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In May 2014, the global ridesharing service, Uber, began operations in Auckland, 

New Zealand and by March 2019, Uber was available in seven cities across the 

country. As in other countries, Uber New Zealand‘s press releases claim that the 

presence of Uber reduces the incidence of drunk driving. Using monthly data on 
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of New Zealand, we find that the presence of Uber in a city is often associated with 

small decreases in these indicators of drunk driving, but these results consistently 

lack statistical significance. 
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I. Introduction 

Drunk driving has long been a major issue in New Zealand society. In 2010/11, 17% of all 

traffic fatalities and 18% of all serious traffic injuries in New Zealand were considered “alcohol-

induced” (White, et al., 2014).1 Moreover, 31% of New Zealand traffic fatalities in 2013 involved 

some level of alcohol intoxication, the third-highest rate among twenty-four “high-income” 

countries (World Health Organisation, 2015). The annual social cost of alcohol-related crashes 

between 2011 and 2014 was estimated to be $495 million (Ministry of Transport, 2015).  This 

estimate consisted of factors such as medical bills, legal fees, vehicle and property damage, and 

loss of life; all of which are directly incurred by drunk driving. 

There have been several attempts to treat this problem in New Zealand. Some treatment 

strategies focus on raising awareness of the consequences of drunk driving through educational 

programmes, or advertising campaigns such as “Dilemmas” and “Legends” (NZ Transport 

Agency, 2019).  Another strategy is random police checkpoints that give roadside breath tests, 

which serve to increase the likelihood of being caught. National policy has also been used to curb 

drunk driving; in May 2011, Parliament passed the “zero tolerance” law, which states that drivers 

under 20 years of age cannot drive if their blood alcohol concentration (BAC) is non-zero. This 

was followed in August 2014 by a lowering of the BAC limit for over-20 drivers from 80mg/100ml 

to 50mg/100ml, bringing New Zealand more in line with international best practice. 

While the above interventions were aimed at solving the drunk driving problem, this paper 

focuses on a less intentional treatment strategy: the introduction of ridesharing. A ridesharing 

service is one that matches customers seeking transportation with private drivers in their area, 

usually through a smartphone application that supports credit-card transactions. Taking a rideshare 

is generally cheaper and more convenient for customers than taking a taxi. Ridesharing thus could 

act as a drunk driving treatment if a certain proportion of drivers drive drunk because their primary 

alternative, taking a taxi, is too costly and/or difficult to arrange, especially when intoxicated. 

                                                 
1 “Alcohol-induced” traffic accidents were responsible for 43 out of 259 fatalities, and 614 out of 3,366 serious 

injuries. 
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Uber first entered New Zealand in May 2014, and expanded operations to a total of seven 

cities within five years of its entry2. Uber’s entry into a city could thus act as a region-specific 

drunk driving “treatment”, the effects of which can be separated from nationwide treatments such 

as advertising campaigns and law changes. Since Uber’s entry into the country has been staggered 

across the last five years, we can use monthly data to isolate the treatment effect and observe any 

Uber-driven changes to the drunk driving rate of each city.  

When launching their service in Christchurch, Uber themselves implied this result by 

claiming to be “having a positive impact on issues…such as drink-driving” (Bruce, 2016). The 

strongest verification of this so far is a 2016 study carried out on Uber’s behalf, which found that 

70% of Uber users in New Zealand had used the service after drinking; 41% of users who drink 

said that Uber had helped them avoid drunk driving; and 75% believed that Uber helped to reduce 

drunk driving in their community (NZ Herald, 2016). This paper provides a more comprehensive 

investigation of this claim. 

Similar studies have been conducted overseas, specifically in the United States of America. 

These studies have tended to use a difference-in-differences approach to compare drunk driving 

rates in U.S. cities before and after the entry of Uber. Many have found some level of decrease in 

drunk driving rates that can be attributed to Uber, although the size and significance of the decrease 

varies across studies. In this study for New Zealand, we observe a weak negative effect, but never 

find this effect to be statistically distinguishable from zero. 

The remainder of this paper is structured as follows: In the next section, we provide a short 

overview of the literature that links Uber and drunk driving. In section 3, we discuss the data 

sources and methods used in this paper. Section 4 presents the results of our analysis, while section 

5 concludes. 

II. The presence of Uber and drunk driving 

Why might people who previously elected to drive drunk view Uber as a preferable option? 

One possible explanation is that Uber simply offers more convenience. There is a growing 

literature concerning the sharing economy and platform economics, both of which Uber utilises. 

