

Bio-inspired Spiking Neural Network

Algorithm Development and Tactile Signal

Processing

Chunming Jiang

Supervised by

Professor Yilei Zhang

A thesis presented for partial fulfilment of the requirements for the

degree of Doctor of Philosophy

in

Mechanical Engineering

at the

University of Canterbury

Christchurch, New Zealand

December 2022

i

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Professor Yilei Zhang. It has

been a great honor and pleasure to be one of your students and to work with you. Pursuing a

PhD is a long process and is never easy. Your deep confidence in my abilities and work means

a lot to me. Thank you for your vast knowledge, unfailing support, enthusiasm, patience, and

valuable insights that led me into the study of brain-like neural networks. You have made this

journey so interesting and exciting with your endless enthusiasm and energy. Thank you for

being a mentor and role model on my path to becoming a researcher. You have been and will

always be a mentor in my life and research career. Thank you for all that you have done.

I would also like to express my deepest gratitude to my co-mentor, Professor Le Yang. Thank

you for your selfless contribution of your ideas and suggestions. Your insightful advice, never

wavering support and patient guidance have been instrumental in this journey. Thank you for

being approachable no matter where you are. Thank you for your kind advice on my career.

Thank you so much for your encouragement and constructive advice on my research, never

throwing even a little cold water on any of the ideas I presented. Without your guidance and

care, I would never have reached this stage.

Special thanks to the University of Canterbury for providing a free, relaxed and positive

learning and living environment, to the Department of Mechanical Engineering for providing

me with study and living expenses, allowing me more time to focus on my own research, and

to the faculty and technicians of the Department of Mechanical Engineering for their help. I

would like to thank Research Compute Cluster for providing me with computing resources to

support my high performance computing tasks.

ii

I would like to thank my parents most of all for your unconditional love and support throughout

the years. When I needed support, you were always there. To my friends, thank you for being

there for me when I was lost. You guys mean a lot to me. Finally, I want to thank New Zealand

and the city of Christchurch, I love New Zealand and I love Christchurch!

iii

Abstract

Spiking neural networks (SNNs) are a new generation of deep learning models inspired by

biology, which belong to a subset of deep learning and have a strong biological basis to support

them. It has received more and more attention from researchers in recent years due to its

advantages of high efficiency, energy saving, and high interpretability. However, compared

with traditional ANNs, SNNs are still in the early stage of research and still face many problems.

In this thesis, we first analyze the reasons of the poor performance of SNNs in image

classification and propose a new interpretable spiking neuron to improve the learning ability

of the network for big datasets. In addition, we propose a new method of adversarial defense

to enhance the robustness of SNNs against tiny noise. Besides, we also propose a new training

algorithm for optimizing the speed of the SNN in the training and inference process.

In addition to the study of SNN algorithms, we also apply SNN to specific application problems.

To address the problem of redundancy in event camera datasets, we propose a SNN-based mask

network that selectively deletes redundant pulse signals, thus reducing the space occupied by

the dataset and facilitating transmission. Finally, we combine SNNs with engineering problems,

and since SNNs are good at handling timing signals, we use SNNs to achieve high-precision

classification of tactile signals collected by tactile sensors.

In summary, SNNs are positioned as ANNs with biological plausibility, i.e., they have the

interpretability of biological networks and some characteristics of ANNs. In this thesis, we

work on developing different algorithms for the speed, accuracy, and robustness of SNNs and

design SNNs for problems under a variety of different domains.

iv

Deputy Vice-Chancellor’s Office
Postgraduate Research Office

Publications

This form is to accompany the submission of any thesis that contains research reported in co-
authored work that has been published, accepted for publication, or submitted for publication. A copy
of this form should be included for each co-authored work that is included in the thesis. Completed
forms should be included at the front (after the thesis abstract) of each copy of the thesis submitted
for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work

and provide details of the publication or submission from the extract comes:

Chapter 2

• Chunming Jiang, Yilei Zhang, “KLIF: An optimized spiking neuron unit for tuning

surrogate gradient slope and membrane potential”, IEEE transactions on neural networks
and learning systems, IEEE transactions on neural networks and learning systems，

submitted in May, 2022 [Under Review]

Chapter 3

• Chunming Jiang, Yilei Zhang, “ Adversarial Defense via Neural Oscillation inspired

Gradient Masking”, IEEE transactions on neural networks and learning systems,
submitted in Oct, 2022, https://arxiv.org/abs/2211.02223 [Under Review]

Chapter 4

• Chunming Jiang, Yilei Zhang,“A noise based novel strategy for faster SNN training”,

Neural Computation, submitted in Oct, 2022, https://arxiv.org/abs/2211.05453 [Under
Review]

Chapter 5

• Chunming Jiang, Yilei Zhang, “Spiking sampling network for sparse representation”,

Neurocomputing, submitted in Aug, 2022, https://arxiv.org/abs/2211.04166 [Under
Review]

Chapter 6

• Chunming Jiang, Le Yang, Yilei Zhang, “A Spiking Neural Network With Spike-Timing-

Dependent Plasticity for Surface Roughness Analysis”, IEEE Sensors Journal (Volume:

22, Issue: 1, 01 January 2022)

https://arxiv.org/abs/2211.02223
https://arxiv.org/abs/2211.05453
https://arxiv.org/abs/2211.04166

v

Please detail the nature and extent (%) of contribution by the candidate:

The contribution of the candidate to the publication amounts to ~95% based on the overall time

and effort dedicated to the final outcome. The candidate developed, implemented, and led all
research work. All analytical work was developed and performed by the candidate in consultation
with the supervisors.

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifies that:

▪ The above statement correctly reflects the nature and extent of the Doctoral candidate’s
contribution to this co-authored work

▪ In cases where the candidate was the lead author of the co-authored work he or she wrote the
text

Name: Yilei Zhang Signature: Yilei Zhang Date: 30/12/2022

i

Contents

Acknowledgement .. i

Abstract .. iii

Publications ... iv

Contents .. i

List of Figures ... vi

List of Tables .. vi

1 Introduction .. x

1.1 Spiking neural network and its challenge ... 1

1.2 Noise role in biological neural system .. 3

1.3 Noise role in artificial neural networks ... 6

1.4 Preface ... 8

2 KLIF: An optimized spiking neuron unit for tuning surrogate gradient slope and

membrane potential .. 11

2.1 Introduction ... 12

2.2 Method .. 15

 k-based leaky Integrate-and-Fire model ... 15

 Adaptive surrogate gradient descent ... 17

 Activation function ReLU .. 20

 Encoding and decoding schemes .. 21

ii

2.3 Results and discussions ... 22

 Comparison of LIF and KLIF ... 23

 Ablation study... 25

 Biological plausibility of KLIF .. 27

2.4 Conclusion ... 29

3 Adversarial Defense via Neural Oscillation inspired Gradient Masking 30

3.1 Introduction ... 31

3.2 Preliminaries.. 33

 SNNs and biological neural oscillation .. 33

 Adversarial attacks ... 35

3.3 Experiments ... 37

 Datasets and Models ... 37

 Neural oscillation neuron .. 38

 Alternative Neural oscillation neuron... 39

 Adversarial defense strategy ... 40

3.4 Results ... 42

 Robustness analysis of neural oscillation model .. 42

 Robustness analysis of alternative neural oscillation model 43

 Validation of defense .. 46

3.5 Discussion and conclusion .. 48

3.6 Supplementary ... 49

 Parameter values for reproducibility .. 49

 Neuron performance testing ... 49

iii

 Function selection of alternative neural oscillation .. 51

 Firing property of neural oscillation neuron ... 52

4 A noise based novel strategy for faster SNN training .. 53

4.1 Introduction ... 54

4.2 Methods ... 56

 Leaky Integrate-and-Fire model ... 56

 Training single-step SNN and converting to multi-step SNN 57

4.3 Results and discussions ... 60

 Inference accuracy .. 61

 Comparison of training and inference time with related work 62

 The impact of α .. 64

 The impact of noise type .. 65

 Biological plausibility of uniform noise distribution in neuron 66

4.4 Discussion and conclusion .. 68

5 Spiking sampling network for image sparse representation and dynamic vision sensor

data compression .. 69

5.1 Introduction ... 70

5.2 Methods ... 72

 Leaky Integrate-and-Fire (LIF) model ... 72

 Architecture and training of spiking sampling network 73

 Data compression of dynamic vision sensor .. 76

5.3 Experiments ... 77

 Image reconstruction comparison ... 77

iv

 Event data compression .. 79

 Specificity and universality .. 81

5.4 Discussion and conclusion .. 83

5.5 Supplementary ... 83

6 A Spiking Neural Network with Spike-timing-dependent Plasticity for Surface

Roughness Analysis ... 85

6.1 Introduction ... 86

6.2 Methods ... 88

 Experimental Setup... 88

 SNN architecture .. 89

 Neuron and synapse model ... 90

 Dataset .. 94

 Input Encoding ... 95

 Training and classification .. 97

6.3 Results ... 97

6.4 Conclusion ... 102

6.5 Supplementary ... 102

Chapter 7 Conclusions ... 104

Chapter 8 Discussion and future Work .. 108

References .. 110

APPENDIX A .. 130

v

APPENDIX B .. 139

APPENDIX C .. 147

APPENDIX D .. 148

APPENDIX E .. 150

vi

List of Figures

Figure 1.1 Flowchart of the thesis organization .. 9

Figure 2.1 Structure of spiking neurons. (a) leaky Integrate-and-Fire (LIF) model. (b) 𝑘-based

leaky Integrate-and-Fire (KLIF) model. The dotted box represents the dynamic of function 𝐹𝑡.

It incorporates a scaling factor 𝑘 and an activation function 𝑅𝑒𝐿𝑈. 15

Figure 2.2 Derivative approximation of the non-differentiable spike activity. (a) step activation

function of the spike activity and its original derivative function which is infinite value at H =

1 and zero value at other points. (b) scaling factor 𝑘 to adjust the slope of the surrogate gradient

curve 𝜕𝑆𝜕𝐹. ... 18

Figure 2.3 Encoder and decoder of SNNs... 21

Figure 2.4 The test accuracy of KLIF v.s. LIF neurons on different datasets during training.

.. 23

Figure 2.5 The change of scaling factor 𝑘𝑖 in the 𝑖-th layer during training on a. CIFAR-10

and b. DVS128-Gesture. .. 26

Figure 2.6 The distribution of firing rate for neurons in each layer during training on CIFAR-

10.. 26

Figure 3.1 The training process of the model with alternative neural oscillation neurons at time

𝑡. The model trained first with neural oscillation neurons can be regarded as a 'teacher model'.

It provides the labels for a 'student model' which replaces neural oscillation neurons with

alternative neural oscillation neurons. The 'student model' keeps the same trained weights and

fits spike trains 𝑺′𝑗𝑡 of student model to 𝑺𝑗𝑡 of teacher model by learning variables 𝑎 and 𝑏 in

each layer. .. 38

Figure 3.2 (a). The solid and dotted orange lines represent 𝜕𝑆𝜕𝐻 of neural oscillation model

when 𝛾 is -0.2 and 0.8, respectively. The red line is 𝜕𝑆′𝜕𝐻 of alternative neural oscillation

file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342817
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342818
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342818
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342818
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342819
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342819
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342819
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342819
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342820
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342822
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342822
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342823
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342823
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342824
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342824
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342824
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342824
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342824
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342824
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342825
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342825

vii

model. (b). Partial enlargement of graph (a) in the green dashed circle. 41

Figure 3.3 Accuracy on (a)VGG-16/CIFAR-10 (b)ResNet-18/CIFAR-10 when using neural

oscillation neuron (blue curve) and alternative neural oscillation neuron (orange curve) 50

Figure 3.4 (a) Curve of function F to fit the noise item on VGG-16/CIFAR-10. (b) Gradient

curve 𝜕𝑆′𝑡𝜕𝐻𝑡 when using different F... 50

Figure 3.5 Spontaneous spike firing of neural oscillation neuron. ... 51

Figure 4.1 Three steps of our method to train a SNN model. Step 1, single-step SNN training

with noise distribution 𝑁𝑛𝑜𝑖𝑠𝑒. Step 2, copy N single-step SNNs and ensemble them together.

𝑁𝑛𝑜𝑖𝑠𝑒 varies over time-step t. Step 3, establish the temporal correlation among N different

models. ... 56

Figure 4.2 Inference accuracy of models on different datasets with T = 1, 5, 10 while training

with 𝑁𝑛𝑜𝑖𝑠𝑒. .. 61

Figure 4.3 Training speed of SNNs when directly training an SNN(T=10) by the surrogate

gradient approach versus training a 10-step SNN by our approach... 62

Figure 4.4 Training time of SNNs when directly training an SNN(T=10) by the surrogate

gradient approach versus training a a 10-step SNN by our approach. The benchmark inference

accuracy of the three models is 92%, 88%, and 90%, respectively. 63

Figure 4.5 The impact of 𝛼 on CIFAR10/VGG-16 and CIFAR10/ResNet-18. The black dotted

line represents the accuracy of trained single-step SNN. .. 64

Figure 4.6 Inference accuracy of models on different datasets with T = 1, 10 while training

using Gaussian noise and uniform noise, respectively. ... 66

Figure 4.7 (a) Neural potential dynamic in the absence of input. (b) Neural potential dynamic

when receiving input. (c) Subthreshold membrane potential oscillation. Source: Figure (c) is

cited from [136]. .. 67

Figure 5.1 Architecture of the spiking sampling network. The output of spiking sampling

file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342825
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342832
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342832
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342832
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342834
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342834

viii

network is a mask of the same size as the input. ... 72

Figure 5.2 Comparison between random sampling and spiking sampling on (a) MNIST and

(b) CIFAR-10. (c) Sampled pixels by spiking sampling network on CIFAR-10. 75

Figure 5.3 Different sampling rate comparison of random sampling and spiking sampling on

MNIST ... 76

Figure 5.4 (a) Compression of N-MNIST dataset. (b) Classification validation of compressed

N-MNIST dataset. .. 76

Figure 5.5 (a) Test classification accuracy on N-MNIST with different sampling method and

rate. (b) data size comparison after different compressing rate by spiking sampling. The

numbers on the bars represent the average number of spikes retained per sample for the dataset.

.. 79

Figure 5.6 Reconstruction comparison of 10% random sampling and 10% spiking sampling

on the main reconstruction network trained by random sampling. .. 81

Figure 5.7 Reconstruction comparison of 10% random sampling and 10% spiking sampling

on the main reconstruction network trained by spiking sampling. .. 82

Figure 6.1 (a) The structure of designed biomimetic artificial fingertip. (b) Biomimetic

fingertip sliding along the test surface. (c) Eight solid nickel test surfaces with different

roughness values. ... 88

Figure 6.2 Illustration of SNN network structure for tactile signal processing. 89

Figure 6.3 (a) LIF neuron model. (b) Schematic of the classic STDP. 90

Figure 6.4 Typical tactile signals generated by two perpendicular PVDF films when sliding on

eight surfaces with different roughness values. PVDF1 is perpendicular to the sliding direction,

while PVDF2 is parallel to the sliding direction. ... 94

Figure 6.5 The split and combination of raw data. ... 95

Figure 6.6 An original static image is encoded into a spike map over various time steps using

file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342846
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342846
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342846
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342847

ix

rate coding. ... 96

Figure 6.7 (a) Test accuracy comparison between augmented PVDF1 and augmented PVDF2

datasets with 15 training epochs. (b) Test accuracy comparison between augmented PVDF1

dataset and original PVDF1 dataset. (c) Test accuracy comparison among the different numbers

of excitatory neurons in the output layer. (d) Test accuracy comparison among fusing both

augmented PVDF data and single augmented PVDF data with 15 training epochs. 98

Figure 6.8 (a) Standard deviation features from the tactile signals of the two PVDF films when

sliding on eight surfaces with different surface roughness values. (b) Sum of absolute values

from the tactile signals of the two PVDF films when sliding on eight surfaces with different

surface roughness values.. 99

file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342849
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342849
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342849
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342849
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342849
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342850
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342850
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342850
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342850

x

List of Tables

Table 2.1 Network structures and training details for different datasets. 22

Table 2.2 Comparison between our work and the state-of-the-art methods on different datasets.

.. 24

Table 2.3 Ablation Study of KLIF.on CIFAR-10 ... 27

Table 2.4 Accuracy of using KLIF/KLIF*.. 28

Table 2.5 Accuracy of using KLIF with different activation functions on CIFAR-10 28

Table 3.1 Top-1 Accuracy (%) on clean images using two kinds of oscillation neurons 44

Table 3.2 Neuron model summary under different attack scenarios 44

Table 3.3 Top-1 classification accuracy (%) under the scenario 1 attack 44

Table 3.4 Top-1 classification accuracy (%) under the scenario 2 attack 44

Table 3.5 Top-1 classification accuracy (%) under the scenario 3 attack 45

Table 3.6 Top-1 classification accuracy (%) under the scenario 4 attack 45

Table 3.7 Top-1 classification accuracy (%) under the scenario 5 attack 45

Table 3.8 White-box robustness (accuracy (%)) on CIFAR-10 using the ResNet-18 (𝝐=8/255)

.. 45

Table 3.9 Noise range [a,b] and values of 𝑐 and 𝑑 of alternative neural oscillation model 49

Table 3.10 Top-1 classification accuracy (%) under the scenario 4 attack 51

Table 4.1 Network structures and training epoch for different datasets. 61

Table 4.2 Inference time comparison between our work and related work 64

Table 5.1 Network structures for image reconstruction on MNIST and CIFAR-10 and data

compression on N-MNIST ... 84

Table 6.1 Classifier: SNN with 400 output neurons ... 101

Table 6.2 The highest classification accuracy of different methods 101

file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342973
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342975
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342976
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342977
file:///C:/Users/Chunming/Dropbox/Chunming/Thesis/Thesis%20revision/Thesis_submit.docx%23_Toc135342991

xi

Table 6.3 Parameters in SNN .. 103

1

1 Introduction

1.1 Spiking neural network and its challenge

Spiking neural networks (SNNs) are artificial neural networks that more closely mimic

biological neural networks. In addition to neurons and synaptic states, SNNs incorporate the

concept of time into their operational model. The idea is that instead of transmitting information

at each propagation cycle (as in a typical multilayer perceptron network), neurons in SNNs

transmit information when the membrane potential reaches a specific value, called the

threshold. When the membrane potential reaches threshold, the neuron activates and generates

a signal that is transmitted to other neurons, which in turn increase or decrease their potential

in response to this signal.

One of challenges of SNNs is how to train and optimize the parameters. Currently, the existing

training methods of SNNs can be classified into three types: (1) unsupervised learning (2)

indirect supervised learning (3) direct supervised learning. The first one is inspired by the

weight modification of synapses between biological neurons. For example, spike time-

dependent plasticity (STDP) [1-3]. Since it relies mainly on local neuronal activity rather than

global supervision, STDP-based unsupervised algorithms have so far been limited to shallow

SNNs, yielding accuracies significantly lower than those provided by ANN on complex

datasets such as CIFAR-10 [4-6]. The second approach is to first train an ANN and then convert

it to a SNN version with the same network structure, where the rate of the SNN neurons can be

approximated as the analog output of the ANN neurons. ANN-to-SNN conversion has achieved

the state-of-the-art (SOTA) SNNs for image recognition tasks that performs close or even better

than the conventional ANNs [7], however, the inference time of SNNs converted from ANNs

still requires a lot of time (about several thousand time steps) and memory, leading to increased

2

latency as well as decreased energy efficiency, which diminish the benefits of spiking [7-9]. In

addition, ANN-to-SNN is only suitable to static datasets currently, not neuromorphic datasets.

The last one is the direct supervised learning, which adopts mainly the same gradient descent

algorithm with ANNs. Spikeprop pioneered the gradient descent method to train multilayer

SNNs [10, 11]. It assumes that each neuron spikes once in a given time period to encode the

input signal, and minimizes the difference between the network output and the desired signal

by calculating the gradient associated with these firing times. As a result, the result is low

latency. Despite these advantages, the use of only a single spike per neuron has its limitations

and is less suitable for processing temporal stimuli such as electroencephalography (EEG)

signals, speech or video [12]. Other subsequent works like Tempotron [13], ReSuMe [14], and

SPAN [15] can emit multiple spikes, but they can only be applied to single-layered networks.

An approach treated the membrane potential as a differentiable signal to solve the problem of

non-differentiation of spikes and proposed a straightforward BP algorithm to train deep SNNs

with multiple spikes [16]. Recently, Wu et al. proposed a spatiotemporal back-propagation

training framework for SNNs, which introduces a differentiable surrogate function to

approximate the derivative of spike activity [17]. This method combines both the spatial

domain and the temporal domain in the training phase and has yielded best results for deep

convolutional SNNs in small-scale image recognition datasets such as digit classification on

the MNIST. However, for large-scale tasks, it has not been able to outperform the conversion-

based approach or ANNs in terms of accuracy [7]. In addition, since SNNs introduce a temporal

dimension, direct training of SNNs often takes several times more training time than training

an ANN, which seriously consumes computational resources.

To improve the performance of SNNs and decrease gaps between ANNs and SNNs, Wu et al.

proposed neuron normalization [17]. This mechanism can balance the firing rate of each neuron

3

and avoid the loss of important information. Cheng et al. added the lateral connections between

neighboring neurons and get better accuracy [18]. Some researchers have revised the neuron

model’s parameters to improve the accuracy. For example, the learnable membrane time

constants in Leaky Integrate-and-Fire (LIF) neurons were utilized to make the charging and

leakage process more flexible [19, 20], and an adaptive threshold spiking neuron model was

proposed to enhance learning capabilities of SNNs [21].

In summary, research on SNNs is still in its early stages. In this thesis, we research and develop

the algorithms for the following main problems faced by SNNs:

1. SNN performance remains low compared with the corresponding ANN architecture.

2. The training speed of SNNs is slow.

3. SNNs are vulnerable to network attacks and noise and lack specific defense approaches.

1.2 Noise role in biological neural system

Noise sources also widely exist in the brain. It is well known that neurons can react differently,

even when the same stimuli are given [22, 23]. They are comprised of intrinsic sources such as

open-close fluctuation of membrane resistance and extrinsic source triggered mainly by signal

transmission and network effects [24].

External noise

When an organism receives external stimuli, these external sensory stimuli are generally noisy,

and these noises come from thermodynamic or quantum mechanical properties. For instance,

thermodynamic noise affects all types of chemical sensing (including smell and gustation)

4

because molecules diffuse into the receptor at random rates and because receptor proteins have

a limited capacity to precisely count the amount of signalling molecules [25, 26]. In a manner

similar to vision, photons that enter the photoreceptor at a rate determined by a Poisson process

must be absorbed. This sets a physical cap on contrast sensitivity in vision, which is diminished

under low light conditions when fewer photons reach the photoreceptor [27].

Cellular noise

Neuronal trial-to-trial variability is influenced by a number of variables. Changes in the internal

states of neurons and neural networks, as well as random events inside neurons and neural

networks, are examples of these [28, 29]. Each neuron has noise that builds up as a result of

randomness in the cellular machinery that processes information [23]; this noise can then get

greater as a result of nonlinear calculations and network interactions. Numerous stochastic

processes operate at the biochemical and biophysical levels in neurons.

Electrical noise and action potentials (APs)

Both carrying APs and performing local computations employ the membrane potential. The

mechanisms underlying variations in resting membrane potential [30, 31] (membrane-potential

fluctuations) and AP threshold [32] have only lately come to light, despite the fact that these

variables have long been researched. Even in the absence of synaptic inputs, electrical noise in

neurones results in variations in membrane potential. Channel noise [33-35], which is created

when voltage- or ligand-gated ion channels randomly open and close, is the main source of this

electrical noise. The fluctuation of the AP threshold at nodes of Ranvier [36] and the

dependability of AP initiation in membrane patches can both be explained by channel noise,

5

according to stochastic models [37, 38]. Furthermore, patch-clamp experiments in vitro

demonstrate that membrane-potential fluctuations caused by channel noise in the dendrites and

the soma are significant enough to impact AP timing [39-42]. Channel noise can have an impact

on the start and spread of APs.

Synaptic noise

Another significant source of brain noise is synapses. Gradient potentials in the postsynaptic

neurone cause a spontaneous action potential when neurotransmitter-containing vesicles

randomly exocytose and bind to the postsynaptic membrane [43]. It is regarded as the source

of noise with the highest amplitude in the cerebral cortex [44].

Benefits of noise

Although there exist so many random noise sources in neurons and synapses, experiments

prove that noise is essential in neural activities and plays a vital role in processes such as

decision-making, signal detection, and memory [45], and the nervous system can respond

accurately and reliably and shows good robustness under different levels of noise [46-48]. In

addition, the neural network formed in the presence of noise will be more robust and explore

more states, which will help learn and adapt to the changing dynamic environment [49, 50].

For instance, stochastic resonance is a mechanism by which the presence of a certain amount

of noise can improve the capability of threshold-like systems to receive and transmit weak

(periodic) signals [51, 52]. Few signals are detected at low noise levels because the sensory

signal does not push the system over the threshold. The response is dominated by the noise at

high noise levels. However, for intermediate noise strengths, the noise permits the signal to

6

cross the threshold without obstructing it. Numerous sensory systems have shown stochastic

resonance-type effects since they were originally discovered in the visual neurones of the cat

[53]. These include crayfish mechanoreceptors [54], shark multimodal sensory cells [55],

cricket sensory neurones [55], and human muscle spindles [56]. Both passively electrically

induced paddlefish [57] and human balance control [58] have been used to directly illustrate

and regulate the behavioural consequences of stochastic resonance. Additionally, sub-threshold

inputs have little impact on the system's output in spike-generating neurones. Such threshold

nonlinearities can be transformed by noise, which increases the likelihood that sub-threshold

inputs will exceed the threshold the closer the inputs are to the threshold. As a result, when

averaged over time, this noise effectively creates a smoothed nonlinear [37]. According to

research on contrast invariance of orientation tuning in the primary visual cortex [59], this

makes spike initiation easier and can enhance neural-network behaviour. Additionally,

neuronal networks that have grown up in a noisy environment will be more resilient and explore

more states, which will aid in learning and adaptation to the shifting requirements of a dynamic

environment [50, 60].

1.3 Noise role in artificial neural networks

Noise is not only widespread in biological neural systems, but in current artificial neural

networks, a large number of cases have been implemented by introducing noise and

randomization into neural nets to achieve a wide variety of learning tasks.

Generalization

7

When you start studying neural networks, one of the first things you learn is what overfitting

and underfitting are. When you train a neural network with a tiny dataset, the network typically

memorises the training dataset rather than learning generic aspects of our data, therefore it can

be difficult to create a model that perfectly generalises your data. This is especially true when

you have a little dataset. Because of this, the model will perform well with training data but

poorly with fresh data (for instance: the test dataset). A tiny dataset offers a poor description

of our problem, making it challenging to learn from. Getting more data requires a lot of effort.

However, there are situations when you can use certain procedures to improve the performance

of your model.

An important role of noise in artificial neural networks is to generalize the network and prevent

overfitting. Data augmentation [61] improves the network's ability to generalize the data and

enhances network robustness by making random changes to the input, for example, rotating,

stretching, or adding random noise to the input image in computer vision. In addition to adding

noise to the input, noise can be added in multiple locations, such as in weights, labels, or a

separate network layer. In [62, 63], noise is applied to neural network weights rather than

hidden layers. It is also possible to think of stochastic ensemble learning [64] and learning with

stochastic depth [65] as noise injection methods for weights or architecture. Dropout [66] is

another operation that introduces randomization. It randomly cuts the connections between

neurons during the training process to avoid overfitting the network to the data.

Robustness

Another important application area of noise is in the robustness of networks. Adversarial

attacks [67-69] attack the network by adding imperceptible noise to the input image, prompting

8

the network to produce incorrect outputs. For this type of adversarial attacks, researchers have

also proposed randomization-based defenses. For example, [70] adds a random noise layer to

the network to disrupt adversarial attacks. [71-74] add samples with noise in the training

process for adversarial training, thus improving the resistance of the network to attacks.

Imgae generation

Noise also has a wide and important application in the field of image generation. For example,

the variational autoencoder [75], when the latent space is obtained from the encoder input,

enables the decoder to sample the latent space by introducing noise, and thus generates more

reasonable generation samples. Like generative adversarial network [76], random Gaussian

noise is used as input to generate specific objects through the generator. The recently popular

diffusion model [77] can be used for a variety of image generation tasks by gradually adding

Gaussian noise while gradually learning and removing it through the neural network.

1.4 Preface

In this chapter, we introduce the background of spiking neural network and its facing

challenges currently, and we also present the presence and role of noise in the biological

nervous system and its application in artificial neural networks. The following chapters of this

thesis are broadly structured as Figure 1.1 shows.

Chapter 2-4 focus on the algorithms’ development of SNN:

9

• Chapter 2 develops a bio-inspired neural model dynamically adjusting the surrogate

gradient curve in spiking neural networks. The proposed neural model can greatly

improve classification accuracy on different visual datasets.

• Chapter 3 presents a neural oscillation model-based approach integrating noise

distribution to improve the robustness of SNNs and defend against adversarial attacks.

Proposed neural models are robust to various gradient-based adversarial attacks.

• Chapter 4 introduces a noise-based ensemble learning algorithm to accelerate the

training and inference of SNN. The approach introduces noise distribution to replace

membrane potential during training. Compared to the previous training methods, ours

can reduce training time by 65%-75% and achieves more than 100 times faster

inference speed.

Chapter 5-6 apply SNNs on different specific problems:

• Chapter 5 presents the application of a two-layer biological plausible SNN on

processing tactile signals. Collected tactile signals of surface roughness by a bionic

tactile sensor and recognized them by a biologically plausible unsupervised neural

network. Proposed a data augmentation approach to learn surface features in the case

of a few samples.

Figure 1.1 Flowchart of the thesis organization

10

• Chapter 6 develops a data-dependent sampling and reconstruction network consisting

of a spiking neural network for adaptive sampling and another network for data

reconstruction. Tested the proposed network using event camera data and verify its data

compression capability.

Chapters 7 and 8 provides the summary for this thesis and discussed about the future work for

research complement.

11

2 KLIF: An optimized spiking neuron unit for tuning

surrogate gradient slope and membrane potential

Abstract

Spiking neural networks (SNNs) have attracted much attention due to their ability to process

temporal information, low power consumption, and higher biological plausibility. However, it

is still challenging to develop efficient and high-performing learning algorithms for SNNs.

Methods like artificial neural network (ANN)-to-SNN conversion can transform ANNs to

SNNs with slight performance loss, but it needs a long simulation to approximate the rate

coding. Directly training SNN by spike-based backpropagation (BP) such as surrogate gradient

approximation is more flexible. Yet now, the performance of SNNs is not competitive

compared with ANNs. In this chapter, we propose a novel k-based leaky Integrate-and-Fire

(KLIF) neuron model to improve the learning ability of SNNs. Compared with the popular

leaky integrate-and-fire (LIF) model, KLIF adds a learnable scaling factor to dynamically

update the slope and width of the surrogate gradient curve during training and incorporates a

ReLU activation function that selectively delivers membrane potential to spike firing and

resetting. The proposed spiking unit is evaluated on both static MNIST, Fashion-MNIST,

CIFAR-10 datasets, as well as neuromorphic N-MNIST, CIFAR10-DVS, and DVS128-

Gesture datasets. Experiments indicate that KLIF performs much better than LIF without

introducing additional computational cost and achieves state-of-the-art performance on these

datasets with few time steps. Also, KLIF is believed to be more biological plausible than LIF.

The good performance of KLIF can make it completely replace the role of LIF in SNN for

various tasks.

12

2.1 Introduction

Artificial neural networks (ANNs) have achieved remarkable success in many domains in

recent years. Record accuracy at tasks such as image recognition [78-80], image segmentation

[81], and language translation [82] has been achieved. However, their success is highly

dependent on high-precision digital conversion [8], which requires large amounts of energy

and memory. Therefore, deploying conventional ANNs on embedded platforms with limited

energy and memory is still challenging.

Spiking neural networks (SNNs), regarded as the third generation of neural networks, were

inspired by the biological neural system, and they mimic how information is transmitted in the

human brain [83]. Unlike conventional ANNs, spiking neurons communicate and compute

through discrete-time sparse events rather than continuous values. Due to being event-driven,

SNNs are more efficient in terms of energy and memory consumption on embedded platforms.

So far, SNNs have been used for kinds of tasks, such as image[84] and voice recognition [85].

One of the challenges in SNNs is how to train and optimize the network parameters. Currently,

the existing training methods of SNNs can be classified into three types: (1) unsupervised

learning, (2) indirect supervised learning, (3) direct supervised learning. The first one is

inspired by the weight modification of synapses between biological neurons. A classic example

is the spike time-dependent plasticity (STDP) [1-3]. Since it relies mainly on local neuronal

activity rather than global supervision, STDP-based unsupervised algorithms have been limited

to shallow SNNs with ≤5 layers, yielding accuracy significantly lower than those provided by

ANNs on complex datasets such as CIFAR-10 [4-6].

13

The second approach is to train an ANN model firstly and then convert it to SNN with the same

network structure, where the firing rate of the SNN neurons can be approximated as the analog

output of the ANN neurons. For image recognition tasks, ANN-to-SNN conversion has led to

state-of-the-art (SOTA) SNNs that perform close or even better than the conventional ANNs

[7]. However, SNNs converted from ANNs still require a lot of inference time (about several

thousand time steps) and a large amount of memory, leading to increased latency and decreased

energy efficiency, which diminishes the benefits of spiking models [7-9]. The last SNN training

technique is direct supervised learning, which adopts mainly the same gradient descent

algorithm as in ANNs. Spikeprop pioneered the gradient descent method to train multilayer

SNNs [10, 11]. It assumes that each neuron fires once in a given time window to encode the

input signal and minimizes the difference between the network output and desired signal by

calculating the gradient associated with these firing times.

