Worm on the Run – A versatile force-sensing platform for the study of freely moving nematodes

V. Nock1, S. Johari2, M.M. Alkaisi1, W. Wang3

1 MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
2 School of Microelectronic Engineering, Universiti Malaysia Perlis, Malaysia
3 Department of Precision Instruments, Tsinghua University, Beijing, China

To study the interplay of microorganisms with their physical environment we have developed an integrated Lab-on-a-Chip type platform capable of measuring mechanical forces exerted during locomotion of microorganisms1,2. Using this platform we found that crawling behaviors and thrust forces of moving \textit{C. elegans} correlate to the structure of their microenvironment as the worm adjusts its behavior via mechanical sensing of its surroundings3. The sense of touch is crucial to these nematodes: 6 touch receptor neurons (mechanoreceptor neurons) allow the animal to detect external mechanical feedback with the environment, as well as internal forces4. Using our platform we were able to quantify forces, as well as locomotion parameters such as speed, amplitude of sine wave, and wavelength. In this seminar I will introduce the measurement platform, sensing principle and its application to freely moving \textit{C. elegans} in conjunction with optogenetic manipulation5.

References: