
How Junior Developers Deal with Their Technical Debt?
Fabian Gilson

University of Canterbury
Christchurch, New Zealand

fabian.gilson@canterbury.ac.nz

Miguel Morales-Trujillo
University of Canterbury
Christchurch, New Zealand

miguel.morales@canterbury.ac.nz

Moffat Mathews
University of Canterbury
Christchurch, New Zealand

moffat.mathews@canterbury.ac.nz

ABSTRACT
Technical debt is a metaphor that measures the additional effort
needed to continue to add more features in a software due to its
inherent decrease in code quality. Most software systems suffer
from technical debt at some point so that dedicated tools and met-
rics have been developed to monitor such debt. Alongside tools,
appropriate engineering practices must be put in place by the de-
velopment team to keep that debt at an acceptable level. In this
empirical study, we observed and surveyed Scrum development
teams composed of experienced students in order to understand
their quality-related processes on a year-long academic project. We
found that (1) students do use static analysis tools of many forms,
but their actual usage is limited due to time pressure; (2) retrospec-
tive and non-constraining feedback on code quality has little to no
effect, even when given regularly during the course of the project;
and (3) junior developers value composite quality indicators (e.g.,
maintainability, reliability in SonarQube), even if they do not fully
understand their meaning. From our findings, we propose a series
of recommendations, both technical and methodological, on how to
train junior developers to understand and manage technical debt.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment;Maintaining software; • Social and professional topics
→ Software engineering education;

KEYWORDS
software quality metrics, static code analysis, empirical study
ACM Reference Format:
Fabian Gilson, Miguel Morales-Trujillo, and Moffat Mathews. 2020. How Ju-
nior Developers Deal with Their Technical Debt?. In International Conference
on Technical Debt (TechDebt ’20), October 8–9, 2020, Seoul, Republic of Korea.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3387906.3388624

1 INTRODUCTION
Alongside ensuring a program behaves as expected, software en-
gineers must take care of the quality of the software to guarantee
it can evolve with new requirements or technologies and does not
fall apart as it grows [3]. In order to keep track of the quality of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7960-1/20/05. . . $15.00
https://doi.org/10.1145/3387906.3388624

a code base (e.g. programs potentially written in many different
programming languages, configuration files, tests, code documenta-
tion), rules and metrics have appeared in order to characterise and
detect quality problems in the form of “antipatterns” at the design
level [31] or “code smells” at the implementation level [22]. These
quality issues have been recognised to have a detrimental effect
on software systems and even software development projects in
general [8]. The amount of necessary work to clear these quality
issues is often referred to as the “technical debt” of a software [18].

Furthermore, earlier empirical studies have demonstrated the
relationship between program comprehension (i.e. the ability to
understand the goals of a program from its implementation code)
and antipatterns [1] as well as their impact on the fault-proneness
of a software (i.e. the likelihood that bugs can be introduced into
the code base) [20]. However, Ramasubbu et al. identified that three
interconnected dimensions come into play while making decision
to “optimise” the technical debt, i.e. customer satisfaction, software
reliability and technological disruption, such that clearing all the
debt is not always feasible or economically viable [25].

Therefore, learning about technical debt is also learning about
the economic trade-offs together with the internal quality of a
software product [15]. However, from our experience, teaching
about code quality metrics to students in a theoretical way is not
effective for two intertwined reasons: (a) when developing software
systems in their assignments or small-scale projects, students tend
to prioritise “quick and dirty” solutions to well designed ones as
soon as the program produces the expected output; and (b) software
solutions the students are asked to implement are usually of a small
scale, span across a very limited period of time and often correspond
to a one-time effort instead of a longer term activity.

Within the Software Engineering degree at the University of
Canterbury, we designed a year long team-based project course
where students develop a mid-scale product in multiple iterations
following the Agile’s Scrum method [6, 26]. In this paper, we are
interested in exploring students’ perception of code quality met-
rics and practices as well its evolution over time. Therefore, the
aforementioned project course offers an interesting controlled en-
vironment to evaluate how junior developers deal with technical
debt over a longer period than typical one-off coding assignments.
The contributions of this paper are the following:

(1) an evaluation of the usage of code quality metrics, tools and
practices by junior developers over a year-long software
development project;

(2) a discussion of an effective teaching strategy for code quality
assurance techniques from both a technical and methodolog-
ical perspective.

In this paper, we discuss similar studies, including teaching of
techniques to deal with the technical debt in Section 2.We introduce

https://doi.org/10.1145/3387906.3388624
https://doi.org/10.1145/3387906.3388624

TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea Fabian Gilson, Miguel Morales-Trujillo, and Moffat Mathews

our research questions in Section 3 and give more details on the
population under study, the setting of the project and the typical
tasks the students are doing, mimicking an industrial environment
in Section 4. We introduce our threefold process to gather and
analyse data in Section 5 and present the results in Section 6. We
discuss these results in Section 7 before concluding in Section 8.

2 RELATEDWORK
Alves et al. reviewed existing techniques and tools to manage and vi-
sualise technical debt [2]. Similarly, Sharma and Spinellis conducted
a literature review on software smells looking at their characteris-
tics, their origin, their effects and their detection techniques [27].
Fontana et al. discussed different technical debt indices available
in existing tools [17]. Ernst et al. investigated what processes and
tools are used in the industry to manage softwareâĂŹs technical
debt [13]. Digkas et al. looked into what kind of repayment actions
are taken by practitioners [11]. In this research, we investigate
both the perception of software smells and their metrics as well
as the course of actions taken by junior developers to manage the
technical debt in a controlled academic but realistic setting.

Simpson and Storer report on a similar project course as we
depict in Section 4 [29]. However, their teaching, assessment and
reporting approach are very different to ours as they involve dif-
ferent industry partners for all teams (which inherently induces a
higher pressure on product delivery than learning activities) and do
not report specifically on the evolution and perception of technical
debt by students. Tonin et al. address the awareness of technical
debt in an eXtreme Programming project course using a specifically
designed “technical debt board” the students were encouraged to
use [30]. In this research, we refrain to specifically focus on tech-
nical debt issues proactively and observe the behaviour of junior
developers in a realistic environment where the quality of each code
base naturally decrease. We want to avoid explicitly and artificially
require students to document their technical debt to limit cognitive
biases in students’ development activities. Bai et al. present a plat-
form integrating static code analysis reports (SonarQube) in the
feedback sent to students [4]. However, the authors do not evaluate
the effects of this feedback on students’ behaviour. Haendler and
Neumann experimented with a serious game dedicated to teach
about refactoring activities [19]. Our strategy is to let students
experiment about technical debt in a realistic, yet academic and
supervised environment within a software development project
rather than a dedicated learning activity. Last, Kuhrmann et al.

conducted an online survey about the current state of practice in
software engineering education [21]. However, the authors did not
investigate static code analysis or technical debt specifically.

