch1 = nn.BatchNorm2d(128)   
250.    
251.         self.drop1 = layer.Dropout(0.5)   
252.         self.drop2 = layer.Dropout(0.5)   
253.            
254.         self.static_conv1 = nn.Sequential(   
255.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),   
256.             nn.BatchNorm2d(128))    
257.         self.static_conv2 = nn.Sequential(   
258.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),   
259.             nn.BatchNorm2d(128))    
260.         self.static_conv3 = nn.Sequential(   
261.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),   
262.             nn.BatchNorm2d(128))    
263.    
264.    
265.     def forward(self, input,batch_size=50, time_window = 8):   
266.         c0_mem = c0_spike = c0_sumspike = torch.zeros(batch_size,128, 34, 34

, device=device)   
267.         c1_mem = c1_spike = c1_sumspike = torch.zeros(batch_size,128, 17, 17

, device=device)   
268.            
269.         c3_mem = c3_spike = c3_sumspike = torch.zeros(batch_size,1280, devic

e=device)   
270.         c4_mem = c4_spike = c4_sumspike = torch.zeros(batch_size,128, device

=device)   
271.            
272.            
273.         h1_mem = h1_spike = h1_sumspike = torch.zeros(batch_size, 2048, devi

ce=device)   
274.         h2_mem = h2_spike = h2_sumspike = torch.zeros(batch_size, 100, devic

e=device)   
275.         h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 10, device

=device)   
276.            
277.         input1 = input.permute(1, 0, 2, 3, 4)   
278.            
279.         for step in range(time_window): # simulation time steps   
280.             x = input1[step]   
281.             x1 = self.static_conv1(x)   
282.             x2 = self.static_conv2(x)     
283.             x3 = self.static_conv3(x)   
284.             x = x1+x2+x3   
285.             c0_mem, c0_spike = self.mem0(x, c0_mem, c0_spike)   
286.             x = F.max_pool2d(c0_spike, 2)   
287.                
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288.             x = self.conv1(x)   
289.             x = self.batch1(x)   
290.             c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)    
291.             x = F.max_pool2d(c1_spike, 2)               
292.                
293.             x = x.view(batch_size, -1)   
294.                
295.             x = self.drop1(x)   
296.             x = self.fc1(x)   
297.             h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike)   
298.                
299.             x = self.drop2(h1_spike)   
300.             x = self.fc2(x)   
301.             h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike)   
302.                
303.             x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)   
304.             h3_sumspike += x.squeeze(1)   
305.         outputs = h3_sumspike / time_window   
306.         return outputs   
307.    
308.    
309.    
310. class CIFAR10_DVS(nn.Module):   
311.     def __init__(self):   
312.         super(CIFAR10_DVS, self).__init__()   
313.         self.conv0 = nn.Conv2d(2, 128, kernel_size=3, stride=1, padding=1,bi

as=False)   
314.         self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
315.         self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
316.         self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
317.    
318.         self.fc1 = nn.Linear(128*8*8, 512,bias=False)   
319.         self.fc2 = nn.Linear(512, 100,bias=False)   
320.            
321.         self.mem0 = LIFNode()   
322.         self.mem1 = LIFNode()   
323.         self.mem2 = LIFNode()   
324.         self.mem3 = LIFNode()   
325.         self.mem5 = LIFNode()   
326.         self.mem6 = LIFNode()   
327.            
328.         self.batch0 = nn.BatchNorm2d(128)   
329.         self.batch1 = nn.BatchNorm2d(128)   
330.         self.batch2 = nn.BatchNorm2d(128)   
331.         self.batch3 = nn.BatchNorm2d(128)   
332.     
333.         self.drop1 = layer.Dropout(0.5)   
334.         self.drop2 = layer.Dropout(0.5)   
335.         '''''  
336.         self.static_conv1 = nn.Sequential(  
337.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),  
338.             nn.BatchNorm2d(128))   
339.         self.static_conv2 = nn.Sequential(  
340.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),  
341.             nn.BatchNorm2d(128))   
342.         self.static_conv3 = nn.Sequential(  
343.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),  
344.             nn.BatchNorm2d(128)) '''   
345.    
346.     def forward(self, input,batch_size, time_window,train=True):   
347.         c0_mem = c0_spike  = torch.zeros(128, 128, 128, device=device)   
348.         c1_mem = c1_spike  = torch.zeros(128, 64, 64, device=device)   
349.         c2_mem = c2_spike  = torch.zeros(128, 32, 32, device=device)   
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350.         c3_mem = c3_spike  = torch.zeros(128, 16, 16, device=device)   
351.            
352.         h1_mem = h1_spike  = torch.zeros(512, device=device)   
353.         h2_mem = h2_spike  = torch.zeros(100, device=device)   
354.         h3_mem = h3_spike  = h3_sumspike = torch.zeros(10, device=device)   
355.            
356.         input1 = input.permute(1, 0, 2, 3, 4)   
357.            
358.         spike_count = []   
359.            
360.         for step in range(time_window): # simulation time steps   
361.                
362.             x = input1[step]   
363.             x = self.conv0(x)   
364.             x = self.batch0(x)   
365.                
366.             c0_mem, c0_spike = self.mem0(x, c0_mem, c0_spike)   
367.             x = F.max_pool2d(c0_spike, 2)   
368.                
369.             x = self.conv1(x)   
370.             x = self.batch1(x)   
371.             c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)    
372.             x = F.max_pool2d(c1_spike, 2)   
373.                
374.             x = self.conv2(x)   
375.             x = self.batch2(x)   
376.             c2_mem, c2_spike = self.mem2(x, c2_mem, c2_spike)    
377.             x = F.max_pool2d(c2_spike, 2)   
378.                
379.             x = self.conv3(x)   
380.             x = self.batch3(x)   
381.             c3_mem, c3_spike = self.mem3(x, c3_mem, c3_spike)    
382.             x = F.max_pool2d(c3_spike, 2)   
383.                           
384.             x = x.view(batch_size, -1)   
385.                
386.             x = self.drop1(x)   
387.             x = self.fc1(x)   
388.             h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike)   
389.                
390.             x = self.drop2(h1_spike)   
391.             x = self.fc2(x)   
392.             h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike)   
393.                
394.             x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)   
395.             h3_sumspike = h3_sumspike + x.squeeze(1)   
396.         outputs = h3_sumspike / time_window   
397.        
398.            
399.         return outputs   
400.    
401. class DVS_GESTURE(nn.Module):   
402.     def __init__(self):   
403.         super(DVS_GESTURE, self).__init__()   
404.         self.conv0 = nn.Conv2d(2, 128, kernel_size=3, stride=1, padding=1,bi

as=False)   
405.         self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
406.         self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
407.         self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)   
408.         self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)           
409.    
410.         self.fc1 = nn.Linear(128*4*4, 512,bias=False)   
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411.         self.fc2 = nn.Linear(512, 110,bias=False)   
412.            
413.         self.mem0 = LIFNode()   
414.         self.mem1 = LIFNode()   
415.         self.mem2 = LIFNode()   
416.         self.mem3 = LIFNode()   
417.         self.mem4 = LIFNode()   
418.         self.mem5 = LIFNode()   
419.         self.mem6 = LIFNode()   
420.            
421.         self.batch0 = nn.BatchNorm2d(128)   
422.         self.batch1 = nn.BatchNorm2d(128)   
423.         self.batch2 = nn.BatchNorm2d(128)   
424.         self.batch3 = nn.BatchNorm2d(128)   
425.         self.batch4 = nn.BatchNorm2d(128)   
426.    
427.         self.drop1 = layer.Dropout(0.5)   
428.         self.drop2 = layer.Dropout(0.5)   
429.            
430.            
431.         self.static_conv1 = nn.Sequential(   
432.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),   
433.             nn.BatchNorm2d(128))    
434.         self.static_conv2 = nn.Sequential(   
435.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),   
436.             nn.BatchNorm2d(128))    
437.         self.static_conv3 = nn.Sequential(   
438.             nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),   
439.             nn.BatchNorm2d(128))    
440.            
441.    
442.    
443.     def forward(self, input,batch_size,time_window,train=True):   
444.         c0_mem = c0_spike  = torch.zeros(batch_size,128, 128, 128, device=de

vice)   
445.         c1_mem = c1_spike  = torch.zeros(batch_size,128, 64, 64, device=devi

ce)   
446.         c2_mem = c2_spike  = torch.zeros(batch_size,128, 32, 32, device=devi

ce)   
447.         c3_mem = c3_spike  = torch.zeros(batch_size,128, 16, 16, device=devi

ce)   
448.         c4_mem = c4_spike  = torch.zeros(batch_size,128, 8, 8, device=device