Nevertheless, the use of only a single spike per neuron has its limitations and is less suitable

for processing temporal stimuli such as electroencephalography (EEG) signals, speech, or

video [12]. Other subsequent works like Tempotron [13], ReSuMe[14], and SPAN [15] can

utilize multiple spikes, but they can only be applied to single-layer networks. An approach

treated the membrane potential as a differentiable signal to solve the problem of non-

differentiation of spikes and proposed a straightforward BP algorithm to train deep SNNs with

multiple spikes [16]. Recently, Wu et al. proposed a spatiotemporal backpropagation training

framework for SNNs, introducing a differentiable surrogate function to approximate the

derivative of spiking activity [17, 86, 87]. This method combines the spatial and temporal

domains in the training phase and has yielded the best results for deep convolutional SNNs in

small-scale image recognition datasets such as digit classification on the MNIST. However, for

14

large-scale tasks, it has not been able to outperform the conversion-based approach or ANNs

in terms of accuracy [7].

To further improve the performance of SNNs and decrease gaps between ANNs and SNNs,

Wu et al. proposed neuron normalization. This mechanism can balance the firing rate of each

neuron and avoid the loss of important information. Cheng et al. added the lateral connections

between neighboring neurons and obtained better accuracy [18]. Some researchers have revised

the neuron model’s parameters to improve the accuracy. For example, the learnable membrane

time constants in Leaky Integrate-and-Fire (LIF) neurons were utilized to make the charging

and leakage process more flexible [19, 20], and an adaptive threshold spiking neuron model

was proposed to enhance the learning capabilities of SNNs [21].

In this chapter, we propose a novel spiking neural unit KLIF to replace the commonly adopted

LIF model in SNNs. KLIF adds a learnable scaling factor that dynamically updates the slope

and width of the surrogate gradient curve during training and accelerates the convergence. It

also incorporates a ReLU activation function that selectively delivers membrane potential to

spike firing and resetting. We verified our model on both classic static MNIST, Fashion-

MNIST, CIFAR-10 datasets widely used in ANNs as benchmarks and neuromorphic N-

MNIST, CIFAR10-DVS, DVS128-Gesture datasets. Experiments show that SNN with KLIF

improves the test accuracy on all datasets and outperforms the SOTA accuracy.

In summary, our main work is:

1. We propose a novel spiking neural unit KLIF which can improve accuracy of models on

different visual tasks by adaptive surrogate gradient descent and potential rectification.

15

2. We independently analyse the impact of the learnable scaling factor and rectified function.

Our experiments show that the scaling factor and the ReLU activation function can

independently contribute to improving accuracy of models.

3. We improve the coding layers of SNNs, which contributes to convergence and accuracy

improvement of models.

2.2 Method

In Sec. 2.2.1, we first briefly review the LIF model and then give the dynamic equations of

KLIF. In Sec. 2.2.2 and Sec. 2.2.2-2.2.3, we explain the benefits that KLIF brings. Finally,

network structures and coding layers used in SNN models, including encoding and decoding,

are clarified in Sec. 2.2.4.

 k-based leaky Integrate-and-Fire model

Figure 2.1 Structure of spiking neurons. (a) leaky Integrate-and-Fire (LIF) model. (b) 𝑘-based

leaky Integrate-and-Fire (KLIF) model. The dotted box represents the dynamic of function 𝐹𝑡.
It incorporates a scaling factor 𝑘 and an activation function 𝑅𝑒𝐿𝑈.

16

The LIF model is one of the fundamental computing units of SNNs. It is a simplified model of

biological neurons and describes the non-linear relationship of input and output. The sub-

threshold dynamics of the LIF spiking neuron can be modeled using Equation (2.1).

𝜏
d𝑉(𝑡)

d𝑡
= −(𝑉(𝑡) − 𝑉reset) + 𝑋(𝑡)

 (2.1)

Where 𝑉(𝑡) is the membrane potential of the neuron and 𝜏 is the time constant, 𝑋(𝑡) is defined

as the weighted sum of the input spikes for each time step.

When a neuron receives inputs from the previous layer, its membrane potential will

accumulate. Once the potential value exceeds the neuron's threshold, the neuron will fire a

spike and promptly restore the reset potential 𝑉reset which is set to be 0 in this paper. To

simulate the dynamic actions of LIF neurons discretely in time, we use the difference Equations

(2.2)-(2.4) to approximate the continuous dynamic process [19].

𝐻𝑡 = 𝑉𝑡−1 +
1

𝜏
(𝑉reset − 𝑉𝑡−1) +

1

𝜏
𝑋𝑡

 (2.2)

𝑆𝑡 = {
1, 𝑖𝑓 𝐻𝑡 > 𝑉𝑡ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.3)

𝑉𝑡 = 𝐻𝑡(1 − 𝑆𝑡) + 𝑉reset𝑆𝑡 = 𝐻𝑡(1 − 𝑆𝑡)

 (2.4)

Where 𝐻𝑡 and 𝑉𝑡 represent the membrane potentials before and after triggering a spike at time

𝑡, respectively. 𝑋𝑡 denotes the external input, and 𝜏 denotes the time constant with a value

of 2. 𝑉𝑡ℎ denotes the firing threshold, which is 1 in this paper. 𝑆𝑡 denotes the output of a neuron

17

at time 𝑡, which equals 1 if there is a spike and 0 otherwise. With Equations (2.2)-(2.4), we

describe the charging, firing, and resetting actions of the LIF neuron. Figure 2.1(a) illustrates

the dynamics of the LIF neuron.

Unlike the LIF model, we propose the 𝑘-based spiking neural unit (KLIF) which adds a

function 𝐹𝑡 (Equation (2.5)) between charging 𝐻𝑡 and firing 𝑆𝑡 into the LIF model (Figure

2.1(b)). The function consists of a scaling factor 𝑘 and an activation function ReLU. As shown

in Figure 2.1(b), a spiking neuron accumulate first its potential at time 𝑡, then the accumulated

potential is multiplied by 𝑘 and passes through the ReLU function before being compared with

the firing threshold. The dynamics of KLIF can be described by Equations (2.2) and (2.5)-(2.7).

𝐹𝑡 = ReLU(𝑘𝐻𝑡)

 (2.5)

𝑆𝑡 = {
1, 𝑖𝑓 𝐹𝑡 > 𝑉𝑡ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.6)

𝑉𝑡 = 𝐹𝑡(1 − 𝑆𝑡) + 𝑉reset𝑆𝑡 = 𝐹𝑡(1 − 𝑆𝑡)

 (2.7)

In section 2.3, we will discuss the reason for choosing ReLU. Compared with the LIF model,

KLIF brings two benefits: adaptive surrogate gradient descent and membrane potential

regulation.

 Adaptive surrogate gradient descent

18

As we all know, ANNs are trained by gradient-based backpropagation (BP), which uses

gradient information to optimize the synaptic connections and neuron parameters.

Unfortunately, gradient-based optimization fails in SNNs because the firing action is non-

differentiable, as described in Equation (2.3). The derivative of 𝑆𝑡 is infinite at 𝐻𝑡 = 𝑉𝑡ℎ, and

the derivative is 0 at other places, as shown in Figure 2.2(a). An approach called surrogate

gradient descent was proposed to address this issue [86]. The trick is to replace the derivative

of the non-differentiable step function with an approximate differentiable function. It provides

surrogate gradients that can be utilized to optimize the parameters of SNN efficiently during

backpropagation. The differentiable function could have several forms [88]. The similarity

among them is that their primitive function approximates the shape of the step function. Values

of the differentiable function are relatively big around the threshold, while those away from

the threshold tend to approach 0.

Figure 2.2 Derivative approximation of the non-differentiable spike activity. (a) step

activation function of the spike activity and its original derivative function which is infinite

value at H = 1 and zero value at other points. (b) scaling factor 𝑘 to adjust the slope of the

surrogate gradient curve
𝜕𝑆

𝜕𝐹
.

19

It has been confirmed that the type of curves of the surrogate derivative is not critical to the

accuracy and the convergence speed of SNNs, but the proper curve steepness has an impact

[86]. The earlier works all set the steepness empirically and do not consider the adjustment of

the curve anymore during training [86]. In contrast, our work proposes the learnable scaling

factor 𝑘 which can automatically change during the training process to fit the training data

precisely.

The loss function 𝐿 is defined by the mean squared error (MSE). Under the principle of chain

rule [89], we can calculate the gradients of the scaling factor 𝑘𝑖 in the 𝑖-th layer in the network

according to Equation (2.8).

∑
𝜕𝐿

𝜕𝑘𝑖
𝑡

=∑
𝜕𝐿

𝜕𝑺𝑡
𝑖

𝜕𝑺𝑡

𝑖

𝜕𝑭𝑡
𝑖

𝜕𝑭𝑡
𝑖

𝜕𝑘𝑖
𝑡

 (2.8)

𝑆𝑡
′
=
𝜕𝑆𝑡
𝜕𝐹𝑡

≈
𝛼

2(1 + (
𝜋
2 𝛼

(𝐹𝑡 − 𝑉𝑡ℎ))2)
=

𝛼

2(1 + (
𝜋
2 𝛼

(ReLU(𝑘𝐻𝑡) − 𝑉𝑡ℎ))2)

=

{

𝛼

2 (1 + (
𝜋
2 𝛼𝑉𝑡ℎ)

2
)
, 𝐻𝑡 < 0

𝛼

2(1 + (
𝜋
2 𝛼𝑘 (𝐻𝑡 −

𝑉𝑡ℎ
𝑘
))

2

)

, 𝐻𝑡 ≥ 0

 (2.9)

In this paper, we use the derivative of arctangent 𝑔′(𝑥) =
α

2(1+(
π

2
α𝑥)

2
)
 in place of the derivative

of the step function in Equation (2.9). 𝛼 is a constant which equals 2. In Equation (2.9), the

value of the surrogate gradient 𝑆𝑡
′ depends on the size of the parameter 𝑘. When 𝑘 is large, the

steepness of the surrogate gradient curve is steep; conversely, it becomes flat, as shown in

20

Figure 2.2(b). SNNs can adjust the gradient information by changing 𝑘 during training, which

is more reasonable than setting it artificially. In addition,
𝑉𝑡ℎ

𝑘
 in Equation (2.9) can be regarded

as a new threshold that also depends on 𝑘. When 𝑘 is large, the threshold is high; conversely,

it becomes low. We use 𝑘 as a shared parameter with the neurons in the same layer in SNNs.

This feature not only saves memory but also is biologically plausible as the neighboring

neurons tend to have similar properties [19]. Notably, the parameter 𝑘 should be larger than 0,

and cannot be too large as well, which leads to a very steep gradient curve. In practice, we find

that the value of 𝑘 rarely becomes too small or too large as a shared parameter decided by all

neurons in one layer, but just in case, we still give a boundary of it from 0.5 to 5. For the

initialization, we set the values of 𝑘 in all layers to 1.

From one perspective, the adaptive surrogate function based on parameter 𝑘 makes models

more flexible during training. By optimizing the value of 𝑘, it is possible to find the best

slope and width of the surrogate function, which can speed up the convergence of the model

and improve the ability to fit the training data. Since each layer has a separate 𝑘, which makes

the surrogate function’s slopes different for each layer. From another perspective, the

parameter 𝑘 also scales the accumulated potential 𝐻𝑡 at each time step. With the increase or

decrease of 𝑘, the potential will be amplified or reduced. It makes the charging process of

neurons more controllable.

 Activation function ReLU

In addition to the scaling factor 𝑘, KLIF also incorporates an activation function, ReLU.

ReLU keeps all the positive potentials and resets all negative potentials to 0. As 𝑘 is

consistently less than 1, which may cause a negative potential to be an even larger negative

21

value, it would reduce firing possibility and lead to dead neurons. ReLU limits the membrane

potential from being too low to fire spikes. Also, the introduction of ReLU could save

memory [90] for SNN quantitative representation when running on customed neuromorphic

devices because 1) ReLU resets all negative potentials to zero, and 2) some gradients in

backpropagation (BP) become zero due to ReLU. Figure 2.1(b) shows the feedback loop of

KLIF.

 Encoding and decoding schemes

Coding layers used by SNNs are critical and decide the performance of SNNs. For the

encoder, a popular method that transforms input images to spike train is rate coding.

Generally, the pixel intensity of real-valued images is proportional to the firing rate in a period

in rate coding. However, the conventional rate coding needs a long simulation time to present

the information of images, so it is limited in training deep SNNs which have high memory

requirements. An encoding layer that directly uses the first convolutional layer to encode the

image information was shown to reduce the simulation time significantly and achieve a good

Figure 2.3 Encoder and decoder of SNNs

22

performance [17]. Thus, we adopt a similar method to build our encoder. The difference is

that we use three parallel convolutional layers rather than one convolutional layer. We add up

the values of the corresponding positions of the three convolutional layers before input to

spiking neurons. We adopt a voting strategy proposed in [27] for the decoder to decode the

output information. It divides neurons in the output layer into several neuron populations, and

each population is assigned a label. The highest determines the output class by counting the

average firing rate of every population over a given time window. Figure 2.3 shows the

structure of the encoder and decoder.

2.3 Results and discussions

We test the proposed KLIF for classification tasks on both static datasets MNIST, Fashion-

MNIST, and CIFAR-10, and neuromorphic datasets N-MNIST, CIFAR10-DVS, and DVS128-

Gesture. We train SNNs by the Adam[91] optimizer with the learning rate 1e-4 and the cosine

annealing [92] learning rate schedule with 𝑇𝑚𝑎𝑥 = 100.

Table 2.1 Network structures and training details for different datasets.

Dataset
Simulation

time
Epoch Network structure

MNIST

and

Fashion-

MNIST

8 100
(128C3+128C3+128C3)(encoding)-128C3-MP2-

2048FC-(100FC-AP10)(decoding)

N-MNIST 10 100
(128C3+128C3+128C3)(encoding)-128C3-MP2-

2048FC-(100FC-AP10)(decoding)

CIFAR-10 10 200
(128C3+128C3+128C3)(encoding)-(256C3-256C3-

256C3-MP2)*2-2048FC-(100FC-AP10)(decoding)

CIFAR10-

DVS
15 100

(128C3+128C3+128C3)(encoding)-(128C3-MP2)*3-

512FC-(100FC-AP10)(decoding)

DVS128-

Gesture
12 200

(128C3+128C3+128C3)(encoding)-(128C3-MP2)*4-

512FC- (110FC-AP10)(decoding)

Note: nC3—Convolutional layer with n output channels, kernel size = 3 and stride = 1,

MP2—2D max-pooling layer with kernel size = 2 and stride = 2, AP10—1D average-

pooling layer with kernel size = 10 and stride = 10, FC—FC layer. The symbol ()*n indicates

the n repeated structures.

23

 Comparison of LIF and KLIF

We compare the test accuracy of SNN models on all six datasets when using LIF and KLIF,

respectively (Figure 2.4). The network architectures and training details for different datasets

are listed in Table 2.1. The hyperparameter selection like the number of filters and output

feature maps are referenced in [19] which produces the best classification accuracy on

different visual datasets. Except for the encoder, we use the same network architectures as

those used in [19]. The batch normalization operation is used to change the input distribution

after each convolutional layer. Before each fully connected layer, a dropout operation with

the drop probability P = 0.5 is added to prevent overfitting. We keep the same hyperparameters

and the network structure on both SNNs with different spiking neurons.

Figure 2.4 The test accuracy of KLIF v.s. LIF neurons on different datasets during training.

24

As shown in Figure 2.4, the test accuracy of the SNNs with KLIF neurons is always higher

than that with LIF neurons， which verifies the validation of KLIF. In contrast, the accuracy

gap is more significant on more complex datasets like CIFAR-10, CIFAR10-DVS, DVS128-

Gesture than the simple Fashion-MNIST. Table 2.2 summarizes the results of existing state-

of-the-art results. Our method achieves or approximates the best results in almost all datasets,

with only no more than 10 time steps on static datasets and 15 time steps on neuromorphic

datasets. Notably, accuracy listed in [19] is based on models trained for 1000 epochs, while

ours are 100 or 200 epochs. With the same 100 epochs, the performance of our models is still

better than that in [19] after verification.

Figure 2.5 shows the change of 𝑘 in each layer during training on CIFAR-10 and DVS128-

Gesture. It demonstrates that 𝑘 in each layer tends to converge during training. Figure 2.6 is

the distribution of firing rate comparison between the model with LIF and model with KLIF

for neurons in each layer after 100 epochs training on CIFAR-10. Compared with LIF, the

model with KLIF has a higher firing rate in most layers. It means that the KLIF neurons in

the model are more active than LIF neurons. The result is likely to be related to the

amplification of membrane potentials because most 𝑘 values are larger than 1 in Figure 2.5.

Besides, the presence of ReLU limits the lower bound of the membrane potential to 0, which

makes it easier for neurons to accumulate to the threshold value in a short time and thus to

fire spikes. Especially for LIF, in case the initial value of the membrane potential is at a small

negative value, this makes a neuron hard to be triggered.

Table 2.2 Comparison between our work and the state-of-the-art methods on different

datasets.

Author Method SNN accuracy

25

MNIST
Fashion-

MNIST

CIFAR-

10
N-MNIST

CIFAR10

-DVS

DVS128-

Gesture

Hunsberger et

al.[93]
ANN-SNN 98.37% - 82.95% - - -

Lucas et al.[94] - - - - 92.90%

Rueckauer et al.[95] ANN-SNN 99.44% - 88.82% - - -

William et am.[9] ANN-SNN 99.53% - 88.01% - - -

Christoph et al.[96] ANN-SNN - - 92.42% - - -

Wu et al.[17] Spike-based BP - - 90.53 99.53% 60.5% -

Zhang et al.[97] Spike-based BP 99.62% 90.13% - - - -

Lee et at.[16] Spike-based BP 99.59% - 90.95% 99.09% - -

Shrestha et al.[98] Spike-based BP 99.36% - - 99.2% - 93.64%

Kaiser et al.[99] Spike-based BP - - - 96% - 95.54%

Cheng et al.[100] Spike-based BP 99.5% 92.07% - 99.45% - -

He et al.[101] Spike-based BP - - - 98.28% - 93.40%

Xing et al[102] Spike-based BP - - - - - 92.01%

Wu et al.[86] Spike-based BP 99.42% - - 98.78% 50.7% -

Fang et al.[19] Spike-based BP 99.72% 94.38% 93.5% 99.61% 74.8% 97.57%

Ours (with LIF) Spike-based BP 99.61% 94.28% 91.02% 99.48% 68.4% 93.06%

Ours (with KLIF) Spike-based BP 99.61% 94.35% 92.52% 99.57% 70.9% 94.1%

 Ablation study

In section 2, we introduce the scaling factor 𝑘 and ReLU function. Here we analyze their

influence on models’ accuracy, respectively. We selected two more commonly used network

architectures for our ablation study: SNN version of VGG-16 and ResNet-18, which can

demonstrate that the improved performance comes from KLIF's 𝑘 and ReLU rather than a

certain network architecture. We trained both networks with 100 training epochs and 6 time

steps under four conditions: the accuracy of LIF, only with 𝑘, only with ReLU, and KLIF. In

VGG-16, the accuracy is 78.45%, 82.96%, 81.04%, and 85.53%, respectively. In ResNet-18,

a similar conclusion can be summarized. The result clearly shows the big accuracy gap

26

between LIF and KLIF and also indicates the benefits of 𝑘 and ReLU, respectively. In

contrast, using 𝑘 alone achieves better results than using ReLU alone in both networks.

Finally, the impact of the coding layers on the models’ accuracy is tested. We incorporate our

coding layers in both models. The test accuracy of the SNNs with our coding layers is always

Figure 2.5 The change of scaling factor 𝑘𝑖 in the 𝑖-th layer during training on a. CIFAR-10 and

b. DVS128-Gesture.

Figure 2.6 The distribution of firing rate for neurons in each layer during training on CIFAR-10.

a b

27

higher than that without our coding layers, as shown in Table 2.3, showing the validity of the

coding layer.

 Biological plausibility of KLIF

Biologically, neurons regulate the ion concentration difference inside and outside the

membrane through the opening and closing of ion channels, thereby regulating the magnitude

and range of the membrane potential. LIF neurons cannot regulate input currents and their

internal potentials during training. In contrast, the parameter 𝑘 and ReLU regulate the

magnitude and range of the membrane potential, respectively, which is more biologically

plausible.

In Equation (2.5), 𝐹𝑡 is a scaled and rectified version of 𝐻𝑡 at time t. So when computing the

new 𝑉𝑡+1, that will be injected in Equation (2.2) at the next time step. The scaling could also

be canceled to maintain the original potential accumulation. Thus, Equation (2.7) could be

changed by dividing by 𝑘 on the right-hand side:

𝑉𝑡 =
𝐹𝑡
𝑘
(1 − 𝑆𝑡) + 𝑉reset𝑆𝑡 =

𝐹𝑡
𝑘
(1 − 𝑆𝑡)

 (2.10)

Table 2.3 Ablation Study of KLIF.on CIFAR-10

Neuron VGG-16 ResNet-18

LIF 78.45% 85.24%

KLIF 85.53% 89.12%

Only with k 82.96% 87.2%

Only with ReLU 81.04% 86.66%

KLIF(without coding layers) 85.53% 89.12%

KLIF(with coding layers) 86.64% 89.88%

28

When we use this form as the expression of KLIF*, the accuracy (see Table 2.4) on

aforementioned datasets does not change a lot compared with using KLIF.

Similarly, the ReLU function limits membrane potentials above the resting potential, which

is not biologically plausible, as biological neurons can go way below the resting potential.

Therefore, we replace the ReLU function in KLIF with the CELU and leaky ReLU. These

functions keep the same as the ReLU in the positive part and sets the negative membrane

potential as a small negative value, which is more biological plusible. The result in Table 2.5

shows that the test accuracy of SNN with KLIF(CELU) and KLIF(leaky ReLU) are still better

than that with LIF. While the accuracy using KLIF(CELU) is slightly lower than that using

KLIF(ReLU), the accuracy using KLIF(leaky ReLU) is not worse than that using

KLIF(ReLU). The results also demonstrate the robustness of KLIF to different activation

functions. In a sense, KLIF is more biologically plausible than LIF, because in LIF, the

potential can be infinitely negative [46], which is inconsistent with the fact that biological

Table 2.4 Accuracy of using KLIF/KLIF*

Neuron

SNN accuracy

MNIS

T

Fashion-

MNIST

CIFAR-

10

N-

MNIST

CIFAR

10-DVS

DVS128-

Gesture

KLIF 99.61% 94.35% 92.52% 99.57% 70.9% 94.1%

 KLIF* 99.6% 94.31% 91.93% 99.27% 70.6% 94.1%

Table 2.5 Accuracy of using KLIF with different activation functions on CIFAR-10

Neuron VGG-16 ResNet-18

LIF 78.45% 85.24%

KLIF(ReLU) 85.53% 89.12%

KLIF(CELU) 84.55% 88.7%

KLIF(leaky ReLU) 85.9% 89.11%

29

neurons follow, while KLIF is more biologically meaningful by limiting the bounds of the

negative values to fluctuate within a certain range through the activation function.

2.4 Conclusion

For a long time, there has been a relatively big performance gap between ANNs and SNNs.

Kinds of methods like ANN-to-SNN conversion and direct training with spike-based BP

attempt to reduce the gap. Overall, the spike-based BP is not as good as the conversion method

regarding models’ accuracy. However, the conversion from ANNs is based on the rate coding

and usually needs a long inference time to approximate the original accuracy of ANNs, which

is not efficient. More research is currently focused on how to train high-precision SNNs

directly like ANNs.

In this work, we proposed the 𝑘-based spiking neural unit KLIF. It incorporates the learnable

scaling factor 𝑘 and the activation function ReLU. Our experiments show that the SNN with

KLIF neurons outperforms that with LIF neurons in various visual datasets. We also verify that

the scaling factor and activation function can independently contribute to improving accuracy

of models. The SNN updates its learnable surrogate gradients by the scaling factor over the

training. The ReLU contributes to the selective delivery of positive membrane potentials.

Furthermore, our coding layers with three summed convolutional layers for SNN only needs

several time steps to run, which speeds up the convergence of models and improve accuracy

of models.

30

3 Adversarial Defense via Neural Oscillation inspired

Gradient Masking

Abstract

Spiking neural networks (SNNs) attract great attention due to their low power consumption,

low latency, and biological plausibility. As they are widely deployed in neuromorphic devices

for low-power brain-inspired computing, security issues become increasingly important.

However, compared to deep neural networks (DNNs), SNNs currently lack specifically

designed defense methods against adversarial attacks. Inspired by neural membrane potential

oscillation, we propose a novel neural model that incorporates the bio-inspired oscillation

mechanism to enhance the security of SNNs. Our experiments show that SNNs with neural

oscillation neurons have better resistance to adversarial attacks than ordinary SNNs with LIF

neurons on kinds of architectures and datasets. Furthermore, we propose a defense method that

changes model’s gradients by replacing the form of oscillation, which hides the original

training gradients and confuses the attacker into using gradients of ‘fake’ neurons to generate

invalid adversarial samples. Our experiments suggest that the proposed defense method can

effectively resist both single-step and iterative attacks with comparable defense effectiveness

and much less computational costs than adversarial training methods on DNNs. To the best of

our knowledge, this is the first work that establishes adversarial defense through masking

surrogate gradients on SNNs.

31

3.1 Introduction

Spiking neural networks (SNNs) recently attracted more and more attention due to their

biological plausibility. In addition to neurons and synapses, SNNs incorporate the concept of

time into models. Neurons in SNN receive spike trains as inputs, and these spike trains will

increase or decrease their membrane potentials. Unlike conventional artificial neural networks

(ANNs), the neurons of SNNs transmit information only if their membrane potential reaches a

specific firing threshold. Information is sent to the next-layer neurons in the form of spike

trains. These characteristics may underline the information transmission and processing in the

brain. It is therefore regarded as the next-generation neural network [103]. Like the brain

working fast and efficiently, SNN is also proved to have much better power efficiency [104]

and shorter latency [105] compared with ANNs. Besides, researchers also noticed their

promising capability in processing dynamic and noisy information [106-108]. SNNs have been

applied in various tasks such as spike pattern recognition [109], optical flow estimation [110],

and sparse representation [111]. Since SNNs are being widely deployed in neuromorphic

devices such as IBM TrueNorth [112] and Intel Loihi [112], the security aspect of SNNs

becomes vital.

In ANNs, models are vulnerable to adversarial attacks that deceive the model into producing

the wrong outputs by adding imperceptible perturbations into the clean input. This results in

ANNs having catastrophic consequences in certain tasks, such as medical diagnosis and self-

driving cars. These attacks are most based on gradients to generate perturbations, such as Fast

Gradient Sign Method (FGSM) [67], Basic Iterative Method (BIM) [113], and Projected

Gradient Descent (PGD) [114]. Therefore, it is important to improve the robustness of the

model and resist the aforementioned adversarial attacks. Several adversarial defense methods

32

were proposed, such as ensemble training [115], denoising [116], and adversarial training

[114].

Despite its popularity in ANNs, adversarial attacks rarely receive any attention in the SNN

domain. One reason may be the non-differentiability of spiking events, making supervised

learning of SNNs difficult. Some relevant studies of adversarial attacks on SNNs concentrate

on gradient-free attack methods (e.g., trial-and-error input perturbation [117, 118]) or spatial

gradient-based ANN-to-SNN conversion methods [119]. The computational complexity of the

former methods is relatively high due to the absence of the gradient's guidance. The latter lacks

temporal components, which leads to inefficient attacks [106]. Recently, a supervised learning

algorithm using a surrogate function to approximate the derivative of spike activity [17, 86, 88]

exhibited success in training high-performance SNNs and raised the opportunity to realize

spatiotemporal adversarial attacks on SNNs based on gradients [120].

Adversarial defense against adversarial attacks is still in its initial stage for SNNs. There are

few literatures devoted to adversarial defense methods for SNNs. In [121], the authors

demonstrate that the simulation time and threshold of SNNs impact the robustness to

imperceptible perturbations. However, they do not propose a defense method to resist the

interference of adversarial samples effectively. In this work, we propose a specific adversarial

defense method for SNN based on a novel bio-inspired approach, where neural oscillation is

harnessed for the first time to enhance performances of SNNs under adversarial attacks

significantly. We first present a neural oscillation neuron model to train models. The gradients

of models will be masked by an alternative neural oscillation after training, thus creating

interference in the gradient-based generation of the adversarial samples and effectively

33

enhancing the robustness of the SNNs. We have verified the effectiveness of our defense

method on CIFAR-10 and CIFAR-100 datasets [122].

In summary, our main contributions are:

1. We propose a novel neural oscillation neuron that is bio-plausible and robust. It blurs the

gradients of the SNNs model and interferes with the effect of perturbations on SNNs.

2. We derive an alternative neural oscillation neuron through the neural oscillation neuron. The

neuron, being very 'weak', is able to attenuate the attack capability of adversarial samples, thus

indirectly enhancing the robustness of the network.

3. Based on two types of neurons, we propose a defense strategy that uses the ‘fake’ neuron to

confuse the attacker and thus achieve adversarial defense. The developed defense method can

effectively resist kinds of adversarial attacks, such as FGSM and PGD.

The rest of this chapter is organized as follows. Section 3.2 provides some preliminaries of

SNNs and adversarial attacks. The experimental setup and our neural oscillation models are

discussed in Section 3.3. Section 3.4 validates the validation of our defense methodology.

Section 3.5 concludes this article.

3.2 Preliminaries

 SNNs and biological neural oscillation

SNNs adopt spike trains as information carriers between neurons. Every spiking neuron in a

SNN receives and emits spikes. The LIF neuron model is a popular bio-inspired simplified

model for describing the dynamics of spiking neurons. The dynamics of the LIF model are

defined [19] by

34

𝐻(𝑡) = 𝜆 ∗ 𝑉(𝑡 − 1) + ∑𝑤𝑖𝑥𝑖(𝑡)

𝑖

 (3.1)

𝑆(𝑡) = {
1, 𝐻(𝑡) > 𝑉𝑡ℎ
0, 𝐻(𝑡) ≤ 𝑉𝑡ℎ

 (3.2)

𝑉(𝑡) = 𝐻(𝑡)(1 − 𝑆(𝑡)) + 𝑉reset ∗ 𝑆(𝑡)

 (3.3)

where 𝐻(𝑡) and 𝑉(𝑡) represent the membrane potentials before and after triggering a spike at

time 𝑡, respectively. 𝑉𝑡ℎ denotes the firing threshold, which is 1 in this paper. 𝑉reset is the

resting potential, which is 0. 𝑆𝑡 denotes the output of neurons at time 𝑡, 𝑤𝑖𝑥𝑖(𝑡) is the i-th

weighted pre-synaptic input at time 𝑡, and 𝜆 is the decaying time constant, which is 0.5.

According to Equations (3.1) - (3.3), when a neuron receives spikes from the previous-layer

neurons, its membrane potential will increase. Once the potential value surpasses the neuron’s

firing threshold, the neuron will fire one spike and promptly be reset to the initial potential

𝑉reset.

The biological nervous system generates rhythmic patterns of activity called neural oscillation

[123]. Neural oscillations are thought to be associated with many cognitive functions such as

information transfer, perception, motor control, and memory. Such oscillation is mainly

triggered by the interaction of individual neurons. In individual neurons, neural oscillation can

manifest as the oscillation of membrane potentials or as rhythmic action potentials. This kind

of spontaneous activity plays an important role during brain development, including

synaptogenesis and network formation. Even though neural oscillations are ubiquitous in

35

biological neurons, the current common spiking neuron models for deep learning, such as IF

and LIF models, do not include this oscillatory mechanism, and there is no literature that

develops adversarial defense of deep learning models using neural oscillation.

 Adversarial attacks

Adversarial attacks [124] introduce imperceptible perturbation into the input data to mislead

the model's classification result. Adversarial attacks can be classified as targeted and non-target

attacks according to adversarial goals. A targeted attack is when the attacker attempts to

misdirect the model to a class that is different from the true class, while a non-target attack

means that the attacker attempts to mislead the model by predicting any of the incorrect classes

[125].

In gradient-based adversarial attacks, for a clean image 𝑥 belonging to class 𝑘 and a trained

SNN model 𝑀, the adversarial image 𝑥𝑎𝑑𝑣of 𝑥 needs to satisfy the following two criteria:

1). The difference between 𝑥𝑎𝑑𝑣 and 𝑥 is imperceptible, i.e., ||𝑥𝑎𝑑𝑣 − 𝑥||𝑝 ≤ 𝜖

2). The model misclassifies 𝑥𝑎𝑑𝑣, i.e., 𝑀(𝑥𝑎𝑑𝑣) ≠ 𝑘

where the distance metric ||. ||𝑝 denotes the 𝑝-norm quantifying the similarity, and 𝜖 reflects

the maximum allowable perturbation on the image.

There are various kinds of adversarial attack algorithms that generate adversarial samples to

deceive the model. In this work, we adopt four typical adversarial attacks to evaluate our

defense model.