3 RESEARCH QUESTIONS
In this research, we are interested in evaluating the position ju-
nior software developers take regarding code quality metrics and
technical debt. To this end, we want to investigate:

RQ1 How regularly junior developers use software analysis tools

to monitor the evolution of the technical debt in their software

development project?

As a first step, we investigate the frequency at which junior
developers look at quality metrics. By frequency, we intend to

evaluate both the time span between subsequent checks as well as
when in the development process these checks occur, i.e. sequence
of activities that were executed right before and right after the
quality check.

RQ2 What are the triggering events leading junior developers to

take corrective actions in order to reduce the technical debt?

We analyse the reasons why junior developers take actions to
decrease the technical debt. We are interested in analysing if mile-
stones (e.g., client demonstrations, formal feedback) have an in-
centive effect on reducing the debt or if other qualitative factors
come into play such as maintainability problems, error-proneness
of badly-designed code or subjective thresholds on a certain amount
of technical debt.

RQ3 What metrics junior developers value the most when evalu-

ating the technical debt of their software development project?

After having a better idea of the timeline of quality-related ac-
tivities, we investigate what metrics junior developers are looking
at and which are mostly disregarded. As a side effect, we will also
gather feedback on potential missing metrics from existing tools
used throughout the project as well as visualisation the developers
would be interested to have.

4 POPULATION AND CONTEXT
4.1 Population under study
The population under study is composed by 60 students enrolled
in the Software Engineering Group Project at the University of Can-
terbury. This class is composed by 3rd year students enrolled in a
Bachelor of Engineering (with Honours) in Software Engineering
(BE(Hons) SENG) for which this course is compulsory, accompanied
by 3rd year students in Bachelor of Science in Computer Science
(BSc CS). BE(Hons) SENG students have a prior software develop-
ment experience in an academic project and typically 400 hours of
internship in the industry. BSc CS students usually have a lower
development experience but faced small-scale coding assignments
in their curriculum.

For the purposes of this study, a junior developer is a software
developer with little practical experience who exhibits a tendency
to develop software with the main goal of “making it work” rather
than creating good quality software.

4.2 Project Course Setting
The software engineering project is a year-long development project
(over 24 lecture weeks) mimicking a professional environment
where students work in teams of eight members. Throughout the
year, each team delivers seven versions of their product and use a
set of tools to manage their source code and its quality.

The teams follow a Scrum methodology with all typical cere-
monies (i.e. planning 1 and 2, stand-ups, product reviews and retro-
spectives). All students are developers and they are coordinated by
a Scrum Master being a tutor1. Each member of the teaching staff
involved in that course takes a different role in the project: a Prod-
uct Owner (PO), a technical expert and a process and quality expert.

1Tutors are either staff members or experienced students that performed outstandingly
in the course earlier.

How Junior Developers Deal with Their Technical Debt? TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea

The course has little formal lectures, but technical workshops are
organised on top of scheduled Scrum ceremonies.

The project runs over seven sprints of around 3 to 4 weeks (i.e.
lecture weeks only). At first, all teams develop the same product
based on the same backlog that is enriched as the first half of the
year goes. Typically after the fourth sprint, each team is encouraged
to bring its own ideas into its own product in order to differentiate
it from the others. Since the product reviews are preceded by pub-
lic presentations of the latest features, all teams can observe the
progress of each other.

4.3 Typical Tasks
Members of a team are considered equal, all being developers under
the Agile terminology. Students are required to log the time spent
on the project on a digital board and are expected to hit around 300
hours at the end of the year. Each student takes part actively in all
software development activities.

4.3.1 Planning 1 and 2. Planning sessions are conducted by
students solely, but they have access to the PO during planning 1 to
clarify unclear stories or advise when making trade-offs. The output
of planning sessions is monitored on the team’s Scrum board.

4.3.2 Development. Each student is expected to implement a
significant part of the system and is required to participate in de-
sign and documentation activities. Students are also encouraged
to pair-program and use dedicated tags in their commit messages
for the teaching team to monitor the contribution of each devel-
oper. Students are expected to follow a similar branching model
to Driessen’s gitflow [12] with peer-reviewed merge requests. The
development is monitored using custom mining tools on the team’s
GitLab

2 repository locally hosted at the University.

4.3.3 Quality assurance. Students are required to write unit, ac-
ceptance and manual tests that need to be logged against predefined
tags in the digital Scrum board. They also comply to a continuous
integration pipeline where all automated tests are expected to be
run. Students are asked to use static code analysis tools throughout
the project, usually starting from the third sprint when the students
are taught about technical debt and code quality metrics.

4.3.4 Product review. After each sprint, a presentation of the
latest features is done in front of all other teams and is followed
by a formal product review conducted by another team such that
each product is evaluated by another team and the couples reviewer-
reviewee change every sprint. The review consists in both a black
box testing of the delivered stories and a white box testing of the
code quality (e.g., test coverage, test readability, code structure),
supported by looking at the aforementioned analysis tools. The
teaching team conducts another in-depth product review (e.g., de-
livered stories, code documentation, wiki).

4.3.5 Continuous learning. Students are engaged in a continu-
ous improvement cycle. After each sprint, students write and re-
ceive (anonymized) self/peer-feedback and the teaching team sends
individual and team feedback regarding team-based behaviour, the
progress of the software and its overall quality.

2See https://gitlab.com.

4.4 The 2019’s Instance
In 2019, the students built a web-based system to manage trips
mixing trip planning and social media. Among common features,
we asked for various types of user permissions, the ability to create
trips, and interface with third party APIs (e.g., geo-localisation).
From that common basis, distinctive functionalities were added
by different teams so that all products were targeting a different
audience (e.g., music bands, business travellers, web influencers).

5 DATA GATHERING
5.1 Extraction of Code Quality Metrics
Teams were asked to deploy a SonarQube

3 instance in order to
monitor the quality of their code base on top of Sonarlint, a plugin
from IntelliJ IDEA

4. This requirement was made clear as a technical
story in all teams’ backlogs early in the project (third sprint). We
opted for SonarQube for the following reasons:

(1) it is open source, cross platform and supports a wide range
of programming languages;

(2) it is web-based, allowing students and the teaching team
to access it from everywhere, with a relatively simple and
straightforward deployment process with extensive official
and unofficial documentation; and

(3) it offers off-the-shelf integration with GitLab for merge re-
quests and Sonarlint/IntelliJ for built-in quality metrics.

Students are also taught about code metrics, technical debt and
quality assurance in a companion course being a co-requisite to
that project course. Additionally, we deployed our own instance of
the tool to monitor the evolution of the quality after each sprint
and give qualitative feedback on that aspect. Using the tool, we can
have a first set of insights regarding the two first questions:

RQ1 significant decreases in the amount of code smells will
likely be indicators of manual actions taken by team mem-
bers to manage the technical debt instead of side effects of
development activities.

RQ2 if significant decrease peaks appear close to milestones
(product review) or in a short period after receiving quali-
tative feedback from the teaching team, we can postulate
assessment deadlines and feedback have an impact on the
quality-related activities.

We can combine the evolution of quality metrics as described
above with a deeper analysis of the code pushed together with the
commit messages to identify if these commits are dealing with new
features (adding new semantics) or fixing quality issues (semanti-
cally equivalent) in order to validate our quantitative observations.

5.2 Survey
A survey (mostly Likert-type scale) has been designed to understand
many aspects of our three research questions and cross-check the
investigation of the data extracted from the static code analysis
tool. The full survey is presented in Table 1.

We mapped the survey questions to our RQs as follows:

3See https://www.sonarqube.org
4See https://www.jetbrains.com/idea and https://www.sonarlint.org

https://gitlab.com
https://www.sonarqube.org
https://www.jetbrains.com/idea
https://www.sonarlint.org

TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea Fabian Gilson, Miguel Morales-Trujillo, and Moffat Mathews

Table 1: Survey questionnaire (detailed multi-valued options are visible in Figures 1 to 9)

Questions Scale type

Prior knowledge of Software Quality Assurance

1. Prior to taking SENG302, to what extent did you know about Technical Debt? Likert scale
2. Prior to taking SENG302, which of these practices did you used either at university, on personal projects or in

industry?
Multi-select list

3. Prior to taking SENG302, howwould you describe your level of knowledge in Programming (e.g., Java, Javascript)? Likert scale
Software Quality Management Practices

4. From the following practices, which one did your team put in place for each merge requests during your SENG302
project?

Multi-select list

5. From the same practices as above, could you rank them in order of importance in your own opinion (1=most
important, 6=less important)?

Rank order

6. What process or tool did your team used to check the quality of the code in general during your SENG302 project? Multi-select list
Usage of Static Code Analysis Tool

7. How often were you looking at a static analysis tool report during your SENG302 project? Likert scale
8. When you used a static analysis tool during your SENG302 project, what metrics did you look at? Multi-select list
9. From the same metrics as above, could you rank them in order of importance in your own opinion. Rank order
10. To your own opinion, when looking at a static code analysis report with poor values at one or more metrics,

which ones of these metrics were triggering a code refactoring task to lower the technical debt of your SENG302
product?

Multi-select list

11. When looking at a static analysis tool report during your SENG302 project, what actions were you typically taking
if any metric you reckon as important had a poor value (e.g., low maintainability, high cyclomatic complexity)?

Likert scale

Final thoughts

12. After completing this questionnaire, is there anything else you would like to add? Open question

RQ1 questions 7 and 11 deal with timing-related behaviour
and actions regarding technical debt;

RQ2 questions 4 and 10 deal with event-related behaviour and
actions regarding technical debt;

RQ3 questions 6, 8 and 9 deal with specific quality-assurance
practices/metrics and their ranking by students.

Questions 4 and 5 are control questions to evaluate if students
actually put in place quality-assurance practices and if static code
analysis tools were actually used. Additionally, we collected data
on any preexisting knowledge and experience (questions 1 to 3)
and left an open question for final thoughts (question 12).

5.3 Focus Groups
As a last step, a focus group has been organised in the following
weeks after the survey to dig deeper in the previous findings of
both the analysis of the historical data and the survey, mainly to
answer “why” questions. The focus group was prepared following
guidelines proposed by Breen [7] and addressed the following Focus
group Questions (FQ):

FQ1 Could you describe the process your team was following
when accepting merge requests, specifically regarding qual-
ity assurance practices and the usage of static code analysis
tools?

From the survey, a ranking of quality-assurance practices (ques-
tion 5) and critical metrics (question 11) can be identified, but we
want to investigate if the ranking and metrics are linked to a se-
quential execution of those practices (RQ1). We also expect to get

more insights regarding the evolution of technical debt during the
project (RQ2).

FQ2 What impediments were you facing while preparing or
handling merge requests that prevented you to use a static
analysis tool systematically?

From the survey, the team’s policy and practices related to
quality-assurance can be investigated, including the usage of static
analysis tools during the project’s lifecycle (question 4, 6 and 7). We
therefore want to discuss the impediments that prevented teams to
systematically apply quality assurance practices such as testing the
new features or using static analysis tools (RQ1 and RQ2).

FQ3.1 Static analysis tools offer many quality metrics (i.e. com-
posed e.g., reliability, maintainability or simple, e.g., test cov-
erage, comments). What metrics did you find the most or
less insightful and why?

FQ3.2 As a follow-up question, what metrics or visualisation
were missing in current tools (e.g., SonarQube, SonarLint)?

Where, in the survey, we investigate metrics valued by students,
we want to understand why junior developers found those metrics
useful or not, or what were they missing (RQ3).

6 DATA ANALYSIS
In this section, we summarise the analysis of extracted data from
SonarQube reports, detail the results of the survey and report the
main outcomes of the focus group.

How Junior Developers Deal with Their Technical Debt? TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea

Table 2: Code Smells and Final SonarQube Indicators for All Projects.