)   
449.            
450.         h1_mem = h1_spike  = torch.zeros(batch_size, 512, device=device)   
451.         h2_mem = h2_spike  = torch.zeros(batch_size, 110, device=device)   
452.         h3_mem = h3_spike  = h3_sumspike = torch.zeros(batch_size, 11, devic

e=device)   
453.            
454.         spike_count = []   
455.         input1 = input.permute(1, 0, 2, 3, 4)   
456.            
457.    
458.         for step in range(time_window): # simulation time steps   
459.             x = input1[step]   
460.             x1 = self.static_conv1(x)   
461.             x2 = self.static_conv2(x)   
462.             x3 = self.static_conv3(x)   
463.             x = x1+x2+x3   
464.                
465.             c0_mem, c0_spike = self.mem0(x, c0_mem, c0_spike)              
466.             x = F.max_pool2d(c0_spike, 2)   
467.                
468.             x = self.conv1(x)   
469.             x = self.batch1(x)    
470.             c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)             
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471.             x = F.max_pool2d(c1_spike, 2)   
472.                
473.             x = self.conv2(x)   
474.             x = self.batch2(x)   
475.             c2_mem, c2_spike = self.mem2(x, c2_mem, c2_spike)    
476.             x = F.max_pool2d(c2_spike, 2)   
477.                
478.             x = self.conv3(x)   
479.             x = self.batch3(x)   
480.             c3_mem, c3_spike = self.mem3(x, c3_mem, c3_spike)    
481.             x = F.max_pool2d(c3_spike, 2)      
482.                
483.             x = self.conv4(x)   
484.             x = self.batch4(x)   
485.             c4_mem, c4_spike = self.mem4(x, c4_mem, c4_spike)    
486.             x = F.max_pool2d(c4_spike, 2)   
487.                           
488.             x = x.view(batch_size, -1)   
489.                
490.             x = self.drop1(x)   
491.             x = self.fc1(x)   
492.             h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike)   
493.                
494.             x = self.drop2(h1_spike)   
495.             x = self.fc2(x)   
496.             h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike)   
497.                
498.             x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)   
499.             h3_sumspike += x.squeeze(1)   
500.         outputs = h3_sumspike / time_window   
501.    
502.    
503.         return outputs  
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APPENDIX B  

This part provides the details of code of SNN models and neural oscillation model discussed 

in Chapter 3: 

1. import torch   
2. import torch.nn as nn   
3. import torch.nn.functional as F     
4. from spikingjelly.clock_driven import functional, layer, surrogate   
5. import math   
6. from torchvision import transforms   
7. import numpy as np    
8. import matplotlib.pyplot as plt   
9. import random   
10. from spikingjelly import visualizing   
11.    
12.    
13. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")    
14. thresh = 1.0  # neuronal threshold   
15. lens = 0.5 # hyper-parameters of approximate function   
16. decay = 0.5 # decay constants    
17. learning_rate = 1e-3   
18. alpha = 3   
19. num_epochs = 100 # max epoch   
20. time_window= 8   
21. batch_size = 50   
22.     
23.    
24. # define approximate firing function    
25. class ActFun(torch.autograd.Function):   
26.     @staticmethod   
27.     def forward(ctx, input):   
28.         ctx.save_for_backward(input)   
29.         return input.gt(thresh).float()   
30.    
31.     @staticmethod   
32.     def backward(ctx, grad_output):   
33.         input, = ctx.saved_tensors   
34.         grad_input = grad_output.clone()   
35.         temp = alpha / 2 / (1 + (math.pi / 2 * alpha * (input-thresh)).pow_(2))     
36.          
37.         return grad_input * temp.float(),None   
38.             
39.    
40.          
41. act_fun = ActFun.apply     
42.     
43.    
44. class LIFNode(nn.Module):   
45.     def __init__(self):   
46.         super(LIFNode, self).__init__()   
47.         self.func = torch.nn.LeakyReLU(negative_slope=-0.03)    
48.           
49.     def forward(self, ops, x, mem, spike):   
50.         mem = mem * (1. - spike) - mem * decay * (1. - spike) + ops(x)   
51.         mem = self.func(mem+torch.randn(mem.size(),device=device)*0.5)   
52.            
53.         spike = act_fun(mem) # act_fun : approximation firing function   
54.         return mem, spike   
55.        
56.    
57.     
58. class VGG_SNN(nn.Module):    
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59.     def __init__(self):   
60.         super(VGG_SNN, self).__init__()   
61.         self.conv1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3, 3),str

ide=(1, 1),padding=1,bias=False)   
62.         self.conv2 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3, 3),st

ride=(1, 1),padding=1,bias=False)   
63.            
64.         self.conv3 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3, 3),s

tride=(1, 1),padding=1,bias=False)   
65.         self.conv4 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)   
66.            
67.         self.conv5 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)   
68.         self.conv6 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)   
69.         self.conv7 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)   
70.            
71.         self.conv8 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)   
72.         self.conv9 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)   
73.         self.conv10 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)   
74.            
75.         self.conv11 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)   
76.         self.conv12 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)   
77.         self.conv13 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)   
78.            
79.         self.fc1 = nn.Linear(512, 512,bias=False)   
80.         self.fc2 = nn.Linear(512, 512,bias=False)   
81.         self.fc3 = nn.Linear(512, 10,bias=False)   
82.            
83.         self.batch1 = nn.BatchNorm2d(64)   
84.         self.batch2 = nn.BatchNorm2d(64)   
85.         self.batch3 = nn.BatchNorm2d(128)   
86.         self.batch4 = nn.BatchNorm2d(128)   
87.         self.batch5 = nn.BatchNorm2d(256)   
88.         self.batch6 = nn.BatchNorm2d(256)   
89.         self.batch7 = nn.BatchNorm2d(256)   
90.         self.batch8 = nn.BatchNorm2d(512)   
91.         self.batch9 = nn.BatchNorm2d(512)   
92.         self.batch10 = nn.BatchNorm2d(512)   
93.         self.batch11 = nn.BatchNorm2d(512)   
94.         self.batch12 = nn.BatchNorm2d(512)   
95.         self.batch13 = nn.BatchNorm2d(512)   
96.         self.drop1 = layer.Dropout(0.5)   
97.         self.drop2 = layer.Dropout(0.5)   
98.            
99.         self.mem = LIFNode()   
100.            
101.         self.flatten = nn.Flatten()   
102.            
103.         self.s_list = torch.tensor([], device=device)   
104.         self.v_list = torch.tensor([], device=device)   
105.         
106.    
107.     def forward(self, input):   
108.            
109.                                            
110.         c1_mem = c1_spike = c1_sumspike = c1_minus = torch.zeros(64, 32, 32,

 device=device)   
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111.         c2_mem = c2_spike = c2_sumspike = c2_minus = torch.zeros(64, 32, 32,
 device=device)   

112.            
113.         c3_mem = c3_spike = c3_sumspike = c3_minus = torch.zeros(128, 16, 16

, device=device)   
114.         c4_mem = c4_spike = c4_sumspike = c4_minus = torch.zeros(128, 16, 16

, device=device)   
115.            
116.         c5_mem = c5_spike = c5_sumspike = c5_minus = torch.zeros(256, 8, 8, 

device=device)   
117.         c6_mem = c6_spike = c6_sumspike = c6_minus = torch.zeros(256, 8, 8, 

device=device)   
118.         c7_mem = c7_spike = c7_sumspike = c7_minus = torch.zeros(256, 8, 8, 

device=device)          
119.            
120.         c8_mem = c8_spike = c8_sumspike = c8_minus = torch.zeros(512, 4, 4, 

device=device)   
121.         c9_mem = c9_spike = c9_sumspike = c9_minus = torch.zeros(512, 4, 4, 

device=device)   
122.         c10_mem = c10_spike = c10_sumspike = c10_minus = torch.zeros(512, 4,

 4, device=device)   
123.            
124.         c11_mem = c11_spike = c11_sumspike = c11_minus = torch.zeros(512, 2,

 2, device=device)   
125.         c12_mem = c12_spike = c12_sumspike = c12_minus = torch.zeros(512, 2,

 2, device=device)   
126.         c13_mem = c13_spike = c13_sumspike = c13_minus = torch.zeros(512, 2,

 2, device=device)   
127.    
128.    
129.         h1_mem = h1_spike = h1_sumspike = h1_minus = torch.zeros(512, device

=device)   
130.         h2_mem = h2_spike = h2_sumspike = h2_minus = torch.zeros(512, device

=device)   
131.         h3_mem = h3_spike = h3_sumspike = h3_minus = torch.zeros(10, device=

device)   
132.            
133.            
134.         for step in range(time_window): # simulation time steps   
135.             # block1   
136.             c1_mem, c1_spike = self.mem(self.batch1,self.conv1(input), c1_me

m, c1_spike)                   
137.             c2_mem, c2_spike = self.mem(self.batch2,self.conv2(c1_spike), c2

_mem, c2_spike)   
138.             x = F.avg_pool2d(c2_spike, 2)   
139.                
140.                
141.             #block2   
142.             c3_mem, c3_spike = self.mem(self.batch3,self.conv3(x.float()), c