Fast Gradient Sign Method (FGSM) [67] is the most basic approach for generating

adversarial samples, which aims at finding a perturbation that maximizes its cost function for

36

the perturbed input [120]. This approach generates adversarial samples by perturbing once the

clean image 𝑥 by the amount of 𝜖 along the input gradient direction:

𝒙𝒂𝒅𝒗 = 𝒙 + 𝜖 ⋅ sign(∇𝑥ℒ(𝒙, 𝒚))

 (3.4)

Here, ℒ represents the cost function of the model, and ∇𝑥(∗) is the model's gradient with

respect to a clean sample of 𝒙. 𝒚 is the label corresponding to 𝒙.

Basic Iterative Method (BIM) [113] is an iterative version of FGSM and generates the

adversarial samples as:

𝒙𝒎 = clip𝜖 (𝒙𝒎−𝟏 +
𝜖

𝑖
⋅ sign (∇𝑥𝑚−1(ℒ(𝒙𝒎−𝟏, 𝒚)))

 (3.5)

where 𝒙𝟎 is the clean image, 𝒙𝒎 is an adversarial sample in the 𝑚-th iteration, and 𝑖 is the

iteration number. clip𝜖(∗) represents element-wise clipping of the argument to the range [𝒙 −

𝜖, 𝒙 + 𝜖].

Momentum Iterative Method (MIM) [126] is similar to BIM but is extended to promote the

stability of gradient direction through the addition of a momentum term:

𝑔𝑚 = μ ⋅ 𝑔𝑚−1 +
∇𝑥𝑚−1ℒ(𝒙𝑚−1, 𝑦)

||∇𝑥𝑚−1(ℒ(𝒙𝑚−1, 𝑦))||1

 (3.6)

𝒙𝑚 = clipϵ (𝒙𝑚−1 +
ϵ

𝑖
⋅ sign(𝑔𝑚))

 (3.7)

37

𝜇 is the decaying factor.

Projected Gradient Descent (PGD) is one of the strongest iterative adversary attacks. It starts

from a random position in the clean image neighborhood 𝒰(𝒙, 𝜖). Its expression is described

as:

𝒙𝑚 = 𝑐𝑙𝑖𝑝𝜖 (𝒙𝑚−1 + 𝛾 ⋅ 𝑠𝑖𝑔 𝑛 (𝛻𝑥𝑚−1ℒ(𝑥𝑚−1, 𝑦)))

 (3.8)

where 𝑚 is the iterative number, and γ is the step size.

3.3 Experiments

 Datasets and Models

We conduct the experiments on SNN versions of VGG-16 and ResNet-18 for CIFAR-10 and

ResNet-18 for CIFAR-100. All models were trained by surrogate gradient-based BP with

maxpool layers replaced by average pooling. Bias terms are not included in SNNs. After the

convolution layer, we add a batch normalization layer to change the input distribution. Before

the fully connected layer, a dropout layer with the probability of P = 0.5 is used to prevent

overfitting.

For both CIFAR-10 and CIFAR-100 datasets, all data are normalized to [0,1]. SNNs are

trained for 100 epochs with cross-entropy loss and Adam [91] optimizer. The initial learning

rate is set to 1e-4, and the cosine annealing [92] learning rate schedule with 𝑇𝑚𝑎𝑥 = 100 adjusts

the learning rate over training. A total of 8 timesteps are used for all SNNs. We measure the

attack success rate of adversarial sample crafting on 1000 samples randomly selected from

each dataset.

38

Due to the discontinuity of the spiking activity, when training the model, we use the derivative

of the Atan function as the surrogate gradient function (see Equation (3.9), α = 3) to

approximate the derivative of spiking activities.

𝑦(𝑥) =
𝛼

2(1 + (
𝜋
2 𝛼

(𝑥 − 𝑉𝑡ℎ))
2

)

 (3.9)

 Neural oscillation neuron

Inspired by the biological neural oscillation, we add random oscillation noise in the LIF

Figure 3.1 The training process of the model with alternative neural oscillation neurons at

time 𝑡. The model trained first with neural oscillation neurons can be regarded as a 'teacher

model'. It provides the labels for a 'student model' which replaces neural oscillation neurons

with alternative neural oscillation neurons. The 'student model' keeps the same trained

weights and fits spike trains 𝑺′𝑗(𝑡) of student model to 𝑺𝑗(𝑡) of teacher model by learning

variables 𝑎 and 𝑏 in each layer.

39

neuron. We refer to the new neuron as the neural oscillation model. Its dynamic can be

described by Equations (3.1) and (3.10) - (3.13).

𝑃(𝑡) = 𝑓(𝐻(𝑡) + 𝛾(𝑡))

 (3.10)

𝑆(𝑡) = {
1, 𝑃(𝑡) > 𝑉𝑡ℎ
0, 𝑃(𝑡) ≤ 𝑉𝑡ℎ

 (3.11)

𝑉𝑡 = 𝑃(𝑡)(1 − 𝑆(𝑡)) + 𝑉reset𝑆(𝑡)

 (3.12)

𝑓(𝑥) = {
−0.03𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0

 (3.13)

𝛾(𝑡) is an independent uniformly-distributed random noise in a range of [𝑎, 𝑏] for neurons in

each layer, which is [-0.2,0.8] in this paper. 𝑓(𝑥) is a piece-wise linear function 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

whose gradients are defined as -0.03 if 𝑥 ≤ 0 and gradients are 1 if 𝑥 > 0.

 Alternative Neural oscillation neuron

We train and then save SNN with neural oscillation model, then we copy the model and replace

the neural oscillation neuron with a new neural model called alternative neural oscillation. The

new neural model changes the noise item 𝛾𝑖(𝑡) in Equation (3.10) to a Sine function of the

membrane potential 𝐻(𝑡), as Equation (3.14) describes. The firing and reset actions keep the

same as Equations (3.11) and (3.12).

𝑃(𝑡) = 𝑓(𝐻(𝑡) + sin(𝐻(𝑡) + 𝑐) + 𝑑)

 (3.14)

40

Variables 𝑐 and 𝑑 are learnable parameters shared by all layers in the network. The mapping

function sin(𝐻(𝑡) + 𝑐) + 𝑑 is selected here to fit the noise in neural oscillation (More details

of the mapping function selection can be found in the supplementary). We freeze all weights

of the model with alternative neural oscillation and only keep parameters 𝑐 and 𝑑 learnable.

The model as the student model was trained again to learn each layer's output of the saved

model with neural oscillation neurons, which is regarded as the teacher's model. Here we define

the loss function Equation (3.15) to minimize the difference between the spike trains 𝑺𝑗(𝑡) and

𝑺′𝑗(𝑡) between neural oscillation and alternative neural oscillation in 𝑗-th layer at time 𝑡.

𝐿 = ∑ ∑
1

2
(𝑺𝑗(𝑡) − 𝑺𝑗

′(𝑡))2
𝑗𝑡

 (3.15)

In this way, the accuracy of models changes slightly (see Table 3.1). In experiments this process

requires only 1-3 training epochs, besides, weight parameters are frozen and few parameters

are learnable, thus adding almost no additional training time. The details of noise range [𝑎, 𝑏]

and values of 𝑐 and 𝑑 obtained by training can be found in the supplementary. The process of

generating alternative neural oscillation neurons is presented in Figure 3.1.

 Adversarial defense strategy

Now we have two models with different neurons. The two models have approximate output

and inference accuracy but with different gradients. For neural oscillation model, we calculate

the gradients
𝜕𝑆(𝑡)

𝜕𝐻(𝑡)
, when 𝐻(𝑡) + 𝛾𝑖(𝑡) ≥ 0,

𝜕𝑆(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
≈

𝛼

2(1 + (
𝜋
2 𝛼

(𝐻(𝑡) + 𝛾𝑖(𝑡) − 𝑉𝑡ℎ))
2

)

 (3.16)

41

when 𝐻(𝑡) + 𝛾𝑖(𝑡) < 0,

𝜕𝑆(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
≈

−0.03𝛼

2(1 + (
𝜋
2 𝛼

(𝐻(𝑡) + 𝛾𝑖(𝑡) − 𝑉𝑡ℎ))
2

)

 (3.17)

For alternative neural oscillation model, when 𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 ≥ 0, the gradients

𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
 is

𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆′(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
≈

𝛼(1 + co s(𝐻(𝑡) + 𝑎))

2 (1 + (
𝜋
2 𝛼

(𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 − 𝑉𝑡ℎ))
2

)

Figure 3.2 (a). The solid and dotted orange lines represent
𝜕𝑆

𝜕𝐻
 of neural oscillation model

when 𝛾 is -0.2 and 0.8, respectively. The red line is
𝜕𝑆′

𝜕𝐻
 of alternative neural oscillation

model. (b). Partial enlargement of graph (a) in the green dashed circle.

42

(3.18)

when 𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 < 0,

𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
=
𝜕𝑆′(𝑡)

𝜕𝑃(𝑡)

𝜕𝑃(𝑡)

𝜕𝐻(𝑡)
=

−0.03𝛼(1 + co s(𝐻(𝑡) + 𝑎))

2 (1 + (
𝜋
2 𝛼

(𝐻(𝑡) + si n(𝐻(𝑡) + 𝑎) + 𝑏 − 𝑉𝑡ℎ))
2

)

(3.19)

We plot both models’ gradient distributions of VGG16 for CIFAR-10. As we see, the gradient

distribution using alternative neural oscillation is distinguished from the gradient distribution

using neural oscillation. The gradient distribution of the alternative neural oscillation has the

bigger amplitude and the sharper shape than that in Figure 3.2(a). On the other hand, in Figure

3.2(b), we zoom in on the part of the dashed circle in Figure 3.2(a) and observe the gradient,

and it could be seen that gradients vary greatly at the same H value between neural oscillation

neuron and alternative neural oscillation neuron.

Our defense strategy is to disguise and hide the real neurons in the model, which confuses the

attacker to generate attack samples and attack with the gradients of the ‘fake’ neurons, which

deviate from the real gradients and thus reduce the efficiency of the attack. We validate the

effectiveness of this defense method based on the alternative neural oscillation in Section 3.4.

3.4 Results

We train SNN with the LIF model as the benchmark model to facilitate the comparison of the

validation of our approach. The maximum perturbation size ε in all attacks is 8/255. For

iterative attacks, for example, PGD-𝑖, 𝑖 indicates the number of iterative steps. All attacks are

non-target attacks.

 Robustness analysis of neural oscillation model

43

We first test the robustness of the neural oscillation model against adversarial attacks. As

shown in scenario 1 of Table 3.2, when attackers are fully aware of the structure, parameters,

and form of the neural oscillation model, they use adversarial samples to attack networks. The

results are presented in Table 3.3. Neural oscillation neuron always performs better than LIF

neuron in terms of robustness in all three models/datasets under four attacks. The reason is that

we introduce randomization. When noise is added to the neurons, this interferes with the

validity of the perturbations superimposed in the input images. As illustrated in Figure 3.2(a),

when noise 𝛾𝑖 is different values, the gradient curve changes accordingly. This causes gradient

value blurring and reduces the effectiveness of the generation of adversarial samples. Besides,

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 leads gradients in specific sections to be small negative values, which makes it

possible to cause the gradient's direction to blur. For example, in Figure 3.2(b), when H = 0.18

(green dashed line), the gradient of neuron with 𝛾𝑖 = 0.8 is positive, while the gradient of

neuron with 𝛾𝑖 = −0.2 is negative. Thus, this randomness includes not only randomization in

the value of the gradient but also the direction of the gradient.

 Robustness analysis of alternative neural oscillation model

We then investigate the performance of alternative neural oscillation model with respect to

robustness. As indicated in scenario 2 of Table 3.2, when attackers are fully aware of the

structure, parameters, and form of the alternative neural oscillation model, they use adversarial

samples to attack networks. The experimental results in Table 3.4 suggest that the alternative

neural oscillation neurons have better robustness than LIF neurons under different adversarial

attacks. And they are also more robust compared to neural oscillation neurons. The reason is

that the alternative neural oscillation neuron replaces the random noise as a function of 𝐻(𝑡),

which leads gradients
𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
 to be too steep (see Figure 3.2(a)). The steep gradients make the

network back propagation optimization parameters unstable (gradient vanishing and

44

exploding). According to the definitions of attack methods in section 3.2, the generation of

adversarial samples depends entirely on the exact gradient information so the unstable gradient

makes the generated adversarial samples less aggressive and reduce the effectiveness of

adversarial attacks. We have placed extra experimental results and argued this conclusion in

the supplementary material.

Table 3.1 Top-1 Accuracy (%) on clean images using two kinds of oscillation neurons

Model/Dataset Neural oscillation
Alternative neural

oscillation
Accuracy loss

VGG-16/CIFAR-10 88.59 87.38 1.21

ResNet-18/CIFAR-10 92.59 92.35 0.24

ResNet-18/CIFAR-100 67.58 67.05 0.53

Table 3.2 Neuron model summary under different attack scenarios

Scenario
Attackers know the

real neuron model

Neuron model chosen by

attackers to generate

adversarial samples

The real neuron model used

for inference

Scenario 1

Yes

Neural oscillation Neural oscillation

Scenario 2
Alternative neural

oscillation

Alternative neural

oscillation

Scenario 3

No

LIF Neural oscillation

Scenario 4
Alternative neural

oscillation
Neural oscillation

Scenario 5 Neural oscillation
Alternative neural

oscillation

Table 3.3 Top-1 classification accuracy (%) under the scenario 1 attack

Models/Datasets VGG-16/CIFAR-

10

ResNet-

18/CIFAR-10

ResNet-18/CIFAR-

100

 benchmark ours benchmark ours benchmark ours

Clean 88.6 88.59 92.2 92.59 65.7 67.58

FGSM 14.2 30.9 35.5 44.9 12.6 17.2

PGD-5 3 14.7 5.8 21.7 1.3 4.3

BIM-5 1.9 14.3 5.9 21.4 1.4 4.5

MIM-5 2.8 14.9 8.8 22.3 1.6 3.1

Table 3.4 Top-1 classification accuracy (%) under the scenario 2 attack

45

Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10

ResNet-18/CIFAR-

100

 benchmark ours benchmark ours benchmark ours

Clean 88.6 87.38 92.2 92.35 67.04 67.05

FGSM 14.2 52.2 35.5 66.9 12.6 45.1

PGD-5 3 28.1 5.8 57.1 1.3 39.3

BIM-5 1.9 31.6 5.9 59 1.4 39.8

MIM-5 2.8 30.8 8.8 53.4 1.6 33.2

Table 3.5 Top-1 classification accuracy (%) under the scenario 3 attack

Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10

ResNet-18/CIFAR-

100

 benchmark ours benchmark ours benchmark ours

Clean 88.6 88.59 92.2 92.59 67.04 67.58

FGSM 14.2 40.1 35.5 71.9 12.6 47.7

PGD-5 3 40.8 5.8 79.3 1.3 56

BIM-5 1.9 36.2 5.9 71.8 1.4 56.7

MIM-5 2.8 26.7 8.8 67.6 1.6 49.4

Table 3.6 Top-1 classification accuracy (%) under the scenario 4 attack

Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10

ResNet-18/CIFAR-

100

 benchmark ours benchmark ours benchmark ours

Clean 88.6 88.59 92.2 92.59 67.04 67.58

FGSM 14.2 56.5 35.5 69.5 12.6 43.7

PGD-5 3 45 5.8 66.8 1.3 48.4

BIM-5 1.9 41.4 5.9 68.5 1.4 51.4

MIM-5 2.8 35.4 8.8 59 1.6 40.8

Table 3.7 Top-1 classification accuracy (%) under the scenario 5 attack

Models/Datasets VGG-16/CIFAR-10 ResNet-18/CIFAR-

10

ResNet-18/CIFAR-

100

 benchmark ours benchmark ours benchmark ours

Clean 88.6 87.38 92.2 92.35 67.04 67.05

FGSM 14.2 28.4 35.5 42.1 12.6 13.8

PGD-5 3 12.1 5.8 19.2 1.3 4

BIM-5 1.9 12.5 5.9 19.4 1.4 2.6

MIM-5 2.8 13 8.8 20.2 1.6 2.4

Table 3.8 White-box robustness (accuracy (%)) on CIFAR-10 using the ResNet-18

(𝝐=8/255)

Defense Clean FGSM PGD-20

46

Standard [114] 84.44 61.89 47.55

MMA [71] 84.76 62.08 48.33

Dynamics [127] 83.33 62.47 49.40

TRADES [73] 82.90 62.82 50.25

MART [74] 83.07 65.65 55.57

Ours (scenario 4) 92.59 69.5 71.1

 Validation of defense

Scenarios 1 and 2 are both white-box attacks, where attackers are fully aware of all information

about the network. Sometimes attackers only know part of the network, i.e. a grey-box attack.

In this section, we test the validity of our defense strategy of masking real neurons with false

neurons, thus tricking the attacker into generating attack samples with bias and reducing the

efficiency of the attack. We consider three scenarios which are summarized in Table 3.2:

Scenario 3: Attackers are aware of the structure and parameters but do not know the form of

neural model. Attackers use the LIF model to generate adversarial samples; however, neural

oscillation is the real neural model for inference.

Scenarios 4 and 5: Attackers are aware of structure, parameters and know either the form of

neural oscillation or the form of alternative neural oscillation. Attackers use the known ‘fake’

neurons to generate adversarial samples. The other neural model is as the real neuron of

network for inference.

For scenario 3, Table 3.5 shows the top-1 accuracy of both benchmark and our method. The

result demonstrates that our defense performance for both single-step attacks and iterative

attacks on all three models is significantly better than SNNs. Since attackers do not know the

specific expression of the neuron, this causes a significant decrease in the attack efficiency of

the generated sample perturbations. For scenario 4, similar results to scenario 3 in Table 3.6

are observed: our method performs much better than benchmark against both single-step attack

and iterative attack in all models and datasets. The results indicate that gradients of alternative

47

neural oscillation neurons lead to a decreased attack success rate by masking original training

gradients. For scenario 5, our method is still more robust to adversarial samples than

benchmark in Table 3.7. However, it is worth noting that the defense of scenario 5 is much

weaker when comparing the defense ability of scenario 4. When attackers know the expression

of neural oscillation neuron, even though we replace them with the alternative neurons for

inference, attackers can still generate effective adversarial samples to attack our networks. In

other words, when attackers use alternative neural oscillation neuron to generate adversarial

samples, the neuron, being very 'weak', is able to attenuate the attack capability of adversarial

samples, thus indirectly enhancing the robustness of networks.

In fact, if we directly discard the neural oscillation neuron after training the model and replace

it with the alternative neural oscillation neuron, then deploy the model in hardware devices, it

is easy for attackers to be fooled by the ‘fake’ neuron.

Table 3.8 compares alternated neural oscillation with some advanced adversarial training

defense methods in ANN. The adversarial training requires a large number of samples to retrain

the model, and it is impractical to introduce all unknown attack samples into adversarial

training, which would consume much time and computational resources, leading to the

limitation of adversarial training. Our method only requires additional learning of a new

oscillatory form through introducing only two parameters, which defends against most

gradient-based adversarial attacks and is more efficient.

As neural oscillations are essential to many neural activities in the biological nervous system,

SNN integrated with oscillation mechanism is more bio-plausible (In the supplementary we

shows the spontaneous spike firing of our neural oscillation model, which is similar to the

48

biological neural oscillation). Various mechanisms of the biological neural system provide a

basis for optimizing the SNN, while these mechanisms integrated into the SNN also help us to

better understand the biological neural system.

3.5 Discussion and conclusion

In this chapter, we integrate brain-inspired neural oscillation into the SNN neural model and

propose the neural oscillation neural model and alternative neural oscillation neural model. We

verified that both neural models have better robustness than the LIF neuron. And we also use

alternative neural oscillation neuron as the ‘fake’ neuron to defend against various gradient-

based attacks. The experiments illustrate that our defense method can effectively resist both

single-step attack and iterative attack.

Our method belongs to the class of methods that introduce randomization to enhance network

robustness, but it is very different from the randomization currently used in ANNs. While

previous literatures, such as [70], usually use random perturbations to disturb the generated

samples, our method only introduces randomization over training and it is replaced by fitting a

specific function during inference, which causes instability of the gradient. Therefore, our

trained model has no randomization after training process, and the advantage of this approach

is that when the attacker is fully aware of the neuronal model, the previous defense method

only needs to remove the randomization to achieve an effective attack model, while our method

cannot effectively attack the model after removing the fitting function. The attacker must work

harder to find the original noise distribution in order to attack the model effectively. Thus, our

method is more deceptive, which will make it difficult for the attacker to detect anomalies in

the network.

49

There are still some limitations to our method. Since most of the current attacks are gradient-

based attacks, our defense method was originally developed based on gradient-based attacks,

so we did not test its effectiveness on other attack types. This part could be further explored in

the future. Certainly, the neural oscillation model only partially mimics the form of biological

neural oscillation; thus, further research might be conducted to integrate more complex neural

oscillation forms in SNNs.

3.6 Supplementary

 Parameter values for reproducibility

Table 3.9 shows the noise range and parameters c and d. In our work, we picked [a,b] in the

range [-0.2,0.8]. The noise is generally selected not to exceed the threshold 𝑉𝑡ℎ (otherwise it

may lead to a reduction of accuracy) and is mainly concentrated between 𝑉𝑡ℎ and the

𝑉reset.There is no mandatory range size for the selection of these hyperparameters, and we

actually tried different ranges and were able to obtain similar defensive effects. For noise type,

in the main paper we use the random uniform noise, we have also tried the Gaussian noise, and

it can also be fitted by different equations to generate the alternative neural oscillation neuron.

Table 3.9 Noise range [a,b] and values of 𝑐 and 𝑑 of alternative neural oscillation model

Model/Dataset [𝑎, 𝑏] 𝑐 𝑑

VGG-

16/CIFAR-10

[-0.2,0.8]

-0.1441 -0.1762

ResNet-

18/CIFAR-10
-0.1019 -0.2221

ResNet-

18/CIFAR-100
-0.1564 -0.1687

 Neuron performance testing

50

Figure 3.3 depicts the accuracy of the SNNs on the corresponding architecture/dataset when

using either neural oscillation neuron or alternative neural oscillation neuron. In Figure 3.3(a),

the VGG-16 network composed of alternative neural oscillation neurons cannot even be

optimized. In Figure 3.3(b), the alternative neural oscillation neuron significantly decreases the

network optimization's speed and accruracy. Thus, the results indicate that alternative neural

oscillatory neurons have worse performance than neural oscillatory neurons, which tend to lead

to instability of the gradient (e.g. gradient vanishing or explosion), and hence make the network

less capable of optimization. When an attacker generates the adversarial samples with such

neurons, the adversarial samples also become less powerful.

Figure 3.3 Accuracy on (a)VGG-16/CIFAR-10 (b)ResNet-18/CIFAR-10 when using neural

oscillation neuron (blue curve) and alternative neural oscillation neuron (orange curve)

Figure 3.4 (a) Curve of function F to fit the noise item on VGG-16/CIFAR-10. (b) Gradient

curve
𝜕𝑆′(𝑡)

𝜕𝐻(𝑡)
 when using different F.

（a） （b）

F

(a) (b)

51

Table 3.10 Top-1 classification accuracy (%) under the scenario 4 attack

Models/Datasets VGG-16/CIFAR-10

 benchmark F1 F2 F3 F4

 Clean 88.6 87.38 86.12 87.7 86.64

 FGSM 14.2 56.5 68.9 50.7 36.8

 PGD-5 3 45 68.8 34.6 22.7

 BIM-5 1.9 41.4 69.3 32.9 15

 MIM-5 2.8 35.4 60.4 31.4 20.6

Figure 3.5 Spontaneous spike firing of neural oscillation neuron.

 Function selection of alternative neural oscillation

In the main paper, we use the sin(𝐻(𝑡) + 𝑐) + 𝑑 to fit the random uniform noise item 𝛾(𝑡). In

practice, the function can be of many different forms, such as Equations (3.20)-(3.23). These

equations all fit the random noise term 𝛾(𝑡) well after training parameters 𝑐 and 𝑑.

𝐹1 = 𝑠𝑖𝑛(𝐻(𝑡) + 𝑐1) + 𝑑1

 (3.20)

𝐹2 = 𝑥 ∗ 𝑠𝑖𝑛(𝐻(𝑡) + 𝑐2) + 𝑑2

 (3.21)

𝐹3 = 𝑒(𝑥+𝑐3) + 𝑑3

 (3.22)

52

𝐹4 =
1

1 + 𝑒−𝑐4𝑥
+ 𝑑4

 (3.23)

We draw the F curves in Figure 3.4(a) and the corresponding gradient curves Figure 3.4(b)

when different F is chosen, respectively. Table 3.10 compares the effectiveness of the defense

when using different F. As we see, F2 provides the best defense against all kinds of attacks,

while F4 is the worst. And the gradient curve of F2 shown in Figure 3.4(b) is the steepest,

when the gradient curve of F4 is the flattest. These results argue our view that the steep gradient

causes instability in the network, which weakens the effectiveness of generated adversarial

samples.

 Firing property of neural oscillation neuron

Neural oscillation arises from the spontaneous spike firing behavior of biological neurons. This

spontaneous behavior is not influenced by external stimuli. In our proposed neural oscillation

neural model, the inclusion of random noise allows the neuron to generate spontaneous spike

firing in the absence of input, as shown in Figure 3.5. This property makes our model more

bio-plausible.

53

4 A noise based novel strategy for faster SNN training

Abstract

Spiking neural networks (SNNs) are receiving increasing attention due to their low power

consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two

main methods, artificial neural network (ANN)-to-SNN conversion and spike-based

backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN

conversion, it requires a long inference time to approximate the accuracy of ANN, thus

diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically

consumes dozens of times more computational resources and time than their ANN

counterparts. In this chapter, we propose a novel SNN training approach that combines the

benefits of the two methods. We first train a single-step SNN by approximating the neural

potential distribution with random noise, then convert the single-step SNN to a multi-step SNN

losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy

after conversion. The results show that our method considerably reduces the training and

inference times of SNNs while maintaining their high accuracy. Compared to the previous two

methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster

inference speed. We also argue that the neuron model augmented with noise makes it more

bio-plausible.

54

4.1 Introduction

Spiking neural networks (SNNs) recently attracted increasing attention due to their biological

plausibility. The SNN incorporates the concept of time into the model, and neurons in the SNN

receive input spike trains that either increase or decrease their membrane potential. Through

temporal accumulation, membrane potential may reach a specific firing threshold and neurons

transmit information by firing discrete spike trains to neurons in the next layer. These

characteristics emulate the information transmission and processing in the brain. It is therefore

regarded as the next-generation neural network [103].

Since SNNs use non-differentiable spikes as information carrying agents, gradient-based

backpropagation (BP) that uses gradients to optimize synaptic connections and neuron

parameters in ANNs is not directly applicable in SNNs. Thus, one of the main challenges is to

train and optimize the network parameters in SNNs. At present, the available methods for

training SNNs can be divided into three categories: (1) unsupervised learning, (2) indirect

supervised learning, (3) direct supervised learning.

In the first approach, weights are modulated to mimic synaptic interactions between biological

neurons. A classic example is the spike time-dependent plasticity (STDP) [1-3]. However, due

to the reliance on local neuronal activity rather than global supervision, STDP-based

unsupervised algorithms have been limited to training shallow SNNs and can only produce low

accuracy on complex datasets [4-6].

In the second approach, an ANN model is first trained and then converted to a SNN with the

same network structure, where the firing rate of the SNN neuron is approximated as the analog

55

output of the ANN neuron. The ANN-to-SNN conversion has produced state-of-the-art (SOTA)

performance in image recognition tasks [7].

The last approach is direct supervised learning, which uses a similar gradient descent technique

used in ANNs to train SNNs directly. SpikeProp [128] was the first BP-based supervised

learning method for SNNs that uses a linear approximation to overcome the SNNs' non-

differentiable threshold-triggered firing mechanism. Further works include Tempotron [13],

ReSuMe [14], and SPAN [15]. However, they could only be used for training single-layer

SNNs. A surrogate gradient algorithm proposed by [86] introduces a differentiable surrogate

function to approximate the derivative of spiking activity. It executes spatio-temporal BP in

the training phase and is widely applied to train deep SNNs.

Although the ANN-to-SNN conversion and surrogate gradient-based algorithm can train deep

SNNs, there are some limitations. For the ANN-to-SNN conversion, training an ANN model

is fast. Nevertheless, the approach requires considerable inference time (from hundreds to

thousands of time steps) to approximate the analog outputs [93, 95, 96, 129, 130], which leads

to high memory consumption, larger latency and decreased energy efficiency, diminishing the

benefits of SNNs [7-9]. For the surrogate gradient-based algorithm, although it is possible to

train SNNs with arbitrary time steps, the fewer the time steps, the lower the accuracy of the

trained model would be. Training high accuracy SNNs with this approach often requires many

times more training time and computational resources than training ANNs.

In this chapter, we propose a novel SNN training method that combines the ANN-to-SNN

conversion and direct training using the surrogate gradient. The method consists of two phrases:

single-step SNN training and conversion to multi-step SNN. Specifically, during the training

56

phase, a single-step SNN augmented with Gaussian noise is trained by surrogate gradient-based

BP and then converted losslessly to a multi-step SNN model to promote its generalization

capability. Our training technique greatly reduces not only training and inference time but also

achieves a high accuracy, which significantly improves the operating efficiency of SNN.

The following summarizes the primary contributions of this paper:

1) We propose a novel SNN training algorithm by introducing a noise distribution, which

speeds up the training and inference time of SNN.

2) We compare our method’s training and inference time with those of current methods. The

experiments demonstrate that our method is 3-5 times faster for training than the surrogate-

gradient based method, and more than 100 times faster than the ANN-to-SNN conversion for

inference.

3) We argue that introducing noise in SNN has biological plausibility.

Figure 4.1 Three steps of our method to train a SNN model. Step 1, single-step SNN training

with noise distribution 𝑁𝑛𝑜𝑖𝑠𝑒. Step 2, copy N single-step SNNs and ensemble them together.

𝑁𝑛𝑜𝑖𝑠𝑒 varies over time-step t. Step 3, establish the temporal correlation among N different

models.

4.2 Methods

 Leaky Integrate-and-Fire model

input

SNN

output

input

SNN

output

input

SNN

output

…

input

SNN

output

input

SNN

output

input

SNN

output

…

input

SNN

output

Step 1 Step 2 Step 3

t=1 t=1 t=2 t=N t=1 t=2 t=N

57

The leaky Integrate-and-Fire (LIF) model is a fundamental unit in SNNs. It is a simplified

representation of biological neurons that describes the non-linear relationship between input

and output. The LIF neuron receives spikes over a specific period and it integrates them into

its membrane potential, whose dynamics are governed by

𝐻(𝑡) = 𝜆 ∙ 𝑉(𝑡 − 1) +∑𝑤𝑖
𝑖

∙ 𝑆𝑖(𝑡)

 (4.1)

𝑆(𝑡) = {
1, 𝐻(𝑡) > 𝑉𝑡ℎ
0, 𝐻(𝑡) ≤ 𝑉𝑡ℎ

 (4.2)

𝑉(𝑡) = 𝐻(𝑡)(1 − 𝑆(𝑡)) + 𝑉reset ∙ 𝑆(𝑡)

 (4.3)

where 𝐻(𝑡)and 𝑉(𝑡) represent the membrane potentials before and after triggering a spike at

time 𝑡, respectively. 𝜆 represents the decay factor with a value of 0.5. 𝑆(𝑡) denotes the output

of a neuron at time 𝑡, which equals 1 if there is a spike and 0 otherwise. 𝑤𝑖 ∙ 𝑆𝑖(𝑡) is the

weighted input of 𝑖-th neuron in the last layer at time step 𝑡. When the membrane potential of

the LIF neuron reaches the firing threshold 𝑉𝑡ℎ (=1), the neuron fires one spike and the

membrane potential is reset to the resting potential 𝑉reset (here is 0).

 Training single-step SNN and converting to multi-step SNN

We first train the single-step SNN with 𝑇 = 1 and then convert it to a multi-step SNN with

𝑇 = N. When the total simulation step 𝑇 = 1, the time dimension disappears and the network

propagates forward only once. Consequently, the single-step SNN is actually an ANN with a

Heaviside step function used as the activation function. Equation (4.1) is formulated as

58

𝐻 =∑𝑤𝑖
𝑖

∙ 𝑆𝑖

 (4.4)

Comparing Equations (4.1) and (4.4), the output of the multi-step SNN depends on both the

input and the accumulated potential, while the output of a single-step SNN depends only on

the input.

Due to the absence of the potential accumulation term in Equation (4.4) compared with

Equation (4.1), we introduce a noise distribution 𝑁𝑛𝑜𝑖𝑠𝑒 representing the missing accumulated

membrane potential during training the single-step SNN in order to perform the conversion

into a multi-step SNN later, as Equation (4.5) shows. In particular, we assume that 𝑁𝑛𝑜𝑖𝑠𝑒 is a

Gaussian distribution and distributes in each layer of the network independently. Thus, the

dynamic of the neuron in a single-step SNN could be described by

𝐻 = 𝑁𝑛𝑜𝑖𝑠𝑒 +∑𝑤𝑖
𝑖

∙ 𝑆𝑖

 (4.5)

Our method consists of three following steps:

Step 1: Train the single-step SNN with Gaussian noise (see step 1 in Figure 4.1).

Step 2: Extend the temporal dimension from 𝑇 = 1 to 𝑇 = N by directly modifying the value

of 𝑇. This action means that we copy 𝑁 single-step SNN and ensemble them together (see step

2 in Figure 4.1). For each individual, the inputs are the same. The average output of all

individuals is the output of the ensemble model.