Teams Alpha Bravo Charlie Delta Echo Foxtrot Golf Hotel

Feedback 1 186 190 60 226 35 19 498 182
1 day after 192 190 61 223 34 19 469 267
3 days after 168 219 61 240 36 19 489 152
1 week after 176 198 59 244 54 19 525 152

Feedback 2 294 297 105 309 134 61 368 375
1 day after 200 292 102 320 145 21 380 361
3 days after 200 291 102 320 145 21 380 361
1 week after 200 290 103 321 145 29 382 361

Feedback 3 300 294 104 329 145 19 381 362
1 day after 300 291 102 365 145 18 388 361
3 days after 301 304 148 211 149 12 381 377
1 week after 163 314 141 216 149 12 410 407

Feedback 4 198 371 147 325 151 20 510 443
1 day after 204 367 140 329 159 12 493 442
3 days after 161 72 160 380 174 6 536 458
1 week after 159 79 159 382 185 8 547 471

Reliability C A C C C A D E
Security B A E B B A B B
Maintainability A A A A A A A A
Lines of code 9303 19635 9779 20424 23452 12853 14389 15265
Duplication rate 1.3% 2.1% 0.9% 18.3% 6.5% 1.7% 2.1% 2.3%

6.1 Static Code Analysis Reports
As mentioned in Section 4.3.3, we required teams to deploy their
SonarQube instance during the third of the seven sprints. We could
then formally refer to the output of the tool in our sprint feedback.
Table 2 reports on the number of smells calculated by our Sonar-
Qube instance before and after each feedback sent to students5.
All statistics were calculated on a daily basis on each team’s main
branch only. For the sake of completeness, we also supply the latest
values for the main quality indicators calculated from SonarQube

6,
the total number of lines of code and the code duplication rate for
each projects.

As can be seen in Table 2, no visible effect can be observed for
5 out of 8 teams where the technical debt globally increased. By
the latest sprints, Team Alpha spent some time to reduce their debt,
mostly one week after Feedback 3 showing a decrease of 45% of
the number of smells (from 301 to 163), all fixed in a merge request
commented as code quality improvement.

A similar, but earlier and more long-term quality improvement
action has been taken by team Foxtrot in two stages: after feedback
2 (65% decrease) and by the end of the project (another 60% in
multiple steps), to end with all SonarQube indicators evaluated at
A and a minimal debt of 8 smells, all of these decreases being also
identifiable by explicit commit messages. That particular team kept
their technical debt very low throughout the project since their
first code quality-focused feedback.

5Team names have been changed and randomised to guarantee anonymity.
6
“Reliability” represents the potentiality to trigger unwanted behaviour; “security”
represents any kind of well-known vulnerabilities (e.g., cleartext storage of vulnerable
information, cross-site request forgery); and “maintainability” represents the total
number of code smells.

Last, team Bravo seems to have cleaned up their code from most
of their smells by the end of the project with a decrease from 367 to
72 smells, representing an 80% decrease (with a slight increase to
79 smells for the final deliverable), therefore moving all SonarQube
indicators back to A.

We also looked at the evolution of the debt before sprint reviews
in a similar fashion as presented in Table 2 (not reproduced here
for space reason). The analysis shows no clear effect but in most
cases the debt was increasing the few days prior a sprint review,
sometimes steeply, probably due to last minute development.

6.2 Survey Results
The survey was implemented in an online tool7 and a participa-
tion link was sent to the whole cohort of students enrolled in the
aforementioned project course. The survey was opened from 9th to
24th October 2019 and the participation was voluntary, without any
external incentive and after the projects were graded. On a total of
60 students, 25 responses were collected (41.67% overall response
rate). The respondents were coming from all 8 teams (ranging from
1 to 5 respondents per team).

6.2.1 Prior knowledge. We wanted to ensure the students did
not know much about technical debt prior taking the course, but
had some experience with other quality-assurance practices and
programming in general.

As shown in Figure 1, no respondents indicated to have an ex-
tensive knowledge of technical debt and 11 (44%) indicated to have
“heard about the term only”. This result was expected since technical
debt is discussed for the first time in the companion course.

7See https://www.qualtrics.com

https://www.qualtrics.com

TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea Fabian Gilson, Miguel Morales-Trujillo, and Moffat Mathews

Figure 1: Q1 - Prior knowledge of technical debt.

Other practices related to code quality-assurance are part of the
students’ curriculum prior taking that project course, such as unit
and acceptance testing. We therefore asked the students to indicate
which of these practices were known to them. As visible in Figure 2,
all students indicated being familiar with unit testing, but only two
with regression testing and static analysis tools.

Figure 2: Q2 - Prior knowledge of quality-related practices.

As a control question for external validity, we asked the students
to self-assess their programming experience in order to evaluate
the applicability of our results to similarly-trained junior develop-
ers. Despite simple self-assessment questions are widely used and
known as reliable in general [28], we focused on the amount of
written code instead of a subjective level of proficiency as we have
access to the students results in that particular project course which
give us another insight of their coding proficiency. As results, 1
student (4%) indicated having little programming experience (few
assignments), 14 (56%) having participated to small-scale projects
(under 10.000 LOC) and 10 (40%) having been involved in larger-
scale projects (more than 10.000 LOC).

6.2.2 Software Quality Practices. The second set of questions
concerned the engineering practices related to quality-assurance
applied by the students and their team during the project. On top
of compiling and building, we asked about important aspects of
common best practices including testing [5], coding standards [9]
and merge request management [10].

As can be seen in Figure 3, successful building of code and the
presence of meaningful in-code documentation (including com-
ments) were identified as team’s best practices by 24 out of 25
respondents (96%). Testing and coding standards were also checked
by respectively 21 (84%) and 19 (76%) of the respondents. However,
more advanced quality assurance practices such a merge request
checklists or the usage of static analysis tools were not so popular
with respectively 13 (52%) and 12 (48%).

When looking at the individual answers, no respondents from
the same team fully agreed on the practices used inside the team,
but members from 7 out of 8 teams mentioned the usage of static

Figure 3: Q4 - Quality-related practices applied in projects.

analysis tools and respondents from 6 teams mentioned the usage
of merge checklists.

From the same practices, we asked the students to rank them
from the most to the less important according to their own opinion,
as depicted in Figure 4.

Figure 4: Q5 - Ranking of quality practices, frommost (1) to
less (6) important by respondents.

Similarly to Figure 3, building is clearly ranked first with 22 re-
spondents (88%), but testing has been ranked second by 16 respon-
dents (64%) where documentation comes mostly in third position
with 9 respondents (36%). Starting from the third place, the ranking
is more disputed where no practices obtain an absolute majority.
Merge checklist and documentation are the only practices having
been ranked at all six places by the respondents. The usage of static
analysis tool is ranked from the third to last place, being the most
picked one at fifth place (8 respondents, 32%).

The last question investigated the usage of practices and tools
to ensure the quality of the written code during the project. The
results, ordered from the most to the less used practices and tools
are presented in Figure 5.

Manually or automatically testing the code was the most common
process to ensure the quality (23 responses, 92% of respondents).
Next, SonarQube was picked by 21 respondents (84%), right before
manually screening the code that is selected by 19 respondents
(76%). Sonarlint was used by 17 respondents (68%). While looking

How Junior Developers Deal with Their Technical Debt? TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea

Figure 5: Q6 - Processes and tools used by teams in project.

at the individual responses, one respondent did not mention any
tool, but picked manual screening and test as answers.

6.2.3 Usage of Static Code Analysis Tools and their Metrics. The
last series of questions were related to the usage of static code
analysis tools within the context of the project course. We wanted
to understand how the students integrated the usage of these tools
in their development activities. Figure 6 shows how often during
the project the students were referring to static analysis tools.

Figure 6: Q7 - Usage frequency of tools during project.

A majority of surveyed students (19 out of 25) were using tools
at least once a sprint, corresponding to 76%, from which 4 have inte-
grated the tools as part of either their commit or codemerge review
processes. Most of the reported usage of tools was multiple times

per sprint, representing 40% of the answers. The one respondent
that mentioned not using any static analysis tool selected ESLint

8

and builtin tools as answers to question 6, such that this answer
seems to be a misinterpretation of what static analysis tools are
since ESLint belongs to that category.

In two separate questions, we asked the students to indicate
their level of interest in different quality metrics available in typical
static analysis tools and more particularly in SonarQube since stu-
dents were using it in their project. The list contained a mixture of
composite indicators and more simplistic metrics, all being taught
or discussed in either the companion course or the project course
8See https://eslint.org

itself. We compare the metrics of interest (see Table 1 question
8) and the metrics that were triggering corrective actions when
showing poor values (question 10) in Figure 7 where the metrics
are sorted on the number of responses at question 8.

Figure 7: Comparison of results from Q8 and Q10 on consid-
eration of quality metrics.

As can be seen in Figure 7, duplication gathers the highest results
in both questions (resp. 24 out of 25 respondents for question 8
and 19 for question 10) followed by the maintainability index (22
and 18 respondents), gathering all code smells (e.g., hardcoding of
configuration values, unused import, commented out code). The
results for the remaining metrics are sometimes very different in
both questions, especially the test coverage that is highly regarded as
important (18 respondents, 72%), but triggering significantly fewer
corrective actions (9 respondents, 36%). An inverse relationship, but
to a lesser extent, can be observed regarding the reliability index
(i.e. potentiality to trigger unwanted behaviour) that is looked at
by 11 respondents (44%) but was encouraging 16 respondents (64%)
to take corrective actions.

Similarly to the ranking of practices presented in Figure 4, we
asked the students to rank the same set of metrics from questions 8
and 10. The final ranking is shown in Figure 8.

The two extremes show clear tendencies with the reliability

metric ranked first by 12 respondents (48%) and documentation rate
as the last one (13 respondents, 52%). The remaining results are
rather mixed with no clear tendencies except duplication ranked
fourth by 9 respondents (36%), but being mostly present high in
the ranking, from the second to the fifth place. Also, test coverage
was mainly ranked in the top four places (resp. gathering 7, 6, 6
and 5 responses) showing its high importance to the respondents.

https://eslint.org

TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea Fabian Gilson, Miguel Morales-Trujillo, and Moffat Mathews

Figure 8: Q9 - Ranking of quality metrics from most (1) to less (10) important by respondents.

Cyclomatic complexity [23] shows mixed results despite its relative
simplicity and intelligibility where it achieves its best result in fifth
placewith 5 responses (20%), being the same result as the duplication
metric. Composite indices seem to be of particular interest with the
reliability and, to a lesser extent, the maintainability indices that
were mostly ranked in the top four places.

Last, we investigated the typical behaviour when students were
witnessing poor values to metrics of interests. Figure 9 shows the
course of actions taken after identifying quality problems such as
an increase in the amount of technical debt.

Figure 9: Q11 - Actions taken when poor values were shown
in static analysis tool.

Immediate actions into the code were taken according to 16 re-
spondents either to fix the identified critical issues (5 respondents,
20%) or a few (11 respondents, 44%). Another 5 respondents were
creating dedicated tasks in their digital Scrum board or issue tracker
for the team to be aware of the problem and potentially schedule
corrective actions. From the 3 respondents answering other, 2 men-
tioned they were either fixing all critical or a subset right away,
or they were logging the issues in the team’s issue tracker. The
remaining one from that lot mentioned the time pressure was too
high to concentrate on any code quality aspects.

6.3 Focus Group
Participation to the focus group was voluntary and 6 students from
5 teams have been recruited based on their willingness expressed
verbally or in the survey, 3 of them not having answered to the
survey. The focus group took place on 2nd December 2019, was facil-
itated by the authors and the discussions were audio-recorded and
transcribed for further analysis following an iterative approach [24].
We summarise the main findings per focus group questions rather
than presenting the full category-based formalisation since such re-
port of a deeper analysis goes beyond our initial research questions
and the scope of this paper.

6.3.1 FQ1 - Process followed when accepting merge requests. The
participants reported having followed and adapted aforementioned
gitflow [12] with protected main branch and merge requests, as
expected. They also mentioned the review process evolved through-
out the project from a looser to a more stringent and procedural
code review process and, finally entrusting their team members
to apply the right level of scrutiny in their review as everyone’s
experience had increased. Reviews were typically conducted by
one or two other team members, often one that was not familiar on
that part of the software to offer a critical eye on the code under
review. Two participants noticed significant variances in the level
of depth of code reviews across team members and one noticed
“lots of people [being] nice [with each other]”.

All participants mentioned their team had defined and docu-
mented guidelines early on during the project, typically during the
second or third sprint. Those guidelines focused mainly on code
style (e.g., usage of camel-case, maximum nesting levels, unit tests),
but little systematic use of or referral to static analysis tools. All
participants mentioned they often ignored warnings from within
their IDE, especially closer to end of sprints, corroborating our

How Junior Developers Deal with Their Technical Debt? TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea

last observation in Section 6.1 regarding increasing technical debts
close to sprint deadlines.

One participantmentioned their team relied on pair-programming
to ensure the code was written at the expected level of quality, low-
ering the need for in-depth code review and therefore speeding up
the development pace.