3_mem, c3_spike)      
143.             c3_sumspike = c3_sumspike + c3_spike                     
144.             c4_mem, c4_spike = self.mem(self.batch4,self.conv4(c3_spike), c4

_mem, c4_spike)                           
145.             x = F.avg_pool2d(c4_spike, 2)   
146.                
147.             #block3   
148.             c5_mem, c5_spike = self.mem(self.batch5,self.conv5(x.float()), c

5_mem, c5_spike,)                           
149.             c6_mem, c6_spike = self.mem(self.batch6,self.conv6(c5_spike), c6

_mem, c6_spike,)              
150.             c7_mem, c7_spike = self.mem(self.batch7,self.conv7(c6_spike), c7

_mem, c7_spike)   
151.             x = F.avg_pool2d(c7_spike, 2)   
152.                
153.                
154.             #block4   
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155.             c8_mem, c8_spike = self.mem(self.batch8,self.conv8(x.float()), c
8_mem, c8_spike)             

156.             c9_mem, c9_spike = self.mem(self.batch9,self.conv9(c8_spike), c9
_mem, c9_spike)                     

157.             c10_mem, c10_spike = self.mem(self.batch10,self.conv10(c9_spike)
, c10_mem, c10_spike)     

158.             x = F.avg_pool2d(c10_spike, 2)   
159.                
160.             #block5   
161.             c11_mem, c11_spike = self.mem(self.batch11,self.conv11(x.float()

), c11_mem, c11_spike)             
162.             c12_mem, c12_spike = self.mem(self.batch12,self.conv12(c11_spike

), c12_mem, c12_spike)              
163.             c13_mem, c13_spike = self.mem(self.batch13,self.conv13(c12_spike

), c13_mem, c13_spike)   
164.             x = F.avg_pool2d(c13_spike, 2)   
165.    
166.             x = self.flatten(x)   
167.             h1_mem, h1_spike = self.mem(self.fc1,self.drop1(x), h1_mem, h1_s

pike)                 
168.             h2_mem, h2_spike = self.mem(self.fc2,self.drop2(h1_spike), h2_me

m, h2_spike)   
169.             h3_mem, h3_spike = self.mem(self.fc3,h2_spike, h3_mem, h3_spike)

       
170.             h3_sumspike = h3_sumspike + h3_spike   
171.                            
172.    
173.         outputs = h3_sumspike/time_window   
174.            
175.         return outputs   
176.    
177.    
178. class ResidualBlock(nn.Module):      
179.     def __init__(self, inchannel, outchannel, stride=2):    
180.         super(ResidualBlock, self).__init__()     
181.    
182.         self.shortcut = nn.Sequential(   
183.             nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, b

ias=False),   
184.             nn.BatchNorm2d(outchannel)   
185.         )   
186.     def forward(self, x):     
187.         out = self.shortcut(x)      
188.         return out   
189.    
190.    
191. class ResnetSnn(nn.Module):   
192.     def __init__(self):   
193.         super(ResnetSnn, self).__init__()   
194.         self.conv0 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,

 3),stride=(1, 1),padding=1,bias=False)   
195.         self.conv1 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)   
196.         self.conv2 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)   
197.         self.conv3 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)   
198.         self.conv4 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)   
199.            
200.         self.conv5 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(

3, 3),stride=(2, 2),padding=1,bias=False)   
201.         self.conv6 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=

(3, 3),stride=(1, 1),padding=1,bias=False)   
202.         self.conv7 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=

(3, 3),stride=(1, 1),padding=1,bias=False)   
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203.         self.conv8 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=
(3, 3),stride=(1, 1),padding=1,bias=False)   

204.            
205.         self.conv9 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=

(3, 3),stride=(2, 2),padding=1,bias=False)   
206.         self.conv10 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)   
207.         self.conv11 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)   
208.         self.conv12 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)   
209.            
210.         self.conv13 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size

=(3, 3),stride=(2, 2),padding=1,bias=False)   
211.         self.conv14 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)   
212.         self.conv15 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)   
213.         self.conv16 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)   
214.            
215.    
216.         self.fc1 = nn.Linear(512, 10,bias=False)   
217.    
218.            
219.         self.batch0 = nn.BatchNorm2d(64)    
220.         self.batch1 = nn.BatchNorm2d(64)    
221.         self.batch2 = nn.BatchNorm2d(64)   
222.         self.batch3 = nn.BatchNorm2d(64)   
223.         self.batch4 = nn.BatchNorm2d(64)   
224.         self.batch5 = nn.BatchNorm2d(128)   
225.         self.batch6 = nn.BatchNorm2d(128)   
226.         self.batch7 = nn.BatchNorm2d(128)   
227.         self.batch8 = nn.BatchNorm2d(128)   
228.         self.batch9 = nn.BatchNorm2d(256)   
229.         self.batch10 = nn.BatchNorm2d(256)   
230.         self.batch11 = nn.BatchNorm2d(256)   
231.         self.batch12 = nn.BatchNorm2d(256)   
232.         self.batch13 = nn.BatchNorm2d(512)   
233.         self.batch14 = nn.BatchNorm2d(512)   
234.         self.batch15 = nn.BatchNorm2d(512)   
235.         self.batch16 = nn.BatchNorm2d(512)   
236.         self.batch17 = nn.BatchNorm1d(10)   
237.    
238.         self.drop1 = layer.Dropout(0.5)   
239.         self.drop2 = layer.Dropout(0.5)   
240.            
241.         self.mem = LIFNode()   
242.         self.flatten = nn.Flatten()   
243.    
244.         self.block1 = ResidualBlock(64,128)   
245.         self.block2 = ResidualBlock(128,256)   
246.         self.block3 = ResidualBlock(256,512)   
247.            
248.    
249.         self.static_conv = nn.Sequential(   
250.             nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),   
251.             nn.BatchNorm2d(64)   
252.             )    
253.    
254.         self.avg1 = nn.Conv2d(in_channels=3,out_channels=128,kernel_size=(2,

 2),stride=(2, 2),padding=0,bias=False)   
255.         self.avg2 = nn.Conv2d(in_channels=3,out_channels=256,kernel_size=(4,

 4),stride=(4, 4),padding=0,bias=False)   
256.         self.avg3 = nn.Conv2d(in_channels=3,out_channels=512,kernel_size=(8,

 8),stride=(8, 8),padding=0,bias=False)   
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257.    
258.    
259.     def forward(self, input):   
260.         c0_mem = c0_spike = c0_sumspike = c0_minus = torch.zeros(64, 32, 32,

 device=device)   
261.                                            
262.         c1_mem = c1_spike = c1_sumspike = c1_minus = torch.zeros(64, 32, 32,

 device=device)   
263.         c2_mem = c2_spike = c2_sumspike = c2_minus = torch.zeros(64, 32, 32,

 device=device)            
264.         c3_mem = c3_spike = c3_sumspike = c3_minus = torch.zeros(64, 32, 32,

 device=device)   
265.         c4_mem = c4_spike = c4_sumspike = c4_minus = torch.zeros(64, 32, 32,

 device=device)   
266.            
267.         c5_mem = c5_spike = c5_sumspike = c5_minus = torch.zeros(128, 16, 16

, device=device)   
268.         c6_mem = c6_spike = c6_sumspike = c6_minus = torch.zeros(128, 16, 16

, device=device)   
269.         c7_mem = c7_spike = c7_sumspike = c7_minus = torch.zeros(128, 16, 16

, device=device)                  
270.         c8_mem = c8_spike = c8_sumspike = c8_minus = torch.zeros(128, 16, 16

, device=device)   
271.            
272.         c9_mem = c9_spike = c9_sumspike = c9_minus = torch.zeros(256, 8, 8, 

device=device)   
273.         c10_mem = c10_spike = c10_sumspike = c10_minus = torch.zeros(256, 8,

 8, device=device)           
274.         c11_mem = c11_spike = c11_sumspike = c11_minus = torch.zeros(256, 8,

 8, device=device)   
275.         c12_mem = c12_spike = c12_sumspike = c12_minus = torch.zeros(256, 8,

 8, device=device)     
276.            
277.         c13_mem = c13_spike = c13_sumspike = c13_minus = torch.zeros(512, 4,

 4, device=device)   
278.         c14_mem = c14_spike = c14_sumspike = c14_minus = torch.zeros(512, 4,

 4, device=device)   
279.         c15_mem = c15_spike = c15_sumspike = c15_minus = torch.zeros(512, 4,

 4, device=device)   
280.         c16_mem = c16_spike = c16_sumspike = c16_minus = torch.zeros(512, 4,