Parker and Van Alstyne (2005) explain that a “platform intermediary” such as the Uber app 

                                                 
2 Competitors like Zoomy, Ola, and DriveHer have entered the New Zealand market but remain small. 
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reduces transaction costs and maximises consumer surplus. Uber’s app asks the passenger to select 

a destination and a pickup point; assigns a driver almost instantly; provides the passenger with 

information about the driver and their car; and handles payment electronically through previously 

entered payment details. This process bypasses transaction costs that are incurred by taking a taxi, 

such as arranging/locating a driver; articulating the destination; waiting for the taxi to arrive; 

identifying the taxi once it has arrived; and organising payment, sometimes with cash. These 

transaction costs can also be significantly exacerbated by intoxication. Therefore, it is reasonable 

to expect that intoxicated individuals would receive significantly more utility from a taxi service 

if able to bypass these transaction costs. 

The other key reason is the financial cost of taking an Uber. Uber has been able to undercut 

taxi prices in New Zealand, with research from GO Rentals (2017) showing that taking a taxi to 

the airport in New Zealand cities is roughly twice as expensive as taking an Uber.3 It is clear that, 

if a similar price disparity existed when travelling from the city to the suburbs, drunk drivers who 

previously considered taxis to be prohibitively expensive might now be incentivised to take an 

Uber instead. 

It is important to note, though, that it is difficult to establish exactly how large the price 

disparity is in this situation. Firstly, it appears that there are additional regulations involved in 

being an “airport taxi” that may not be enforced for Uber (Chu, 2015), which could result in taxi 

prices being particularly high for airport trips. This may mean the results from the above study are 

exaggerated. Secondly, it is likely that late at night on Friday and Saturday (i.e. popular drinking 

times) will be a period of high demand and low supply for rideshare services; therefore, it is likely 

that Uber’s surge pricing would be employed. Surge pricing results in a multiplier being applied 

to the standard Uber fares in order to equilibrate supply and demand (Hall, Kendrick, & Nosko, 

2015). This could result in Uber prices being substantially higher than normal during peak drinking 

hours, which may reduce the incentive for consumers to switch away from taxis—or, indeed, from 

drunk driving. 

Despite this uncertainty, and despite the inherent difficultly in predicting the behaviour of 

poor decision-makers, it seems plausible that the marginal drunk driver, i.e. one who only slightly 

                                                 
3 Specifically, taxi rides were 1.86 times more expensive in Auckland; 2.11 times more expensive in Christchurch; 

and 1.70 times more expensive in Wellington. 
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prefers drunk driving to taking a taxi, may have switched to Uber when it became an option. 

Theory therefore supports the hypothesis that the introduction of Uber could have caused a 

decrease in drunk driving in New Zealand cities. 

As modern ridesharing is a relatively recent phenomenon, the academic literature 

surrounding its impact is still emerging. However, we have identified thirteen studies that consider 

the impact of ridesharing on drunk driving, ten of which use data from the United States of 

America. This study thus extends the small literature that looks at the impact of ridesharing beyond 

North America. 

Table 1: An Overview of the Literature on Ridesharing and Drunk Driving 

Study Dependent Variable 

Pos. or 

Neg. Size 

Stat. 

Signif. Where 

Martin-Buck (2016) 

fatal alcohol-related auto 

accidents - -10% to -11.4% yes U.S. 

Brazil & Kirk (2016) traffic fatalities + 1% no U.S. 

Greenwood & Wattal (2017) 

alcohol-related motor 

vehicle fatalities - -3.6% to -5.6% yes U.S. 

Peck (2017) 

alcohol-related collision 

rate - -25% to -30% yes U.S. 

Dills & Mulholland (2018) fatal accidents - -0.20% yes U.S. 

Downie (2018) drunk driving - -5.4% to -7.3% yes U.S. 

Morrison, Jacoby, Dong, 

Delgado, & Wiebe (2018) crashes - depends on the city unclear U.S. 

Barrios, Hochberg, & Yi 

(2020) 

fatalities and fatal 

accidents + 3% yes U.S. 

Zhou (2020) drunk driving - -4% no U.S. 

Brazil & Kirk (2020) traffic fatalities + 1% no U.S. 

Huang, Majid, & Daku (2020) 

weekly road traffic-

related deaths - 

< 2 deaths per 

province per year yes 

South 

Africa 

Kirk, Cavalli, & Brazil (2020) number of fatal accidents + 3% no 

Great 

Britain 

Lagos, Munoz, & Zulehner 

(2020) 

drunk-driving fatal 

accidents and fatalities - about -50% yes Chile 

Table 1 not only shows that most studies use U.S. data, it also suggests there is a very large 

variation in results. For example, using U.S. data, Peck (2017) finds a sizeable and significant 

negative effect on the alcohol-related collision rate, while Brazil and Kirk (2020) find no 

significant effect and Barrios, Hochberg and Yi (2020) find a positive effect on fatal accidents. A 

similar variation can be seen across countries. Finally, Morrison et al. (2018) show that results 

even can vary across cities. This geographical variation suggests it is important to analyse the 
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impact of ridesharing in a wide range of settings, hence the importance of a study focusing on New 

Zealand. 