6.3.2 FQ2 - Impediments preventing the usage of static code anal-
ysis tools. All participants mentioned facing technical difficulties
while setting up SonarQube. The most missed feature was the abil-
ity to run an analysis on any branch prior merging9. Participants
were also missing the interaction with their continuous integration
pipeline or development tools, despite the ability to do so10.

Participants were also annoyed by too many “false positives”

regarding string constants in error messages “which would often

end up making horribly unreadable code”. But they also recognised
that they could learn about features of the programming language
they were not aware of as well as discovering error prone code.

Last, all participants mentioned the pressure to add new fea-
tures to the code base prevented them to spend too much time on
fixing smells. Two participants mentioned their respective teams
dedicated time-boxed periods to fix smells here and there and two
other participants reported their (common) team decided to work
preventively to keep the debt low, making it easier to fix a lower
number of smells regularly.

6.3.3 FQ3 - Insightful and missing metrics from static code anal-
ysis tools. All participants agreed the tools they had access to (e.g.,
SonarLint, SonarQube) offered sufficient metrics for their day-to-day
development work, such that the low level of usage was related
to technical difficulties and a late realisation on “how much [they]

should be maintaining [their] code” and that they “didn’t think that

the code had to be that maintainable”. All participants also advocated
for dedicated workshops to be trained on properly configure and
use those tools, apart from and alongside the project itself.

Among the metrics the participants particularly mentioned, we
noted the size of classes, complexity of functions, level of nest-
ing, code duplication rate and test coverage. Interestingly, three
participants mentioned they did not fully understand SonarQube

composite indices because of a lack of time, but another participant
mentioned “[they] were so happy when [they] got that green tick”.

7 DISCUSSION
Following well-known guidelines [32], we report the results of our
empirical study from both a software engineering and a teaching
perspective, and review its limitations.

7.1 Summary of Findings
7.1.1 RQ1 - Usage of software analysis tools. A vast majority

of surveyed students reported the use of static analysis tools (24
out of 25, 96%). Since we required the students to use such tools,
this result was expected, but 19 respondents, corresponding to 76%,
used static code analysis tools at least once per sprint, indicating
regular checks to ensure the quality of their product was on track.

9Branch analysis is a paid feature of SonarQube we had not provided the students with.
10These features were available in SonarQube, but students did not dig into the tool
configuration possibilities by themselves as we were expecting them to do so.

However, it appears the usage of analysis tools were more of a
personal initiative than a team one. The focus group highlighted
that, even if students appear to look at the reports or warning issued
from these tools at least once per sprint, their actual usage was
rather limited, mainly due to a lack of time and/or knowledge.

7.1.2 RQ2 - Course of actions to reduce the technical debt. A
majority of surveyed students indicated that they were taking im-
mediate corrective actions either to fix all critical or a few code
smells (23 survey respondents, 92%). During the focus group, we
discovered that either teams were enforcing high quality early on
the project, therefore handling new debt easily, or ignoring most
of the smells because they found it irrelevant (e.g., usage of string
constants) or the time pressure was too high on delivering new
features. Still, some participants mentioned the tools helped at im-
proving their code quality as they were developing with little hints
or suggestions about language features they were not aware of.

From the data mined from SonarQube, retrospective feedback
from the teaching team seems to have little effect since we could
observe some improvements right after written feedback was given
for 2 teams out of 8. A third team also reduced significantly his
technical debt close to the final deadline. One participant in the
focus group confirmed that sprint feedback had incentive effect on
their decision to reduce the debt. Another participant mentioned
they were conscious of the problem, but could not commit man-
power at reducing the debt because of other priorities, hence an
overall limited effect of feedback on the code quality.

The focus group also highlighted that all teams suffered from
poor decisions and shortcuts taken early on the project and that
they did not realise early enough that they needed to hit a higher
quality standard to keep implementing new features efficiently.

7.1.3 RQ3 - Quality metrics valued by junior developers. Aggre-
gated metrics (using traffic light flags in SonarQube) are attracting
the respondents attention while looking at static code analysis tools
and this has been partially confirmed by the focus group. However,
the time pressure and the lack of a fully dedicated workshop done
separately from the project itself prevented students to fully benefit
from the usage of these tools.

Among simpler metrics, code duplication was identified with
high importance during the survey as well as the level of nesting
and class sizes during the focus group. Test coverage is another
metric gathering lots of interest and was particularly scrutinised
during code review or a mean of increasing the code quality, as
discussed with the focus group. On the other hand, complexity
metrics were mostly disregarded by students.

7.2 Advice for Teachers
This retrospective study targeted the usage of static code analysis
tools in an academic year-long project aiming to reproduce an
industrial environment as much as possible. From the data we
gathered, we believe the usage of such tools helped teams to keep
track of their technical debt and improve the code quality overall
as 2 teams had a high level of code quality and the other teams kept
an acceptable level of debt, according to the maintainability indices
computed by SonarQube on the projects’ code base.

TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea Fabian Gilson, Miguel Morales-Trujillo, and Moffat Mathews

However, technical difficulties did have hindered the students’
experience and must not be neglected. Despite the possibility to do
so and our implicit expectations that the students would invest time
to configure their tools beyond what we supplied them with, all
students expressed the need for a deeper and even more stringent
integration of analysis tools within their software development
environment and continuous integration pipeline, reducing the
manual burden of the usage of these tools during merge requests.

An interesting, but not surprising observation from the focus
group relates to trade-offs students had to make between customer,
technology and reliability [25]. In order to recreate an industrial
setting, students feel pressured to deliver new features instead of
concentrating on the code quality and then realise halfway through
the project that shortcuts and low code quality prevent faster de-
velopment. Despite this is an expected learning outcome of such
longer term projects, all participants to the focus group recom-
mended to strictly enforce a high level of quality metrics for all
delivered products throughout the year and therefore offer a mix-
ture of learning-by-doing and more classical teaching philosophy.

They also recommended to add dedicated technical workshops
alongside the project itself to be encouraged to learn more about
technical debt outside their development duties in the project itself
as well as to understand their technical aspects more deeply.

7.3 Limitations
7.3.1 Conclusion validity. Because of a limited number of par-

ticipants to the survey (25), the present research is under typical
threshold for statistical significance and representability, such that
we are mainly looking for general tendencies. Furthermore, in order
to increase our confidence in the results, we gathered data from
multiple sources for triangulation purposes where (1) we analysed
historical data from static code analysis reports to ensure the results
from the survey are in line with the actual timeline of the projects
in term of technical debt and (2) we targeted our questions during
the focus group to crosscheck the findings from both the survey
and data mined from SonarQube.