 4, device=device)   
281.    
282.    
283.         h1_mem = h1_spike = h1_sumspike = h1_minus = torch.zeros(10, device=

device)     
284.         h2_mem = h2_spike = h2_sumspike = h2_minus = torch.zeros(10, device=

device)   
285.         h3_mem = h3_spike = h3_sumspike = h3_minus = torch.zeros(10, device=

device)    
286.            
287.            
288.    
289.         for step in range(time_window): # simulation time steps     
290.             c0_mem, c0_spike = self.mem(self.batch0,self.conv0(input), c0_me

m, c0_spike)      
291.    
292.             #block1   
293.             c1_mem, c1_spike = self.mem(self.batch1,self.conv1(c0_spike), c1

_mem, c1_spike)                           
294.             c2_mem, c2_spike = self.mem(self.batch2,self.conv2(c1_spike), c2

_mem+c0_spike, c2_spike)#+input1   
295.             c3_mem, c3_spike = self.mem(self.batch3,self.conv3(c2_spike), c3

_mem, c3_spike)                        
296.             c4_mem, c4_spike = self.mem(self.batch4,self.conv4(c3_spike), c4

_mem+c2_spike, c4_spike)                           
297.         
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298.             #block2   
299.             c5_mem, c5_spike = self.mem(self.batch5,self.conv5(c4_spike), c5

_mem, c5_spike)                           
300.             c6_mem, c6_spike = self.mem(self.batch6,self.conv6(c5_spike), c6

_mem+self.block1(c4_spike), c6_spike)                     
301.             c7_mem, c7_spike = self.mem(self.batch7,self.conv7(c6_spike), c7

_mem, c7_spike)   
302.             c8_mem, c8_spike = self.mem(self.batch8,self.conv8(c7_spike), c8

_mem+c6_spike, c8_spike)        
303.                
304.             #block3     
305.             c9_mem, c9_spike = self.mem(self.batch9,self.conv9(c8_spike), c9

_mem, c9_spike)                     
306.             c10_mem, c10_spike = self.mem(self.batch10,self.conv10(c9_spike)

, c10_mem+self.block2(c8_spike), c10_spike)     
307.             c11_mem, c11_spike = self.mem(self.batch11,self.conv11(c10_spike

), c11_mem, c11_spike)             
308.             c12_mem, c12_spike = self.mem(self.batch12,self.conv12(c11_spike

), c12_mem+c10_spike, c12_spike)        
309.                
310.             #block4         
311.             c13_mem, c13_spike = self.mem(self.batch13,self.conv13(c12_spike

), c13_mem, c13_spike)   
312.             c14_mem, c14_spike = self.mem(self.batch14,self.conv14(c13_spike

), c14_mem+self.block3(c12_spike), c14_spike)   
313.             c15_mem, c15_spike = self.mem(self.batch15,self.conv15(c14_spike

), c15_mem, c15_spike)   
314.             c16_mem, c16_spike = self.mem(self.batch16,self.conv16(c15_spike

), c16_mem+c14_spike, c16_spike)   
315.             x = c16_spike   
316.    
317.                
318.             x = F.avg_pool2d(x, 4)   
319.             x = self.flatten(x)   
320.    
321.             h1_mem, h1_spike = self.mem(self.batch17,self.fc1(x), h1_mem, h1

_spike)       
322.    
323.             h1_sumspike = h1_sumspike+h1_spike   
324.                 
325.         outputs = h1_sumspike / time_window   
326.         
327.         return outputs    

 

Training alternative neural oscillation model: 

1. class LIFNode(nn.Module):   
2.     def __init__(self):   
3.         super(LIFNode, self).__init__()   
4.         self.func = torch.nn.LeakyReLU(negative_slope=-0.03)    
5.         self.bias0 = torch.nn.Parameter(torch.zeros(1), requires_grad=True)    
6.         self.bias1 = torch.nn.Parameter(torch.zeros(1), requires_grad=True)   
7.    
8.     def forward(self, ops, x, mem, spike,train=True):   
9.         mem = mem * (1. - spike) - mem * decay * (1. - spike) + ops(x)    
10.            
11.         if train==True:    
12.           mem1 = self.func(mem+torch.rand(mem.size(),device=device)-

torch.ones(1,device=device)*0.2 )   
13.           mem2 = self.func(mem+torch.sin(mem+self.bias1)+self.bias0)     
14.         else:   
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15.           mem2 = self.func(mem+torch.rand(mem.size(),device=device)-
torch.ones(1,device=device)*0.2 )   

16.           mem1 = self.func(mem+torch.sin(mem+self.bias1)+self.bias0)        
17.         spike = act_fun(mem1) # act_fun : approximation firing function   
18.         spike2 = act_fun(mem2)   
19.         return mem1, spike, spike-spike2   
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APPENDIX C 

This part provides the code of three steps of training SNN mentioned in Chapter 4: 

1. class LIFNode(nn.Module):     
2.     def __init__(self):     
3.         super(LIFNode, self).__init__()     
4.              
5.     def forward(self, ops, x, mem, spike):     
6.             
7.         # step 1 T=1   
8.         noise = torch.randn(mem.size(),device=device)    
9.         maximum = torch.max(abs(noise))    
10.         noise = noise/(2*maximum)+0.5     
11.            
12.         mem = noise + ops(x)     
13.            
14.         # step 2 T=N   
15.         '''  
16.         noise = torch.randn(mem.size(),device=device)   
17.         maximum = torch.max(abs(noise))   
18.         noise = noise/(2*maximum)+0.5    
19.           
20.         mem = noise + ops(x)    
21.         '''   
22.            
23.         # step 3 T=N   
24.         '''  
25.         mean = torch.mean(mem * decay * (1. - spike))    
26.         std = torch.std(mem * decay * (1. - spike), unbiased=False)    
27.         mem = (mem * decay * (1. - spike)-mean)/(std+1e-17)    
28.         maximum = torch.max(abs(mem))    
29.             
30.         noise = torch.randn(mem.size(),device=device)    
31.         mem = mem/(4*maximum+1e-17)+0.5+noise/torch.max(abs(noise))*0.25   
32.     
33.         mem = mem + ops(x)     
34.         '''           
35.              
36.         spike = act_fun(mem) # act_fun : approximation firing function     
37.            
38.              
39.         return mem, spike   
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APPENDIX D  

This part provides code of the mask SNN discussed in Chapter 5: 

1. # define approximate firing function   
2. class ActFun(torch.autograd.Function):   
3.     @staticmethod   
4.     def forward(ctx, input, thresh):   
5.         ctx.save_for_backward(input)   
6.         ctx.th = thresh   
7.         return input.gt(thresh).float()   
8.    
9.     @staticmethod   
10.     def backward(ctx, grad_output):   
11.         input, = ctx.saved_tensors   
12.         grad_input = grad_output.clone()   
13.         temp = alpha / 2 / (1 + (math.pi / 2 * alpha * (input-ctx.th)).pow_(2))   
14.         return grad_input * temp.float(),None,None   
15.    
16. act_fun = ActFun.apply    
17.    
18.    
19. class IFNode(nn.Module):   
20.     def __init__(self):   
21.         super(IFNode, self).__init__()   
22.         self.w = torch.nn.Parameter(torch.ones(1), requires_grad=True)   
23.     def forward(self, x, thresh):   
24.         spike = act_fun(x, thresh) # act_fun : approximation firing function   
25.         return spike   
26.            
27. class SNN(nn.Module):   
28.     def __init__(self, T):   
29.         super().__init__()   
30.         self.T = T   
31.         self.flatten = nn.Flatten()   
32.         self.encoder = nn.Sequential(   
33.             nn.Conv2d(1, 16, 3, padding=1),   
34.             nn.BatchNorm2d(16),   
35.             neuron.LIFNode(tau=1.2,surrogate_function=surrogate.ATan()),   
36.             nn.MaxPool2d(2, stride=2),   
37.                
38.             nn.Conv2d(16, 4, 3, padding=1),   
39.             nn.BatchNorm2d(4),   
40.             neuron.LIFNode(tau=1.2,surrogate_function=surrogate.ATan()),   
41.             nn.MaxPool2d(2, stride=2),   
42.         )   
43.    
44.         self.decoder = nn.Sequential(   
45.             nn.ConvTranspose2d(4, 16, 2, stride=2),   
46.             nn.BatchNorm2d(16),   
47.             neuron.LIFNode(tau=1.2,surrogate_function=surrogate.ATan()),   
48.                
49.             nn.ConvTranspose2d(16, 1, 2, stride=2),   
50.             nn.BatchNorm2d(1),   
51.                
52.         )   
53.            
54.         self.func = IFNode()   
55.            
56.     def forward(self, x):   
57.         dim = x.size()   
58.         out_mem_counter = self.decoder(self.encoder(x))   
59.         for t in range(1, self.T):   
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60.             out_mem_counter = out_mem_counter + self.decoder(self.encoder(x))   
61.         out_mem_counter = self.flatten(out_mem_counter)   
62.         a = out_mem_counter    
63.         th = torch.tensor(np.percentile(a.cpu().detach().numpy(), 90, axis=1, keepd

ims=True)).cuda()   
64.         mask = self.func(out_mem_counter, th)   
65.         mask = mask.view(-1,1,int(dim[-2]),int(dim[-1]))   
66.    
67.         return mask   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



150 

 

APPENDIX E  

This part provides the training and inference files for Chapter 6. 
 