Step 3: Add the potential accumulation term using Equation (4.6) to establish the temporal

correlation (see step 3 in Figure 4.1). The dynamic of SNN model after step 2 is formally

different from the real SNN’s dynamic because it lacks the process of potential accumulation

59

and the temporal correlation among different time step 𝑡. Consequently, we must add the item

𝜆 ∙ 𝑉(𝑡 − 1) to keep the formal consistency with Equation (4.1). We decompose 𝑁𝑛𝑜𝑖𝑠𝑒 into:

𝑁𝑛𝑜𝑖𝑠𝑒 = 𝑁(λ ⋅ 𝑉(𝑡 − 1)) + 𝑁𝑛𝑜𝑖𝑠𝑒
′

 (4.6)

 𝑁𝑛𝑜𝑖𝑠𝑒 could be represented as the addition of two Gaussian distribution items: the

accumulated membrane potential distribution and the new noise distribution.

For the first item, we normalize λ ⋅ 𝑉(𝑡 − 1) according to Equations (4.7) - (4.9) to

approximate a Gaussian distribution (λ ⋅ 𝑉(𝑡 − 1)).

𝐴 = λ ⋅ 𝑉(𝑡 − 1)

 (4.7)

𝐴̂ =
𝐴 − μ

σ

 (4.8)

𝑁(λ ⋅ 𝑉(𝑡 − 1)) =
𝐴̂

𝛼 ⋅ 𝑚𝑎𝑥(𝑎𝑏𝑠(𝐴̂))
+ 𝛽

 (4.9)

Equation (4.8) converts the membrane potential distribution to a standard normal distribution

approximately. μ and σ are the mean and standard deviation of 𝐴, respectively. Equation (4.9)

guarantees that the potential distribution in each layer have the mean 𝛽 and distributes between

the interval (−1/𝛼, 1/ 𝛼). By changing the values of 𝛼 and 𝛽, we are able to change the mean

and range of the distribution. (𝑚𝑎𝑥() and 𝑎𝑏𝑠() represent taking the maximum value and

absolute value, respectively.)

60

For the second item 𝑁𝑛𝑜𝑖𝑠𝑒
′ , we simply set it as a random Gaussian distribution. The mean and

range of 𝑁𝑛𝑜𝑖𝑠𝑒
′ also depends on 𝛼 and 𝛽, because we need to ganrantee that the addition of

two items in Equation (4.6) almost have the same mean and range as 𝑁𝑛𝑜𝑖𝑠𝑒 to avoid conversion

loss.

The reason why we must introduce and keep the random noise distribution is that introducing

the noise is equivalent to ensemble an infinite number of random models and helps promote

accuracy during conversion to multi-step SNN. Because we introduce a random distribution

when training single-step SNNs, the model generalizes well under different “assumed previous

membrane potentials”. As we increase the time step, the SNN with 𝑇 simulation steps can be

seen as a model consisting of 𝑇 sets of models.

It is well known that a SNN model with more simulation steps 𝑇 can increase performance.

However, training a SNN with large 𝑇 directly would increase not only the training and

inference time but also the memory by 𝑇 folds, so it is not very practical. The approach that we

suggest can instantly construct a SNN model with large 𝑇 with much less memory cost. The

idea of introducing noise to generate an ensemble model was proposed in [70] and used for

adversarial defense of ANN models. To the best of our knowledge, we are the first to use it in

training and inference acceleration of SNNs.

4.3 Results and discussions

We conduct our experiments as Table 4.1 shows. SNNs are trained with MSE loss and Adam

[91] optimizer. The initial learning rate is set to 1e-4. The cosine annealing warm restart [92]

61

learning rate schedule with 𝑇𝑚𝑎𝑥 = 100 adjusts the learning rate over training. Unless specified,

all results are generated by default for 𝛼 = 4, 𝛽 = 0.5, and 𝑁𝑛𝑜𝑖𝑠𝑒 in the range [0, 1].

Table 4.1 Network structures and training epoch for different datasets.

Dataset Epoch Network structure

MNIST 100

64C3-AP2-128C3-AP2-128C3-AP2-

512FC-10FC

Fashion -MNIST 200

CIFAR-10
1000 VGG-16

800 ResNet-18

Note: nC3—Convolutional layer with n output channels, kernel size = 3 and stride = 1, AP2—

2D average-pooling layer with kernel size = 2 and stride = 2, FC—Fully connected layer.

Figure 4.2 Inference accuracy of models on different datasets with T = 1, 5, 10 while training

with 𝑁𝑛𝑜𝑖𝑠𝑒.

 Inference accuracy

62

In Figure 4.2, we plot the inference accuracy of single-step SNNs on different datasets and the

inference accuracy of multi-step SNNs with total simulation step 𝑇 = 5 and 𝑇 = 10, respectively.

It can be shown that as 𝑇 increases, the accuracy of the SNN improves dramatically. The

simulation step 𝑇 could be directly converted to any values in real time.

Figure 4.3 Training speed of SNNs when directly training an SNN(T=10) by the surrogate

gradient approach versus training a 10-step SNN by our approach.

 Comparison of training and inference time with related work

In Figure 4.3, we compare the training speed of SNNs when training an SNN(T=10) with a

surrogate gradient versus training a single-step SNN and then extending to a 10-step SNN.

Clearly, our method is substantially faster than directly training an SNN(T=10) using the

surrogate gradient, and in the same amount of time, it achieves higher accuracy.

63

To intuitively assess the difference in training time, we selected a benchmark inference

accuracy for each model and halted training when the benchmark inference accuracy was

achieved. The benchmark inference accuracy of the three models is 92%, 88%, and 90%,

respectively. As shown in Figure 4.4, on FashionMNIST our method takes only 135s to reach

the benchmark accuracy when SNN(T=10) takes 528s, which saves about 75% of the time. In

CIFAR10/VGG-16, our method requires 3132s, whereas SNN(T=10) requires 9900s, a time

savings of about 70%. In CIFAR10/ResNet-18, our model requires 7290s while SNN(T=10)

requires 19998s, a time savings of approximately 65%. Also, with single-step SNN, we can

choose a larger batch size and thus achieve faster parallel training. It is more convenient and

feasible for groups that lack sufficient computational resources.

For inference time, we compare current advanced methods listed in Table 4.2 with our method.

As demonstrated, the accuracy of extending to multi-step SNN (no more than 10 time steps) is

able to attain an approximate accuracy of ANN-to-SNN conversion methods. In contrast,

Figure 4.4 Training time of SNNs when directly training an SNN(T=10) by the surrogate

gradient approach versus training a a 10-step SNN by our approach. The benchmark

inference accuracy of the three models is 92%, 88%, and 90%, respectively.

64

ANN-to-SNN conversion requires hundreds to thousands of time steps, which is hundreds of

times slower than our method. Compared with spike-based BP methods, our method also

requires fewer time steps to reach close accuracy.

Table 4.2 Inference time comparison between our work and related work

Author Method
Inference

time
MNIST

Fashion

MNIST

CIFAR1

0

[17] Spike-based BP 12 - - 90.53%

[131] Spike-based BP 10 - - 93.44%

[18] Spike-based BP 20 99.50% 92.07% 93.5%

[9] Spike-based BP 1 99.53% - 84.67%

[129] ANN-SNN 2500 - - 91.46%

[4] ANN-SNN 2048 - - 91.36%

[132] ANN-SNN 2500 - - 91.89%

[16] ANN-SNN 50/100 99.59% - 90.95%

[96] Hybrid 500 - - 92.42%

[133] Hybrid 200 - - 92.02%

Ours Hybrid 5 99.61% 93.89% 91.82%

Ours Hybrid 10 99.64% 94.07% 92.07%

Figure 4.5 The impact of 𝛼 on CIFAR10/VGG-16 and CIFAR10/ResNet-18. The black dotted

line represents the accuracy of trained single-step SNN.

 The impact of 𝜶

65

With Equations (4.6) and (4.9), we know that the parameter 𝛼 controls the range of noise

fluctuation 𝑁𝑛𝑜𝑖𝑠𝑒
′ . Here, we attempt to alter the value of 𝛼 to observe how the model's

performance varies.

We plot the conversion accuracy for different values of 𝛼 in Figure 4.5. When 𝛼 is equal to 2,

the potential range is [0,1], so the noise term 𝑁𝑛𝑜𝑖𝑠𝑒
′ does not exist any more. It can be seen that

there is a very slight improvement in accuracy with increasing time steps. In contrary, when

𝑁𝑛𝑜𝑖𝑠𝑒
′ is present, the accuracy improvement is obvious and the different 𝛼 values make models

converge to close accuracy. These results indicate that noise plays the vital role in enhancing

the accuracy of conversion.

When 𝛼 is positive infinity, the range of noise 𝑁𝑛𝑜𝑖𝑠𝑒
′ is [0, 1], membrane potential item

disappears and the result equals to the outcome of step 2. We can see that the conversion from

step 2 to step 3 has minor accuracy gap according to the figures.

 The impact of noise type

In the previous sections, all of our experiments were performed by training the SNN model

with Gaussian noise. In order to investigate whether it is only the uniform noise that brings the

improvement of model accuracy, we replace the Gaussian noise with uniform noise during

training to observe the effect of the noise type on models. As shown in Figure 4.6, we trained

CIFAR-10 with uniform noise on both VGG-16 and ResNet-18 models. Models trained by

uniform noise behave the same as with uniform noise, i.e., the accuracy is significantly

improved when models are extended to multi-step SNNs. For single-step SNNs, models with

Gaussian noise reach the higher accuracy than those with uniform noise. But after conversion,

the gap is not obvious any more.

66

 Biological plausibility of uniform noise distribution in neuron

It is believed to be more biologically plausible when we keep some part of noise during

conversion, as there exists lots of kinds of noise in biological neural system. We plot the

dynamic of the spiking neuron in Figures 4.7(a) and (b). Figure 4.7(a) depicts the neural

potential dynamic in the absence of input. The potential oscillates between the reset potential

and the threshold, but no spikes fire. In Figure 4.7(b), when a neuron receives inputs, it begins

to accumulate potential and fires spike. Such behavior is thought to be similar to the form of

subthreshold neural oscillation mechanism in biological neurons. Neural oscillations are

Figure 4.6 Inference accuracy of models on different datasets with T = 1, 10 while training

using Gaussian noise and uniform noise, respectively.

67

rhythmic patterns of activity generated by the neurological system [123]. Many cognitive

activities, including information transfer, perception, and memory, are believed to be related

with neural oscillations. These oscillations are mostly caused by the interaction between

individual neurons. Neural oscillation can emerge as oscillating membrane potentials or

rhythmic action potentials in individual neurons. Subthreshold membrane potential oscillations

are membrane oscillations that are below the firing threshold and hence cannot directly initiate

action potentials. However, they can aid in sensory signal processing. As a result of

subthreshold membrane potential oscillations, sensory systems, particularly for vision and

smell, evolve. Subthreshold membrane potential oscillation (see Figure 4.7(c)) in the visual

system helps process visual input and adjust to sensory input [134]. Additionally, oscillatory

activity influences excitatory postsynaptic potentials, refining post-neural activities [135].

Figure 4.7 (a) Neural potential dynamic in the absence of input. (b) Neural potential dynamic

when receiving input. (c) Subthreshold membrane potential oscillation. Source: Figure (c) is

cited from [136].

（c）

（a） （b）

68

4.4 Discussion and conclusion

We have used the proposed method to handle static vision problems in previous sections. For

dynamic vison problems, such as videos’ data, which include time series information, we

should feed all the information into the network at once and use a 3D convolutional network

rather than a 2D convolution network to deal with the input.

In this chapter, we propose a novel way of training SNNs that achieves accuracy improvement

in multi-step SNNs by fitting the neural network to noise, which greatly spares the training and

inference time of SNNs and allows fast training of SNNs with arbitrary simulation time

compared to previous methods. Our approach combines the advantages of both direct training

of SNN and ANN-to-SNN conversion. With a good balance of accuracy and training time, and

a great saving of computational resources, this method can be used to train large SNNs quickly

or SNN pre-training. The inclusion of noise is also proved to be more consistent with the

dynamic mechanism of biological neurons. These points make our method promising for

training deep SNNs in the future.

69

5 Spiking sampling network for image sparse

representation and dynamic vision sensor data

compression

Abstract

Sparse representation has attracted great attention because it can greatly save storage re-

sources and find representative features of data in a low-dimensional space. As a result, it may

be widely applied in engineering domains including feature extraction, compressed sensing,

signal denoising, picture clustering, and dictionary learning, just to name a few. In this chapter,

we propose a spiking sampling network. This network is composed of spiking neurons and it

can dynamically decide which pixel points should be retained and which ones needs to be

masked according to the input. Our experiments demonstrate that this approach enables better

sparse representation of the original image and facilitates image reconstruction compared to

random sampling. We thus use this approach for compressing massive data from the dynamic

vision sensor, which greatly reduces the storage requirements for event data.

70

5.1 Introduction

Sparse signal representation has been demonstrated to be a highly effective technique for

obtaining, representing, and compressing high-dimensional signals. Important signal classes,

such as audio and images, have sparse representations with respect to a particular basis (e.g.,

Fourier and wavelet bases) or the concatenation of them. Furthermore, efficient and

demonstrably successful techniques based on convex optimization or greedy pursuit are

available for computing such high-fidelity representations [137].

Sparse representation is not only widely used in signal processing but is also useful for vision

tasks. In the past few years, sparse representation has been applied in face recognition [138-

144], image super-resolution [145], motion and data segmentation [146], denoising and

painting [147-149], background modeling [150, 151], photometric stereo [152], and image

classification [153, 154]. In almost all these applications, the use of sparse representation has

achieved impressive results.

The capacity of sparse representations to reveal semantic information is influenced in part by

a simple but crucial attribute of the data: despite the images' (or their features') naturally high

dimensionality, images belonging to the same class demonstrate degenerate structure in many

applications. In other words, they are situated on or close to low-dimensional subspaces,

submanifolds, or stratifications. If a collection of representative samples is obtained for this

low-dimensional distribution, we could anticipate that a typical sample will have a sparse

(potentially learnt) representation over this basis. If appropriately computed, such a sparse

representation might naturally encode semantic visual information [155].

71

In deep learning, many works have attempted to introduce sparse coding into neural networks.

They usually mask certain input information randomly, which can be considered as a certain

kind of sparse coding. BERT and GPT, for instance, are very effective pre-training techniques

for NLP. In order to train models to anticipate the missing information, these techniques hold

out a piece of the input sequence. There are tons of evidence that these techniques generalize

very well and that the pre-trained representations perform admirably across a wide range of

downstream tasks.

Methods exist for encoding masked images pick up representations from masked images that

have been distorted. Convolutional networks are used by the Context Encoder [156] to fill in

significant missing sections. iGPT [157] guesses unknown pixels based on pixel sequences.

In the ViT study [158], masked patch prediction for unsupervised learning is considered. The

most recent technique for predicting discrete tokens arises from BEiT. MAE [159] tries

different masking methods to train the autoencoder which can be adopted to serve as the pre-

training model. In most cases, the mask is a randomly generated sampling matrix. Recovering

signals from fewer data gathered by a random measurement matrix is efficient. However, they

constantly have issues with unclear quality of reconstruction [160].

Spiking neural networks (SNNs) are receiving increasing attention due to their low power

consumption and bio-plausibility. Neurons in SNNs receive spike trains that either increase

or decrease their membrane potential over time. When the membrane potential exceeds a

certain threshold, the neuron fires one spike to next layer’s neurons and reset its potential.

These characteristics are similar to the way the brain transmits and processes information. It

is therefore regarded as the next-generation neural network [103].

72

Since the spiking neural network (SNN) naturally outputs only 0 and 1 state values, we shall

design a spiking autoencoder that generates a binary mask based on the input, where 0 means

a certain pixel is not sampled and 1 means that the pixel is sampled at the input stage. Such a

mask is multiplied with the input image to obtain the sampled image.

In this chapter, we propose a novel sampling network based on spiking neural networks, which

is able to dynamically sample the input images, retain the valid pixels and remove the

redundant pixels to output a sparse representation of the inputs. We validate its advantages

over random sampling for network reconstruction on MNIST and CIFAR-10 datasets.

Besides, we apply it to the compression of data generated by event cameras, which greatly

reduces the space needed for data storage.

Figure 5.1 Architecture of the spiking sampling network. The output of spiking sampling

network is a mask of the same size as the input.

5.2 Methods

 Leaky Integrate-and-Fire (LIF) model

SNNs adopt spike trains as information carriers between neurons. Every spiking neuron in a

SNN receives and emits spikes. The LIF neuron model is a popular bio-inspired simplified

model for describing the dynamics of spiking neurons. The dynamics of the LIF model are

73

defined by [26].

𝐻(𝑡) = 𝜆 ∗ 𝑉(𝑡 − 1) + ∑𝑤𝑖𝑥𝑖(𝑡)

𝑖

(5.1)

𝑆(𝑡) = {
1, 𝐻(𝑡) > 𝑉𝑡ℎ
0, 𝐻(𝑡) ≤ 𝑉𝑡ℎ

 (5.2)

𝑉(𝑡) = 𝐻(𝑡)(1 − 𝑆(𝑡)) + 𝑉𝑟𝑒𝑠𝑒𝑡 ∗ 𝑆(𝑡)

 (5.3)

where 𝐻(𝑡) and 𝑉(𝑡) represent the membrane potentials before and after firing a spike at time

𝑡, respectively. 𝑉𝑡ℎ denotes the firing threshold, which is 1 in this paper. 𝑉𝑟𝑒𝑠𝑒𝑡 is the resting

potential which is 0. 𝑆(𝑡) denotes the output of a neuron at time 𝑡, 𝑤𝑖𝑥𝑖(𝑡) is the 𝑖-th weighted

pre-synaptic input at time 𝑡, and 𝜆 is the decaying time constant with a value of 0.5.

 Architecture and training of spiking sampling network

Figure 5.1 illustrates the architecture of the spiking sampling network. It is actually an

autoencoder composed of spiking neurons. The neurons of all layers except the last layer have

predefined thresholds 𝑉𝑡ℎ = 1. In the last layer, the threshold of the neurons is not a fixed value

but varies dynamically with the input. The spiking neurons in the last layer only accumulate

potentials over time and do not fire spikes until the last time step 𝑇. At instant 𝑇, we rank the

accumulated potentials of all neurons from largest to smallest, and if we need to sample 𝑁

pixel points, the Nth largest potential is used as the threshold 𝑉𝑡ℎ so that the number of neurons

that fire spikes is 𝑁.

74

75

Figure 5.2 Comparison between random sampling and spiking sampling on (a) MNIST and

(b) CIFAR-10. (c) Sampled pixels by spiking sampling network on CIFAR-10.

The output of the spiking sampling network is a sampling mask that has the same size as the

input. This sampling mask will be multiplied by the actual input image to preserve the selected

pixels. These pixels will be used as input to the main reconstruction network that is used for

reconstructing the original image.

In contrast to the commonly used random sampling, our sampling scheme is implemented by

a spiking neural network whose parameters can be optimized via back propagation. Thus, the

network is able to automatically sample different pixel points for different inputs, depending

on the main vision task.

(c)

76

Figure 5.3 Different sampling rate comparison of random sampling and spiking sampling on

MNIST

Figure 5.4 (a) Compression of N-MNIST dataset. (b) Classification validation of compressed

N-MNIST dataset.

 Data compression of dynamic vision sensor

77

Dynamic Vision Sensor (DVS), also called the event camera, is based on the principle of

biosensing, which means that they report only the ON/OFF triggering of luminance in the

observed scene [161]. Unlike conventional RGB cameras, which acquire raw data in a two-

dimensional matrix, in event cameras, each pixel works independently and asynchronously,

reporting changes in luminance as they happen or remain inactive while light intensity is

constant [162]. In real-time interaction systems like robotics, drones, and autonomous driving,

the DVS's distinctive features provide benefits over traditional vision sensors. In the near

future, cloud and edge computing will be used to execute the majority of the services that do

object/gesture recognition or classification. Therefore, in order to interpret visual data, these

services would need to send spike events to cloud or edge servers [163]. Real-time

transmission is also necessary in many circumstance. Despite the inherent compression

offered by the neuromorphic sensing technology, further compression of the generated data

may be advantageous for sending such data over Internet of Things (IoT), Internet of Things

(IoV), and Industrial IoT (IIoT) situations [161]. Since the data storage and transmission

bandwidth for onboard DVS processing and transmission are both limited, the compression

of neuromorphic spikes is still a difficult problem that needs quick solves.

5.3 Experiments

 Image reconstruction comparison

In Figure 5.2, we compare the effect of random and spiking sampling on image reconstruction

at a sampling rate of 10%. We conduct the experiments on MNIST and CIFAT-10 datasets.

The details of hyper-parameter selection and network architectures are listed in the appendix.

We can see that for random sampling, the sampling positions are uniformly distributed over

the entire image. The spiking sampling, on the other hand, changes the sampling positions,

depending on the input. For the MNIST dataset, the spiking sampling focuses on sampling

78

over the figures while ignoring the surrounding background, and for the CIFAR-10 dataset,

the sampling density is relatively small in the parts of the image with clean areas and increases

in the areas with complex texture. For MNIST, spiking sampling reconstructs images more

clearly than that of random sampling. For CIFAR-10, the color and shape of the reconstructed

images using the spiking sampling network are more accurate than those from random

sampling. Consequently, the pixels sampled by the spiking sampling are significantly more

conducive to image reconstruction. Notably, the spiking sampling network does not tend to

sample high pixel values, but it tends to sample more pixel points in regions where the pixel

values vary drastically and allocate fewer sampling points in regions where the pixel values

vary sparsely as the Figure (c) shows. This shows that the spiking sampling can effectively

make the sparse representation of images.

Figure 5.3 shows the difference between reconstructed images with random sampling and

SNN sampling at different sampling rates, respectively. It can be seen that random sampling

at 10% sampling rate can no longer correctly distinguish all the reconstructed digits (e.g., digit

4), while using SNN sampling at 5% sampling rate can still clearly reconstruct all the images.

At a sampling rate of 1%, random sampling is completely useless, while SNN sampling is still

able to reconstruct some of the digits. Even with few sampling points, SNN sampling is still

able to distribute the sampling points over the numbers to be reconstructed, effectively

providing a sparse representation of the image. This indicates that the SNN network really

learns the pixel points that are useful for reconstructing the image.

79

Figure 5.5 (a) Test classification accuracy on N-MNIST with different sampling method and

rate. (b) data size comparison after different compressing rate by spiking sampling. The

numbers on the bars represent the average number of spikes retained per sample for the dataset.

 Event data compression

A spike event is composed of four basic elements, represented by a tuple {X, Y, t, p}: the

spatial addresses X and Y, the timestamp t and the polarity p. The unique spike emission

mechanism enables DVS to meet low bandwidth, low power, and low latency requirements.

The unique spike emission mechanism enables DVS to meet the requirements of low

bandwidth, low power consumption and low latency. At the same time, it also brings a huge

amount of data. As an example, the commonly used handwritten numeric dataset MNIST only

occupies about 11MB of storage space after compression, while the N-MNIST event dataset

generated by MNIST still requires more than 1GB of storage space even after compression.

Large datasets often require tens or even hundreds of GB of storage space, which puts a lot of

storage pressure.

Since the output of DVS is very different from traditional frame-based image sequences,

existing computer vision techniques cannot be directly applied to neuromorphic spike event

80

sequences. Integrating the original event stream into frame data is a common processing

method. Therefore, we first render the spatio-temporal coordinates {X, Y, t} and polarity p of

the neuromorphic sequences into frames before inputting them to the network. This rendering

technique can be referenced in [26].

After training, we keep the spikes corresponding to the sampled pixels and remove the spikes

corresponding to the unsampled pixels in the N-MNIST dataset based on the masks generated

by the spiking sampling network (see Figure 5.4(a)).

To verify the validity of our retained event data, we do the classification task on the censored

event dataset by a classification network (see Figure 5.4(b)), and the result is shown in Figure

5.5(a). It can be seen that when we use SNN sampling, the classification accuracy has only a

slight accuracy loss at both 5% and 10% sampling rates, while the event data retained using

random sampling causes a large accuracy loss on N-MNIST. Figure 5.5(b) shows the data size

compared to the original N-MNIST dataset when it samples 5% and 10% by random sampling

and spiking sampling network, respectively. Since spiking sampling focuses more on the

spike-dense region in the image, it retains more spikes than random sampling at the same

sampling rate, and the corresponding compression rate is somewhat smaller. Comparing

Figures 5.5(a) and (b), the data size is reduced by 84% and 88% at a sampling rate of 10%

and 5%, respectively, with a slight loss of accuracy, indicating that the spiking sampling

network is able to sparsely represent the event dataset effectively.

81

Figure 5.6 Reconstruction comparison of 10% random sampling and 10% spiking sampling

on the main reconstruction network trained by random sampling.

 Specificity and universality

In section 2.2, we know that image recovery needs to go through two steps, sampling and

reconstruction. From the previous section, it can be verified that sampling method has a great

impact on the reconstruction result. The main reconstruction networks obtained by taking

different sampling methods for training also differ. In this section, we verify the sensitivity of

the main reconstruction network to the sampling methods.

82

Figure 5.7 Reconstruction comparison of 10% random sampling and 10% spiking sampling

on the main reconstruction network trained by spiking sampling.

After training, we are able to obtain two reconstruction networks, which target random

sampling and spiking sampling reconstruction, respectively. Now we do both kinds of

sampling separately and input the sampled pixels to the same reconstruction network to

compare the reconstructed results. Figure 5.6 shows the output difference of main

reconstruction network trained by random sampling, when we use random sampling and

spiking sampling for test. We can see that even if we use random sampling during training,

the quality of the image reconstructed by spiking sampling is no worse than random sampling

during test. This shows that the main reconstruction network trained with random sampling

has the good universality, and it is less sensitive to different sampling methods. Figure 5.7

shows the output difference of main reconstruction network trained by spiking sampling,

when we use random sampling and spiking sampling for test. Random sampling has a great

impact on this main reconstruction network, and the reconstructed images are poor. It

83

demonstrates that the main reconstruction network trained with spiking sampling is more

susceptible to the influence of the sampling method and therefore it is more specific to the

sampling method. Therefore this sampling method has more potential applications in terms of

data privacy and security.

In summary, we conclude that spiking sampling enables higher reconstruction quality, but

lead main reconstruction network to be specific with the sampling method; while random

sampling makes the reconstruction process more difficult, but make main reconstruction

network have better universality on the sampling method.

5.4 Discussion and conclusion

In this chapter, we propose a novel sparse representation method by a spiking sampling neural

network. Different methods of compressing event data have also been proposed in some

literatures [162-166]. The main differences between our method and these compression

methods are 1) we directly use a SNN to sample the dataset. The end-to-end approach is much

simpler; 2) we retain the pixel points of the original image without various linear and nonlinear

transformations; 3) the compressed pixels are able to retain spatial information. We verify on

static datasets that the network is able to learn sparse features of each sample independently

by training. Compared to random sampling, the spiking sampling network performs better in

image reconstruction. Our method can be applied to compress dynamic datasets with large

amounts of data, which can greatly reduce the storage space and speed up data transfer.

5.5 Supplementary

Network and training details. Table 5.1 shows network structures for image reconstruction on

84

MNIST and CIFAR-10 and data compression on N-MNIST. Models are trained with MSE

loss and Adam optimizer. The initial learning rate is set to 1e-4. SNN is trained by surrogate

gradient [30]. The simulation time of SNN is 3 steps. For reconstruction, we trained models

100 epochs; for classification, we trained the model 20 epochs.

Table 5.1 Network structures for image reconstruction on MNIST and CIFAR-10 and data

compression on N-MNIST

Dataset Network Structure

MNIST

SNN: 16C3P1-MP2-4C3P1-MP2-16CT2S2-1CT2S2

Main network: FC784-FC256-FC64-FC20-FC64-FC256-

FC784

CIFAR-10

SNN: 16C3P1-MP2-4C3P1-MP2-16CT2S2-1CT2S2

Main network: 12C4S2P1-24C4S2P1-48C4S2P1-96C4S2P1-

48CT4S2P1-24CT4S2P1-12CT4S2P1-3CT4S2P1

N-MNIST

SNN*: 12C4S2-24C4S2P1-48C4S2P1-96C4S2P1-

48CT4S2P1-24CT4S2P1-12CT4S2P1-2CT4S2

Main network*: 64C3P1-64C3P1-64C3P1-64C3P1-2C3P1

Classification network: 128C3-128C3-MP2-FC2048-FC100-

FC10

Note: nCm—Convolutional layer with n output channels, kernel size = m and stride = 1,

nCm—transposed convolutional layer with n output channels, kernel size = m and stride =

1, MP2—2D max-pooling layer with kernel size = 2 and stride = 2, FC—FC layer. *

represents all convolutional layers are 3D layers.

85

6 A Spiking Neural Network with Spike-timing-dependent

Plasticity for Surface Roughness Analysis

Abstract

Spiking neural network (SNN) utilizes spike trains for information processing among neurons,

which is more biologically plausible and widely regarded as the third-generation artificial

neural network (ANN). It has the potential for effectively processing spatial-temporal

information and has the characteristics of lower power consumption and smaller calculation

load compared with conventional ANNs. In this work, we demonstrate the feasibility of

applying SNN to classify tactile signals collected by a bionic artificial fingertip that touches a

group of real-world metal surfaces with different roughness levels. A two-layer SNN is adopted

and trained using an unsupervised learning method with spike-timing-dependent plasticity

(STDP). Experiments show that the trained SNN can categorize the input tactile signals into

different surface roughness of metal textures with more than 80% accuracy. This work lays the

foundation of applying SNNs to more complex tactile signal processing in robotics,

manufacturing, and other engineering fields.

86

6.1 Introduction

Surface roughness is one important object property closely related to wear resistance, fatigue

strength, vibration and has an important impact on the service life and reliability of mechanical

products [167]. Tremendous efforts have been made to recognize the surface texture using

artificial tactile sensors or artificial fingers [168-171]. For example, reference [169] developed

a silicon MEMS-based capacitive tactile sensor array to differentiate between surface textures,

including polycotton and nylon. Reference [172] fabricated a 2 × 2 array of four

microelectromechanical systems (MEMS) tactile microsensors based on microfabrication

technology, which was embedded in a polymeric packaging with fingerprint-like structures. In

recent years, a growing body of literature discriminates different surfaces by tactile sensors

combined with machine learning[173-175]. Support vector machines (SVM) and k-nearest

neighbors (kNN) were applied to classify surface roughness through extracting a series of

features of samples[174]. In the literature [173], multi-sensor fusion was incorporated with

machine learning to recognize surface roughness.

With the development of artificial intelligence, deep learning, especially neural networks are

widely studied recently. SNN is a special class of ANN, where neurons communicate by spike

train[176]. It is considered as the third generation of ANNs [177] because SNN is generally

based on more biologically plausible neuronal models, i.e., more capable of capturing the

complex temporal dynamics just like biological neurons [178]. Potential advantages, e.g.,

energy-efficient and less delay, occur compared with a conventional neural network such as

Convolutional Neural Network (CNN) due to its event-based triggered property. In addition,

SNN also demonstrated the ability to capture the time correlation between time variables in

streaming data. Thus, a considerable amount of research on SNNs has been explored recently,

87

especially attempts have been made to deal with classification problems using SNNs [132, 179-

182].

Several attempts have been made to discriminate rough surfaces by a biomimetic fingertip with

piezoelectric sensors [173-175]. In the previous work [175], analog tactile signals generated

from polyvinylidene difluoride (PVDF) films are fed as input to the Izhikevich neurons to

obtain spike trains, and two distinct decoding schemes based on k-nearest neighbors (kNN) are

used for surface roughness discrimination. However, this method distinguishes surfaces with

only 77.6% classification accuracy. It is possible to get higher surface roughness discrimination

accuracy (with an overall 80% accuracy) only for rougher surfaces (Ra > 1 µm) [174]. Sensor

fusion including piezoelectric sensors and optical sensors [173] can extract more information

from sampled signals and has a better ability to distinguish smoother surfaces (Ra < 1 µm).

However, all these approaches are not simple and fast enough due to the complicated process

before classification.

This study makes a major contribution by building a simple and fast end-to-end SNN to

discriminate surface roughness. Particularly, we firstly transfer sampled electric signals into

spike train as inputs of two layers SNN; then, an unsupervised method is applied to update

synaptic weights according to the firing rate between pre- and post-synaptic neurons; finally,

we assign a class to each neuron according to the response of inputs. The remaining part of this

chapter proceeds as follows: Section 6.2 presents methods for the combination of tactile sensor

signals and SNN. In Section 6.3, we evaluate the proposed method on surface roughness

discrimination and compare our method with previously proposed methods. Finally, we

conclude with a further discussion in Section 6.4.

88

Figure 6.1 (a) The structure of designed biomimetic artificial fingertip. (b) Biomimetic

fingertip sliding along the test surface. (c) Eight solid nickel test surfaces with different

roughness values.

6.2 Methods

 Experimental Setup

Due to the piezoelectric effect, one piezoelectric sensor is sensitive to mechanical force

changes and could generate electrical signals that are proportional to the mechanical

deformation of an object [183]. A bio-inspired tactile piezoelectric sensor was used to collect

tactile datasets for each class of surface roughness.

The tactile sensor was designed by mimicking FA-I type mechanoreceptors in human fingertips

which are extremely sensitive to dynamic stimuli and vibrations [174, 184]. It includes two

commercial 28 mm thick PVDF films that were cut into the size of 4 mm × 4 mm. The PVDF

film is a class and common material for manufacturing tactile signals. It exhibits a high-

frequency response when sliding and is able to measure the lowest frequency about 0.01 Hz

based on its property of piezoelectric effect, thus making them highly suitable for measuring

vibrations. They are perpendicular to each other, and both were glued on the top of a

polydimethylsiloxane (PDMS) cube. The PDMS cube was connected to one tip of a 4 mm × 4

mm × 45 mm polymethyl methacrylate (PMMA) bar. The PMMA bar with soft cured PDMS

cube and PVDF films sensor was covered by a layer of PDMS (Figure 6.1(a)). The size of our

89

tactile sensor is comparable to human fingertips. Compared with human fingertips, the PMMA

bar, PVDF films, and PDMS layer function as bone, mechanoreceptors, and skin, respectively

[174].

We collected the piezoelectric signals on the test samples. The test samples consist of eight

solid nickel surfaces with roughness values (Ra) of 50 𝜇m, 25 𝜇m, 12.5 𝜇m, 6.3 𝜇m, 3.2 𝜇m,

1.6 𝜇m, 0.8 𝜇m, 0.4 𝜇m (Figure 6.1(c)). The biomimetic fingertip was controlled to slide

across different surfaces and generate vibratory stimuli. To simplify the operation and

experimental setup, the sliding process was manually controlled at a speed of about 0.2 m/s.

The discrimination result is expected to be further enhanced if the sliding speed and grip

strength are controlled more precisely by devices like a robotic arm. The bio-inspired tactile

sensor slid ten times on the surface of each test sample, which generated 80 time-series samples

in total for each PVDF film. Analog outputs from the PVDF films are amplified via a custom

amplifier and digitalized via DAQCard (USB-6225, National Instruments, USA) [184].

Figure 6.2 Illustration of SNN network structure for tactile signal processing.

 SNN architecture

90

We adopt a two-layer feedforward SNN for tactile signal classification. It consists of one input

layer and one output layer (see Figure 6.2). The SNN was constructed, referring to the structure

proposed previously [181]. Input patterns were coded as Poisson spike processes, and the firing

rates are proportional to the intensities of the corresponding pixels in the images. Each Poisson

spike train is fed to the excitatory neurons of the output layer with all-to-all connections. The

output layer consists of the excitatory neurons and the inhibitory neurons. The connection from

the excitatory neurons to inhibitory neurons is in a one-to-one fashion, i.e., each of the

excitatory neurons is connected to one corresponding inhibitory neuron at the same position.

At the same time, each inhibitory neuron inhibits all excitatory neurons except for the one from

which it receives an input.

Figure 6.3 (a) LIF neuron model. (b) Schematic of the classic STDP.

 Neuron and synapse model

For the dynamic neuron model, we chose the leaky integrate-and-fire (LIF) model, which was

proposed based on the simplified model of biological neurons and widely used by SNN. The

dynamic membrane potential 𝑢 in this model is described by Equations (6.1) - (6.5).

𝜏
𝑑𝑢

𝑑𝑡
= 𝑢𝑟𝑒𝑠𝑡 − 𝑢 + 𝐼, 𝑢 < 𝑉𝑡ℎ

91

 (6.1)

𝐼 = 𝑔𝑒(𝑢𝑒 − 𝑢) + 𝑔𝑖(𝑢𝑖 − 𝑢)

 (6.2)

𝜏𝑔𝑒
𝑑𝑔𝑒
𝑑𝑡

= −𝑔𝑒 + ∑∑𝑤𝑖
𝑒

𝑘

𝑛

𝑖

𝛿(𝑡 − 𝑡𝑖
𝑘)

 (6.3)

𝜏𝑔𝑖
𝑑𝑔𝑖
𝑑𝑡

= −𝑔𝑖 + ∑∑𝑤𝑗
𝑖

𝑘

𝑚

𝑗

𝛿(𝑡 − 𝑡𝑗
𝑘)

 (6.4)

fire a spike & 𝑢 = 𝑢𝑟𝑒𝑠𝑒𝑡 , 𝑢 ≥ 𝑉𝑡ℎ

 (6.5)

where 𝜏, 𝜏𝑔𝑒and 𝜏𝑔𝑖are time constants, 𝑢 and 𝑢𝑟𝑒𝑠𝑡 are the membrane potential and resting

membrane potential, respectively. 𝑢𝑒 and 𝑢𝑖 are the equilibrium potentials of excitatory and

inhibitory synapses. 𝐼 is the total pre-synaptic input, 𝑛 and 𝑚 are the numbers of excitatory and

inhibitory synapses, 𝑔𝑒 and 𝑔𝑖 are the excitatory and inhibitory conductance. 𝑤𝑖
𝑒 and 𝑤𝑗

𝑖 are

the excitatory and inhibitory connection weights, respectively. 𝛿 is the pre-synaptic input that

equals 1 at the moment of firing a spike; otherwise, it is 0. 𝑢𝑟𝑒𝑠𝑒𝑡 is the reset membrane

potential once 𝑢 exceeds a given potential threshold 𝑉𝑡ℎ. All parameters chosen are set are

within bio-plausible ranges.

As shown in Figure 6.3(a), when a neuron receives pre-synaptic spikes, it will accumulate the

membrane potential according to Equation (6.1); once the membrane potential of the neuron

exceeds its membrane threshold 𝑉𝑡ℎ, the neuron will fire a spike and immediately restore the

initial potential 𝑢𝑟𝑒𝑠𝑒𝑡. The neuron will be in a refractory period for the next few milliseconds,

92

which means the membrane potential will not change even if it receives spikes over this time.

In this model, the firing threshold changes dynamically due to a dynamic threshold method

adopted. The dynamic threshold is a bio-plausible feature initially discovered in the neural

system [185-189]. The membrane threshold of each neuron depends on not only 𝑣𝑡ℎ but also

an extra variable 𝜃 which slightly increases then exponentially decreases to the original value

every time a neuron fires, which is described by Equations (6.6) - (6.7). The threshold of a

neuron will be higher with more spikes fired, and in turn, more input is necessary in order to

let the neuron spike. The purpose is to prevent a single neuron from firing too many spikes,

thereby dominating the results in the output layer.

𝑉𝑡ℎ = 𝑉𝑡ℎ + 𝜃

 (6.6)

𝜏𝜃
𝑑𝜃

𝑑𝑡
= −𝜃

 (6.7)

where 𝜏𝜃 is the time constant of 𝜃.

Synaptic weights from input neurons to excitatory neurons were updated using Spike-timing-

dependent plasticity (STDP). STDP is a widely used unsupervised learning algorithm in SNN.

According to the Hebbian learning rule, the strength of the synaptic connection between two

neurons should be increased or decreased in proportion to the product of pre-synaptic and post-

synaptic neuron activation[190]. STDP is considered an extension of Hebbian’s theory. Under

the STDP process, the activity between two neurons, if the information of other neurons is

received before its activity, the connection between the two neurons will be strengthened.

Conversely, if the neuron itself becomes active before receiving information from other

neurons, the connection between the two neurons will weaken.

93

The increment of weights ∆𝑊 can be expressed by Equation (6.8) according to the model of

STDP [191, 192].

∆W =

{

 𝐴+ exp (
−∆𝑡

𝜏+
), ∆𝑡 ≥ 0

−𝐴− exp (
∆𝑡

𝜏−
), ∆𝑡 < 0

 (6.8)

where 𝐴+ and 𝐴− are learning rates, ∆𝑡 is the time difference between pre- and post-synaptic

spikes, and 𝜏+ and 𝜏− are the time constants of the positive and negative time difference,

respectively.

Figure 6.3(b) shows the synaptic changes. In addition to the change of synaptic strength, we

also use the synaptic scaling mechanism to increase the competition among synapses between

the input and excitatory layers. Synaptic scaling is a homeostatic plasticity mechanism

observed in many experiments, especially in visual systems and the neocortex [193]. The

synaptic scaling normalizes the synaptic weights through Equation (6.9) after each sample is

trained.

𝑤𝑁 = 𝛽
𝑤

∑𝑤
𝑁𝑝𝑟𝑒

 (6.9)

where 𝑁𝑝𝑟𝑒 is the number of synapses connected to a single target neuron, and 𝛽 is a scaling

constant which was set to 1 [193].

94

It should be noted that STDP and synaptic scaling were only used for the connection between

input and excitatory layers. All weights from the excitatory layer to the inhibitory layer were

initialized to 10.4, and weights from the inhibitory layer to the excitatory layer were 17 [1].

These settings guarantee that inhibitory neurons can be triggered as long as they receive one

spike. The excitatory-inhibitory weights would not change after initializing. For the values of

the above variables, see Table 6.3 in the appendix.

 Dataset

When sliding laterally on eight test surfaces with different roughness values, the sample tactile

signals generated by two PVDF films are shown in Figure 6.4. Each dataset includes 8 classes,

and each class has 10 samples. For every class, the 10 samples were randomly split into 7

samples as the training set, and the remained 3 samples as the testing set. In order to enhance

the generalization ability of the model and avoid overfitting, we increase the number of training

samples through data fragmentation. Specifically, for each class, we include samples 1-4 into

group 1 and samples 5-8 into group 2. We firstly split each sample into four pieces of equal

length (Figure 6.5). In this way, each sample in group 1 would have four pieces, while each

sample in group 2 has three pieces. Then, for each time period, we pick one piece from a sample

and combine them together. In total, for each class, we obtain 337 training samples. As a whole,

Figure 6.4 Typical tactile signals generated by two perpendicular PVDF films when sliding on eight

surfaces with different roughness values. PVDF1 is perpendicular to the sliding direction, while

PVDF2 is parallel to the sliding direction.

95

the training set has 2696 samples, and the testing set remains to include 24 original samples.

The split and combination of data are shown in Figure 6.5.

 Input Encoding

SNN exhibits the natural ability of spatiotemporal coding of input and thus holds the potential

advantage of efficient coding through sparse activities, particularly for continuous

spatiotemporal inputs. In the brain, it turns out that most of the information is encoded by the

number of spikes in a short window [194]. Reference [195] demonstrates that spikes contain

features of roughness and contribute to a firing rate code. So we encode the sampled tactile

signals by rate coding.

Firstly, We represent each sample as a 28×28 grayscale image. Therefore, there are a total of

2696 training images and 24 test images. Then each image is coded as a Poisson spike train.

The Poisson spike train is generated using Equations (6.10)-(6.12) [196].

𝑃{1 𝑠𝑝𝑖𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝛿𝑡} = 𝑟 ∗ 𝛿𝑡

 (6.10)

𝑟 = 0.25 ∗ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

Figure 6.5 The split and combination of raw data.

96

 (6.11)

𝑁 = 𝑟 ∗ 𝑇

 (6.12)

Equation (6.10) describes the possibility of producing a spike during every time step. In the

paper, each time step in the simulation has δt = 1 millisecond. The firing rate r in (6.11) is

proportional to the intensity of the corresponding pixel on the image. Equation (6.12) derives

the average number of spikes N generated by one pixel, which is equal to the product of r and

the simulation time T. This conversion process may cause information loss. As mentioned in

the paper [107], the longer the simulation time is, the less loss from the original static image to

a rated-coded spike image the conversion loss is, which can also be seen in Figure 6.6. Different

simulation time presents varying degrees of difference between an original image and its rate-

coded spike train. However, a long simulation time will cause a very long training process and

more computation consumption. For our process, the simulation time was set as 350 ms in

order to trade off training time and loss. The rate of generated spike train is initialized between

0 and 63.75 Hz according to (11) since the maximum intensity of a pixel is 255. Specifically,

while the excitatory neuron layer generates less than 5 spikes, the input firing rate increases by

32 Hz and is presented again for 350 ms until no less than 5 spikes are emitted. It aims to

guarantee that spikes can propagate to the deeper layer.

Figure 6.6 An original static image is encoded into a spike map over various time steps using

rate coding.

97

 Training and classification

The presentation time of each input sample takes 350 ms for each sample. It is followed by a

resting time of 150 ms to restore all variables of all neurons to their resting values except the

weight and adaptive threshold. For the testing process, we set the learning rate to zero and used

the SNN with trained weights and thresholds. We also assigned a label to each excitatory

neuron in the output layer, which depends on its highest average numbers of fired spikes to all

eight classes of surfaces over one presentation of the training set. Then the classification

accuracy of the SNN on the test set is measured based on averaging the responses of each

neuron per class and choosing the class with the highest average firing rate [181]. The number

of neurons in the excitatory and inhibitory layer was set as 400. We trained the model with 1

to 15 epochs of the training dataset.

6.3 Results

Figure 6.7 (a) shows the test result comparison between the augmented PVDF1 dataset and the

augmented PVDF2 dataset. It reveals that there has been a steady accuracy after one epoch

training and the trend increases slowly with more training epochs for both PVDF1 and PVDF2.

After 15 iterative training, the test accuracy of the model on the PVDF1 dataset achieves 83.3%,

in contrast with 54.17% on the PVDF2 dataset. Throughout the whole iteration process, the

test performance of PVDF1 has been higher than that of PVDF2. This result suggests that SNN

can better extract features to distinguish different categories with the PVDF1 dataset compared

with the PVDF2 dataset.

Figure 6.7 (b) compares the trend of test accuracy between the augmented PVDF1 dataset and

the original PVDF1 dataset with the increasing number of training examples. There is a

significant promotion after data augmentation. It states that splitting and combining segments

98

of signals effectively decreases the overfitting of SNN and promotes network generalization

capability.

In addition to the 400 neurons model, we also tested models with 100 and 1600 excitatory and

inhibitory neurons. In each case, the highest classification accuracy of the model achieved

66.7%, 83.3%, and 75%. Figure 6.7 (c) compares the test result when using the different

number of excitatory neurons in the output layer. While SNN with 100 excitatory neurons

realizes the lowest accuracy, SNN with 400 output neurons reaches the best classification

accuracy. As the number of output neurons continues to increase to 1600, the classification

Figure 6.7 (a) Test accuracy comparison between augmented PVDF1 and augmented

PVDF2 datasets with 15 training epochs. (b) Test accuracy comparison between augmented

PVDF1 dataset and original PVDF1 dataset. (c) Test accuracy comparison among the

different numbers of excitatory neurons in the output layer. (d) Test accuracy comparison

among fusing both augmented PVDF data and single augmented PVDF data with 15 training

epochs.

99

accuracy decreases instead. This result implies that there is no significant positive correlation

between the number of output numbers and classification accuracy, which is different from the

viewpoint of [1]. Besides, it is easy to find that for 100 and 400 neurons the models have a

relatively fast convergence after executing only a few epochs and then improves slowly, while

the model with 1600 excitatory neurons gradually converges with more iterations of the

training set.

We made a statistic on the classification results of epoch 11-15, because the test accuracy over

those phases performs a stable classification accuracy. Table 6.1 represents the confusion

matrix of the classification result. What can be clearly seen in this table is that surface 1 (Ra =

50 μm), surface 2 (Ra = 25 μm), surface 3 (Ra = 12.5 μm) and surface 6 (Ra = 1.6 μm) can be

identified accurately by our SNN model. Most misclassifications occur in surface 4 (Ra = 6.3

μm) and surface 7 (Ra = 0.8 μm). Almost all surface 4 were recognized as surface 5 (Ra = 3.2

μm), and the same confusion appeared between surface 7 and surface 8 (Ra = 0.4 μm). In order

to observe the sampled tactile signal dataset in more detail, we have drawn the standard

Figure 6.8 (a) Standard deviation features from the tactile signals of the two PVDF films when

sliding on eight surfaces with different surface roughness values. (b) Sum of absolute values from

the tactile signals of the two PVDF films when sliding on eight surfaces with different surface

roughness values.

100

deviation distribution and the signal energy distribution from sampled tactile signals of two

PVDF films in Figure 6.8(a) and (b). Equations (6.13) and (6.14) give their definitions. Both

figures demonstrate that for tactile signals of PVDF1, surfaces 1, 2, 3, and 6 distribute their

range with less overlap with others, while there are overlapping parts that are difficult to

separate between surface 4 and surface 5 as well as between surface 6 and surface 7. Compared

with tactile signals of PVDF1, tactile signals of PVDF2 have more serious overlap among

different surfaces in Figure 6.8(a) and (b) so that it is difficult to separate a single class from a

group of data. Thus, even though both signals of PVDF1 and PVDF2 are fused to predict the

labels of samples, this method cannot play an effective role, which is also consistent with the

result of Figure 6.7 (d). The results indicate that our tactile sensor has limited discriminative

ability to effectively pick up the subtle differences of some specific surfaces. In the paper [184],

features extracted from discrete wavelet transform in both datasets contribute to the test

performance. This way may be explored through SNN with a new encoding method to do

frequency domain analysis.

𝑆(𝑥(𝑘)) = √
1

𝑁 − 1
∑(𝑥(𝑘) − 𝜇)2
𝑁

𝑘=1

 (6.13)

𝐸(𝑥(𝑘)) = ∑𝑥2(𝑘)

𝑁

𝑘=1

 (6.14)

A comparison of various methods used for surface roughness discrimination is shown in Table

6.2. Compared with the previous works on surface roughness classification [174, 184], this

work is different in a few important aspects. First, the adopted SNN does not need the feature

selection and extraction stage. While in the kNN or SVM, features need to be obtained first

101

[174, 184], SNN only requires converting the recorded waveform into gray images so as to

generate Poisson spike trains as the input for classification, which is simpler and more efficient.

Second, the SNN model inspired by the biological neuron structure and parameters used in the

SNN model are all within bio-plausible ranges. Finally, the implementation of SNN on

hardware is considered to have huge potential: 1. SNN is more hardware friendly than currently

popular ANN because SNN uses more energy-efficient “accumulator” units rather than the

energy-consuming “multiply-accumulator” [197]; 2. neurons in SNN were triggered only by

spiking events. When there is no spike emission, SNN will be silent, which is energy efficient.

SNNs exhibit the natural ability of spatiotemporal coding of input, and thus hold the potential

advantage of efficient coding through sparse activities, particularly for continuous

spatiotemporal inputs; 3. SNN with STDP learning rule is appropriate for online, on-chip

learning.

Table 6.2 The highest classification accuracy of different methods

Feature Classifier Sensor Accuracy

SD [174] kNN (k = 9) PVDF film 1 82.6%

SF [174] SVM (RBF) PVDF film 1 71.2%

SRa [174] SVM (RBF) PVDF film 1 & 2 78.8%

Table 6.1 Classifier: SNN with 400 output neurons

102

PSM [174] kNN (k = 9) PVDF film 1 82.5%

SD + PSM [174] kNN (k = 9) PVDF film 1 82.5%

SF + PSM [174] SVM (RBF) PVDF film 1 72.7%

SRa + PSM [174] kNN (k = 5) PVDF film 1 77.8%

SD + PSM [174]

Discrete wavelet transform

[184]

kNN (k = 7)

ELM

PVDF film 2

PVDF film 1 & 2

57.9%

97.9%

\ SNN (this paper) PVDF film 1 83.3%

Note: Statistical features (SF); Signal roughness parameter Ra (SRa); Power spectral

magnitudes (PSM); Extreme learning machine (ELM)

6.4 Conclusion

In this chapter, we have explored the possibility of performing tactile surface roughness

discrimination with the biologically inspired SNN model. SNNs are very good at handling this

time-space information because spiking neurons have a natural internal dynamic system that

does not require back connections to handle spatio-temporal signals. Furthermore, due to the

low power consumption and low latency of SNN, we can easily integrate the sensor and SNN

into the embedded system to build a fast tactile classification system. The Ra value range of

sampled surfaces is from 0.4 𝜇m to 50 𝜇m. Ultimately, the test result shows this method can

reach the highest 83.3% accuracy by the PVDF1 dataset and 79.3% by both PVDF datasets.

This method is robust and suitable for real-time surface roughness discrimination. The insights

gained from this study may be of assistance to developing advanced neurorobotics combined

with SNN. Further work needs to be done to explore whether SNN can better identify the signal

in the frequency domain and by a new encoding method.

6.5 Supplementary

Table 6.3 lists the values of the SNN’s parameters.

103

Table 6.3 Parameters in SNN

104

7 Conclusions

This thesis explores algorithms for brain-inspired SNNs and their applications. Compared to

ANNs, SNNs are bio-interpretable, low-power, and low-latency. This is the basis for our focus

on the study of SNN algorithms and their applications.

Chapter 1 details the basics of SNNs and the current challenges, while we also summarize the

forms of noise present in the brain and its role, and provide an introduction to the current

applications of noise in artificial intelligence.

It is still challenging to develop efficient and high-performing learning algorithms for SNNs.

In Chapter 2, we propose a novel spiking neuron model (KLIF) to improve the learning ability

of SNNs. The neuron model itself can update the slope and width of the surrogate gradient

curve during training and selectively delivers membrane potential to spike firing and resetting,

which is considered to be more biologically significant. We evaluated our model on both static

and neuromorphic datasets. Experiments indicate that KLIF performs much better than current

leaky integrate-and-fire (LIF) model, which is most frequently used in SNN, and achieves state-

of-the-art performance on those datasets without introducing additional computational cost.

Also KLIF increases the firing frequency of individual spiking neuron. The good performance

of KLIF can make it completely replace the role of LIF for various tasks.

105

In Chapter 3, we do a study for the robustness of impulsive neural networks. As more attention

is paid to SNNs, security issues become increasingly important. However, there is still a lack

of defense methods specifically designed for SNNs. Inspired by neural membrane oscillation,

we propose a new bio-plausible neural model that emulates the subthreshold oscillation to

enhance the security and robustness of SNNs. Our experiments show that SNNs with neural

oscillation models have better resistance to adversarial attacks than ordinary SNNs on kinds of

network architectures. Furthermore, we demonstrate the surrogate gradient can affect the

effectiveness of adversarial attacks and propose a defense method based on neural oscillation

by masking the original surrogate gradients to defend against different types of attacks. The

results show that our defense method is comparable to those advanced adversarial training

methods used on ANN but requires much less computational costs. To the best of our

knowledge, this is the first work that establishes adversarial defense through modifying

surrogate gradients on SNNs. As neural oscillations are essential to many neural activities in

the biological nervous system, SNN integrated with oscillation mechanism is more bio-

plausible than conventional ANN. These findings contribute to our understanding of the

relationship between SNN and the biological neural system and provide a basis for optimizing

and developing SNN.

Spike-based neuromorphic hardware promises to reduce the energy consumption of image

classification and other deep-learning applications, particularly on mobile phones and other

edge devices. However, direct training of deep spiking neural networks spends lots of time,

and previous methods for converting trained ANNs to spiking neurons were inefficient because

the neurons had to emit too many spikes. In Chapter 4, we propose a novel noise based method

for faster and efficient SNN training. Our experiments show that ours can reduce training time

106

by 65%-75% and achieves an inference speed that is more than 100 times faster compared to

the previous two methods. We also argue that the neuron model proposed in the paper makes

it more bio-plausible.

Sparse representation has attracted great attention because it can greatly save storage resources

and find representative features of data in a low-dimensional space. As a result, it may be

widely applied in engineering domains including feature extraction, compressed sensing, signal

denoising, picture clustering, and dictionary learning, just to name a few. In Chapter 5, we

propose a spiking sampling network. This network is composed of spiking neurons and it can

dynamically decide which pixel points should be retained and which ones needs to be masked

according to the input. Our experiments demonstrate that this approach enables better sparse

representation of the original image and facilitates image reconstruction compared to random

sampling. We thus use this approach for compressing massive data from the dynamic vision

sensor, which greatly reduces the storage requirements for event data.

In the Chapter 6, we apply SNNs to engineering issues in order to process tactile signals. In

this study, we show that it is possible to use SNNs to categorise tactile signals obtained from a

bionic artificial fingertip that makes contact with a variety of real-world metal surfaces of

varying roughnesses. We use a two-layer SNN and train it with an unsupervised learning

technique that takes into account STDP. The trained SNN can classify the input tactile signals

into metal textures with various levels of surface roughness with an accuracy of over 80%,

according to experiments. This establishes the groundwork for using SNNs in robotics,

manufacturing, and other engineering domains to process more intricate haptic signals.

In summary, this thesis proposes targeted algorithms for some important challenges faced by

107

current SNNs such as low training accuracy, slow training speed, and low robustness, while

extending their SNNs from being mainly used for classification problems to engineering

problems such as sparse coding, and processing of haptic signals. Some innovations in both

theory and engineering are made to improve the usability and applications of SNNs.

108

8 Discussion and Future Work

Future improvements of this thesis can be developed in several areas.

Chapter 3 proposes the defense method against adversarial attacks. These attack samples are

generated based on gradients, so the defense is also to make the corresponding interference on

the gradients to achieve the defense purpose. Currently, there are also some adversarial attacks

that are not based on gradients, and Chapter 3 does not discuss and study for this part, which

we will continue to study and research in the future.

In addition, in addition to computer vision, natural language processing (NLP) is also a key

area of focus for deep learning, especially like machine translation, text generation, etc.

Although we have used SNNs to process temporal spike sequences in Chapter 5, most of the

research in this thesis focuses on the processing of image by SNNs. In the future, we will

combine SNNs with NLP, given their natural advantages for temporal data.

In addition to the software aspects, the development of SNN-based brain-like chips is also a

promising research direction at present. Companies like IBM, and others have specifically

developed SNN-based brain-like chips to accelerate networks, and experiments have shown

that they have very low power consumption and have great application scenarios in future

embedded devices. In the future, we will design and execute our algorithms on hardware to

obtain more comprehensive tests.

SNNs still have difficulties in trade-offs between bio-plausibility and performance on large

complex datasets. Incorporating working mechanisms inspired by brain mechanisms into

SNNs, such as NeuCube [198], which mainly consists of a spike encoder, an unsupervised

109

module and a supervised module for classification and modelling, could be further combined

with our proposed methods in previous chapters to explore the possibility of SNN development.

Besides, constructing large models of networks based on spiking neurons is also one of the key

directions for the development of SNNs in the future.

While there has been significant progress in developing and understanding SNNs in recent

years, there are still many open questions and research directions that can be pursued to further

improve their effectiveness and understanding. Some potential research directions and

questions for SNNs could be further researched in the future:

• Development of more efficient learning algorithm

• Investigation of the role of different neuron models

• Exploration of different network topologies

• Development of neuromorphic hardware

• Investigation of the role of spatiotemporal patterns

• Application to real-world problems

In conclusion, SNNs are a promising area of research. Developing efficient learning algorithms,

optimizing architectures, exploring new applications, developing specialized hardware, and

integrating SNNs with other AI techniques are some of the key research directions that can be

explored in the future.

110

References

[1] P.U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-

dependent plasticity, Front Comput Neurosci, 9 (2015) 99.

[2] D. Querlioz, O. Bichler, P. Dollfus, C. Gamrat, Immunity to device variations in a spiking

neural network with memristive nanodevices, IEEE Transactions on Nanotechnology, 12 (2013)

288-295.

[3] S.R. Kheradpisheh, M. Ganjtabesh, T. Masquelier, Bio-inspired unsupervised learning of

visual features leads to robust invariant object recognition, Neurocomputing, 205 (2016) 382-

392.

[4] B. Han, G. Srinivasan, K. Roy, RMP-SNN: Residual Membrane Potential Neuron for

Enabling Deeper High-Accuracy and Low-Latency Spiking Neural Network, Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition2020), pp. 13558-

13567.

[5] T. Masquelier, S.J. Thorpe, Unsupervised learning of visual features through spike timing

dependent plasticity, PLoS Comput Biol, 3 (2007) e31.

[6] G. Srinivasan, P. Panda, K. Roy, Stdp-based unsupervised feature learning using

convolution-over-time in spiking neural networks for energy-efficient neuromorphic

computing, ACM Journal on Emerging Technologies in Computing Systems (JETC), 14 (2018)

1-12.

[7] K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with

neuromorphic computing, Nature, 575 (2019) 607-617.

[8] S. Deng, S. Gu, Optimal Conversion of Conventional Artificial Neural Networks to Spiking

Neural Networks, arXiv preprint arXiv:2103.00476, (2021).

111

[9] W. Severa, C.M. Vineyard, R. Dellana, S.J. Verzi, J.B. Aimone, Training deep neural

networks for binary communication with the whetstone method, Nature Machine Intelligence,

1 (2019) 86-94.

[10] S. McKennoch, D. Liu, L.G. Bushnell, Fast modifications of the spikeprop algorithm, The

2006 IEEE International Joint Conference on Neural Network Proceedings, (IEEE2006), pp.

3970-3977.

[11] S.M. Bohte, J.N. Kok, J.A. La Poutré, SpikeProp: backpropagation for networks of spiking

neurons, ESANN, 48 (2000) 17-37.

[12] F. Zenke, S.M. Bohté, C. Clopath, I.M. Comşa, J. Göltz, W. Maass, T. Masquelier, R.

Naud, E.O. Neftci, M.A. Petrovici, Visualizing a joint future of neuroscience and neuromorphic

engineering, Neuron, 109 (2021) 571-575.

[13] R. Gutig, H. Sompolinsky, The tempotron: a neuron that learns spike timing-based

decisions, Nat Neurosci, 9 (2006) 420-428.

[14] F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with ReSuMe:

sequence learning, classification, and spike shifting, Neural computation, 22 (2010) 467-510.

[15] A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, Span: Spike pattern association

neuron for learning spatio-temporal spike patterns, International journal of neural systems, 22

(2012) 1250012.

[16] C. Lee, S.S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling spike-based

backpropagation for training deep neural network architectures, Frontiers in neuroscience, 14

(2020).

[17] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, L. Shi, Direct training for spiking neural networks:

Faster, larger, better, Proceedings of the AAAI Conference on Artificial Intelligence2019), pp.

1311-1318.

112

[18] X. Cheng, Y. Hao, J. Xu, B. Xu, LISNN: Improving Spiking Neural Networks with Lateral

Interactions for Robust Object Recognition, IJCAI), pp. 1519-1525.

[19] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, Y. Tian, Incorporating learnable

membrane time constant to enhance learning of spiking neural networks, (July2020).

[20] R. Zimmer, T. Pellegrini, S.F. Singh, T. Masquelier, Technical report: supervised training

of convolutional spiking neural networks with PyTorch, arXiv preprint arXiv:1911.10124,

(2019).

[21] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, W. Maass, Long short-term memory

and learning-to-learn in networks of spiking neurons, arXiv preprint arXiv:1803.09574, (2018).

[22] T. Branco, K. Staras, The probability of neurotransmitter release: variability and feedback

control at single synapses, Nature Reviews Neuroscience, 10 (2009) 373-383.

[23] W.H. Calvin, C.F. Stevens, Synaptic noise and other sources of randomness in motoneuron

interspike intervals, Journal of neurophysiology, 31 (1968) 574-587.

[24] M. Zhang, H. Qu, X. Xie, J. Kurths, Supervised learning in spiking neural networks with

noise-threshold, Neurocomputing, 219 (2017) 333-349.

[25] H.C. Berg, E.M. Purcell, Physics of chemoreception, Biophysical journal, 20 (1977) 193-

219.

[26] W. Bialek, S. Setayeshgar, Physical limits to biochemical signaling, Proceedings of the

National Academy of Sciences, 102 (2005) 10040-10045.

[27] W. Bialek, Physical limits to sensation and perception, Annual review of biophysics and

biophysical chemistry, 16 (1987) 455-478.

[28] R. Azouz, C.M. Gray, Cellular mechanisms contributing to response variability of cortical

neurons in vivo, Journal of Neuroscience, 19 (1999) 2209-2223.

[29] M.R. Deweese, A.M. Zador, Shared and private variability in the auditory cortex, Journal

of neurophysiology, 92 (2004) 1840-1855.

113

[30] H. Derksen, A. Verveen, Fluctuations of resting neural membrane potential, Science, 151

(1966) 1388-1389.

[31] A. Verveen, H. Derksen, K. Schick, Voltage fluctuations of neural membrane, Nature, 216

(1967) 588-589.

[32] E. Blair, J. Erlanger, A comparison of the characteristics of axons through their individual

electrical responses, American Journal of Physiology-Legacy Content, 106 (1933) 524-564.

[33] P.N. Steinmetz, A. Manwani, C. Koch, M. London, I. Segev, Subthreshold voltage noise

due to channel fluctuations in active neuronal membranes, Journal of computational

neuroscience, 9 (2000) 133-148.

[34] J.A. White, J.T. Rubinstein, A.R. Kay, Channel noise in neurons, Trends in neurosciences,

23 (2000) 131-137.

[35] M.C. van Rossum, B.J. O'Brien, R.G. Smith, Effects of noise on the spike timing precision

of retinal ganglion cells, Journal of neurophysiology, 89 (2003) 2406-2419.

[36] J.T. Rubinstein, Threshold fluctuations in an N sodium channel model of the node of

Ranvier, Biophysical journal, 68 (1995) 779-785.

[37] E. Skaugen, L. Walløe, Firing behaviour in a stochastic nerve membrane model based

upon the Hodgkin—Huxley equations, Acta Physiologica Scandinavica, 107 (1979) 343-363.

[38] C.C. Chow, J.A. White, Spontaneous action potentials due to channel fluctuations,

Biophysical journal, 71 (1996) 3013-3021.

[39] K. Diba, H.A. Lester, C. Koch, Intrinsic noise in cultured hippocampal neurons:

experiment and modeling, Journal of Neuroscience, 24 (2004) 9723-9733.

[40] G.A. Jacobson, K. Diba, A. Yaron‐Jakoubovitch, Y. Oz, C. Koch, I. Segev, Y. Yarom,

Subthreshold voltage noise of rat neocortical pyramidal neurones, The Journal of physiology,

564 (2005) 145-160.

114

[41] A.D. Dorval, J.A. White, Channel noise is essential for perithreshold oscillations in

entorhinal stellate neurons, Journal of neuroscience, 25 (2005) 10025-10028.

[42] M.H. Kole, S. Hallermann, G.J. Stuart, Single Ih channels in pyramidal neuron dendrites:

properties, distribution, and impact on action potential output, Journal of Neuroscience, 26

(2006) 1677-1687.

[43] P. Fatt, B. Katz, Spontaneous subthreshold activity at motor nerve endings, The Journal

of physiology, 117 (1952) 109.

[44] A. Destexhe, M. Rudolph-Lilith, Neuronal noise (Springer Science & Business Media,

2012).

[45] E.T. Rolls, A. Treves, The neuronal encoding of information in the brain, Prog Neurobiol,

95 (2011) 448-490.

[46] Z.F. Mainen, T.J. Sejnowski, Reliability of spike timing in neocortical neurons, Science,

268 (1995) 1503-1506.

[47] T. Shmiel, R. Drori, O. Shmiel, Y. Ben-Shaul, Z. Nadasdy, M. Shemesh, M. Teicher, M.

Abeles, Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to

behavior, Proceedings of the National Academy of Sciences, 102 (2005) 18655-18657.

[48] M.A. Montemurro, S. Panzeri, M. Maravall, A. Alenda, M.R. Bale, M. Brambilla, R.S.

Petersen, Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory

thalamus, Journal of neurophysiology, 98 (2007) 1871-1882.

[49] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, science,

220 (1983) 671-680.

[50] A. Krogh, J.A. Hertz, Generalization in a linear perceptron in the presence of noise,

Journal of Physics A: Mathematical and General, 25 (1992) 1135.

115

[51] Y. Shu, A. Hasenstaub, M. Badoual, T. Bal, D.A. McCormick, Barrages of synaptic

activity control the gain and sensitivity of cortical neurons, Journal of Neuroscience, 23 (2003)

10388-10401.

[52] R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance, Journal of

Physics A: mathematical and general, 14 (1981) L453.

[53] A. Longtin, A. Bulsara, F. Moss, Time-interval sequences in bistable systems and the

noise-induced transmission of information by sensory neurons, Physical review letters, 67

(1991) 656.

[54] J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Noise enhancement of information

transfer in crayfish mechanoreceptors by stochastic resonance, Nature, 365 (1993) 337-340.

[55] H.A. Braun, H. Wissing, K. Schäfer, M.C. Hirsch, Oscillation and noise determine signal

transduction in shark multimodal sensory cells, Nature, 367 (1994) 270-273.

[56] P. Cordo, J.T. Inglis, S. Verschueren, J.J. Collins, D.M. Merfeld, S. Rosenblum, S.

Buckley, F. Moss, Noise in human muscle spindles, Nature, 383 (1996) 769-770.

[57] D.F. Russell, L.A. Wilkens, F. Moss, Use of behavioural stochastic resonance by paddle

fish for feeding, Nature, 402 (1999) 291-294.

[58] A.A. Priplata, J.B. Niemi, J.D. Harry, L.A. Lipsitz, J.J. Collins, Vibrating insoles and

balance control in elderly people, The lancet, 362 (2003) 1123-1124.

[59] J.S. Anderson, I. Lampl, D.C. Gillespie, D. Ferster, The contribution of noise to contrast

invariance of orientation tuning in cat visual cortex, Science, 290 (2000) 1968-1972.

[60] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing, science,

220 (1983) 671-680.

[61] C. Shorten, T.M. Khoshgoftaar, A survey on image data augmentation for deep learning,

Journal of big data, 6 (2019) 1-48.

116

[62] D.P. Kingma, T. Salimans, M. Welling, Variational dropout and the local

reparameterization trick, Advances in neural information processing systems, 28 (2015).

[63] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, R. Fergus, Regularization of neural networks

using dropconnect, International conference on machine learning, (PMLR2013), pp. 1058-

1066.

[64] B. Han, J. Sim, H. Adam, Branchout: Regularization for online ensemble tracking with

convolutional neural networks, Proceedings of the IEEE conference on computer vision and

pattern recognition2017), pp. 3356-3365.

[65] G. Huang, Y. Sun, Z. Liu, D. Sedra, K.Q. Weinberger, Deep networks with stochastic

depth, European conference on computer vision, (Springer2016), pp. 646-661.

[66] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a

simple way to prevent neural networks from overfitting, The journal of machine learning

research, 15 (2014) 1929-1958.

[67] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples,

arXiv preprint arXiv:1412.6572, (2014).

[68] A. Kurakin, I.J. Goodfellow, S. Bengio, Adversarial examples in the physical world,

Artificial intelligence safety and security, (Chapman and Hall/CRC, 2018), pp. 99-112.

[69] S.-M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, Deepfool: a simple and accurate method

to fool deep neural networks, Proceedings of the IEEE conference on computer vision and

pattern recognition2016), pp. 2574-2582.

[70] X. Liu, M. Cheng, H. Zhang, C.-J. Hsieh, Towards robust neural networks via random

self-ensemble, Proceedings of the European Conference on Computer Vision (ECCV)2018),

pp. 369-385.

[71] G.W. Ding, Y. Sharma, K.Y.C. Lui, R. Huang, Mma training: Direct input space margin

maximization through adversarial training, arXiv preprint arXiv:1812.02637, (2018).

117

[72] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, Q. Gu, On the convergence and robustness of

adversarial training, arXiv preprint arXiv:2112.08304, (2021).

[73] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, M. Jordan, Theoretically principled trade-

off between robustness and accuracy, International Conference on Machine Learning,

(PMLR2019), pp. 7472-7482.

[74] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, Q. Gu, Improving adversarial robustness requires

revisiting misclassified examples, International Conference on Learning Representations2019).

[75] D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint

arXiv:1312.6114, (2013).

[76] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, Y. Bengio, Generative adversarial networks, Communications of the ACM, 63

(2020) 139-144.

[77] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Advances in Neural

Information Processing Systems, 33 (2020) 6840-6851.

[78] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional

neural networks, Advances in neural information processing systems, 25 (2012) 1097-1105.

[79] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

A. Rabinovich, Going deeper with convolutions, Proceedings of the IEEE conference on

computer vision and pattern recognition2015), pp. 1-9.

[80] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

Proceedings of the IEEE conference on computer vision and pattern recognition2016), pp. 770-

778.

[81] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, Proceedings of the IEEE

international conference on computer vision2017), pp. 2961-2969.

118

[82] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks,

arXiv preprint arXiv:1409.3215, (2014).

[83] S. Kim, S. Park, B. Na, S. Yoon, Spiking-YOLO: spiking neural network for energy-

efficient object detection, Proceedings of the AAAI Conference on Artificial Intelligence2020),

pp. 11270-11277.

[84] S. Woźniak, A. Pantazi, T. Bohnstingl, E. Eleftheriou, Deep learning incorporating

biologically inspired neural dynamics and in-memory computing, Nature Machine Intelligence,

2 (2020) 325-336.

[85] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou, Z. Wu, W. He,

Towards artificial general intelligence with hybrid Tianjic chip architecture, Nature, 572 (2019)

106-111.

[86] Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-Temporal Backpropagation for Training

High-Performance Spiking Neural Networks, Front Neurosci, 12 (2018) 331.

[87] J.H. Lee, T. Delbruck, M. Pfeiffer, Training Deep Spiking Neural Networks Using

Backpropagation, Front Neurosci, 10 (2016) 508.

[88] E.O. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning in spiking neural networks,

IEEE Signal Processing Magazine, 36 (2019) 61-63.

[89] R. Hecht-Nielsen, Theory of the backpropagation neural network, Neural networks for

perception, (Elsevier, 1992), pp. 65-93.

[90] C.J. Schaefer, S. Joshi, Quantizing spiking neural networks with integers, International

Conference on Neuromorphic Systems 20202020), pp. 1-8.

[91] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980, (2014).

[92] I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts, arXiv

preprint arXiv:1608.03983, (2016).

119

[93] E. Hunsberger, C. Eliasmith, Spiking deep networks with LIF neurons, arXiv preprint

arXiv:1510.08829, (2015).

[94] L. Paulun, A. Wendt, N. Kasabov, A retinotopic spiking neural network system for

accurate recognition of moving objects using neucube and dynamic vision sensors, Frontiers

in Computational Neuroscience, 12 (2018) 42.

[95] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, S.-C. Liu, Conversion of continuous-

valued deep networks to efficient event-driven networks for image classification, Frontiers in

neuroscience, 11 (2017) 682.

[96] C. Stöckl, W. Maass, Optimized spiking neurons can classify images with high accuracy

through temporal coding with two spikes, Nature Machine Intelligence, 3 (2021) 230-238.

[97] W. Zhang, P. Li, Spike-train level backpropagation for training deep recurrent spiking

neural networks, arXiv preprint arXiv:1908.06378, (2019).

[98] S.B. Shrestha, G. Orchard, Slayer: Spike layer error reassignment in time, arXiv preprint

arXiv:1810.08646, (2018).

[99] J. Kaiser, H. Mostafa, E. Neftci, Synaptic plasticity dynamics for deep continuous local

learning (DECOLLE), Frontiers in Neuroscience, 14 (2020) 424.

[100] X. Cheng, Y. Hao, J. Xu, B. Xu, LISNN: Improving Spiking Neural Networks with

Lateral Interactions for Robust Object Recognition, IJCAI2020), pp. 1519-1525.

[101] W. He, Y. Wu, L. Deng, G. Li, H. Wang, Y. Tian, W. Ding, W. Wang, Y. Xie, Comparing

SNNs and RNNs on neuromorphic vision datasets: Similarities and differences, Neural

Networks, 132 (2020) 108-120.

[102] Y. Xing, G. Di Caterina, J. Soraghan, A new spiking convolutional recurrent neural

network (SCRNN) with applications to event-based hand gesture recognition, Frontiers in

Neuroscience, 14 (2020).

120

[103] A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh, T. Masquelier, A. Maida, Deep learning

in spiking neural networks, Neural networks, 111 (2019) 47-63.

[104] H. Mostafa, B.U. Pedroni, S. Sheik, G. Cauwenberghs, Fast classification using sparsely

active spiking networks, 2017 IEEE International Symposium on Circuits and Systems

(ISCAS), (IEEE2017), pp. 1-4.

[105] J. Wu, Y. Chua, M. Zhang, Q. Yang, G. Li, H. Li, Deep spiking neural network with

spike count based learning rule, 2019 International Joint Conference on Neural Networks

(IJCNN), (IEEE2019), pp. 1-6.

[106] L. Liang, X. Hu, L. Deng, Y. Wu, G. Li, Y. Ding, P. Li, Y. Xie, Exploring adversarial

attack in spiking neural networks with spike-compatible gradient, IEEE Transactions on Neural

Networks and Learning Systems, (2021).

[107] L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li, Y. Xie, Rethinking the

performance comparison between SNNS and ANNS, Neural Networks, 121 (2020) 294-307.

[108] W. Maass, Noise as a resource for computation and learning in networks of spiking

neurons, Proceedings of the IEEE, 102 (2014) 860-880.

[109] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, L. Shi, Direct training for spiking neural networks:

Faster, larger, better, Proceedings of the AAAI Conference on Artificial Intelligence2019), pp.

1311-1318.

[110] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, G. Orchard, Spiking optical flow for

event-based sensors using ibm's truenorth neurosynaptic system, IEEE transactions on

biomedical circuits and systems, 12 (2018) 860-870.

[111] G. Shi, Z. Liu, X. Wang, C.T. Li, X. Gu, Object-dependent sparse representation for

extracellular spike detection, Neurocomputing, 266 (2017) 674-686.

121

[112] P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L.

Jackson, N. Imam, C. Guo, Y. Nakamura, A million spiking-neuron integrated circuit with a

scalable communication network and interface, Science, 345 (2014) 668-673.

[113] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world, 2016).

[114] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models

resistant to adversarial attacks, arXiv preprint arXiv:1706.06083, (2017).

[115] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel, Ensemble

adversarial training: Attacks and defenses, arXiv preprint arXiv:1705.07204, (2017).

[116] W. Xu, D. Evans, Y. Qi, Feature squeezing: Detecting adversarial examples in deep

neural networks, arXiv preprint arXiv:1704.01155, (2017).

[117] A. Marchisio, G. Nanfa, F. Khalid, M.A. Hanif, M. Martina, M. Shafique, Is spiking

secure? a comparative study on the security vulnerabilities of spiking and deep neural networks,

2020 International Joint Conference on Neural Networks (IJCNN), (IEEE2020), pp. 1-8.

[118] A. Bagheri, O. Simeone, B. Rajendran, Training probabilistic spiking neural networks

with first-to-spike decoding, 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), (IEEE2018), pp. 2986-2990.

[119] S. Sharmin, P. Panda, S.S. Sarwar, C. Lee, W. Ponghiran, K. Roy, A comprehensive

analysis on adversarial robustness of spiking neural networks, 2019 International Joint

Conference on Neural Networks (IJCNN), (IEEE2019), pp. 1-8.

[120] S. Sharmin, N. Rathi, P. Panda, K. Roy, Inherent adversarial robustness of deep spiking

neural networks: Effects of discrete input encoding and non-linear activations, European

Conference on Computer Vision, (Springer2020), pp. 399-414.

[121] R. El-Allami, A. Marchisio, M. Shafique, I. Alouani, Securing deep spiking neural

networks against adversarial attacks through inherent structural parameters, 2021 Design,

Automation & Test in Europe Conference & Exhibition (DATE), (IEEE2021), pp. 774-779.

122

[122] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, (2009).

[123] E. Başar, Brain oscillations in neuropsychiatric disease, Dialogues in clinical

neuroscience, 15 (2013) 291.

[124] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus,

Intriguing properties of neural networks, arXiv preprint arXiv:1312.6199, (2013).

[125] P. Rathore, A. Basak, S.H. Nistala, V. Runkana, Untargeted, Targeted and Universal

Adversarial Attacks and Defenses on Time Series, 2020 International Joint Conference on

Neural Networks (IJCNN), (IEEE2020), pp. 1-8.

[126] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, J. Li, Boosting adversarial attacks with

momentum, Proceedings of the IEEE conference on computer vision and pattern

recognition2018), pp. 9185-9193.

[127] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, Q. Gu, On the Convergence and Robustness

of Adversarial Training, ICML2019), pp. 2.

[128] S.M. Bohte, J.N. Kok, H. La Poutre, Error-backpropagation in temporally encoded

networks of spiking neurons, Neurocomputing, 48 (2002) 17-37.

[129] A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in spiking neural networks:

Vgg and residual architectures, Frontiers in neuroscience, 13 (2019) 95.

[130] Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for energy-

efficient object recognition, International Journal of Computer Vision, 113 (2015) 54-66.

[131] N. Rathi, K. Roy, Diet-snn: A low-latency spiking neural network with direct input

encoding and leakage and threshold optimization, IEEE Transactions on Neural Networks and

Learning Systems, (2021).

[132] P.U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, M. Pfeiffer, Fast-classifying, high-

accuracy spiking deep networks through weight and threshold balancing, 2015 International

Joint Conference on Neural Networks (IJCNN), (ieee2015), pp. 1-8.

123

[133] N. Rathi, G. Srinivasan, P. Panda, K. Roy, Enabling deep spiking neural networks with

hybrid conversion and spike timing dependent backpropagation, arXiv preprint

arXiv:2005.01807, (2020).

[134] D. Purves, R. Cabeza, S.A. Huettel, K.S. LaBar, M.L. Platt, M.G. Woldorff, E.M.

Brannon, Cognitive neuroscience (Sunderland: Sinauer Associates, Inc, 2008).

[135] D. Desmaisons, J.-D. Vincent, P.-M. Lledo, Control of action potential timing by intrinsic

subthreshold oscillations in olfactory bulb output neurons, Journal of Neuroscience, 19 (1999)

10727-10737.

[136] G. Boehmer, W. Greffrath, E. Martin, S. Hermann, Subthreshold oscillation of the

membrane potential in magnocellular neurones of the rat supraoptic nucleus, The Journal of

Physiology, 526 (2000) 115.

[137] A.M. Bruckstein, D.L. Donoho, M. Elad, From sparse solutions of systems of equations

to sparse modeling of signals and images, SIAM review, 51 (2009) 34-81.

[138] X. Mei, H. Ling, D.W. Jacobs, Sparse representation of cast shadows via ℓ1-regularized

least squares, 2009 IEEE 12th International Conference on Computer Vision, (IEEE2009), pp.

583-590.

[139] P. Nagesh, B. Li, A compressive sensing approach for expression-invariant face

recognition, 2009 IEEE Conference on Computer Vision and Pattern Recognition, (IEEE2009),

pp. 1518-1525.

[140] B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: A strategy

employed by V1?, Vision research, 37 (1997) 3311-3325.

[141] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, Y. Ma, Towards a practical face recognition

system: Robust registration and illumination by sparse representation, 2009 IEEE Conference

on Computer Vision and Pattern Recognition, (IEEE2009), pp. 597-604.

124

[142] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via sparse

representation, IEEE transactions on pattern analysis and machine intelligence, 31 (2008) 210-

227.

[143] Z. Zhou, A. Wagner, H. Mobahi, J. Wright, Y. Ma, Face recognition with contiguous

occlusion using markov random fields, 2009 IEEE 12th international conference on computer

vision, (IEEE2009), pp. 1050-1057.

[144] X. Li, T. Jia, H. Zhang, Expression-insensitive 3D face recognition using sparse

representation, 2009 IEEE Conference on Computer Vision and Pattern Recognition,

(IEEE2009), pp. 2575-2582.

[145] J. Yang, J. Wright, T. Huang, Y. Ma, Image super-resolution as sparse representation of

raw image patches, 2008 IEEE conference on computer vision and pattern recognition,

(IEEE2008), pp. 1-8.

[146] E.E.R. Vidal, Sparse subspace clustering, 2009 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), vol. 002009), pp. 2790-2797.

[147] J.-F. Cai, H. Ji, C. Liu, Z. Shen, Blind motion deblurring from a single image using sparse

approximation, 2009 IEEE Conference on Computer Vision and Pattern Recognition,

(IEEE2009), pp. 104-111.

[148] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image

restoration, 2009 IEEE 12th international conference on computer vision, (IEEE2009), pp.

2272-2279.

[149] J. Mairal, G. Sapiro, M. Elad, Learning multiscale sparse representations for image and

video restoration, Multiscale Modeling & Simulation, 7 (2008) 214-241.

[150] V. Cevher, A. Sankaranarayanan, M.F. Duarte, D. Reddy, R.G. Baraniuk, R. Chellappa,

Compressive sensing for background subtraction, European Conference on Computer Vision,

(Springer2008), pp. 155-168.

125

[151] M. Dikmen, T.S. Huang, Robust estimation of foreground in surveillance videos by

sparse error estimation, 2008 19th International Conference on Pattern Recognition,

(IEEE2008), pp. 1-4.

[152] D. Reddy, A. Agrawal, R. Chellappa, Enforcing integrability by error correction using ℓ

1-minimization, 2009 IEEE Conference on Computer Vision and Pattern Recognition,

(IEEE2009), pp. 2350-2357.

[153] C. Wang, S. Yan, L. Zhang, H.-J. Zhang, Multi-label sparse coding for automatic image

annotation, 2009 IEEE Conference on Computer Vision and Pattern Recognition, (IEEE2009),

pp. 1643-1650.

[154] A.Y. Yang, S. Maji, K. Hong, P. Yan, S.S. Sastry, Distributed compression and fusion

of nonnegative sparse signals for multiple-view object recognition, 2009 12th International

Conference on Information Fusion, (IEEE2009), pp. 1867-1874.

[155] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for

computer vision and pattern recognition, Proceedings of the IEEE, 98 (2010) 1031-1044.

[156] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A.A. Efros, Context encoders: Feature

learning by inpainting, Proceedings of the IEEE conference on computer vision and pattern

recognition2016), pp. 2536-2544.

[157] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, I. Sutskever, Generative

pretraining from pixels, International conference on machine learning, (PMLR2020), pp.

1691-1703.

[158] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.

Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers

for image recognition at scale, arXiv preprint arXiv:2010.11929, (2020).

[159] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, R. Girshick, Masked Autoencoders Are Scalable

Vision Learners, arXiv preprint arXiv:2111.06377, (2021).

126

[160] W. Shi, F. Jiang, S. Zhang, D. Zhao, Deep networks for compressed image sensing, 2017

IEEE International Conference on Multimedia and Expo (ICME), (IEEE2017), pp. 877-882.

[161] N. Khan, K. Iqbal, M.G. Martini, Time-Aggregation-Based Lossless Video Encoding for

Neuromorphic Vision Sensor Data, IEEE Internet of Things Journal, 8 (2021) 596-609.

[162] I. Schiopu, R.C. Bilcu, Lossless compression of event camera frames, IEEE Signal

Processing Letters, 29 (2022) 1779-1783.

[163] N. Khan, K. Iqbal, M.G. Martini, Lossless compression of data from static and mobile

dynamic vision sensors-performance and trade-offs, IEEE Access, 8 (2020) 103149-103163.

[164] N. Sengupta, N. Kasabov, Spike-time encoding as a data compression technique for

pattern recognition of temporal data, Information Sciences, 406 (2017) 133-145.

[165] N. Khan, K. Iqbal, M.G. Martini, Time-aggregation-based lossless video encoding for

neuromorphic vision sensor data, IEEE Internet of Things Journal, 8 (2020) 596-609.

[166] I. Schiopu, R.C. Bilcu, Low-Complexity Lossless Coding of Asynchronous Event

Sequences for Low-Power Chip Integration, Sensors, 22 (2022) 10014.

[167] W. Tang, Y. Zhou, H. Zhu, H. Yang, The effect of surface texturing on reducing the

friction and wear of steel under lubricated sliding contact, Applied surface science, 273 (2013)

199-204.

[168] W.W. Mayol-Cuevas, J. Juarez-Guerrero, S. Munoz-Gutierrez, A first approach to tactile

texture recognition, SMC'98 Conference Proceedings. 1998 IEEE International Conference on

Systems, Man, and Cybernetics (Cat. No. 98CH36218), (IEEE1998), pp. 4246-4250.

[169] H. Muhammad, C. Recchiuto, C. Oddo, L. Beccai, C. Anthony, M. Adams, M. Carrozza,

M. Ward, A capacitive tactile sensor array for surface texture discrimination, Microelectronic

Engineering, 88 (2011) 1811-1813.

127

[170] F. De Boissieu, C. Godin, B. Guilhamat, D. David, C. Serviere, D. Baudois, Tactile

texture recognition with a 3-axial force MEMS integrated artificial finger, Robotics: Science

and Systems, (Seattle, WA2009), pp. 49-56.

[171] O. Kroemer, C.H. Lampert, J. Peters, Learning dynamic tactile sensing with robust

vision-based training, IEEE transactions on robotics, 27 (2011) 545-557.

[172] C.M. Oddo, M. Controzzi, L. Beccai, C. Cipriani, M.C. Carrozza, Roughness encoding

for discrimination of surfaces in artificial active-touch, IEEE Transactions on Robotics, 27

(2011) 522-533.

[173] Q. Liang, Z. Yi, Q. Hu, Y. Zhang, Low-Cost Sensor Fusion Technique for Surface

Roughness Discrimination With Optical and Piezoelectric Sensors, IEEE Sensors Journal, 17

(2017) 7954-7960.

[174] Z. Yi, Y. Zhang, J. Peters, Bioinspired tactile sensor for surface roughness discrimination,

Sensors and Actuators A: Physical, 255 (2017) 46-53.

[175] Y. Zhengkun, Z. Yilei, Recognizing tactile surface roughness with a biomimetic fingertip:

A soft neuromorphic approach, Neurocomputing, 244 (2017) 102-111.

[176] C.D. Virgilio G, J.H. Sossa A, J.M. Antelis, L.E. Falcón, Spiking Neural Networks

applied to the classification of motor tasks in EEG signals, Neural Networks, 122 (2020) 130-

143.

[177] W. Maass, Networks of spiking neurons: the third generation of neural network models,

Neural networks, 10 (1997) 1659-1671.

[178] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L.P. Maguire, T.M. McGinnity, A review

of learning in biologically plausible spiking neural networks, Neural Netw, 122 (2020) 253-

272.

[179] S.R. Kheradpisheh, M. Ganjtabesh, S.J. Thorpe, T. Masquelier, STDP-based spiking

deep convolutional neural networks for object recognition, Neural Networks, 99 (2018) 56-67.

128

[180] Y. Hu, H. Tang, Y. Wang, G. Pan, Spiking deep residual network, arXiv preprint

arXiv:1805.01352, (2018).

[181] P.U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-

dependent plasticity, Frontiers in computational neuroscience, 9 (2015) 99.

[182] J.M. Antelis, L.E. Falcón, Spiking Neural Networks applied to the classification of motor

tasks in EEG signals, Neural Networks, 122 (2020) 130-143.

[183] B. Jaffe, Piezoelectric ceramics (Elsevier, 2012).

[184] L. Qin, Z. Yi, Y. Zhang, Enhanced surface roughness discrimination with optimized

features from bio-inspired tactile sensor, Sensors and Actuators A: Physical, 264 (2017) 133-

140.

[185] L.N. Cooper, M.F. Bear, The BCM theory of synapse modification at 30: interaction of

theory with experiment, Nature Reviews Neuroscience, 13 (2012) 798-810.

[186] K. Pozo, Y. Goda, Unraveling mechanisms of homeostatic synaptic plasticity, Neuron,

66 (2010) 337-351.

[187] Q.-Q. Sun, Experience-dependent intrinsic plasticity in interneurons of barrel cortex

layer IV, Journal of neurophysiology, 102 (2009) 2955-2973.

[188] L.C. Yeung, H.Z. Shouval, B.S. Blais, L.N. Cooper, Synaptic homeostasis and input

selectivity follow from a calcium-dependent plasticity model, Proceedings of the National

Academy of Sciences, 101 (2004) 14943-14948.

[189] W. Zhang, D.J. Linden, The other side of the engram: experience-driven changes in

neuronal intrinsic excitability, Nature Reviews Neuroscience, 4 (2003) 885-900.

[190] D. Hebb, Organization of behavior. New York: Wiley, J. Clin. Psychol, 6 (1949) 335-

307.

129

[191] J.-C. Zhang, P.-M. Lau, G.-Q. Bi, Gain in sensitivity and loss in temporal contrast of

STDP by dopaminergic modulation at hippocampal synapses, Proceedings of the National

Academy of Sciences, 106 (2009) 13028-13033.

[192] Z. Brzosko, W. Schultz, O. Paulsen, Retroactive modulation of spike timing-dependent

plasticity by dopamine, Elife, 4 (2015) e09685.

[193] Y. Hao, X. Huang, M. Dong, B. Xu, A biologically plausible supervised learning method

for spiking neural networks using the symmetric STDP rule, Neural Netw, 121 (2020) 387-395.

[194] E.T. Rolls, A. Treves, The neuronal encoding of information in the brain, Progress in

neurobiology, 95 (2011) 448-490.

[195] B.R. Isett, S.H. Feasel, M.A. Lane, D.E. Feldman, Slip-Based Coding of Local Shape

and Texture in Mouse S1, Neuron, 97 (2018) 418-433 e415.

[196] D. Heeger, Poisson model of spike generation, Handout, University of Standford, 5 (2000)

76.

[197] M. Mozafari, S.R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, M. Ganjtabesh,

First-spike-based visual categorization using reward-modulated STDP, IEEE transactions on

neural networks and learning systems, 29 (2018) 6178-6190.

[198] N.K. Kasabov, NeuCube: A spiking neural network architecture for mapping, learning

and understanding of spatio-temporal brain data, Neural Networks, 52 (2014) 62-76.

130

APPENDIX A

This part provides the details of code of SNN models and KLIF neural model discussed in

Chapter 2:

1. import torch
2. import torch.nn as nn
3. import torch.nn.functional as F
4. from spikingjelly.clock_driven import functional, layer, surrogate
5. import math
6. from torchvision import transforms
7. import numpy as np
8. import matplotlib.pyplot as plt
9. import random
10. from spikingjelly.datasets import play_frame
11.
12.
13.
14. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15. thresh = 1.0 # neuronal threshold
16. lens = 0.5 # hyper-parameters of approximate function
17. decay = 0.5 # decay constants
18. num_classes = 10
19. learning_rate = 1e-4
20. alpha = 2.0
21. num_epochs = 100 # max epoch
22.
23.
24. # define approximate firing function
25. class ActFun(torch.autograd.Function):
26. @staticmethod
27. def forward(ctx, input):
28. ctx.save_for_backward(input)
29. return input.gt(thresh).float()
30.
31. @staticmethod
32. def backward(ctx, grad_output):
33. input, = ctx.saved_tensors
34. grad_input = grad_output.clone()
35. temp = alpha / 2 / (1 + (math.pi / 2 * alpha * (input-thresh)).pow_(2))
36.
37. return grad_input * temp.float()
38.
39.
40. act_fun = ActFun.apply
41.
42.
43. class LIFNode(nn.Module):
44. def __init__(self):
45. super(LIFNode, self).__init__()
46. self.w = torch.nn.Parameter(torch.ones(1), requires_grad=True)
47. self.func = torch.nn.ReLU()
48.
49. def forward(self, x, mem, spike,w):
50. mem = mem * (1. - spike) - mem * decay * (1. - spike) + decay*x
51. spike = act_fun(mem) # act_fun : approximation firing function
52.
53. return mem, spike
54.
55.
56. class CIFAR10(nn.Module):
57. def __init__(self):
58. super(CIFAR10, self).__init__()

131

59. self.conv1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)

60. self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)

61. self.conv3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)

62. self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)

63. self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1,bias=Fa
lse)

64.
65. self.fc1 = nn.Linear(256*8*8, 2048,bias=False)
66. self.fc2 = nn.Linear(2048, 100,bias=False)
67.
68. self.mem0 = LIFNode()
69. self.mem1 = LIFNode()
70. self.mem2 = LIFNode()
71. self.mem3 = LIFNode()
72. self.mem4 = LIFNode()
73. self.mem5 = LIFNode()
74. self.mem6 = LIFNode()
75. self.mem7 = LIFNode()
76.
77. self.batch1 = nn.BatchNorm2d(256)
78. self.batch2 = nn.BatchNorm2d(256)
79. self.batch3 = nn.BatchNorm2d(256)
80. self.batch4 = nn.BatchNorm2d(256)
81. self.batch5 = nn.BatchNorm2d(256)
82. self.drop1 = layer.Dropout(0.5)
83. self.drop2 = layer.Dropout(0.5)
84.
85. self.static_conv = nn.Sequential(
86. nn.Conv2d(3, 256, kernel_size=3, padding=1, bias=False),
87. nn.BatchNorm2d(256))
88. self.static_conv2 = nn.Sequential(
89. nn.Conv2d(3, 256, kernel_size=3, padding=1, bias=False),
90. nn.BatchNorm2d(256))
91. self.static_conv3 = nn.Sequential(
92. nn.Conv2d(3, 256, kernel_size=3, padding=1, bias=False),
93. nn.BatchNorm2d(256))
94.
95.
96.
97. def forward(self, input, batch_size, time_window,train=True):
98. c0_mem = c0_spike = c0_sumspike = torch.zeros(batch_size,256, 32, 32, devic

e=device)
99. c1_mem = c1_spike = c1_sumspike = torch.zeros(batch_size,256, 32, 32, devic

e=device)
100. c2_mem = c2_spike = c2_sumspike = torch.zeros(batch_size,256, 32, 32

, device=device)
101. c3_mem = c3_spike = c3_sumspike = torch.zeros(batch_size,256, 16, 16

, device=device)
102. c4_mem = c4_spike = c4_sumspike = torch.zeros(batch_size,256, 16, 16

, device=device)
103. c5_mem = c5_spike = c5_sumspike = torch.zeros(batch_size,256, 16, 16

, device=device)
104.
105. h1_mem = h1_spike = h1_sumspike = torch.zeros(batch_size, 2048, devi

ce=device)
106. h2_mem = h2_spike = h2_sumspike = torch.zeros(batch_size, 100, devic

e=device)
107. h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 10, device

=device)
108.
109. input1 = self.static_conv(input)
110. input2 = self.static_conv2(input)

132

111. input3 = self.static_conv3(input)
112.
113. input = input1+input2+input3
114.
115. spike_count = []
116.
117. for step in range(time_window): # simulation time steps
118. c0_mem, c0_spike = self.mem0(input, c0_mem, c0_spike)
119.
120. x = self.conv1(c0_spike)
121. x = self.batch1(x)
122. c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)
123. x = self.conv2(c1_spike)
124. x = self.batch2(x)
125. c2_mem, c2_spike = self.mem2(x, c2_mem, c2_spike)

126. x = F.max_pool2d(c2_spike, 2)
127.
128. x = self.conv3(x)
129. x = self.batch3(x)
130. c3_mem, c3_spike = self.mem3(x, c3_mem, c3_spike)
131. x = self.conv4(c3_spike)
132. x = self.batch4(x)
133. c4_mem, c4_spike = self.mem4(x, c4_mem, c4_spike)
134. x = self.conv5(c4_spike)
135. x = self.batch5(x)
136. c5_mem, c5_spike = self.mem5(x, c5_mem, c5_spike)

137. x = F.max_pool2d(c5_spike, 2)
138.
139. x = x.view(batch_size, -1)
140.
141. x = self.drop1(x)
142. x = self.fc1(x)
143. h1_mem, h1_spike = self.mem6(x, h1_mem, h1_spike)
144.
145. x = self.drop2(h1_spike)
146. x = self.fc2(x)
147. h2_mem, h2_spike = self.mem7(x, h2_mem,h2_spike)
148. x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)
149. h3_sumspike += x.squeeze(1)
150.
151. outputs = h3_sumspike / time_window
152.
153. return outputs
154.
155.
156.
157. class MNIST(nn.Module):
158. def __init__(self):
159. super(MNIST, self).__init__()
160. self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
161. self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
162.
163. self.fc1 = nn.Linear(128*7*7, 2048,bias=False)
164. self.fc2 = nn.Linear(2048, 100,bias=False)
165.
166. self.mem0 = LIFNode()
167. self.mem1 = LIFNode()
168. self.mem5 = LIFNode()
169. self.mem6 = LIFNode()
170.
171. self.batch1 = nn.BatchNorm2d(128)
172.

133

173. self.drop1 = layer.Dropout(0.5)
174. self.drop2 = layer.Dropout(0.5)
175.
176. self.static_conv1 = nn.Sequential(
177. nn.Conv2d(1, 128, kernel_size=3, padding=1, bias=False),
178. nn.BatchNorm2d(128))
179. self.static_conv2 = nn.Sequential(
180. nn.Conv2d(1, 128, kernel_size=3, padding=1, bias=False),
181. nn.BatchNorm2d(128))
182. self.static_conv3 = nn.Sequential(
183. nn.Conv2d(1, 128, kernel_size=3, padding=1, bias=False),
184. nn.BatchNorm2d(128))
185.
186.
187. self.w1 = torch.nn.Parameter(torch.randn(128,28,28), requires_grad=T

rue)
188. self.w2 = torch.nn.Parameter(torch.randn(128,14,14), requires_grad=T

rue)
189. self.w3 = torch.nn.Parameter(torch.randn(2048), requires_grad=True)

190. self.w4 = torch.nn.Parameter(torch.randn(100), requires_grad=True)
191.
192.
193.
194. def forward(self, input,batch_size=50, time_window = 8):
195. c0_mem = c0_spike = c0_sumspike = torch.zeros(batch_size,128, 28, 28

, device=device)
196. c1_mem = c1_spike = c1_sumspike = torch.zeros(batch_size,128, 14, 14

, device=device)
197.
198.
199. h1_mem = h1_spike = h1_sumspike = torch.zeros(batch_size, 2048, devi

ce=device)
200. h2_mem = h2_spike = h2_sumspike = torch.zeros(batch_size, 100, devic

e=device)
201. h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 10, device

=device)
202.
203. input1 = self.static_conv1(input)
204. input2 = self.static_conv2(input)
205. input3 = self.static_conv3(input)
206.
207. input = input1+input2+input3
208.
209. for step in range(time_window): # simulation time steps
210. c0_mem, c0_spike = self.mem0(input, c0_mem, c0_spike, self.w1)
211. x = F.max_pool2d(c0_spike, 2)
212.
213. x = self.conv1(x)
214. x = self.batch1(x)
215. c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike, self.w2)
216. x = F.max_pool2d(c1_spike, 2)
217.
218. x = x.view(batch_size, -1)
219.
220. x = self.drop1(x)
221. x = self.fc1(x)
222. h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike, self.w3)
223.
224. x = self.drop2(h1_spike)
225. x = self.fc2(x)
226. h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike, self.w4)
227.
228. x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)
229. h3_sumspike += x.squeeze(1)
230. outputs = h3_sumspike / time_window

134

231. return outputs
232.
233.
234. class N_MNIST(nn.Module):
235. def __init__(self):
236. super(N_MNIST, self).__init__()
237. self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
238. self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
239.
240. self.fc1 = nn.Linear(128*8*8, 2048,bias=False)
241. self.fc2 = nn.Linear(2048, 100,bias=False)
242.
243. self.mem0 = LIFNode()
244. self.mem1 = LIFNode()
245. self.mem5 = LIFNode()
246. self.mem6 = LIFNode()
247.
248. self.batch0 = nn.BatchNorm2d(128)
249. self.batch1 = nn.BatchNorm2d(128)
250.
251. self.drop1 = layer.Dropout(0.5)
252. self.drop2 = layer.Dropout(0.5)
253.
254. self.static_conv1 = nn.Sequential(
255. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
256. nn.BatchNorm2d(128))
257. self.static_conv2 = nn.Sequential(
258. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
259. nn.BatchNorm2d(128))
260. self.static_conv3 = nn.Sequential(
261. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
262. nn.BatchNorm2d(128))
263.
264.
265. def forward(self, input,batch_size=50, time_window = 8):
266. c0_mem = c0_spike = c0_sumspike = torch.zeros(batch_size,128, 34, 34

, device=device)
267. c1_mem = c1_spike = c1_sumspike = torch.zeros(batch_size,128, 17, 17

, device=device)
268.
269. c3_mem = c3_spike = c3_sumspike = torch.zeros(batch_size,1280, devic

e=device)
270. c4_mem = c4_spike = c4_sumspike = torch.zeros(batch_size,128, device

=device)
271.
272.
273. h1_mem = h1_spike = h1_sumspike = torch.zeros(batch_size, 2048, devi

ce=device)
274. h2_mem = h2_spike = h2_sumspike = torch.zeros(batch_size, 100, devic

e=device)
275. h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 10, device

=device)
276.
277. input1 = input.permute(1, 0, 2, 3, 4)
278.
279. for step in range(time_window): # simulation time steps
280. x = input1[step]
281. x1 = self.static_conv1(x)
282. x2 = self.static_conv2(x)
283. x3 = self.static_conv3(x)
284. x = x1+x2+x3
285. c0_mem, c0_spike = self.mem0(x, c0_mem, c0_spike)
286. x = F.max_pool2d(c0_spike, 2)
287.

135

288. x = self.conv1(x)
289. x = self.batch1(x)
290. c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)
291. x = F.max_pool2d(c1_spike, 2)
292.
293. x = x.view(batch_size, -1)
294.
295. x = self.drop1(x)
296. x = self.fc1(x)
297. h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike)
298.
299. x = self.drop2(h1_spike)
300. x = self.fc2(x)
301. h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike)
302.
303. x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)
304. h3_sumspike += x.squeeze(1)
305. outputs = h3_sumspike / time_window
306. return outputs
307.
308.
309.
310. class CIFAR10_DVS(nn.Module):
311. def __init__(self):
312. super(CIFAR10_DVS, self).__init__()
313. self.conv0 = nn.Conv2d(2, 128, kernel_size=3, stride=1, padding=1,bi

as=False)
314. self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
315. self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
316. self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
317.
318. self.fc1 = nn.Linear(128*8*8, 512,bias=False)
319. self.fc2 = nn.Linear(512, 100,bias=False)
320.
321. self.mem0 = LIFNode()
322. self.mem1 = LIFNode()
323. self.mem2 = LIFNode()
324. self.mem3 = LIFNode()
325. self.mem5 = LIFNode()
326. self.mem6 = LIFNode()
327.
328. self.batch0 = nn.BatchNorm2d(128)
329. self.batch1 = nn.BatchNorm2d(128)
330. self.batch2 = nn.BatchNorm2d(128)
331. self.batch3 = nn.BatchNorm2d(128)
332.
333. self.drop1 = layer.Dropout(0.5)
334. self.drop2 = layer.Dropout(0.5)
335. '''''
336. self.static_conv1 = nn.Sequential(
337. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
338. nn.BatchNorm2d(128))
339. self.static_conv2 = nn.Sequential(
340. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
341. nn.BatchNorm2d(128))
342. self.static_conv3 = nn.Sequential(
343. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
344. nn.BatchNorm2d(128)) '''
345.
346. def forward(self, input,batch_size, time_window,train=True):
347. c0_mem = c0_spike = torch.zeros(128, 128, 128, device=device)
348. c1_mem = c1_spike = torch.zeros(128, 64, 64, device=device)
349. c2_mem = c2_spike = torch.zeros(128, 32, 32, device=device)

136

350. c3_mem = c3_spike = torch.zeros(128, 16, 16, device=device)
351.
352. h1_mem = h1_spike = torch.zeros(512, device=device)
353. h2_mem = h2_spike = torch.zeros(100, device=device)
354. h3_mem = h3_spike = h3_sumspike = torch.zeros(10, device=device)
355.
356. input1 = input.permute(1, 0, 2, 3, 4)
357.
358. spike_count = []
359.
360. for step in range(time_window): # simulation time steps
361.
362. x = input1[step]
363. x = self.conv0(x)
364. x = self.batch0(x)
365.
366. c0_mem, c0_spike = self.mem0(x, c0_mem, c0_spike)
367. x = F.max_pool2d(c0_spike, 2)
368.
369. x = self.conv1(x)
370. x = self.batch1(x)
371. c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)
372. x = F.max_pool2d(c1_spike, 2)
373.
374. x = self.conv2(x)
375. x = self.batch2(x)
376. c2_mem, c2_spike = self.mem2(x, c2_mem, c2_spike)
377. x = F.max_pool2d(c2_spike, 2)
378.
379. x = self.conv3(x)
380. x = self.batch3(x)
381. c3_mem, c3_spike = self.mem3(x, c3_mem, c3_spike)
382. x = F.max_pool2d(c3_spike, 2)
383.
384. x = x.view(batch_size, -1)
385.
386. x = self.drop1(x)
387. x = self.fc1(x)
388. h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike)
389.
390. x = self.drop2(h1_spike)
391. x = self.fc2(x)
392. h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike)
393.
394. x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)
395. h3_sumspike = h3_sumspike + x.squeeze(1)
396. outputs = h3_sumspike / time_window
397.
398.
399. return outputs
400.
401. class DVS_GESTURE(nn.Module):
402. def __init__(self):
403. super(DVS_GESTURE, self).__init__()
404. self.conv0 = nn.Conv2d(2, 128, kernel_size=3, stride=1, padding=1,bi

as=False)
405. self.conv1 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
406. self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
407. self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
408. self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1,

bias=False)
409.
410. self.fc1 = nn.Linear(128*4*4, 512,bias=False)

137

411. self.fc2 = nn.Linear(512, 110,bias=False)
412.
413. self.mem0 = LIFNode()
414. self.mem1 = LIFNode()
415. self.mem2 = LIFNode()
416. self.mem3 = LIFNode()
417. self.mem4 = LIFNode()
418. self.mem5 = LIFNode()
419. self.mem6 = LIFNode()
420.
421. self.batch0 = nn.BatchNorm2d(128)
422. self.batch1 = nn.BatchNorm2d(128)
423. self.batch2 = nn.BatchNorm2d(128)
424. self.batch3 = nn.BatchNorm2d(128)
425. self.batch4 = nn.BatchNorm2d(128)
426.
427. self.drop1 = layer.Dropout(0.5)
428. self.drop2 = layer.Dropout(0.5)
429.
430.
431. self.static_conv1 = nn.Sequential(
432. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
433. nn.BatchNorm2d(128))
434. self.static_conv2 = nn.Sequential(
435. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
436. nn.BatchNorm2d(128))
437. self.static_conv3 = nn.Sequential(
438. nn.Conv2d(2, 128, kernel_size=3, padding=1, bias=False),
439. nn.BatchNorm2d(128))
440.
441.
442.
443. def forward(self, input,batch_size,time_window,train=True):
444. c0_mem = c0_spike = torch.zeros(batch_size,128, 128, 128, device=de

vice)
445. c1_mem = c1_spike = torch.zeros(batch_size,128, 64, 64, device=devi

ce)
446. c2_mem = c2_spike = torch.zeros(batch_size,128, 32, 32, device=devi

ce)
447. c3_mem = c3_spike = torch.zeros(batch_size,128, 16, 16, device=devi

ce)
448. c4_mem = c4_spike = torch.zeros(batch_size,128, 8, 8, device=device

)
449.
450. h1_mem = h1_spike = torch.zeros(batch_size, 512, device=device)
451. h2_mem = h2_spike = torch.zeros(batch_size, 110, device=device)
452. h3_mem = h3_spike = h3_sumspike = torch.zeros(batch_size, 11, devic

e=device)
453.
454. spike_count = []
455. input1 = input.permute(1, 0, 2, 3, 4)
456.
457.
458. for step in range(time_window): # simulation time steps
459. x = input1[step]
460. x1 = self.static_conv1(x)
461. x2 = self.static_conv2(x)
462. x3 = self.static_conv3(x)
463. x = x1+x2+x3
464.
465. c0_mem, c0_spike = self.mem0(x, c0_mem, c0_spike)
466. x = F.max_pool2d(c0_spike, 2)
467.
468. x = self.conv1(x)
469. x = self.batch1(x)
470. c1_mem, c1_spike = self.mem1(x, c1_mem, c1_spike)

138

471. x = F.max_pool2d(c1_spike, 2)
472.
473. x = self.conv2(x)
474. x = self.batch2(x)
475. c2_mem, c2_spike = self.mem2(x, c2_mem, c2_spike)
476. x = F.max_pool2d(c2_spike, 2)
477.
478. x = self.conv3(x)
479. x = self.batch3(x)
480. c3_mem, c3_spike = self.mem3(x, c3_mem, c3_spike)
481. x = F.max_pool2d(c3_spike, 2)
482.
483. x = self.conv4(x)
484. x = self.batch4(x)
485. c4_mem, c4_spike = self.mem4(x, c4_mem, c4_spike)
486. x = F.max_pool2d(c4_spike, 2)
487.
488. x = x.view(batch_size, -1)
489.
490. x = self.drop1(x)
491. x = self.fc1(x)
492. h1_mem, h1_spike = self.mem5(x, h1_mem, h1_spike)
493.
494. x = self.drop2(h1_spike)
495. x = self.fc2(x)
496. h2_mem, h2_spike = self.mem6(x, h2_mem,h2_spike)
497.
498. x = F.avg_pool1d(h2_spike.unsqueeze(1), 10)
499. h3_sumspike += x.squeeze(1)
500. outputs = h3_sumspike / time_window
501.
502.
503. return outputs

139

APPENDIX B

This part provides the details of code of SNN models and neural oscillation model discussed

in Chapter 3:

1. import torch
2. import torch.nn as nn
3. import torch.nn.functional as F
4. from spikingjelly.clock_driven import functional, layer, surrogate
5. import math
6. from torchvision import transforms
7. import numpy as np
8. import matplotlib.pyplot as plt
9. import random
10. from spikingjelly import visualizing
11.
12.
13. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14. thresh = 1.0 # neuronal threshold
15. lens = 0.5 # hyper-parameters of approximate function
16. decay = 0.5 # decay constants
17. learning_rate = 1e-3
18. alpha = 3
19. num_epochs = 100 # max epoch
20. time_window= 8
21. batch_size = 50
22.
23.
24. # define approximate firing function
25. class ActFun(torch.autograd.Function):
26. @staticmethod
27. def forward(ctx, input):
28. ctx.save_for_backward(input)
29. return input.gt(thresh).float()
30.
31. @staticmethod
32. def backward(ctx, grad_output):
33. input, = ctx.saved_tensors
34. grad_input = grad_output.clone()
35. temp = alpha / 2 / (1 + (math.pi / 2 * alpha * (input-thresh)).pow_(2))
36.
37. return grad_input * temp.float(),None
38.
39.
40.
41. act_fun = ActFun.apply
42.
43.
44. class LIFNode(nn.Module):
45. def __init__(self):
46. super(LIFNode, self).__init__()
47. self.func = torch.nn.LeakyReLU(negative_slope=-0.03)
48.
49. def forward(self, ops, x, mem, spike):
50. mem = mem * (1. - spike) - mem * decay * (1. - spike) + ops(x)
51. mem = self.func(mem+torch.randn(mem.size(),device=device)*0.5)
52.
53. spike = act_fun(mem) # act_fun : approximation firing function
54. return mem, spike
55.
56.
57.
58. class VGG_SNN(nn.Module):

140

59. def __init__(self):
60. super(VGG_SNN, self).__init__()
61. self.conv1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3, 3),str

ide=(1, 1),padding=1,bias=False)
62. self.conv2 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3, 3),st

ride=(1, 1),padding=1,bias=False)
63.
64. self.conv3 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3, 3),s

tride=(1, 1),padding=1,bias=False)
65. self.conv4 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)
66.
67. self.conv5 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)
68. self.conv6 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)
69. self.conv7 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)
70.
71. self.conv8 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)
72. self.conv9 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3),

stride=(1, 1),padding=1,bias=False)
73. self.conv10 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)
74.
75. self.conv11 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)
76. self.conv12 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)
77. self.conv13 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3, 3)

,stride=(1, 1),padding=1,bias=False)
78.
79. self.fc1 = nn.Linear(512, 512,bias=False)
80. self.fc2 = nn.Linear(512, 512,bias=False)
81. self.fc3 = nn.Linear(512, 10,bias=False)
82.
83. self.batch1 = nn.BatchNorm2d(64)
84. self.batch2 = nn.BatchNorm2d(64)
85. self.batch3 = nn.BatchNorm2d(128)
86. self.batch4 = nn.BatchNorm2d(128)
87. self.batch5 = nn.BatchNorm2d(256)
88. self.batch6 = nn.BatchNorm2d(256)
89. self.batch7 = nn.BatchNorm2d(256)
90. self.batch8 = nn.BatchNorm2d(512)
91. self.batch9 = nn.BatchNorm2d(512)
92. self.batch10 = nn.BatchNorm2d(512)
93. self.batch11 = nn.BatchNorm2d(512)
94. self.batch12 = nn.BatchNorm2d(512)
95. self.batch13 = nn.BatchNorm2d(512)
96. self.drop1 = layer.Dropout(0.5)
97. self.drop2 = layer.Dropout(0.5)
98.
99. self.mem = LIFNode()
100.
101. self.flatten = nn.Flatten()
102.
103. self.s_list = torch.tensor([], device=device)
104. self.v_list = torch.tensor([], device=device)
105.
106.
107. def forward(self, input):
108.
109.
110. c1_mem = c1_spike = c1_sumspike = c1_minus = torch.zeros(64, 32, 32,

 device=device)

141

111. c2_mem = c2_spike = c2_sumspike = c2_minus = torch.zeros(64, 32, 32,
 device=device)

112.
113. c3_mem = c3_spike = c3_sumspike = c3_minus = torch.zeros(128, 16, 16

, device=device)
114. c4_mem = c4_spike = c4_sumspike = c4_minus = torch.zeros(128, 16, 16

, device=device)
115.
116. c5_mem = c5_spike = c5_sumspike = c5_minus = torch.zeros(256, 8, 8,

device=device)
117. c6_mem = c6_spike = c6_sumspike = c6_minus = torch.zeros(256, 8, 8,

device=device)
118. c7_mem = c7_spike = c7_sumspike = c7_minus = torch.zeros(256, 8, 8,

device=device)
119.
120. c8_mem = c8_spike = c8_sumspike = c8_minus = torch.zeros(512, 4, 4,

device=device)
121. c9_mem = c9_spike = c9_sumspike = c9_minus = torch.zeros(512, 4, 4,

device=device)
122. c10_mem = c10_spike = c10_sumspike = c10_minus = torch.zeros(512, 4,

 4, device=device)
123.
124. c11_mem = c11_spike = c11_sumspike = c11_minus = torch.zeros(512, 2,

 2, device=device)
125. c12_mem = c12_spike = c12_sumspike = c12_minus = torch.zeros(512, 2,

 2, device=device)
126. c13_mem = c13_spike = c13_sumspike = c13_minus = torch.zeros(512, 2,

 2, device=device)
127.
128.
129. h1_mem = h1_spike = h1_sumspike = h1_minus = torch.zeros(512, device

=device)
130. h2_mem = h2_spike = h2_sumspike = h2_minus = torch.zeros(512, device

=device)
131. h3_mem = h3_spike = h3_sumspike = h3_minus = torch.zeros(10, device=

device)
132.
133.
134. for step in range(time_window): # simulation time steps
135. # block1
136. c1_mem, c1_spike = self.mem(self.batch1,self.conv1(input), c1_me

m, c1_spike)
137. c2_mem, c2_spike = self.mem(self.batch2,self.conv2(c1_spike), c2

_mem, c2_spike)
138. x = F.avg_pool2d(c2_spike, 2)
139.
140.
141. #block2
142. c3_mem, c3_spike = self.mem(self.batch3,self.conv3(x.float()), c

3_mem, c3_spike)
143. c3_sumspike = c3_sumspike + c3_spike
144. c4_mem, c4_spike = self.mem(self.batch4,self.conv4(c3_spike), c4

_mem, c4_spike)
145. x = F.avg_pool2d(c4_spike, 2)
146.
147. #block3
148. c5_mem, c5_spike = self.mem(self.batch5,self.conv5(x.float()), c

5_mem, c5_spike,)
149. c6_mem, c6_spike = self.mem(self.batch6,self.conv6(c5_spike), c6

_mem, c6_spike,)
150. c7_mem, c7_spike = self.mem(self.batch7,self.conv7(c6_spike), c7

_mem, c7_spike)
151. x = F.avg_pool2d(c7_spike, 2)
152.
153.
154. #block4

142

155. c8_mem, c8_spike = self.mem(self.batch8,self.conv8(x.float()), c
8_mem, c8_spike)

156. c9_mem, c9_spike = self.mem(self.batch9,self.conv9(c8_spike), c9
_mem, c9_spike)

157. c10_mem, c10_spike = self.mem(self.batch10,self.conv10(c9_spike)
, c10_mem, c10_spike)

158. x = F.avg_pool2d(c10_spike, 2)
159.
160. #block5
161. c11_mem, c11_spike = self.mem(self.batch11,self.conv11(x.float()

), c11_mem, c11_spike)
162. c12_mem, c12_spike = self.mem(self.batch12,self.conv12(c11_spike

), c12_mem, c12_spike)
163. c13_mem, c13_spike = self.mem(self.batch13,self.conv13(c12_spike

), c13_mem, c13_spike)
164. x = F.avg_pool2d(c13_spike, 2)
165.
166. x = self.flatten(x)
167. h1_mem, h1_spike = self.mem(self.fc1,self.drop1(x), h1_mem, h1_s

pike)
168. h2_mem, h2_spike = self.mem(self.fc2,self.drop2(h1_spike), h2_me

m, h2_spike)
169. h3_mem, h3_spike = self.mem(self.fc3,h2_spike, h3_mem, h3_spike)

170. h3_sumspike = h3_sumspike + h3_spike
171.
172.
173. outputs = h3_sumspike/time_window
174.
175. return outputs
176.
177.
178. class ResidualBlock(nn.Module):
179. def __init__(self, inchannel, outchannel, stride=2):
180. super(ResidualBlock, self).__init__()
181.
182. self.shortcut = nn.Sequential(
183. nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, b

ias=False),
184. nn.BatchNorm2d(outchannel)
185.)
186. def forward(self, x):
187. out = self.shortcut(x)
188. return out
189.
190.
191. class ResnetSnn(nn.Module):
192. def __init__(self):
193. super(ResnetSnn, self).__init__()
194. self.conv0 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,

 3),stride=(1, 1),padding=1,bias=False)
195. self.conv1 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)
196. self.conv2 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)
197. self.conv3 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)
198. self.conv4 = nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3

, 3),stride=(1, 1),padding=1,bias=False)
199.
200. self.conv5 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(

3, 3),stride=(2, 2),padding=1,bias=False)
201. self.conv6 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=

(3, 3),stride=(1, 1),padding=1,bias=False)
202. self.conv7 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=

(3, 3),stride=(1, 1),padding=1,bias=False)

143

203. self.conv8 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=
(3, 3),stride=(1, 1),padding=1,bias=False)

204.
205. self.conv9 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=

(3, 3),stride=(2, 2),padding=1,bias=False)
206. self.conv10 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)
207. self.conv11 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)
208. self.conv12 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)
209.
210. self.conv13 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size

=(3, 3),stride=(2, 2),padding=1,bias=False)
211. self.conv14 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)
212. self.conv15 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)
213. self.conv16 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size

=(3, 3),stride=(1, 1),padding=1,bias=False)
214.
215.
216. self.fc1 = nn.Linear(512, 10,bias=False)
217.
218.
219. self.batch0 = nn.BatchNorm2d(64)
220. self.batch1 = nn.BatchNorm2d(64)
221. self.batch2 = nn.BatchNorm2d(64)
222. self.batch3 = nn.BatchNorm2d(64)
223. self.batch4 = nn.BatchNorm2d(64)
224. self.batch5 = nn.BatchNorm2d(128)
225. self.batch6 = nn.BatchNorm2d(128)
226. self.batch7 = nn.BatchNorm2d(128)
227. self.batch8 = nn.BatchNorm2d(128)
228. self.batch9 = nn.BatchNorm2d(256)
229. self.batch10 = nn.BatchNorm2d(256)
230. self.batch11 = nn.BatchNorm2d(256)
231. self.batch12 = nn.BatchNorm2d(256)
232. self.batch13 = nn.BatchNorm2d(512)
233. self.batch14 = nn.BatchNorm2d(512)
234. self.batch15 = nn.BatchNorm2d(512)
235. self.batch16 = nn.BatchNorm2d(512)
236. self.batch17 = nn.BatchNorm1d(10)
237.
238. self.drop1 = layer.Dropout(0.5)
239. self.drop2 = layer.Dropout(0.5)
240.
241. self.mem = LIFNode()
242. self.flatten = nn.Flatten()
243.
244. self.block1 = ResidualBlock(64,128)
245. self.block2 = ResidualBlock(128,256)
246. self.block3 = ResidualBlock(256,512)
247.
248.
249. self.static_conv = nn.Sequential(
250. nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
251. nn.BatchNorm2d(64)
252.)
253.
254. self.avg1 = nn.Conv2d(in_channels=3,out_channels=128,kernel_size=(2,

 2),stride=(2, 2),padding=0,bias=False)
255. self.avg2 = nn.Conv2d(in_channels=3,out_channels=256,kernel_size=(4,

 4),stride=(4, 4),padding=0,bias=False)
256. self.avg3 = nn.Conv2d(in_channels=3,out_channels=512,kernel_size=(8,

 8),stride=(8, 8),padding=0,bias=False)

144

257.
258.
259. def forward(self, input):
260. c0_mem = c0_spike = c0_sumspike = c0_minus = torch.zeros(64, 32, 32,

 device=device)
261.
262. c1_mem = c1_spike = c1_sumspike = c1_minus = torch.zeros(64, 32, 32,

 device=device)
263. c2_mem = c2_spike = c2_sumspike = c2_minus = torch.zeros(64, 32, 32,

 device=device)
264. c3_mem = c3_spike = c3_sumspike = c3_minus = torch.zeros(64, 32, 32,

 device=device)
265. c4_mem = c4_spike = c4_sumspike = c4_minus = torch.zeros(64, 32, 32,

 device=device)
266.
267. c5_mem = c5_spike = c5_sumspike = c5_minus = torch.zeros(128, 16, 16

, device=device)
268. c6_mem = c6_spike = c6_sumspike = c6_minus = torch.zeros(128, 16, 16

, device=device)
269. c7_mem = c7_spike = c7_sumspike = c7_minus = torch.zeros(128, 16, 16

, device=device)
270. c8_mem = c8_spike = c8_sumspike = c8_minus = torch.zeros(128, 16, 16

, device=device)
271.
272. c9_mem = c9_spike = c9_sumspike = c9_minus = torch.zeros(256, 8, 8,

device=device)
273. c10_mem = c10_spike = c10_sumspike = c10_minus = torch.zeros(256, 8,

 8, device=device)
274. c11_mem = c11_spike = c11_sumspike = c11_minus = torch.zeros(256, 8,

 8, device=device)
275. c12_mem = c12_spike = c12_sumspike = c12_minus = torch.zeros(256, 8,

 8, device=device)
276.
277. c13_mem = c13_spike = c13_sumspike = c13_minus = torch.zeros(512, 4,

 4, device=device)
278. c14_mem = c14_spike = c14_sumspike = c14_minus = torch.zeros(512, 4,

 4, device=device)
279. c15_mem = c15_spike = c15_sumspike = c15_minus = torch.zeros(512, 4,

 4, device=device)
280. c16_mem = c16_spike = c16_sumspike = c16_minus = torch.zeros(512, 4,

 4, device=device)
281.
282.
283. h1_mem = h1_spike = h1_sumspike = h1_minus = torch.zeros(10, device=

device)
284. h2_mem = h2_spike = h2_sumspike = h2_minus = torch.zeros(10, device=

device)
285. h3_mem = h3_spike = h3_sumspike = h3_minus = torch.zeros(10, device=

device)
286.
287.
288.
289. for step in range(time_window): # simulation time steps
290. c0_mem, c0_spike = self.mem(self.batch0,self.conv0(input), c0_me

m, c0_spike)
291.
292. #block1
293. c1_mem, c1_spike = self.mem(self.batch1,self.conv1(c0_spike), c1

_mem, c1_spike)
294. c2_mem, c2_spike = self.mem(self.batch2,self.conv2(c1_spike), c2

_mem+c0_spike, c2_spike)#+input1
295. c3_mem, c3_spike = self.mem(self.batch3,self.conv3(c2_spike), c3

_mem, c3_spike)
296. c4_mem, c4_spike = self.mem(self.batch4,self.conv4(c3_spike), c4

_mem+c2_spike, c4_spike)
297.

145

298. #block2
299. c5_mem, c5_spike = self.mem(self.batch5,self.conv5(c4_spike), c5

_mem, c5_spike)
300. c6_mem, c6_spike = self.mem(self.batch6,self.conv6(c5_spike), c6

_mem+self.block1(c4_spike), c6_spike)
301. c7_mem, c7_spike = self.mem(self.batch7,self.conv7(c6_spike), c7

_mem, c7_spike)
302. c8_mem, c8_spike = self.mem(self.batch8,self.conv8(c7_spike), c8

_mem+c6_spike, c8_spike)
303.
304. #block3
305. c9_mem, c9_spike = self.mem(self.batch9,self.conv9(c8_spike), c9

_mem, c9_spike)
306. c10_mem, c10_spike = self.mem(self.batch10,self.conv10(c9_spike)

, c10_mem+self.block2(c8_spike), c10_spike)
307. c11_mem, c11_spike = self.mem(self.batch11,self.conv11(c10_spike

), c11_mem, c11_spike)
308. c12_mem, c12_spike = self.mem(self.batch12,self.conv12(c11_spike

), c12_mem+c10_spike, c12_spike)
309.
310. #block4
311. c13_mem, c13_spike = self.mem(self.batch13,self.conv13(c12_spike

), c13_mem, c13_spike)
312. c14_mem, c14_spike = self.mem(self.batch14,self.conv14(c13_spike

), c14_mem+self.block3(c12_spike), c14_spike)
313. c15_mem, c15_spike = self.mem(self.batch15,self.conv15(c14_spike

), c15_mem, c15_spike)
314. c16_mem, c16_spike = self.mem(self.batch16,self.conv16(c15_spike

), c16_mem+c14_spike, c16_spike)
315. x = c16_spike
316.
317.
318. x = F.avg_pool2d(x, 4)
319. x = self.flatten(x)
320.
321. h1_mem, h1_spike = self.mem(self.batch17,self.fc1(x), h1_mem, h1

_spike)
322.
323. h1_sumspike = h1_sumspike+h1_spike
324.
325. outputs = h1_sumspike / time_window
326.
327. return outputs

Training alternative neural oscillation model:

1. class LIFNode(nn.Module):
2. def __init__(self):
3. super(LIFNode, self).__init__()
4. self.func = torch.nn.LeakyReLU(negative_slope=-0.03)
5. self.bias0 = torch.nn.Parameter(torch.zeros(1), requires_grad=True)
6. self.bias1 = torch.nn.Parameter(torch.zeros(1), requires_grad=True)
7.
8. def forward(self, ops, x, mem, spike,train=True):
9. mem = mem * (1. - spike) - mem * decay * (1. - spike) + ops(x)
10.
11. if train==True:
12. mem1 = self.func(mem+torch.rand(mem.size(),device=device)-

torch.ones(1,device=device)*0.2)
13. mem2 = self.func(mem+torch.sin(mem+self.bias1)+self.bias0)
14. else:

146

15. mem2 = self.func(mem+torch.rand(mem.size(),device=device)-
torch.ones(1,device=device)*0.2)

16. mem1 = self.func(mem+torch.sin(mem+self.bias1)+self.bias0)
17. spike = act_fun(mem1) # act_fun : approximation firing function
18. spike2 = act_fun(mem2)
19. return mem1, spike, spike-spike2

147

APPENDIX C

This part provides the code of three steps of training SNN mentioned in Chapter 4:

1. class LIFNode(nn.Module):
2. def __init__(self):
3. super(LIFNode, self).__init__()
4.
5. def forward(self, ops, x, mem, spike):
6.
7. # step 1 T=1
8. noise = torch.randn(mem.size(),device=device)
9. maximum = torch.max(abs(noise))
10. noise = noise/(2*maximum)+0.5
11.
12. mem = noise + ops(x)
13.
14. # step 2 T=N
15. '''
16. noise = torch.randn(mem.size(),device=device)
17. maximum = torch.max(abs(noise))
18. noise = noise/(2*maximum)+0.5
19.
20. mem = noise + ops(x)
21. '''
22.
23. # step 3 T=N
24. '''
25. mean = torch.mean(mem * decay * (1. - spike))
26. std = torch.std(mem * decay * (1. - spike), unbiased=False)
27. mem = (mem * decay * (1. - spike)-mean)/(std+1e-17)
28. maximum = torch.max(abs(mem))
29.
30. noise = torch.randn(mem.size(),device=device)
31. mem = mem/(4*maximum+1e-17)+0.5+noise/torch.max(abs(noise))*0.25
32.
33. mem = mem + ops(x)
34. '''
35.
36. spike = act_fun(mem) # act_fun : approximation firing function
37.
38.
39. return mem, spike

148

APPENDIX D

This part provides code of the mask SNN discussed in Chapter 5:

1. # define approximate firing function
2. class ActFun(torch.autograd.Function):
3. @staticmethod
4. def forward(ctx, input, thresh):
5. ctx.save_for_backward(input)
6. ctx.th = thresh
7. return input.gt(thresh).float()
8.
9. @staticmethod
10. def backward(ctx, grad_output):
11. input, = ctx.saved_tensors
12. grad_input = grad_output.clone()
13. temp = alpha / 2 / (1 + (math.pi / 2 * alpha * (input-ctx.th)).pow_(2))
14. return grad_input * temp.float(),None,None
15.
16. act_fun = ActFun.apply
17.
18.
19. class IFNode(nn.Module):
20. def __init__(self):
21. super(IFNode, self).__init__()
22. self.w = torch.nn.Parameter(torch.ones(1), requires_grad=True)
23. def forward(self, x, thresh):
24. spike = act_fun(x, thresh) # act_fun : approximation firing function
25. return spike
26.
27. class SNN(nn.Module):
28. def __init__(self, T):
29. super().__init__()
30. self.T = T
31. self.flatten = nn.Flatten()
32. self.encoder = nn.Sequential(
33. nn.Conv2d(1, 16, 3, padding=1),
34. nn.BatchNorm2d(16),
35. neuron.LIFNode(tau=1.2,surrogate_function=surrogate.ATan()),
36. nn.MaxPool2d(2, stride=2),
37.
38. nn.Conv2d(16, 4, 3, padding=1),
39. nn.BatchNorm2d(4),
40. neuron.LIFNode(tau=1.2,surrogate_function=surrogate.ATan()),
41. nn.MaxPool2d(2, stride=2),
42.)
43.
44. self.decoder = nn.Sequential(
45. nn.ConvTranspose2d(4, 16, 2, stride=2),
46. nn.BatchNorm2d(16),
47. neuron.LIFNode(tau=1.2,surrogate_function=surrogate.ATan()),
48.
49. nn.ConvTranspose2d(16, 1, 2, stride=2),
50. nn.BatchNorm2d(1),
51.
52.)
53.
54. self.func = IFNode()
55.
56. def forward(self, x):
57. dim = x.size()
58. out_mem_counter = self.decoder(self.encoder(x))
59. for t in range(1, self.T):

149

60. out_mem_counter = out_mem_counter + self.decoder(self.encoder(x))
61. out_mem_counter = self.flatten(out_mem_counter)
62. a = out_mem_counter
63. th = torch.tensor(np.percentile(a.cpu().detach().numpy(), 90, axis=1, keepd

ims=True)).cuda()
64. mask = self.func(out_mem_counter, th)
65. mask = mask.view(-1,1,int(dim[-2]),int(dim[-1]))
66.
67. return mask

150

APPENDIX E

This part provides the training and inference files for Chapter 6.