III. Data and Methods 

The New Zealand Transport Agency (NZTA) granted us access to their Crash Analysis 

System (CAS), which records detailed information about every vehicle crash that occurs in New 

Zealand (NZ Transport Agency, 2018). Using this data, we examine the monthly drunk driving 

crashes in each territorial authority of New Zealand. We also have data on the monthly number of 

alcohol-specific driving offences by police area, as provided by the New Zealand Police (2019). 

These datasets provide a good approximation of the frequency of drunk driving in each location. 

Using regional data allows us to separate the locations with Uber from those without, and using 

monthly data allows us to identify Uber’s exact point of entry in each location.  

We use data from January 2012 until March 2019.4 Starting in January 2012 helps to avoid 

any confounding effects from the 2011 law changes, while still providing enough data about pre-

Uber drunk driving trends in each city. The confounding factor of the December 2014 decrease in 

the adult legal BAC limit cannot be avoided, and it is important to note that, while this was a 

nationwide law change, it may have affected different locations in different ways.  

Unfortunately, the geographical units used in the crash data are different from those used 

in the offence data. This forces us to keep the two datasets separate, as there is no easy way to 

compare the two types of geographical unit. For the sake of clarity, we will describe each type of 

geographical unit and use consistent terminology throughout this article: 

 The crash data allow us to separate alcohol-related crashes by territorial 

authority. There are 67 territorial authorities in New Zealand; these consist of 13 

city councils, 53 district councils, and the Chatham Islands Council. The population 

of territorial authorities varies a lot, from less than a thousand to over a million 

people, with the median population being about thirty thousand. Territorial 

authorities can be grouped into 16 regions, except for the Chatham Islands Council 

which does not belong to a region.  

                                                 
4 The crash data was taken from the CAS website on August 24th, 2019. The offence data was published on the NZ 

Police website in May 2019. 
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 The offence data allow us to separate alcohol-related crashes by police area. There 

are 38 police areas in New Zealand, and they can be grouped into 12 police 

districts. 

Table 2 lists the seven New Zealand cities which Uber has entered, along with the month 

of entry and corresponding geographical units. These units are what we are referring to when we 

report data for the number of crashes/offences in a given city. Although in some cases it may be 

possible to call an Uber outside of these geographical units, we have selected those that would see 

the vast majority of Uber traffic for each city.  

Table 2: New Zealand Cities with Uber as of March 31st, 2019 

City Month 

of entry 

Territorial 

authority/authorities 

Region Police area(s) Police district(s) 

Auckland May 

2014 

Auckland Auckland several5 Auckland City, 

Counties/Manukau, 

Waitematā 

Wellington6 Oct 

2014 

Lower Hutt City, Porirua 

City, Upper Hutt City, 

Wellington City 

Wellington Hutt Valley, 

Kapiti-Mana, 

Wellington 

Wellington 

Christchurch Mar 

2016 

Christchurch City Canterbury Canterbury 

Metro 

Canterbury 

Hamilton Jan 

2018 

Hamilton City Waikato Hamilton City Waikato 

Tauranga Jan 

2018 

Tauranga City Bay of 

Plenty 

Western Bay 

of Plenty 

Bay of Plenty 

Dunedin May 

2018 

Dunedin City Otago Otago Coastal Southern 

Queenstown Jun 

2018 

Queenstown-Lakes District Otago Otago Lakes 

Central 

Southern 

There are a wide range of econometric tools available with which to conduct this analysis. 

Following the precedent set by similar studies, we primarily use a difference-in-differences 

framework, always accounting for both time and location fixed effects. The main dependent 

variable is the number of monthly drunk driving crashes/offences by location. Uber’s influence on 

this will be measured using an independent dummy variable, which will be set to 1 when Uber is 

present in a given month and location, and 0 otherwise. We include other explanatory variables, 

                                                 
5Auckland City: Auckland Central, Auckland East, Auckland West;  

Counties/Manukau: CM Central, CM East, CM South, CM West;  

Waitematā: Auckland Motorways, Waitematā East, Waitematā North, Waitematā West 

6 Note that we are considering the Wellington metropolitan area, or “Greater Wellington”. 
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including local population and time-specific dummy variables accounting for other policy changes. 

Additionally, we experiment with more specific dependent variables, as alcohol-related crashes 

can be stratified by severity and timing.  

It is important to note that, when retrieving data from the Crash Analysis System, there are 

multiple ways to filter the data for crashes involving alcohol. Given we are primarily interested in 

crashes involving an intoxicated driver who is over the legal BAC limit, we define “drunk driving” 

crashes as those where the following contributory factor code (Hewitt, 2016) is associated with 

the crash: 103 — alcohol test above limit or test refused. 

We are therefore omitting the following alcohol-related codes, as they do not confirm that 

alcohol was a contributory or causal factor in a crash: 

 101 — alcohol suspected; 

 102 — alcohol test below limit; 

 105 — impaired non-driver (pedestrian/cyclist/passenger, etc.); 

 100 — other alcohol. 

Although some previous studies have chosen to include drug-related crashes and offences 

as part of their analysis, we have chosen to omit this and focus only on alcohol. This is because 

the data contains relatively low numbers of drug-related crashes and offences, suggesting fairly 

infrequent testing. For example, the first crash reported as drug-related in the dataset occurred in 

May 2016, at which point three Uber entries had already taken place. Therefore, it seems unlikely 

that including these in the analysis would help to draw meaningful conclusions. 

To control for different locations having different population growth rates, we include local 

population data in the analysis where possible. However, it is important to note that population 

data is only available for territorial authorities, and not for police areas. Therefore, local population 

data can only be included in the regressions involving the crash data. Moreover, the available 

population data is annual rather than monthly, and therefore only gives the population of each 

territorial authority in June of each year. To obtain local population data for all months, we have 

used a linear logarithmic interpolation procedure. We believe this is a suitable solution, as the costs 

of the extra assumptions required for interpolation are outweighed by the benefits of being able to 

include local population in the regressions without drastically reducing the number of 
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observations. To capture any changes in the number of cars on the road that are not related to 

population, we also include the number of other (i.e. non-drunk driving) crashes. 

Another important control variable we consider is the presence of local alcohol policies 

(LAPs) (Tyler-Harwood & Kutinova Menclova, 2021), (Alcohol Healthwatch, 2018). These are 

localised extensions of the Sale and Supply of Alcohol Act 2012, which allows territorial 

authorities to develop their own set of rules regarding the location, density and opening hours of 

licensed alcohol-providing premises. LAPs have been adopted in 34 out of 67 territorial authorities 

on a staggered basis from August 2014 to September 2018. We include a dummy variable to denote 

the presence of LAPs in a territorial authority, as their introduction could potentially affect drunk 

driving rates and would not be captured in time or location fixed effects. Similarly to population, 

it is difficult to determine whether an LAP is present in a police area due to the different 

boundaries, so we omit this variable from the analysis of the offence data. 

IV. Regression Analysis 

A. Crash data 

First, we analyse the data describing the number of drunk driving crashes in each 

territorial authority. For an overview of this data, see Table 3 and Figures A1 and A2 in the 

appendix. Table 3 contains the yearly number of drunk driving crashes in each region of New 

Zealand from 2012 to 2018, while Figures A1 and A2 graphically depict the monthly crash trend 

in each of the New Zealand cities where Uber has entered over the period of interest. 

In our regression analysis, we use the following model: 

𝑦𝑖𝑡 = α + β𝑈𝑏𝑒𝑟𝑖𝑡 + γXit + δ𝑖 +ω𝑡 + ε𝑖𝑡 

where 𝑦𝑖𝑡 is the dependent variable in question, usually the number of drunk driving crashes in 

location 𝑖 in month 𝑡. 𝑈𝑏𝑒𝑟𝑖𝑡 is the dummy variable that is set to 1 if Uber is present in location 𝑖 

in month 𝑡, and 0 otherwise. Xit is a vector including the other control variables: local population, 

other crashes, and LAPs. δ𝑖 and ω𝑡 represent location and time fixed effects respectively, which 

are always included due to the panel structure of the data. 

The first set of regressions (Table 4) simply considers the effect of Uber on all drunk 

driving crashes. We include regressions with and without the extra control variables. Because the 

dependent variable contains discrete count data, a Poisson regression is the more appropriate 
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estimation method. However, for context we also include the results of an OLS regression for each 

model. For both types of regression, we include robust standard errors clustered at the location 

level. 

Table 3: Yearly Number of Drunk Driving Crashes in New Zealand by Region 

Region 2012 2013 2014 2015 2016 2017 2018 

Auckland 
881 795 730 826 930 1,287 1,354 

Bay of Plenty 
147 123 100 139 187 181 245 

Canterbury 
285 248 279 243 305 340 374 

Chatham 

Islands7 
0 1 2 0 0 0 0 

Gisborne 32 34 26 26 36 50 59 

Hawke’s Bay 
93 66 56 72 99 125 136 

Manawatu-

Wanganui 
125 110 103 108 142 160 212 

Marlborough 
23 17 12 16 21 31 35 

Nelson 
20 28 15 19 23 33 33 

Northland 
115 120 115 114 147 169 210 

Otago 
112 107 102 87 159 153 196 

Southland 
62 44 48 66 60 60 58 

Taranaki 
60 41 44 48 69 72 96 

Tasman 
19 26 13 13 23 31 28 

Waikato 
236 221 175 196 246 309 376 

Wellington 210 164 152 196 186 262 287 

West Coast 
25 14 18 24 17 30 32 

Total 
2,445 2,159 1,990 2,193 2,650 3,293 3,731 

Note that blue text denotes the presence of Uber in the corresponding region and year. Dunedin and Queenstown 

are both located in the Otago region. 

Note that, for both the Uber and LAP dummy variables, we report the coefficient followed 

by the standard error and p-value respectively. All three are rounded to three decimal places. For 

the OLS regressions, the coefficients can be interpreted as the numerical change in the dependent 

variable in response to the presence of Uber/LAPs. For the Poisson regressions, the coefficients 

can be interpreted as the change in the mean of the natural log of the dependent variable in response 

to the presence of Uber/LAPs. Therefore, for these regressions, exp(𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) − 1 represents 

the percentage change in the dependent variable in response to the presence of Uber/LAPs. For 

                                                 
7 Chatham Islands is a territorial authority that is not part of any region. 
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clarity, the coefficient is followed by an asterisk if it is significant at the 10% level (p < 0.10), and 

two asterisks if it is significant at the 5% level (p < 0.05). 

Table 4: The Impact of the Presence of Uber on Overall Drunk Driving Crashes 

Regression number (1) (2) (3) (4) 

Dependent variable 

Number of 

drunk driving 

crashes 

Number of 

drunk driving 

crashes 

Number of 

drunk driving 

crashes 

Number of 

drunk driving 

crashes 

Uber 
3.549* 

(2.018, 0.083) 

-0.012 

(0.030, 0.683) 

-1.258 

(1.340, 0.351) 

-0.023 

(0.038, 0.537) 

LAPs — — 
-0.440** 

(0.212, 0.041) 

-0.078 

(0.054, 0.151) 

Local population — — ✓ ✓ 

Other crashes — — ✓ ✓ 

Location fixed effects ✓ ✓ ✓ ✓ 

Time fixed effects ✓ ✓ ✓ ✓ 

Estimator OLS Poisson OLS Poisson 

N 5,829 5,829 5,829 5,829 

R2 / Pseudo R2 0.9069 0.7199 0.9464 0.7203 

Beneath each coefficient is the standard error and p-value, respectively.  

Note that this is not a confidence interval.* denotes significance at the 10% level, and ** denotes significance 

at the 5% level. 

Interestingly, regression (1) suggests that Uber is associated with an average monthly 

increase in drunk driving crashes of 3.549. While this is statistically significant at the 10% level, 

this regression does not include the control variables, so it is likely an under-specified model.  

Once extra variables are included, the Uber coefficient in regression (3) actually flips its 

sign and suggests that Uber decreases drunk driving crashes by 1.149 crashes each month. The 

Poisson regressions, (2) and (4), suggest that Uber reduces drunk driving crashes by 1.22% and 

2.35%, respectively. However, none of these coefficients are statistically significant, so one cannot 
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infer with any reasonable level of confidence that the true value of the coefficient is non-zero. We 

would therefore interpret from regressions (2)-(4) that Uber may cause a small decrease in drunk 

driving crashes, but that there is not enough evidence to conclusively confirm this. 

To further examine the effect of Uber, drunk driving crashes can be separated by severity 

(Table 5). We define “severe” drunk driving crashes as those that involved fatalities or serious 

injuries; and “non-severe” drunk driving crashes as those that only involved minor injuries, or no 

injuries at all. If Uber is to be considered an effective drunk driving treatment, it would need to 

reduce severe crashes as well as non-severe crashes, given that severe crashes incur most of the 

social costs of drunk driving. The next set of regressions examines the effect of Uber on both types 

of crashes, using both OLS and Poisson estimations with the full set of independent variables. 

Table 5: The Impact of the Presence of Uber on Severe vs. Non-Severe Drunk Driving Crashes 

Regression number (5) (6) (7) (8) 

Dependent variable 
Severe drunk 

driving crashes 

Severe drunk 

driving crashes 

Non-severe 

drunk driving 

crashes 

Non-severe 

drunk driving 

crashes 

Uber 
0.055 

(0.090, 0.542) 

0.034 

(0.102, 0.741) 

-1.290 

(1.369, 0.350) 

-0.033 

(0.040, 0.412) 

LAPs 
-0.010 

(0.030, 0.743) 

-0.000 

(0.102, 1.000) 

-0.433** 

(0.201, 0.035) 

-0.084 

(0.057, 0.135) 

Local population ✓ ✓ ✓ ✓ 

Other crashes ✓ ✓ ✓ ✓ 

Location fixed effects ✓ ✓ ✓ ✓ 

Time fixed effects ✓ ✓ ✓ ✓ 

Estimator OLS Poisson OLS Poisson 

N 5,829 5,829 5,829 5,829 

R2 / Pseudo R2 0.6226 0.3297 0.9407 0.7195 

Beneath each coefficient is the standard error and p-value, respectively. Note that this is not a confidence 

interval.* denotes significance at the 10% level, and ** denotes significance at the 5% level. 
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The Poisson regression (6) suggests Uber is associated with a 3.42% increase in severe 

drunk driving crashes, and regression (8) suggests Uber is associated with a 3.33% decrease in 

non-severe drunk driving crashes. The OLS regressions also carry the same sign (positive and 

negative, respectively). This implies that Uber is perhaps more likely to reduce non-severe crashes 

than severe crashes, and it is surprising to see a positive coefficient in the regressions for severe 

crashes. However, these coefficients are all statistically insignificant at both a 5% and 10% level, 

with especially high p-values in regressions (5) and (6), and the coefficient estimates are therefore 

not sufficiently different from zero to reliably infer a causal effect of Uber entry. 

Table 6: The Impact of the Presence of Uber on Weekend vs. Weekday Drunk Driving Crashes 

Regression number (9) (10) (11) (12) 

Dependent variable 
Weekend drunk 

driving crashes 

Weekend drunk 

driving crashes 

Weekday drunk 

driving crashes 

Weekday drunk 

driving crashes 

Uber 
-0.732 

(0.698, 0.298) 

-0.015 

(0.053, 0.774) 

-0.479 

(0.717, 0.506) 

-0.034 

(0.038, 0.371) 

LAPs 
-0.191* 

(0.107, 0.079) 

-0.070 

(0.065, 0.283) 

-0.245* 

(0.124, 0.053) 

-0.086 

(0.058, 0.139) 

Local population ✓ ✓ ✓ ✓ 

Other crashes ✓ ✓ ✓ ✓ 

Location fixed effects ✓ ✓ ✓ ✓ 

Time fixed effects ✓ ✓ ✓ ✓ 

Estimator OLS Poisson OLS Poisson 

N 5,829 5,829 5,829 5,829 

R2 / Pseudo R2 0.9315 0.6559 0.8971 0.6017 

Beneath each coefficient is the standard error and p-value, respectively. Note that this is not a confidence 

interval.* denotes significance at the 10% level, and ** denotes significance at the 5% level. 

Given that we also have data about the exact time of each crash, we can separate drunk 

driving crashes into those that occurred on a weekend and those that did not (Table 6). We follow 



Series of Unsurprising Results in Economics   

- 14 -  

the lead of the CAS and define the “weekend” as the time between 6:00pm on Friday and 6:00am 

on Monday. Although this time period only constitutes 35.7% of the week, 57.9% of drunk driving 

crashes in the dataset occurred during these hours. It has been established that Uber’s surge pricing 

is more likely to be in effect during the weekend due to a spike in demand from intoxicated 

passengers. Greenwood & Wattal (2017) found that, while Uber did impact drunk driving in 

California overall, there was no effect when restricting the data to weekends only. Therefore, it is 

worth examining the New Zealand data to see if a similar distinction exists. 

All four regressions suggest that Uber is associated with a small reduction in drunk driving 

crashes on both weekends and weekdays. Regression (10) suggests a 1.52% decrease on weekends, 

while regression (12) suggests a 3.45% decrease on weekdays. Moreover, the coefficient in 

regression (10) carries a p-value of 0.774, so the effect on weekends is very likely to have a true 

value of zero. This is consistent with the hypothesis, and previous findings, that Uber has a bigger 

effect on drunk driving on weekdays when surge pricing is less likely to be in effect. However, 

once again it is important to note that all Uber coefficients in regressions (9) – (12) are small and 

statistically insignificant at a 10% level, so strong conclusions cannot be made about Uber’s effect 

on weekends versus weekdays. 

The effect of Uber on drunk driving in individual cities can also be examined by restricting 

the dataset to a city and its immediately surrounding territorial authorities, which might be 

expected to share strong similarities with the city and therefore act as a suitable control group.  We 

look at the three most populated cities—Auckland,8 Wellington,9 and Christchurch10—as these 

would be expected to have the largest Uber user base and have had access to Uber for longest. The 

results of these regressions can be found in Table 7. 

The Poisson regressions suggest Uber is associated with decreases in drunk driving crashes 

in Auckland and Christchurch of 14.20% and 3.13% respectively; and an increase in Wellington 

of 28.70%. Although none of these coefficients are statistically significant at the 10% level, the 

Uber coefficients in the Auckland and Wellington regressions are relatively large and consistent 

in sign with their OLS counterparts, which are statistically significant at the 5% level. Therefore, 

                                                 
8 Using a control group of Hauraki, Kaipara, Thames-Coromandel, Waikato, and Whangarei. 

9 Using a control group of Carterton, Kapiti Coast, Masterton, and South Wairarapa. 

10 Using a control group of Ashburton, Hurunui, Selwyn, and Waimakariri. 
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there is some evidence pointing to an Uber-driven decrease in drunk driving crashes in Auckland, 

and an Uber-driven increase in drunk driving crashes in Wellington. Given the high p-value in 

regression (18) and the changing sign on the Uber coefficient between regressions (17) and (18), 

Uber does not appear to have had a meaningful impact on drunk driving crashes in Christchurch. 

Table 7: The Impact of the Presence of Uber on Crash Data for Each of the Three Major Cities 

and Their Surrounding Areas 

Regression 

number 
(13) (14) (15) (16) (17) (18) 

Dependent 

variable 

Drunk driving 

crashes in 

Auckland 

Drunk driving 

crashes in 

Auckland 

Drunk driving 

crashes in 

Wellington 

Drunk driving 

crashes in 

Wellington 

Drunk driving 

crashes in 

Christchurch 

Drunk driving 

crashes in 

Christchurch 

Uber 
-24.508** 

(0.628, 0.000) 

-0.133 

(0.142, 0.349) 

0.599** 

(0.215, 0.027) 

0.252 

(0.160, 0.115) 

3.558** 

(0.559, 0.003) 

-0.031 

(0.154, 0.842) 

LAPs 
-0.583 

(1.340, 0.682) 

-0.009 

(0.163, 0.954) 

0.629 

(0.393, 0.153) 

0.062 

(0.064, 0.327) 

-0.595 

(1.181, 0.641) 

-0.109 

(0.295, 0.710) 

Local 

population 
✓ ✓ ✓ ✓ ✓ ✓ 

Other crashes ✓ ✓ ✓ ✓ ✓ ✓ 

Location fixed 

effects 
✓ ✓ ✓ ✓ ✓ ✓ 

Time fixed 

effects 
✓ ✓ ✓ ✓ ✓ ✓ 

Estimator OLS Poisson OLS Poisson OLS Poisson 

N 522 522 696 696 435 435 

R2 / Pseudo R2 0.9701 0.9063 0.7047 0.3803 0.8827 0.6627 

Beneath each coefficient is the standard error and p-value, respectively. Note that this is not a confidence interval.* 

denotes significance at the 10% level, and ** denotes significance at the 5% level. 

B. Offence Data 

Next, we analyse the data describing the number of alcohol-specific driving offences in 

each police area. For an overview of this data, see Table 8 and Figures A3 and A4 in the appendix. 

Table 8 contains the yearly number of alcohol-specific driving offences in each police district of 
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New Zealand from 2012 to 2018, while Figures A3 and A4 graphically depict the monthly offence 

trend in each of the New Zealand cities where Uber has entered over our period of interest. 

In our regression analysis, we use the following model: 

𝑦𝑖𝑡 = α + β𝑈𝑏𝑒𝑟𝑖𝑡 + δ𝑖 +ω𝑡 + ε𝑖𝑡 

where 𝑦𝑖𝑡 is the number of drunk driving offences in location 𝑖 in month 𝑡. Again, 𝑈𝑏𝑒𝑟𝑖𝑡 is the 

dummy variable that is set to 1 if Uber is present in location 𝑖 in month 𝑡, and 0 otherwise. In this 

model, we do not include the vector of control variables, Xit, due to a lack of data that is organised 

into police areas. The location and time fixed effects, δ𝑖 and ω𝑡, are still always included. 

Table 8: Yearly Number of Alcohol-Specific Driving Offences in New Zealand by Police District 

Region 2012 2013 2014 2015 2016 2017 2018 

Auckland 2,434 2,175 1,662 2,163 2,321 2,251 2,346 

Bay of Plenty 2,896 2,478 2,082 2,659 2,761 2,893 3,039 

Canterbury 3,353 2,734 2,707 3,140 2,878 2,555 2,434 

Central 2,319 1,820 1,607 2,019 2,005 1,857 1,947 

Counties/Manukau 3,038 2,816 2,335 2,994 2,401 2,892 2,955 

Eastern 1,906 1,808 1,539 1,504 1,425 1,665 1,973 

Northland 1,472 1,273 1,175 1,783 1,601 1,268 1,305 

Southern 1,650 1,350 1,230 1,577 1,754 1,694 1,854 

Tasman 976 929 759 881 971 1,172 1,122 

Waikato 2,337 2,127 1,842 2,473 2,776 2,673 2,422 

Waitemata 3,147 3,045 2,370 2,807 2,521 2,629 2,622 

Wellington 2,115 1,985 1,661 2,139 2,065 1,994 1,888 

Total 27,643 24,540 20,969 26,139 25,479 25,543 25,907 

Note that blue text denotes the presence of Uber in the corresponding region and year. Dunedin and Queenstown 

are both located in the Otago region. 

Once again, the first set of regressions with the offence data considers the effect of Uber 

on all alcohol-specific driving offences (Table 9), and we use both OLS and Poisson regressions, 

with robust standard errors clustered at the location level. 

Regression (19) suggests that the presence of Uber is associated with a decrease in alcohol-

specific driving offences by 5.74 crashes per month on average, while regression (20) suggests 

that it is associated with a 9.64% reduction on average. The p-values for these regressions are both 

relatively low, but not low enough to conclude significance at a 90% or 95% confidence level. 
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Although the data does not allow separation of alcohol-specific driving offences by 

severity or date, it is still possible to look at the impact of Uber on offences in individual cities. 

Once again, we restrict the dataset to a city and consider its immediately surrounding police areas 

as a control group. Again, we choose the three most populated cities—Auckland,11 Wellington,12 

and Christchurch13— the results for which can be found in Table 10. 