7.3.2 Construct Validity. The survey has been beta-tested by
researchers in software engineering and implemented in a com-
mercial tool taking care of the initial gathering and analysis of
the data. Additionally, the survey and the research proposal have
been reviewed by researchers outside the software engineering
and received prior approval from the Ethics Committee from the
University.

Research involving students may raise a social threat grieving
the results. We minimised that potential issue by making the partic-
ipation to the survey and focus group voluntary without any form
of external incentives and after completion of the course.

The deployment of SonarQube was made a requirement but no
marks were specifically given to encourage its usage on a regular
basis, hence the results discussed in Section 7.1.1. Still, students
reported facing technical difficulties with the tool which have po-
tentially influenced their user experience as well as our results.

7.3.3 Internal Validity. Prior students’ experience with techni-
cal debt was limited (see Section 6.2.1 Q1 and Q2), but a majority
used static analysis tools in their development activities on a regular

basis, making us confident in our results. This aspect has been cross-
checked with the focus group, even if the actual level of expertise
and usage varied significantly between students and teams.

7.3.4 External Validity. Using students as proxy for junior de-
velopers is subject of great debate in the software engineering
community [14, 16]. However, in this research we had a double
objective:

(1) retrospectively understand the behaviour of students/junior
developers facing increasing technical debt in a controlled
environment mimicking an industrial setting on a longer
period than typical course assignments;

(2) improve our teaching material in a year-long project course
(and its companion course) where we train students mostly
in a learning-by-doing philosophy with regular feedback and
continuous learning (e.g., Scrum-based software develop-
ment, version control, software quality assurance).

We then believe our conclusions can be generalised to similar
software development projects using a similar teaching philosophy
on similarly trained students or junior developers freshly graduated
with a basic to no knowledge of technical debt.

8 CONCLUSION
In this research, we investigated the usage of static code analysis
tools within a year-long team-based project in a third year of a
software engineering degree. We designed this study around a
survey, focus groups and the analysis of historical code quality data
to identify (1) how often junior developers use static analysis tools,
(2) what events trigger corrective actions in term of code quality
and (3) what metrics are of interest to them. We used third year
students with a prior experience of academic and industry software
development as proxies for junior developers. We observed that (1)
students do use static analysis tools of many forms, (2) students
do report having suffered from technical debt at some point, (3)
feedback from teaching team on technical debt has little effect,
mostly because of time pressure (4) students value both composite
quality indices together with simple metrics, but they confess being
puzzled by some rules or metrics. Additionally, as a side effect, we
observed that despite decent understanding of quality measures
and methods, few junior developers invest a significant effort into
reducing the technical debt on a regular basis, mainly because of
time pressure, even if the usage of static analysis tools is encouraged,
but not enforced.

In the future, we plan to conduct a deeper topic analysis of
the transcripts of the focus group where students came up with
valuable insights outside of the scope of this research. Furthermore,
a deeper analysis of the corrective actions per types of smells can
be conducted to understand students’ behaviour at a finer grained
level. Last we plan to reproduce this research on a second cohort
where we would have implemented the pedagogical suggestions
we discussed above.

Acknowledgement
Thanks to Tim Huber and Erik Brogt from the University of Can-
terbury for proofreading the research proposal and survey. Thanks

How Junior Developers Deal with Their Technical Debt? TechDebt ’20, October 8–9, 2020, Seoul, Republic of Korea

to the students enrolled in the 2019’s edition of SENG302 project
course for their active participation.

REFERENCES
[1] M. Abbes, F. Khomh, Y. Gueheneuc, and G. Antoniol. 2011. An Empirical Study of

the Impact of Two Antipatterns, Blob and Spaghetti Code, on Program Compre-
hension. In 2011 15th European Conference on Software Maintenance and Reengi-

neering. 181–190. https://doi.org/10.1109/CSMR.2011.24
[2] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de MendonÃğa, Rodrigo O.

SpÃŋnola, Forrest Shull, and Carolyn Seaman. 2016. Identification and manage-
ment of technical debt: A systematic mapping study. Information and Software

Technology 70 (2016), 100 – 121. https://doi.org/10.1016/j.infsof.2015.10.008
[3] Paris Avgeriou, Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and Carolyn

Seaman. 2016. Reducing Friction in Software Development. IEEE Softw. 33, 1 (Jan.
2016), 66âĂŞ73. https://doi.org/10.1109/MS.2016.13

[4] Xiaoying Bai, Mingjie Li, Dan Pei, Shanshan Li, and Deming Ye. 2018. Continuous
delivery of personalized assessment and feedback in agile software engineer-
ing projects. In 40th International Conference on Software Engineering: Software

Engineering Education and Training. 58–67.
[5] K. Beck. 1999. Embracing change with extreme programming. Computer 32, 10

(Oct 1999), 70–77. https://doi.org/10.1109/2.796139
[6] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland.

1999. SCRUM: An extension pattern language for hyperproductive software
development. Pattern Languages of Program Design 4 (1999), 637–651.

[7] Rosanna L. Breen. 2006. A Practical Guide to Focus-Group Research. Journal of
Geography in Higher Education 30, 3 (2006), 463–475. https://doi.org/10.1080/
03098260600927575

[8] WilliamH. Brown, Raphael C.Malveau, HaysW. "Skip"McCormick, and Thomas J.
Mowbray. 1998. AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[9] Andrea Capiluppi, Cornelia Boldyreff, Karl Beecher, and Paul J. Adams. 2009.
Quality Factors and Coding Standards âĂŞ a Comparison Between Open Source
Forges. Electronic Notes in Theoretical Computer Science 233 (2009), 89 – 103. https:
//doi.org/10.1016/j.entcs.2009.02.063 Proceedings of the International Workshop
on Software Quality and Maintainability (SQM 2008).

[10] J. Czerwonka, M. Greiler, and J. Tilford. 2015. Code Reviews Do Not Find Bugs.
How the Current Code Review Best Practice Slows Us Down. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, Vol. 2. 27–28. https:
//doi.org/10.1109/ICSE.2015.131

[11] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampatzoglou.
2018. How do developers fix issues and pay back technical debt in the Apache
ecosystem?. In 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER). 153–163. https://doi.org/10.1109/SANER.
2018.8330205

[12] Vincent Driessen. 2010. A successful Git branching model. (2010). https:
//nvie.com/posts/a-successful-git-branching-model/ accessed:30/10/2019.