Training file: 
 

1. import numpy as np   
2. np.set_printoptions(threshold=np.inf)   
3. import matplotlib.cm as cmap   
4. # import tkinter   
5. # import matplotlib   
6. # matplotlib.use('TkAgg')   
7.    
8. import matplotlib.pyplot as plt   
9. import time   
10. import os.path   
11. import scipy   
12. import pickle   
13. from struct import unpack   
14. from brian2 import *   
15. import brian2 as b2   
16. from brian2tools import *   
17.    
18. #prefs.codegen.target = 'cython'   
19.    
20. # specify the location of the data   
21. data_path = ''   
22. print(os.path.abspath(data_path))   
23.    
24. #------------------------------------------------------------------------------   
25. # functions   
26. #------------------------------------------------------------------------------   
27. def get_labeled_data(picklename, bTrain = True):   
28.     """Read input-vector (image) and target class (label, 0-9) and return  
29.        it as list of tuples.  
30.     """   
31.     if os.path.isfile('%s.pickle' % picklename):   
32.         data = pickle.load(open('%s.pickle' % picklename,'rb'))   
33.            
34.     else:   
35.         # Open the images with gzip in read binary mode   
36.         if bTrain:   
37.             images = open(data_path + 'train-images.idx3-ubyte','rb')   
38.             labels = open(data_path + 'train-labels.idx1-ubyte','rb')   
39.         else:   
40.             images = open(data_path + 'test-images6.idx3-ubyte','rb')   
41.             labels = open(data_path + 'test-labels6.idx1-ubyte','rb')   
42.         # Get metadata for images   
43.         images.read(4)  # skip the magic_number   
44.         number_of_images = unpack('>I', images.read(4))[0]   
45.         print(number_of_images)   
46.         rows = unpack('>I', images.read(4))[0]   
47.         cols = unpack('>I', images.read(4))[0]   
48.         # Get metadata for labels   
49.         labels.read(4)  # skip the magic_number   
50.         N = unpack('>I', labels.read(4))[0]   
51.    
52.         if number_of_images != N:   
53.             raise Exception('number of labels did not match the number of images') 

  
54.         # Get the data   
55.         x = np.zeros((N, rows, cols), dtype=np.uint8)  # Initialize numpy array   
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56.         y = np.zeros((N, 1), dtype=np.uint8)  # Initialize numpy array   
57.         for i in range(N):   
58.             if i % 1000 == 0:   
59.                 print("i: %i" % i)   
60.             x[i] = [[unpack('>B', images.read(1))[0] for unused_col in range(cols)]

  for unused_row in range(rows) ]   
61.             y[i] = unpack('>B', labels.read(1))[0]   
62.    
63.         data = {'x': x, 'y': y, 'rows': rows, 'cols': cols}   
64.         pickle.dump(data, open("%s.pickle" % picklename, "wb"))   
65.     return data   
66.    
67. def get_matrix_from_file(fileName):   
68.     offset = len(ending) + 4   
69.     if fileName[-4-offset] == 'X':   
70.         n_src = n_input   
71.     else:   
72.         if fileName[-3-offset]=='e':   
73.             n_src = n_e   
74.         else:   
75.             n_src = n_i   
76.     if fileName[-1-offset]=='e':   
77.         n_tgt = n_e   
78.     else:   
79.         n_tgt = n_i   
80.     readout = np.load(fileName)   
81.     print(readout.shape, fileName)   
82.     value_arr = np.zeros((n_src, n_tgt))   
83.     if not readout.shape == (0,):   
84.         value_arr[np.int32(readout[:,0]), np.int32(readout[:,1])] = readout[:,2]   
85.     return value_arr   
86.    
87.    
88. def save_connections(ending = ''):   
89.     print('save connections')   
90.     for connName in save_conns:   
91.         conn = connections[connName]   
92.         connListSparse = list(zip(conn.i, conn.j, conn.w))   
93.         np.save(data_path + 'weights/' + connName + ending, connListSparse)   
94.    
95. def save_theta(ending = ''):   
96.     print('save theta')   
97.     for pop_name in population_names:   
98.         np.save(data_path + 'weights/theta_' + pop_name + ending, neuron_groups[pop

_name + 'e'].theta)   
99.    
100. def normalize_weights():   
101.     for connName in connections:   
102.         if connName[1] == 'e' and connName[3] == 'e':   
103.             len_source = len(connections[connName].source)   
104.             len_target = len(connections[connName].target)   
105.             connection = np.zeros((len_source, len_target))   
106.             connection[connections[connName].i, connections[connName].j] = c

onnections[connName].w   
107.             temp_conn = np.copy(connection)   
108.             colSums = np.sum(temp_conn, axis = 0)   
109.             colFactors = weight['ee_input']/colSums   
110.             for j in range(n_e):#   
111.                 temp_conn[:,j] *= colFactors[j]   
112.             connections[connName].w = temp_conn[connections[connName].i, con

nections[connName].j]   
113.    
114. def get_2d_input_weights():   
115.     name = 'XeAe'   
116.     weight_matrix = np.zeros((n_input, n_e))   
117.     n_e_sqrt = int(np.sqrt(n_e))   
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118.     n_in_sqrt = int(np.sqrt(n_input))   
119.     num_values_col = n_e_sqrt*n_in_sqrt   
120.     num_values_row = num_values_col   
121.     rearranged_weights = np.zeros((num_values_col, num_values_row))   
122.     connMatrix = np.zeros((n_input, n_e))   
123.     connMatrix[connections[name].i, connections[name].j] = connections[name]

.w   
124.     weight_matrix = np.copy(connMatrix)   
125.    
126.     for i in range(n_e_sqrt):   
127.         for j in range(n_e_sqrt):   
128.                 rearranged_weights[i*n_in_sqrt : (i+1)*n_in_sqrt, j*n_in_sqr

t : (j+1)*n_in_sqrt] = \   
129.                     weight_matrix[:, i + j*n_e_sqrt].reshape((n_in_sqrt, n_i

n_sqrt))   
130.     return rearranged_weights   
131.    
132.    
133. def plot_2d_input_weights():   
134.     name = 'XeAe'   
135.     weights = get_2d_input_weights()   
136.     fig = b2.figure(fig_num, figsize = (18, 18))   
137.     im2 = b2.imshow(weights, interpolation = "nearest", vmin = 0, vmax = wma

x_ee, cmap = cmap.get_cmap('hot_r'))   
138.     b2.colorbar(im2)   
139.     b2.title('weights of connection' + name)   
140.     fig.canvas.draw()   
141.     return im2, fig   
142.    
143. def update_2d_input_weights(im, fig):   
144.     weights = get_2d_input_weights()   
145.     im.set_array(weights)   
146.     fig.canvas.draw()   
147.     return im   
148.    
149. def get_current_performance(performance, current_example_num):   
150.     current_evaluation = int(current_example_num/update_interval)   
151.     start_num = current_example_num - update_interval   
152.     end_num = current_example_num   
153.     difference = outputNumbers[start_num:end_num, 0] - input_numbers[start_n

um:end_num]   
154.     correct = len(np.where(difference == 0)[0])   
155.     performance[current_evaluation] = correct / float(update_interval) * 100

 #performance[current_evaluation] = correct / float(update_interval) * 100   
156.     if (current_example_num + 1) == num_examples:   
157.         performance[current_evaluation+1] = correct / float(update_interval)

 * 100   
158.     return performance   
159.    
160. def plot_performance(fig_num):   
161.     num_evaluations = int(num_examples/update_interval) + 1   
162.     time_steps = range(0, num_evaluations)   
163.     performance = np.zeros(num_evaluations)   
164.     fig = b2.figure(fig_num, figsize = (5, 5))   
165.     fig_num += 1   
166.     ax = fig.add_subplot(111)   
167.     im2, = ax.plot(time_steps, performance) #my_cmap   
168.     b2.ylim(ymax = 100)   
169.     b2.title('Classification performance')   
170.     fig.canvas.draw()   
171.     return im2, performance, fig_num, fig   
172.    
173. def update_performance_plot(im, performance, current_example_num, fig):   
174.     performance = get_current_performance(performance, current_example_num) 