Training file:

1. import numpy as np
2. np.set_printoptions(threshold=np.inf)
3. import matplotlib.cm as cmap
4. # import tkinter
5. # import matplotlib
6. # matplotlib.use('TkAgg')
7.
8. import matplotlib.pyplot as plt
9. import time
10. import os.path
11. import scipy
12. import pickle
13. from struct import unpack
14. from brian2 import *
15. import brian2 as b2
16. from brian2tools import *
17.
18. #prefs.codegen.target = 'cython'
19.
20. # specify the location of the data
21. data_path = ''
22. print(os.path.abspath(data_path))
23.
24. #--
25. # functions
26. #--
27. def get_labeled_data(picklename, bTrain = True):
28. """Read input-vector (image) and target class (label, 0-9) and return
29. it as list of tuples.
30. """
31. if os.path.isfile('%s.pickle' % picklename):
32. data = pickle.load(open('%s.pickle' % picklename,'rb'))
33.
34. else:
35. # Open the images with gzip in read binary mode
36. if bTrain:
37. images = open(data_path + 'train-images.idx3-ubyte','rb')
38. labels = open(data_path + 'train-labels.idx1-ubyte','rb')
39. else:
40. images = open(data_path + 'test-images6.idx3-ubyte','rb')
41. labels = open(data_path + 'test-labels6.idx1-ubyte','rb')
42. # Get metadata for images
43. images.read(4) # skip the magic_number
44. number_of_images = unpack('>I', images.read(4))[0]
45. print(number_of_images)
46. rows = unpack('>I', images.read(4))[0]
47. cols = unpack('>I', images.read(4))[0]
48. # Get metadata for labels
49. labels.read(4) # skip the magic_number
50. N = unpack('>I', labels.read(4))[0]
51.
52. if number_of_images != N:
53. raise Exception('number of labels did not match the number of images')

54. # Get the data
55. x = np.zeros((N, rows, cols), dtype=np.uint8) # Initialize numpy array

151

56. y = np.zeros((N, 1), dtype=np.uint8) # Initialize numpy array
57. for i in range(N):
58. if i % 1000 == 0:
59. print("i: %i" % i)
60. x[i] = [[unpack('>B', images.read(1))[0] for unused_col in range(cols)]

 for unused_row in range(rows)]
61. y[i] = unpack('>B', labels.read(1))[0]
62.
63. data = {'x': x, 'y': y, 'rows': rows, 'cols': cols}
64. pickle.dump(data, open("%s.pickle" % picklename, "wb"))
65. return data
66.
67. def get_matrix_from_file(fileName):
68. offset = len(ending) + 4
69. if fileName[-4-offset] == 'X':
70. n_src = n_input
71. else:
72. if fileName[-3-offset]=='e':
73. n_src = n_e
74. else:
75. n_src = n_i
76. if fileName[-1-offset]=='e':
77. n_tgt = n_e
78. else:
79. n_tgt = n_i
80. readout = np.load(fileName)
81. print(readout.shape, fileName)
82. value_arr = np.zeros((n_src, n_tgt))
83. if not readout.shape == (0,):
84. value_arr[np.int32(readout[:,0]), np.int32(readout[:,1])] = readout[:,2]
85. return value_arr
86.
87.
88. def save_connections(ending = ''):
89. print('save connections')
90. for connName in save_conns:
91. conn = connections[connName]
92. connListSparse = list(zip(conn.i, conn.j, conn.w))
93. np.save(data_path + 'weights/' + connName + ending, connListSparse)
94.
95. def save_theta(ending = ''):
96. print('save theta')
97. for pop_name in population_names:
98. np.save(data_path + 'weights/theta_' + pop_name + ending, neuron_groups[pop

_name + 'e'].theta)
99.
100. def normalize_weights():
101. for connName in connections:
102. if connName[1] == 'e' and connName[3] == 'e':
103. len_source = len(connections[connName].source)
104. len_target = len(connections[connName].target)
105. connection = np.zeros((len_source, len_target))
106. connection[connections[connName].i, connections[connName].j] = c

onnections[connName].w
107. temp_conn = np.copy(connection)
108. colSums = np.sum(temp_conn, axis = 0)
109. colFactors = weight['ee_input']/colSums
110. for j in range(n_e):#
111. temp_conn[:,j] *= colFactors[j]
112. connections[connName].w = temp_conn[connections[connName].i, con

nections[connName].j]
113.
114. def get_2d_input_weights():
115. name = 'XeAe'
116. weight_matrix = np.zeros((n_input, n_e))
117. n_e_sqrt = int(np.sqrt(n_e))

152

118. n_in_sqrt = int(np.sqrt(n_input))
119. num_values_col = n_e_sqrt*n_in_sqrt
120. num_values_row = num_values_col
121. rearranged_weights = np.zeros((num_values_col, num_values_row))
122. connMatrix = np.zeros((n_input, n_e))
123. connMatrix[connections[name].i, connections[name].j] = connections[name]

.w
124. weight_matrix = np.copy(connMatrix)
125.
126. for i in range(n_e_sqrt):
127. for j in range(n_e_sqrt):
128. rearranged_weights[i*n_in_sqrt : (i+1)*n_in_sqrt, j*n_in_sqr

t : (j+1)*n_in_sqrt] = \
129. weight_matrix[:, i + j*n_e_sqrt].reshape((n_in_sqrt, n_i

n_sqrt))
130. return rearranged_weights
131.
132.
133. def plot_2d_input_weights():
134. name = 'XeAe'
135. weights = get_2d_input_weights()
136. fig = b2.figure(fig_num, figsize = (18, 18))
137. im2 = b2.imshow(weights, interpolation = "nearest", vmin = 0, vmax = wma

x_ee, cmap = cmap.get_cmap('hot_r'))
138. b2.colorbar(im2)
139. b2.title('weights of connection' + name)
140. fig.canvas.draw()
141. return im2, fig
142.
143. def update_2d_input_weights(im, fig):
144. weights = get_2d_input_weights()
145. im.set_array(weights)
146. fig.canvas.draw()
147. return im
148.
149. def get_current_performance(performance, current_example_num):
150. current_evaluation = int(current_example_num/update_interval)
151. start_num = current_example_num - update_interval
152. end_num = current_example_num
153. difference = outputNumbers[start_num:end_num, 0] - input_numbers[start_n

um:end_num]
154. correct = len(np.where(difference == 0)[0])
155. performance[current_evaluation] = correct / float(update_interval) * 100

 #performance[current_evaluation] = correct / float(update_interval) * 100
156. if (current_example_num + 1) == num_examples:
157. performance[current_evaluation+1] = correct / float(update_interval)

 * 100
158. return performance
159.
160. def plot_performance(fig_num):
161. num_evaluations = int(num_examples/update_interval) + 1
162. time_steps = range(0, num_evaluations)
163. performance = np.zeros(num_evaluations)
164. fig = b2.figure(fig_num, figsize = (5, 5))
165. fig_num += 1
166. ax = fig.add_subplot(111)
167. im2, = ax.plot(time_steps, performance) #my_cmap
168. b2.ylim(ymax = 100)
169. b2.title('Classification performance')
170. fig.canvas.draw()
171. return im2, performance, fig_num, fig
172.
173. def update_performance_plot(im, performance, current_example_num, fig):
174. performance = get_current_performance(performance, current_example_num)

175. im.set_ydata(performance)

153

176. fig.canvas.draw()
177. return im, performance
178.
179. def get_recognized_number_ranking(assignments, spike_rates):
180. summed_rates = [0] * 8
181. num_assignments = [0] * 8
182. for i in range(8):
183. num_assignments[i] = len(np.where(assignments == i)[0])
184. if num_assignments[i] > 0:
185. summed_rates[i] = np.sum(spike_rates[assignments == i]) / num_as

signments[i]
186. return np.argsort(summed_rates)[::-1]
187.
188. def get_new_assignments(result_monitor, input_numbers):
189. assignments = np.zeros(n_e)
190. input_nums = np.asarray(input_numbers)
191. maximum_rate = [0] * n_e
192. rate = [0] * n_e
193. for j in range(8):
194. num_assignments = len(np.where(input_nums == j)[0])
195. if num_assignments > 0:
196. rate = np.sum(result_monitor[input_nums == j], axis = 0) / num_a

ssignments
197.
198. for i in range(n_e):
199. if rate[i] > maximum_rate[i]:
200. maximum_rate[i] = rate[i]
201. assignments[i] = j
202. return assignments
203.
204.
205. #---

206. # load data
207. #---

208. start = time.time()
209. training = get_labeled_data(data_path + 'training')
210. print(len(training['x']))
211. end = time.time()
212. print('time needed to load training set:', end - start)
213.
214. start = time.time()
215. testing = get_labeled_data(data_path + 'testing', bTrain = False)
216. print(len(testing['x']))
217. end = time.time()
218. print('time needed to load test set:', end - start)
219.
220.
221. #---

222. # set parameters and equations
223. #---

224. test_mode = True
225.
226. np.random.seed(0)
227. data_path = './'
228. if test_mode:
229. weight_path = data_path + 'weights/'
230. num_examples = 24 * 1
231. use_testing_set = True
232. do_plot_performance = False
233. record_spikes = True
234. ee_STDP_on = False
235. update_interval = num_examples

154

236. else:
237. weight_path = data_path + 'random/'
238. num_examples = 2696 * 16
239. use_testing_set = False
240. do_plot_performance = True
241. if num_examples <= 2696:
242. record_spikes = True
243. else:
244. record_spikes = True
245. ee_STDP_on = True
246.
247.
248. ending = ''
249. n_input = 784
250. n_e = 400
251. n_i = n_e
252. single_example_time = 0.35 * b2.second #
253. resting_time = 0.15 * b2.second
254. runtime = num_examples * (single_example_time + resting_time)
255. if num_examples <= 24:
256. update_interval = num_examples
257. weight_update_interval = 20
258. else:
259. update_interval = 2696
260. weight_update_interval = 100
261. if num_examples <= 2696:
262. save_connections_interval = 2696
263. else:
264. save_connections_interval = 2696
265. update_interval = 2696
266.
267. v_rest_e = -65. * b2.mV
268. v_rest_i = -60. * b2.mV
269. v_reset_e = -65. * b2.mV
270. v_reset_i = -45. * b2.mV
271. v_thresh_e = -52. * b2.mV
272. v_thresh_i = -40. * b2.mV
273. refrac_e = 5. * b2.ms
274. refrac_i = 2. * b2.ms
275.
276. weight = {}
277. delay = {}
278. input_population_names = ['X']
279. population_names = ['A']
280. input_connection_names = ['XA']
281. save_conns = ['XeAe']
282. input_conn_names = ['ee_input']
283. recurrent_conn_names = ['ei', 'ie']
284. weight['ee_input'] = 78.
285. delay['ee_input'] = (0*b2.ms,10*b2.ms)
286. delay['ei_input'] = (0*b2.ms,5*b2.ms)
287. input_intensity = 2.
288. start_input_intensity = input_intensity
289.
290. tc_pre_ee = 20*b2.ms
291. tc_post_1_ee = 20*b2.ms
292. tc_post_2_ee = 40*b2.ms
293. nu_ee_pre = 0.0001 # learning rate
294. nu_ee_post = 0.01 # learning rate
295. wmax_ee = 1.0
296. exp_ee_pre = 0.2
297. exp_ee_post = exp_ee_pre
298. STDP_offset = 0.4
299.
300. if test_mode:
301. scr_e = 'v = v_reset_e; timer = 0*ms'

155

302. else:
303. tc_theta = 1e7 * b2.ms
304. theta_plus_e = 0.05 * b2.mV
305. scr_e = 'v = v_reset_e; theta += theta_plus_e; timer = 0*ms'
306. offset = 20.0*b2.mV
307. v_thresh_e_str = '(v>(theta - offset + v_thresh_e)) and (timer>refrac_e)'
308. v_thresh_i_str = 'v>v_thresh_i'
309. v_reset_i_str = 'v=v_reset_i'
310.
311.
312. neuron_eqs_e = '''''
313. dv/dt = ((v_rest_e - v) + (I_synE+I_synI) / nS) / (100*ms) : volt (

unless refractory)
314. I_synE = ge * nS * -v : amp
315. I_synI = gi * nS * (-100.*mV-v) : amp
316. dge/dt = -ge/(1.0*ms) : 1
317. dgi/dt = -gi/(2.0*ms) : 1
318. '''
319. if test_mode:
320. neuron_eqs_e += '\n theta :volt'
321. else:
322. neuron_eqs_e += '\n dtheta/dt = -theta / (tc_theta) : volt'
323. neuron_eqs_e += '\n dtimer/dt = 0.1 : second'
324.
325. neuron_eqs_i = '''''
326. dv/dt = ((v_rest_i - v) + (I_synE+I_synI) / nS) / (10*ms) : volt (u

nless refractory)
327. I_synE = ge * nS * -v : amp
328. I_synI = gi * nS * (-85.*mV-v) : amp
329. dge/dt = -ge/(1.0*ms) : 1
330. dgi/dt = -gi/(2.0*ms) : 1
331. '''
332. eqs_stdp_ee = '''''
333. post2before : 1
334. dpre/dt = -pre/(tc_pre_ee) : 1 (event-driven)
335. dpost1/dt = -post1/(tc_post_1_ee) : 1 (event-driven)
336. dpost2/dt = -post2/(tc_post_2_ee) : 1 (event-driven)
337. '''
338. eqs_stdp_pre_ee = 'pre = 1.; w = clip(w + nu_ee_pre * post1, 0, wmax_ee)'
339. eqs_stdp_post_ee = 'post2before = post2; w = clip(w + nu_ee_post * pre * pos

t2before, 0, wmax_ee); post1 = 1.; post2 = 1.'
340.
341. '''''
342. eqs_stdp_ee = '''
343. dpre/dt = -pre/(tc_pre_ee) : 1 (event-driven)
344. dpost1/dt = -post1/(tc_post_1_ee) : 1 (event-driven)'''''
345. eqs_stdp_pre_ee = 'pre = 1.; w = clip(w + nu_ee_pre * post1, 0, wmax_ee)'
346. eqs_stdp_post_ee = 'w = clip(w + nu_ee_post * pre , 0, wmax_ee); post1 = 1.'

347. '''
348.
349. b2.ion()
350. fig_num = 1
351. neuron_groups = {}
352. input_groups = {}
353. connections = {}
354. rate_monitors = {}
355. spike_monitors = {}
356. spike_counters = {}
357. result_monitor = np.zeros((update_interval,n_e))
358.
359. neuron_groups['e'] = b2.NeuronGroup(n_e*len(population_names), neuron_eqs_e,

 threshold= v_thresh_e_str, refractory= refrac_e, reset= scr_e, method='euler')
360. neuron_groups['i'] = b2.NeuronGroup(n_i*len(population_names), neuron_eqs_i,

 threshold= v_thresh_i_str, refractory= refrac_i, reset= v_reset_i_str, method='eul
er')

156

361.
362.
363. #---

364. # create network population and recurrent connections
365. #---

366. for subgroup_n, name in enumerate(population_names):
367. print('create neuron group', name)
368.
369. neuron_groups[name+'e'] = neuron_groups['e'][subgroup_n*n_e:(subgroup_n+

1)*n_e]
370. neuron_groups[name+'i'] = neuron_groups['i'][subgroup_n*n_i:(subgroup_n+

1)*n_e]
371.
372. neuron_groups[name+'e'].v = v_rest_e - 40. * b2.mV
373. neuron_groups[name+'i'].v = v_rest_i - 40. * b2.mV
374. if test_mode or weight_path[-8:] == 'weights/':
375. neuron_groups['e'].theta = np.load(weight_path + 'theta_' + name + e

nding + '.npy') * b2.volt
376. #neuron_groups['e'].theta = np.load(weight_path + 'theta_A2696.npy')

 * b2.volt
377. else:
378. neuron_groups['e'].theta = np.load(weight_path + 'theta_' + name + e

nding + '.npy') * b2.volt
379. #neuron_groups['e'].theta = np.ones((n_e)) * 20.0*b2.mV
380.
381. print('create recurrent connections')
382. for conn_type in recurrent_conn_names:
383. connName = name+conn_type[0]+name+conn_type[1]
384. weightMatrix = get_matrix_from_file(weight_path + '../random/' + con

nName + ending + '.npy')
385. #print(weight_path + '../random/' + connName + ending + '.npy')
386. model = 'w : 1'
387. pre = 'g%s_post += w' % conn_type[0]
388. post = ''
389. if ee_STDP_on:
390. if 'ee' in recurrent_conn_names:
391. model += eqs_stdp_ee
392. pre += '; ' + eqs_stdp_pre_ee
393. post = eqs_stdp_post_ee
394. connections[connName] = b2.Synapses(neuron_groups[connName[0:2]], ne

uron_groups[connName[2:4]],
395. model=model, on_pre=pre,

 on_post=post)
396. connections[connName].connect(True) # all-to-all connection
397. connections[connName].w = weightMatrix[connections[connName].i, conn

ections[connName].j]
398. #print(connections['AiAe'].w)
399.
400. print('create monitors for', name)
401. rate_monitors[name+'e'] = b2.PopulationRateMonitor(neuron_groups[name+'e

'])
402. rate_monitors[name+'i'] = b2.PopulationRateMonitor(neuron_groups[name+'i

'])
403. spike_counters[name+'e'] = b2.SpikeMonitor(neuron_groups[name+'e'])
404.
405. if record_spikes:
406. spike_monitors[name+'e'] = b2.SpikeMonitor(neuron_groups[name+'e'])

407. spike_monitors[name+'i'] = b2.SpikeMonitor(neuron_groups[name+'i'])

408.
409.
410. #---

157

411. # create input population and connections from input populations
412. #---

413. pop_values = [0,0,0]
414. for i,name in enumerate(input_population_names):
415. input_groups[name+'e'] = b2.PoissonGroup(n_input, 0*Hz)
416. rate_monitors[name+'e'] = b2.PopulationRateMonitor(input_groups[name+'e'

])
417.
418. for name in input_connection_names:
419. print('create connections between', name[0], 'and', name[1])
420. for connType in input_conn_names:
421. connName = name[0] + connType[0] + name[1] + connType[1]
422. weightMatrix = get_matrix_from_file(weight_path + connName + ending

+ '.npy')
423. #weightMatrix = get_matrix_from_file(weight_path + 'XeAe13480.npy')

424. #print(weight_path + connName + ending + '.npy112')
425. model = 'w : 1'
426. pre = 'g%s_post += w' % connType[0]
427. post = ''
428. if ee_STDP_on:
429. print('create STDP for connection', name[0]+'e'+name[1]+'e')
430. model += eqs_stdp_ee
431. pre += '; ' + eqs_stdp_pre_ee
432. post = eqs_stdp_post_ee
433.
434. connections[connName] = b2.Synapses(input_groups[connName[0:2]], neu

ron_groups[connName[2:4]],
435. model=model, on_pre=pre,

 on_post=post)
436. minDelay = delay[connType][0]
437. maxDelay = delay[connType][1]
438. deltaDelay = maxDelay - minDelay
439. # TODO: test this
440. connections[connName].connect(True) # all-to-all connection
441. connections[connName].delay = 'minDelay + rand() * deltaDelay'
442. connections[connName].w = weightMatrix[connections[connName].i, conn

ections[connName].j]
443.
444.
445. #---

446. # run the simulation and set inputs
447. #---

448.
449. net = Network()
450. for obj_list in [neuron_groups, input_groups, connections, rate_monitors,
451. spike_monitors, spike_counters]:
452. for key in obj_list:
453. net.add(obj_list[key])
454.
455. previous_spike_count = np.zeros(n_e)
456. assignments = np.zeros(n_e)
457. input_numbers = [0] * num_examples
458. outputNumbers = np.zeros((num_examples, 8))
459. if not test_mode:
460. input_weight_monitor, fig_weights = plot_2d_input_weights()
461. fig_num += 1
462. if do_plot_performance:
463. performance_monitor, performance, fig_num, fig_performance = plot_perfor

mance(fig_num)
464. for i,name in enumerate(input_population_names):
465. input_groups[name+'e'].rates = 0 * Hz
466. net.run(0*second)

158

467. j = 0
468. while j < (int(num_examples)):
469. print(j,num_examples)
470. if test_mode:
471. if use_testing_set:
472. spike_rates = testing['x'][j%24,:,:].reshape((n_input)) / 8. *

input_intensity
473. else:
474. spike_rates = training['x'][j%2696,:,:].reshape((n_input)) / 8.

* input_intensity
475.
476. else:
477. normalize_weights()
478. spike_rates = training['x'][j%2696,:,:].reshape((n_input)) / 8. * i

nput_intensity
479. input_groups['Xe'].rates = spike_rates * Hz
480. # print('run number:', j+1, 'of', int(num_examples))
481. net.run(single_example_time, report='text')
482. print(neuron_groups['Ae'].v[20])
483. #print(spike_rates)
484. if j % update_interval == 0 and j > 0:
485. assignments = get_new_assignments(result_monitor[:], input_numbers[j

-update_interval : j])
486. if j % weight_update_interval == 0 and not test_mode:
487. update_2d_input_weights(input_weight_monitor, fig_weights)
488. if j % save_connections_interval == 0 and j > 0 and not test_mode:
489. save_connections(str(j))
490. save_theta(str(j))
491.
492. current_spike_count = np.asarray(spike_counters['Ae'].count[:]) - previo

us_spike_count
493. previous_spike_count = np.copy(spike_counters['Ae'].count[:])
494. if np.sum(current_spike_count) < 5:
495. input_intensity += 1
496. for i,name in enumerate(input_population_names):
497. input_groups[name+'e'].rates = 0 * Hz
498. net.run(resting_time)
499. else:
500. result_monitor[j%update_interval,:] = current_spike_count
501. if test_mode and use_testing_set:
502. input_numbers[j] = testing['y'][j%24][0]
503. else:
504. input_numbers[j] = training['y'][j%2696][0]
505. outputNumbers[j,:] = get_recognized_number_ranking(assignments, resu

lt_monitor[j%update_interval,:])
506. if j % 100 == 0 and j > 0:
507. print('runs done:', j, 'of', int(num_examples))
508. if j % update_interval == 0 and j > 0: #update_interval
509. if do_plot_performance:
510. unused, performance = update_performance_plot(performance_mo

nitor, performance, j, fig_performance)
511. print('Classification performance', performance[:int(j/updat

e_interval+1)])
512. if j % (num_examples-1) == 0 and j > 0: #update_interval
513. if do_plot_performance:
514. unused, performance = update_performance_plot(performance_mo

nitor, performance, j, fig_performance)
515. print('Classification performance', performance[:int(j/updat

e_interval+2)])
516. for i,name in enumerate(input_population_names):
517. input_groups[name+'e'].rates = 0 * Hz
518. if (j+1)%1000==0:
519. #plt.figure(j+10)
520. plot_2d_input_weights()
521. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\pictu

re2\Image'+str(j+1))

159

522. plt.clf()
523. net.run(resting_time)
524. input_intensity = start_input_intensity
525. j += 1
526.
527.
528.
529.
530. #---

531. # save results
532. #---

533. print('save results')
534. if not test_mode:
535. save_theta()
536. if not test_mode:
537. save_connections()
538. np.save(data_path + 'activity/resultPopVecs' + str(num_examples), result

_monitor)
539. np.save(data_path + 'activity/inputNumbers' + str(num_examples), input_n

umbers)
540. else:
541. np.save(data_path + 'activity/resultPopVecs' + str(num_examples) +'', re

sult_monitor)
542. np.save(data_path + 'activity/inputNumbers' + str(num_examples) +'', inp

ut_numbers)
543.
544.
545.
546. #---

547. # plot results
548. #---

549. if rate_monitors:
550. b2.figure(fig_num)
551. fig_num += 1
552. for i, name in enumerate(rate_monitors):
553. b2.subplot(len(rate_monitors), 1, 1+i)
554. b2.plot(rate_monitors[name].t/b2.second, rate_monitors[name].rate, '

.')
555. b2.title('Rates of population ' + name)
556. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\

Image'+str(1))
557.
558. if spike_monitors:
559. b2.figure(fig_num)
560.
561. fig_num += 1
562. for i, name in enumerate(spike_monitors):
563. b2.subplot(len(spike_monitors), 1, 1+i)
564. b2.plot(spike_monitors[name].t/b2.ms, spike_monitors[name].i, '.')
565. b2.title('Spikes of population ' + name)
566. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\

Image'+str(2))
567.
568. if spike_counters:
569. b2.figure(fig_num)
570. fig_num += 1
571. b2.plot(spike_monitors['Ae'].count[:])
572. b2.title('Spike count of population Ae')
573. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\Imag

e'+str(3))
574.
575.

160

576.
577.
578.
579. plot_2d_input_weights()
580. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\Image'+s

tr(4))
581.
582. plt.figure(5)
583.
584. subplot(3,1,1)
585.
586. brian_plot(connections['XeAe'].w)
587. subplot(3,1,2)
588.
589. brian_plot(connections['AeAi'].w)
590.
591. subplot(3,1,3)
592.
593. brian_plot(connections['AiAe'].w)
594. plt.savefig('E:\Codeproject\TactileSnn_new\Tactiletrain400\picture2\Image'+s

tr(5))
595.
596.
597.
598. b2.ioff()
599. b2.show()

Inference file:

1. import numpy as np
2. import matplotlib
3. import matplotlib.cm as cmap
4. import time
5. import os.path
6. import scipy
7. import pickle
8. from struct import unpack
9. from brian2 import *
10.
11.
12. #--
13. # functions
14. #---

-
15. def get_labeled_data(picklename, bTrain = True):
16. """Read input-vector (image) and target class (label, 0-9) and return
17. it as list of tuples.
18. """
19. if os.path.isfile('%s.pickle' % picklename):
20. data = pickle.load(open('%s.pickle' % picklename,'rb'))
21. else:
22. # Open the images with gzip in read binary mode
23. if bTrain:
24. images = open(data_path + 'train-images.idx3-ubyte','rb')
25. labels = open(data_path + 'train-labels.idx1-ubyte','rb')
26. else:
27. images = open(data_path + 't10k-images.idx3-ubyte','rb')
28. labels = open(data_path + 't10k-labels.idx1-ubyte','rb')
29. # Get metadata for images
30. images.read(4) # skip the magic_number
31. number_of_images = unpack('>I', images.read(4))[0]

161

32. rows = unpack('>I', images.read(4))[0]
33. cols = unpack('>I', images.read(4))[0]
34. # Get metadata for labels
35. labels.read(4) # skip the magic_number
36. N = unpack('>I', labels.read(4))[0]
37. if number_of_images != N:
38. raise Exception('number of labels did not match the number of images')

39. # Get the data
40. x = np.zeros((N, rows, cols), dtype=np.uint8) # Initialize numpy array
41. y = np.zeros((N, 1), dtype=np.uint8) # Initialize numpy array
42. for i in range(N):
43. if i % 100 == 0:
44. print("i: %i" % i)
45. x[i] = [[unpack('>B', images.read(1))[0] for unused_col in range(cols)]

 for unused_row in range(rows)]
46. y[i] = unpack('>B', labels.read(1))[0]
47. data = {'x': x, 'y': y, 'rows': rows, 'cols': cols}
48. pickle.dump(data, open("%s.pickle" % picklename, "wb"))
49. return data
50.
51. def get_recognized_number_ranking(assignments, spike_rates):
52. summed_rates = [0] * 8
53. num_assignments = [0] * 8
54. for i in range(8):
55. num_assignments[i] = len(np.where(assignments == i)[0])
56. if num_assignments[i] > 0:
57. summed_rates[i] = np.sum(spike_rates[assignments == i]) / num_assignmen

ts[i]
58. return np.argsort(summed_rates)[::-1]
59.
60. def get_new_assignments(result_monitor, input_numbers):
61. print(result_monitor.shape)
62. assignments = np.ones(n_e) * -1 # initialize them as not assigned
63. input_nums = np.asarray(input_numbers)
64. maximum_rate = [0] * n_e
65. rate = [0] * n_e
66. for j in range(8):
67. num_inputs = len(np.where(input_nums == j)[0])
68. if num_inputs > 0:
69. rate = np.sum(result_monitor[input_nums == j], axis = 0) / num_inputs
70. for i in range(n_e):
71. if rate[i] > maximum_rate[i]:
72. maximum_rate[i] = rate[i]
73. assignments[i] = j
74. return assignments
75.
76. data_path = './'
77. data_path = './activity/'
78. training_ending = '2696'
79. testing_ending = '24'
80. start_time_training = 0
81. end_time_training = int(training_ending)
82. start_time_testing = 0
83. end_time_testing = int(testing_ending)
84.
85. n_e = 400
86. n_input = 784
87. ending = ''
88.
89. print('load data')
90. training = get_labeled_data(data_path + 'training')
91. testing = get_labeled_data(data_path + 'testing', bTrain = False)
92.
93. print('load results')

162

94. training_result_monitor = np.load(data_path + 'resultPopVecs' + training_ending + e
nding + '.npy')

95. training_input_numbers = np.load(data_path + 'inputNumbers' + training_ending + '.n
py')

96. testing_result_monitor = np.load(data_path + 'resultPopVecs' + testing_ending + '.n
py')

97. testing_input_numbers = np.load(data_path + 'inputNumbers' + testing_ending + '.npy
')

98. print(training_result_monitor.shape)
99.
100. print('get assignments')
101. test_results = np.zeros((8, end_time_testing-start_time_testing))
102. test_results_max = np.zeros((8, end_time_testing-start_time_testing))
103. test_results_top = np.zeros((8, end_time_testing-start_time_testing))
104. test_results_fixed = np.zeros((8, end_time_testing-start_time_testing))
105. assignments = get_new_assignments(training_result_monitor[start_time_trainin

g:end_time_training],
106. training_input_numbers[start_time_training

:end_time_training])
107. print(assignments)
108. counter = 0
109. num_tests = end_time_testing / 24
110. sum_accurracy = [0] * int(num_tests)
111. while (counter < num_tests):
112. end_time = min(end_time_testing, 24*(counter+1))
113. start_time = 24*counter
114. test_results = np.zeros((8, end_time-start_time))
115. print('calculate accuracy for sum')
116. for i in range(end_time - start_time):
117. test_results[:,i] = get_recognized_number_ranking(assignments,
118. testing_result_mon

itor[i+start_time,:])
119. difference = test_results[0,:] - testing_input_numbers[start_time:end_ti

me]
120. for i in np.where(difference != 0)[0]:
121. print(testing_input_numbers[i],test_results[0,i])
122.
123. correct = len(np.where(difference == 0)[0])
124. incorrect = np.where(difference != 0)[0]
125. sum_accurracy[counter] = correct #/float(end_time-start_time) * 100
126. print('Sum response - accuracy: ', sum_accurracy[counter], ' num incorre

ct: ', len(incorrect))
127. counter += 1
128. print('Sum response - accuracy --> mean: ', np.mean(sum_accurracy), '-

-> standard deviation: ', np.std(sum_accurracy))
129.
130.
131. show()