[13] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton.
2015. Measure It? Manage It? Ignore It? Software Practitioners and Technical
Debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York,
NY, USA, 50âĂŞ60. https://doi.org/10.1145/2786805.2786848

[14] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering ex-
perts on the use of students and professionals in experiments. Empirical Software

Engineering 23, 1 (2018), 452–489. https://doi.org/10.1007/s10664-017-9523-3
[15] Davide Falessi and Philippe Kruchten. 2015. Five Reasons for Including Technical

Debt in the Software Engineering Curriculum. In Proceedings of the 2015 European

Conference on Software Architecture Workshops (ECSAW âĂŹ15). Association for
Computing Machinery, New York, NY, USA, Article Article 28, 4 pages. https:
//doi.org/10.1145/2797433.2797462

[16] Robert Feldt, Thomas Zimmermann, Gunnar R. Bergersen, Davide Falessi, An-
dreas Jedlitschka, Natalia Juristo, Jürgen Münch, Markku Oivo, Per Runeson,
Martin Shepperd, Dag I. K. Sjøberg, and Burak Turhan. 2018. Four commen-
taries on the use of students and professionals in empirical software engineering
experiments. Empirical Software Engineering 23, 6 (01 Dec 2018), 3801–3820.
https://doi.org/10.1007/s10664-018-9655-0

[17] F. A. Fontana, R. Roveda, and M. Zanoni. 2016. Technical Debt Indexes Provided
by Tools: A Preliminary Discussion. In 2016 IEEE 8th International Workshop on

Managing Technical Debt (MTD). 28–31. https://doi.org/10.1109/MTD.2016.11
[18] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code (2nd ed.).

Addison-Wesley Signature Series (Fowler).
[19] Thorsten Haendler and Gustaf Neumann. 2019. Serious Refactoring Games. In

52nd Hawaii International Conference on System Sciences (HICSS’19), Tung Bui
(Ed.). ScholarSpace / AIS Electronic Library (AISeL). https://doi.org/10.24251/
HICSS.2019.927

[20] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change- and fault-proneness. Empirical Software Engineering 17, 3 (01 Jun 2012),
243–275. https://doi.org/10.1007/s10664-011-9171-y

[21] Marco Kuhrmann, Joyce Nakatumba-Nabende, Rolf-Helge Pfeiffer, Paolo Tell, Jil
Klünder, Tayana Conte, Stephen G MacDonell, and Regina Hebig. 2019. Walking
through the method zoo: does higher education really meet software industry
demands?. In IEEE/ACM 41st International Conference on Software Engineering:

Software Engineering Education and Training (ICSE-SEET). IEEE, 1–11.
[22] M. Mantyla, J. Vanhanen, and C. Lassenius. 2003. A taxonomy and an initial

empirical study of bad smells in code. In International Conference on Software

Maintenance. 381–384. https://doi.org/10.1109/ICSM.2003.1235447
[23] T. J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software

Engineering SE-2, 4 (Dec 1976), 308–320. https://doi.org/10.1109/TSE.1976.233837
[24] Fatemeh Rabiee. 2004. Focus-group interview and data analysis. Proceedings of

the Nutrition Society 63, 4 (2004), 655âĂŞ660. https://doi.org/10.1079/PNS2004399
[25] N. Ramasubbu, C. F. Kemerer, and C. J. Woodard. 2015. Managing Technical Debt:

Insights from Recent Empirical Evidence. IEEE Software 32, 2 (Mar 2015), 22–25.
https://doi.org/10.1109/MS.2015.45

[26] Ken Schwaber and Mike Beedle. 2001. Agile Software Development with Scrum

(1st ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
[27] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal

of Systems and Software 138 (2018), 158 – 173. https://doi.org/10.1016/j.jss.2017.
12.034

[28] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring andmodeling programming experience. Empirical Software Engi-

neering 19, 5 (01 Oct 2014), 1299–1334. https://doi.org/10.1007/s10664-013-9286-4
[29] R. Simpson and T. Storer. 2017. Experimenting with Realism in Software

Engineering Team Projects: An Experience Report. In 2017 IEEE 30th Confer-

ence on Software Engineering Education and Training (CSEE T). 87–96. https:
//doi.org/10.1109/CSEET.2017.23

[30] Graziela Simone Tonin, Alfredo Goldman, Carolyn Seaman, and Diogo Pina.
2017. Effects of Technical Debt Awareness: A Classroom Study. In Agile Processes

in Software Engineering and Extreme Programming, Hubert Baumeister, Horst
Lichter, and Matthias Riebisch (Eds.). Springer, 84–100.

[31] Bruce F. Webster. 1995. Pitfalls of Object-oriented Development. M & T Books,
New York, NY, USA.

[32] Claes Wohlin, Per Runeson, Marin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer-Verlag.

https://doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1109/MS.2016.13
https://doi.org/10.1109/2.796139
https://doi.org/10.1080/03098260600927575
https://doi.org/10.1080/03098260600927575
https://doi.org/10.1016/j.entcs.2009.02.063
https://doi.org/10.1016/j.entcs.2009.02.063
https://doi.org/10.1109/ICSE.2015.131
https://doi.org/10.1109/ICSE.2015.131
https://doi.org/10.1109/SANER.2018.8330205
https://doi.org/10.1109/SANER.2018.8330205
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://doi.org/10.1145/2786805.2786848
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1145/2797433.2797462
https://doi.org/10.1145/2797433.2797462
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1109/MTD.2016.11
https://doi.org/10.24251/HICSS.2019.927
https://doi.org/10.24251/HICSS.2019.927
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1109/ICSM.2003.1235447
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1079/PNS2004399
https://doi.org/10.1109/MS.2015.45
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1109/CSEET.2017.23
https://doi.org/10.1109/CSEET.2017.23

	Abstract
	1 Introduction
	2 Related Work
	3 Research Questions
	4 Population and Context
	4.1 Population under study
	4.2 Project Course Setting
	4.3 Typical Tasks
	4.4 The 2019's Instance

	5 Data Gathering
	5.1 Extraction of Code Quality Metrics
	5.2 Survey
	5.3 Focus Groups

	6 Data Analysis
	6.1 Static Code Analysis Reports
	6.2 Survey Results
	6.3 Focus Group

	7 Discussion
	7.1 Summary of Findings
	7.2 Advice for Teachers
	7.3 Limitations

	8 Conclusion
	References