  
175.     im.set_ydata(performance)   
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176.     fig.canvas.draw()   
177.     return im, performance   
178.    
179. def get_recognized_number_ranking(assignments, spike_rates):   
180.     summed_rates = [0] * 8   
181.     num_assignments = [0] * 8   
182.     for i in range(8):   
183.         num_assignments[i] = len(np.where(assignments == i)[0])   
184.         if num_assignments[i] > 0:   
185.             summed_rates[i] = np.sum(spike_rates[assignments == i]) / num_as

signments[i]   
186.     return np.argsort(summed_rates)[::-1]   
187.    
188. def get_new_assignments(result_monitor, input_numbers):   
189.     assignments = np.zeros(n_e)   
190.     input_nums = np.asarray(input_numbers)   
191.     maximum_rate = [0] * n_e   
192.     rate = [0] * n_e   
193.     for j in range(8):   
194.         num_assignments = len(np.where(input_nums == j)[0])   
195.         if num_assignments > 0:   
196.             rate = np.sum(result_monitor[input_nums == j], axis = 0) / num_a

ssignments   
197.    
198.         for i in range(n_e):   
199.             if rate[i] > maximum_rate[i]:   
200.                 maximum_rate[i] = rate[i]   
201.                 assignments[i] = j   
202.     return assignments   
203.    
204.    
205. #---------------------------------------------------------------------------

---   
206. # load data   
207. #---------------------------------------------------------------------------

---   
208. start = time.time()   
209. training = get_labeled_data(data_path + 'training')   
210. print(len(training['x']))   
211. end = time.time()   
212. print('time needed to load training set:', end - start)   
213.    
214. start = time.time()   
215. testing = get_labeled_data(data_path + 'testing', bTrain = False)   
216. print(len(testing['x']))   
217. end = time.time()   
218. print('time needed to load test set:', end - start)   
219.    
220.    
221. #---------------------------------------------------------------------------

---   
222. # set parameters and equations   
223. #---------------------------------------------------------------------------

---   
224. test_mode = True   
225.    
226. np.random.seed(0)   
227. data_path = './'   
228. if test_mode:   
229.     weight_path = data_path + 'weights/'   
230.     num_examples = 24 * 1   
231.     use_testing_set = True   
232.     do_plot_performance = False   
233.     record_spikes = True   
234.     ee_STDP_on = False   
235.     update_interval = num_examples   
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236. else:   
237.     weight_path = data_path + 'random/'   
238.     num_examples = 2696 * 16   
239.     use_testing_set = False   
240.     do_plot_performance = True   
241.     if num_examples <= 2696:   
242.         record_spikes = True   
243.     else:   
244.         record_spikes = True   
245.     ee_STDP_on = True   
246.    
247.    
248. ending = ''   
249. n_input = 784   
250. n_e = 400   
251. n_i = n_e   
252. single_example_time =   0.35 * b2.second #   
253. resting_time = 0.15 * b2.second   
254. runtime = num_examples * (single_example_time + resting_time)   
255. if num_examples <= 24:   
256.     update_interval = num_examples   
257.     weight_update_interval = 20   
258. else:   
259.     update_interval = 2696   
260.     weight_update_interval = 100   
261. if num_examples <= 2696:   
262.     save_connections_interval = 2696   
263. else:   
264.     save_connections_interval = 2696   
265.     update_interval = 2696   
266.    
267. v_rest_e = -65. * b2.mV   
268. v_rest_i = -60. * b2.mV   
269. v_reset_e = -65. * b2.mV   
270. v_reset_i = -45. * b2.mV   
271. v_thresh_e = -52. * b2.mV   
272. v_thresh_i = -40. * b2.mV   
273. refrac_e = 5. * b2.ms   
274. refrac_i = 2. * b2.ms   
275.    
276. weight = {}   
277. delay = {}   
278. input_population_names = ['X']   
279. population_names = ['A']   
280. input_connection_names = ['XA']   
281. save_conns = ['XeAe']   
282. input_conn_names = ['ee_input']   
283. recurrent_conn_names = ['ei', 'ie']   
284. weight['ee_input'] = 78.   
285. delay['ee_input'] = (0*b2.ms,10*b2.ms)   
286. delay['ei_input'] = (0*b2.ms,5*b2.ms)   
287. input_intensity = 2.   
288. start_input_intensity = input_intensity   
289.    
290. tc_pre_ee = 20*b2.ms   
291. tc_post_1_ee = 20*b2.ms   
292. tc_post_2_ee = 40*b2.ms   
293. nu_ee_pre =  0.0001      # learning rate   
294. nu_ee_post = 0.01       # learning rate   
295. wmax_ee = 1.0   
296. exp_ee_pre = 0.2   
297. exp_ee_post = exp_ee_pre   
298. STDP_offset = 0.4   
299.    
300. if test_mode:   
301.     scr_e = 'v = v_reset_e; timer = 0*ms'   
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302. else:   
303.     tc_theta = 1e7 * b2.ms   
304.     theta_plus_e = 0.05 * b2.mV   
305.     scr_e = 'v = v_reset_e; theta += theta_plus_e; timer = 0*ms'   
306. offset = 20.0*b2.mV   
307. v_thresh_e_str = '(v>(theta - offset + v_thresh_e)) and (timer>refrac_e)'   
308. v_thresh_i_str = 'v>v_thresh_i'   
309. v_reset_i_str = 'v=v_reset_i'   
310.    
311.    
312. neuron_eqs_e = '''''  
313.         dv/dt = ((v_rest_e - v) + (I_synE+I_synI) / nS) / (100*ms)  : volt (

unless refractory)  
314.         I_synE = ge * nS *         -v                           : amp  
315.         I_synI = gi * nS * (-100.*mV-v)                          : amp  
316.         dge/dt = -ge/(1.0*ms)                                   : 1  
317.         dgi/dt = -gi/(2.0*ms)                                  : 1  
318.         '''   
319. if test_mode:   
320.     neuron_eqs_e += '\n  theta      :volt'   
321. else:   
322.     neuron_eqs_e += '\n  dtheta/dt = -theta / (tc_theta)  : volt'   
323. neuron_eqs_e += '\n  dtimer/dt = 0.1  : second'   
324.    
325. neuron_eqs_i = '''''  
326.         dv/dt = ((v_rest_i - v) + (I_synE+I_synI) / nS) / (10*ms)  : volt (u

nless refractory)  
327.         I_synE = ge * nS *         -v                           : amp  
328.         I_synI = gi * nS * (-85.*mV-v)                          : amp  
329.         dge/dt = -ge/(1.0*ms)                                   : 1  
330.         dgi/dt = -gi/(2.0*ms)                                  : 1  
331.         '''   
332. eqs_stdp_ee = '''''  
333.                 post2before                            : 1  
334.                 dpre/dt   =   -pre/(tc_pre_ee)         : 1 (event-driven)  
335.                 dpost1/dt  = -post1/(tc_post_1_ee)     : 1 (event-driven)  
336.                 dpost2/dt  = -post2/(tc_post_2_ee)     : 1 (event-driven)  
337.             '''   
338. eqs_stdp_pre_ee = 'pre = 1.; w = clip(w + nu_ee_pre * post1, 0, wmax_ee)'   
339. eqs_stdp_post_ee = 'post2before = post2; w = clip(w + nu_ee_post * pre * pos

t2before, 0, wmax_ee); post1 = 1.; post2 = 1.'   
340.    
341. '''''  
342. eqs_stdp_ee = '''   
343.                  dpre/dt = -pre/(tc_pre_ee)  : 1 (event-driven)   
344.                  dpost1/dt  = -post1/(tc_post_1_ee) : 1 (event-driven)'''''  
345. eqs_stdp_pre_ee = 'pre = 1.; w = clip(w + nu_ee_pre * post1, 0, wmax_ee)'  
346. eqs_stdp_post_ee = 'w = clip(w + nu_ee_post * pre , 0, wmax_ee); post1 = 1.'

  
347. '''   
348.    
349. b2.ion()   
350. fig_num = 1   
351. neuron_groups = {}   
352. input_groups = {}   
353. connections = {}   
354. rate_monitors = {}   
355. spike_monitors = {}   
356. spike_counters = {}   
357. result_monitor = np.zeros((update_interval,n_e))   
358.    
359. neuron_groups['e'] = b2.NeuronGroup(n_e*len(population_names), neuron_eqs_e,

 threshold= v_thresh_e_str, refractory= refrac_e, reset= scr_e, method='euler')   
360. neuron_groups['i'] = b2.NeuronGroup(n_i*len(population_names), neuron_eqs_i,

 threshold= v_thresh_i_str, refractory= refrac_i, reset= v_reset_i_str, method='eul
er')   
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361.    
362.    
363. #---------------------------------------------------------------------------

---   
364. # create network population and recurrent connections   
365. #---------------------------------------------------------------------------

---   
366. for subgroup_n, name in enumerate(population_names):   
367.     print('create neuron group', name)   
368.    
369.     neuron_groups[name+'e'] = neuron_groups['e'][subgroup_n*n_e:(subgroup_n+

1)*n_e]   
370.     neuron_groups[name+'i'] = neuron_groups['i'][subgroup_n*n_i:(subgroup_n+

1)*n_e]   
371.    
372.     neuron_groups[name+'e'].v = v_rest_e - 40. * b2.mV   
373.     neuron_groups[name+'i'].v = v_rest_i - 40. * b2.mV   
374.     if test_mode or weight_path[-8:] == 'weights/':   
375.         neuron_groups['e'].theta = np.load(weight_path + 'theta_' + name + e

nding + '.npy') * b2.volt   
376.         #neuron_groups['e'].theta = np.load(weight_path + 'theta_A2696.npy')

 * b2.volt   
377.     else:   
378.         neuron_groups['e'].theta = np.load(weight_path + 'theta_' + name + e

nding + '.npy') * b2.volt   
379.         #neuron_groups['e'].theta = np.ones((n_e)) * 20.0*b2.mV   
380.    
381.     print('create recurrent connections')   
382.     for conn_type in recurrent_conn_names:   
383.         connName = name+conn_type[0]+name+conn_type[1]   
384.         weightMatrix = get_matrix_from_file(weight_path + '../random/' + con

nName + ending + '.npy')   
385.         #print(weight_path + '../random/' + connName + ending + '.npy')   
386.         model = 'w : 1'   
387.         pre = 'g%s_post += w' % conn_type[0]   
388.         post = ''   
389.         if ee_STDP_on:   
390.             if 'ee' in recurrent_conn_names:   
391.                 model += eqs_stdp_ee   
392.                 pre += '; ' + eqs_stdp_pre_ee   
393.                 post = eqs_stdp_post_ee   
394.         connections[connName] = b2.Synapses(neuron_groups[connName[0:2]], ne

uron_groups[connName[2:4]],   
395.                                                     model=model, on_pre=pre,

 on_post=post)   
396.         connections[connName].connect(True) # all-to-all connection   
397.         connections[connName].w = weightMatrix[connections[connName].i, conn

ections[connName].j]   
398.     #print(connections['AiAe'].w )   
399.    
400.     print('create monitors for', name)   
401.     rate_monitors[name+'e'] = b2.PopulationRateMonitor(neuron_groups[name+'e

'])   
402.     rate_monitors[name+'i'] = b2.PopulationRateMonitor(neuron_groups[name+'i

'])   
403.     spike_counters[name+'e'] = b2.SpikeMonitor(neuron_groups[name+'e'])   
404.    
405.     if record_spikes:   
406.         spike_monitors[name+'e'] = b2.SpikeMonitor(neuron_groups[name+'e']) 

  
407.         spike_monitors[name+'i'] = b2.SpikeMonitor(neuron_groups[name+'i']) 

  
408.    
409.    
410. #---------------------------------------------------------------------------

---   
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411. # create input population and connections from input populations   
412. #---------------------------------------------------------------------------

---   
413. pop_values = [0,0,0]   
414. for i,name in enumerate(input_population_names):   
415.     input_groups[name+'e'] = b2.PoissonGroup(n_input, 0*Hz)   
416.     rate_monitors[name+'e'] = b2.PopulationRateMonitor(input_groups[name+'e'

])   
417.    
418. for name in input_connection_names:   
419.     print('create connections between', name[0], 'and', name[1])   
420.     for connType in input_conn_names:   
421.         connName = name[0] + connType[0] + name[1] + connType[1]   
422.         weightMatrix = get_matrix_from_file(weight_path + connName + ending 

+ '.npy')   
423.         #weightMatrix = get_matrix_from_file(weight_path + 'XeAe13480.npy') 

  
424.         #print(weight_path + connName + ending + '.npy112')   
425.         model = 'w : 1'   
426.         pre = 'g%s_post += w' % connType[0]   
427.         post = ''   
428.         if ee_STDP_on:   
429.             print('create STDP for connection', name[0]+'e'+name[1]+'e')   
430.             model += eqs_stdp_ee   
431.             pre += '; ' + eqs_stdp_pre_ee   
432.             post = eqs_stdp_post_ee   
433.    
434.         connections[connName] = b2.Synapses(input_groups[connName[0:2]], neu

ron_groups[connName[2:4]],   
435.                                                     model=model, on_pre=pre,

 on_post=post)   
436.         minDelay = delay[connType][0]   
437.         maxDelay = delay[connType][1]   
438.         deltaDelay = maxDelay - minDelay   
439.         # TODO: test this   
440.         connections[connName].connect(True) # all-to-all connection   
441.         connections[connName].delay = 'minDelay + rand() * deltaDelay'   
442.         connections[connName].w = weightMatrix[connections[connName].i, conn

ections[connName].j]   
443.    
444.    
445. #---------------------------------------------------------------------------

---   
446. # run the simulation and set inputs   
447. #---------------------------------------------------------------------------

---   
448.    
449. net = Network()   
450. for obj_list in [neuron_groups, input_groups, connections, rate_monitors,   
451.         spike_monitors, spike_counters]:   
452.     for key in obj_list:   
453.         net.add(obj_list[key])   
454.    
455. previous_spike_count = np.zeros(n_e)   
456. assignments = np.zeros(n_e)   
457. input_numbers = [0] * num_examples   
458. outputNumbers = np.zeros((num_examples, 8))   
459. if not test_mode:   
460.     input_weight_monitor, fig_weights = plot_2d_input_weights()   
461.     fig_num += 1   
462. if do_plot_performance:   
463.     performance_monitor, performance, fig_num, fig_performance = plot_perfor

mance(fig_num)   
464. for i,name in enumerate(input_population_names):   
465.     input_groups[name+'e'].rates = 0 * Hz   
466. net.run(0*second)   
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467. j = 0   
468. while j < (int(num_examples)):   
469.     print(j,num_examples)   
470.     if test_mode:   
471.         if use_testing_set:   
472.             spike_rates = testing['x'][j%24,:,:].reshape((n_input)) / 8. *  

input_intensity   
473.         else:   
474.             spike_rates = training['x'][j%2696,:,:].reshape((n_input)) / 8. 

*  input_intensity   
475.                
476.     else:   
477.         normalize_weights()   
478.         spike_rates = training['x'][j%2696,:,:].reshape((n_input)) / 8. *  i

nput_intensity   
479.     input_groups['Xe'].rates = spike_rates * Hz   
480. #     print('run number:', j+1, 'of', int(num_examples))   
481.     net.run(single_example_time, report='text')   
482.     print(neuron_groups['Ae'].v[20])   
483.     #print(spike_rates)   
484.     if j % update_interval == 0 and j > 0:   
485.         assignments = get_new_assignments(result_monitor[:], input_numbers[j

-update_interval : j])   
486.     if j % weight_update_interval == 0 and not test_mode:   
487.         update_2d_input_weights(input_weight_monitor, fig_weights)   
488.     if j % save_connections_interval == 0 and j > 0 and not test_mode:   
489.         save_connections(str(j))   
490.         save_theta(str(j))   
491.    
492.     current_spike_count = np.asarray(spike_counters['Ae'].count[:]) - previo

us_spike_count   
493.     previous_spike_count = np.copy(spike_counters['Ae'].count[:])   
494.     if np.sum(current_spike_count) < 5:   
495.         input_intensity += 1   
496.         for i,name in enumerate(input_population_names):   
497.             input_groups[name+'e'].rates = 0 * Hz   
498.         net.run(resting_time)   
499.     else:   
500.         result_monitor[j%update_interval,:] = current_spike_count   
501.         if test_mode and use_testing_set:   
502.             input_numbers[j] = testing['y'][j%24][0]   
503.         else:   
504.             input_numbers[j] = training['y'][j%2696][0]   
505.         outputNumbers[j,:] = get_recognized_number_ranking(assignments, resu

lt_monitor[j%update_interval,:])   
506.         if j % 100 == 0 and j > 0:   
507.             print('runs done:', j, 'of', int(num_examples))   
508.         if j % update_interval == 0 and j > 0: #update_interval   
509.             if do_plot_performance:   
510.                 unused, performance = update_performance_plot(performance_mo

nitor, performance, j, fig_performance)   
511.                 print('Classification performance', performance[:int(j/updat

e_interval+1)])   
512.         if j % (num_examples-1) == 0 and j > 0: #update_interval   
513.             if do_plot_performance:   
514.                 unused, performance = update_performance_plot(performance_mo

nitor, performance, j, fig_performance)   
515.                 print('Classification performance', performance[:int(j/updat

e_interval+2)])   
516.         for i,name in enumerate(input_population_names):   
517.             input_groups[name+'e'].rates = 0 * Hz   
518.         if (j+1)%1000==0:   
519.             #plt.figure(j+10)   
520.             plot_2d_input_weights()       
521.             plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\pictu

re2\Image'+str(j+1))   
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522.             plt.clf()   
523.         net.run(resting_time)   
524.         input_intensity = start_input_intensity   
525.         j += 1   
526.            
527.       
528.    
529.    
530. #---------------------------------------------------------------------------

---   
531. # save results   
532. #---------------------------------------------------------------------------

---   
533. print('save results')   
534. if not test_mode:   
535.     save_theta()   
536. if not test_mode:   
537.     save_connections()   
538.     np.save(data_path + 'activity/resultPopVecs' + str(num_examples), result

_monitor)   
539.     np.save(data_path + 'activity/inputNumbers' + str(num_examples), input_n

umbers)   
540. else:   
541.     np.save(data_path + 'activity/resultPopVecs' + str(num_examples) +'', re

sult_monitor)   
542.     np.save(data_path + 'activity/inputNumbers' + str(num_examples) +'', inp

ut_numbers)   
543.        
544.    
545.    
546. #---------------------------------------------------------------------------

---   
547. # plot results   
548. #---------------------------------------------------------------------------

---   
549. if rate_monitors:   
550.     b2.figure(fig_num)   
551.     fig_num += 1   
552.     for i, name in enumerate(rate_monitors):   
553.         b2.subplot(len(rate_monitors), 1, 1+i)   
554.         b2.plot(rate_monitors[name].t/b2.second, rate_monitors[name].rate, '

.')   
555.         b2.title('Rates of population ' + name)   
556.         plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\

Image'+str(1))   
557.    
558. if spike_monitors:   
559.     b2.figure(fig_num)   
560.        
561.     fig_num += 1   
562.     for i, name in enumerate(spike_monitors):   
563.         b2.subplot(len(spike_monitors), 1, 1+i)   
564.         b2.plot(spike_monitors[name].t/b2.ms, spike_monitors[name].i, '.')   
565.         b2.title('Spikes of population ' + name)   
566.         plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\

Image'+str(2))   
567.    
568. if spike_counters:   
569.     b2.figure(fig_num)   
570.     fig_num += 1   
571.     b2.plot(spike_monitors['Ae'].count[:])   
572.     b2.title('Spike count of population Ae')   
573.     plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\Imag

e'+str(3))   
574.    
575.    
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576.    
577.    
578.    
579. plot_2d_input_weights()   
580. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\Image'+s

tr(4))   
581.    
582. plt.figure(5)   
583.    
584. subplot(3,1,1)   
585.    
586. brian_plot(connections['XeAe'].w)   
587. subplot(3,1,2)   
588.    
589. brian_plot(connections['AeAi'].w)   
590.    
591. subplot(3,1,3)   
592.    
593. brian_plot(connections['AiAe'].w)   
594. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\Image'+s

tr(5))   
595.    
596.    
597.    
598. b2.ioff()   
599. b2.show()   

 

Inference file: 

1. import numpy as np   
2. import matplotlib   
3. import matplotlib.cm as cmap   
4. import time   
5. import os.path   
6. import scipy    
7. import pickle   
8. from struct import unpack   
9. from brian2 import *   
10.    
11.    
12. #------------------------------------------------------------------------------    
13. # functions   
14. #-----------------------------------------------------------------------------

-        
15. def get_labeled_data(picklename, bTrain = True):   
16.     """Read input-vector (image) and target class (label, 0-9) and return  
17.        it as list of tuples.  
18.     """   
19.     if os.path.isfile('%s.pickle' % picklename):   
20.         data = pickle.load(open('%s.pickle' % picklename,'rb'))   
21.     else:   
22.         # Open the images with gzip in read binary mode   
23.         if bTrain:   
24.             images = open(data_path + 'train-images.idx3-ubyte','rb')   
25.             labels = open(data_path + 'train-labels.idx1-ubyte','rb')   
26.         else:   
27.             images = open(data_path + 't10k-images.idx3-ubyte','rb')   
28.             labels = open(data_path + 't10k-labels.idx1-ubyte','rb')   
29.         # Get metadata for images   
30.         images.read(4)  # skip the magic_number   
31.         number_of_images = unpack('>I', images.read(4))[0]   
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32.         rows = unpack('>I', images.read(4))[0]   
33.         cols = unpack('>I', images.read(4))[0]   
34.         # Get metadata for labels   
35.         labels.read(4)  # skip the magic_number   
36.         N = unpack('>I', labels.read(4))[0]   
37.         if number_of_images != N:   
38.             raise Exception('number of labels did not match the number of images') 

  
39.         # Get the data   
40.         x = np.zeros((N, rows, cols), dtype=np.uint8)  # Initialize numpy array   
41.         y = np.zeros((N, 1), dtype=np.uint8)  # Initialize numpy array   
42.         for i in range(N):   
43.             if i % 100 == 0:   
44.                 print("i: %i" % i)   
45.             x[i] = [[unpack('>B', images.read(1))[0] for unused_col in range(cols)]

  for unused_row in range(rows) ]   
46.             y[i] = unpack('>B', labels.read(1))[0]   
47.         data = {'x': x, 'y': y, 'rows': rows, 'cols': cols}   
48.         pickle.dump(data, open("%s.pickle" % picklename, "wb"))   
49.     return data   
50.    
51. def get_recognized_number_ranking(assignments, spike_rates):   
52.     summed_rates = [0] * 8   
53.     num_assignments = [0] * 8   
54.     for i in range(8):   
55.         num_assignments[i] = len(np.where(assignments == i)[0])   
56.         if num_assignments[i] > 0:   
57.             summed_rates[i] = np.sum(spike_rates[assignments == i]) / num_assignmen

ts[i]   
58.     return np.argsort(summed_rates)[::-1]   
59.    
60. def get_new_assignments(result_monitor, input_numbers):   
61.     print(result_monitor.shape)   
62.     assignments = np.ones(n_e) * -1 # initialize them as not assigned   
63.     input_nums = np.asarray(input_numbers)   
64.     maximum_rate = [0] * n_e     
65.     rate = [0] * n_e   
66.     for j in range(8):   
67.         num_inputs = len(np.where(input_nums == j)[0])   
68.         if num_inputs > 0:   
69.             rate = np.sum(result_monitor[input_nums == j], axis = 0) / num_inputs   
70.         for i in range(n_e):   
71.             if rate[i] > maximum_rate[i]:   
72.                 maximum_rate[i] = rate[i]   
73.                 assignments[i] = j    
74.     return assignments   
75.    
76. data_path = './'   
77. data_path = './activity/'   
78. training_ending = '2696'   
79. testing_ending = '24'   
80. start_time_training = 0   
81. end_time_training = int(training_ending)   
82. start_time_testing = 0   
83. end_time_testing = int(testing_ending)   
84.    
85. n_e = 400   
86. n_input = 784   
87. ending = ''   
88.    
89. print('load data')   
90. training = get_labeled_data(data_path + 'training')   
91. testing = get_labeled_data(data_path + 'testing', bTrain = False)   
92.    
93. print('load results')   
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94. training_result_monitor = np.load(data_path + 'resultPopVecs' + training_ending + e
nding + '.npy')   

95. training_input_numbers = np.load(data_path + 'inputNumbers' + training_ending + '.n
py')   

96. testing_result_monitor = np.load(data_path + 'resultPopVecs' + testing_ending + '.n
py')   

97. testing_input_numbers = np.load(data_path + 'inputNumbers' + testing_ending + '.npy
')   

98. print(training_result_monitor.shape)   
99.    
100. print('get assignments')   
101. test_results = np.zeros((8, end_time_testing-start_time_testing))   
102. test_results_max = np.zeros((8, end_time_testing-start_time_testing))   
103. test_results_top = np.zeros((8, end_time_testing-start_time_testing))   
104. test_results_fixed = np.zeros((8, end_time_testing-start_time_testing))   
105. assignments = get_new_assignments(training_result_monitor[start_time_trainin

g:end_time_training],    
106.                                   training_input_numbers[start_time_training

:end_time_training])   
107. print(assignments)   
108. counter = 0    
109. num_tests = end_time_testing / 24   
110. sum_accurracy = [0] * int(num_tests)   
111. while (counter < num_tests):   
112.     end_time = min(end_time_testing, 24*(counter+1))   
113.     start_time = 24*counter   
114.     test_results = np.zeros((8, end_time-start_time))   
115.     print('calculate accuracy for sum')   
116.     for i in range(end_time - start_time):   
117.         test_results[:,i] = get_recognized_number_ranking(assignments,    
118.                                                           testing_result_mon

itor[i+start_time,:])   
119.     difference = test_results[0,:] - testing_input_numbers[start_time:end_ti

me]   
120.     for i in np.where(difference != 0)[0]:   
121.         print(testing_input_numbers[i],test_results[0,i])   
122.    
123.     correct = len(np.where(difference == 0)[0])   
124.     incorrect = np.where(difference != 0)[0]   
125.     sum_accurracy[counter] = correct #/float(end_time-start_time) * 100   
126.     print('Sum response - accuracy: ', sum_accurracy[counter], ' num incorre

ct: ', len(incorrect))   
127.     counter += 1   
128. print('Sum response - accuracy --> mean: ', np.mean(sum_accurracy),  '-

-> standard deviation: ', np.std(sum_accurracy))   
129.    
130.    
131. show()  

 

 

 

 