Table 9: The Impact of the Presence of Uber on Overall Alcohol-Specific Driving Offences 

Regression number (19) (20) 

Dependent variable Alcohol-specific driving offences Alcohol-specific driving offences 

Uber 
-5.744 

(5.452, 0.299) 

-0.092 

(0.070, 0.192) 

Location fixed effects ✓ ✓ 

Time fixed effects ✓ ✓ 

Estimator OLS Poisson 

N 3,306 3,306 

R2 / Pseudo R2 0.7708 0.5517 

Beneath each coefficient is the standard error and p-value, respectively. Note that this is not a 

confidence interval.* denotes significance at the 10% level, and ** denotes significance at the 5% 

level. 

Regression (22) suggests Uber has caused a 10.60% decrease in alcohol-specific driving 

offences in Auckland. On the other hand, regressions (23) – (26) yield statistically significant 

coefficients and higher R2/pseudo-R2 values. Regression (24) suggests Uber is associated with a 

4.06% increase in alcohol-specific driving offences in Wellington, while regression (26) suggests 

Uber is associated with a 27.92% decrease in alcohol-specific driving offences in Christchurch. 

Each of these results is also reasonably consistent with the respective OLS regression. It is 

                                                 
11 Using a control group of Far North, Waikato East, Waikato West, and Whangarei. 

12 Using a control group of Manawatu, Wairarapa and Whanganui. 

13 Using a control group of Canterbury Rural and Mid-South Canterbury. 
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especially noteworthy that Uber appears to have had such a large impact on alcohol-specific 

driving offences in Christchurch, especially given that we did not find a similar impact on drunk 

driving crashes. However, it is important to note that the regressions involving Christchurch used 

quite a low number of observations due to the relatively small number of police areas constituting 

Christchurch and its surrounding areas. This could potentially impact the robustness of any 

conclusions. 

Table 10: The Impact of the Presence of Uber on Offence Data for Each of the Three Major 

Cities and Their Surrounding Areas 

Regression 

number 
(21) (22) (23) (24) (25) (26) 

Dependent 

variable 

Alcohol-

specific 

driving 

offences in 

Auckland 

Alcohol-

specific 

driving 

offences in 

Auckland 

Alcohol-

specific 

driving 

offences in 

Wellington 

Alcohol-

specific 

driving 

offences in 

Wellington 

Alcohol-

specific driving 

offences in 

Christchurch 

Alcohol-

specific driving 

offences in 

Christchurch 

Uber 

-5.870 

(7.726, 

0.460) 

-0.101 

(0.128, 

0.431) 

2.212** 

(0.854, 0.049) 

0.040** 

(0.015, 0.006) 

-36.432** 

(0.862, 0.001) 

-0.246** 

(0.021, 0.000) 

Location 

fixed effects 
✓ ✓ ✓ ✓ ✓ ✓ 

Time fixed 

effects 
✓ ✓ ✓ ✓ ✓ ✓ 

Estimator OLS Poisson OLS Poisson OLS Poisson 

N 1,305 1,305 522 522 261 261 

R2 / Pseudo 

R2 
0.4290 0.2453 0.7442 0.4325 0.9498 0.8675 

Beneath each coefficient is the standard error and p-value, respectively. Note that this is not a confidence interval. 

* denotes significance at the 10% level, and ** denotes significance at the 5% level. 

V. Discussion 

Overall, these findings indicate that Uber is mostly associated with small but statistically 

insignificant decreases in both drunk driving crashes and alcohol-specific driving offences.  While 

a Poisson regression suggests that Uber is associated with a 2.35% decrease in drunk driving 

crashes, a 95% confidence interval indicates the true value of this relationship could be anywhere 

between a 10.20% decrease and a 5.19% increase. A similar confidence interval suggests that 

Uber’s apparent 9.64% decrease in alcohol-specific driving offences could actually be anywhere 
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between a 25.83% decrease and a 4.71% increase. In both cases, while it is perhaps more likely 

that there has been a decrease, there is not enough evidence to make any strong conclusion 

regarding causality between Uber and the drunk driving indicators.  

A similar situation exists when comparing Uber’s relationship with severe vs. non-severe 

drunk driving crashes, or weekend vs. weekday drunk driving crashes; ultimately, we cannot 

confirm that any distinction exists between each of the two groups. When looking only at each of 

New Zealand’s three major cities, we find a small amount of evidence suggesting that Uber is 

associated with drunk driving crashes decreasing in Auckland and increasing in Wellington 

relative to their respective surrounding areas. The findings also indicate that Uber is associated 

with alcohol-specific driving offences increasing in Wellington and decreasing in Christchurch 

relative to their respective surrounding areas. 

The lack of a consistent and sizeable effect can be related back to the economic theory 

behind the relationship between Uber and drunk driving. We established that there may have been 

a subset of the population, described as “marginal drunk drivers”, who viewed drunk driving as 

marginally preferable to taking a taxi, but might now view Uber as preferable to drunk driving. 

Although the existence of this group cannot be ruled out, it seems like it is not a large enough 

subset of the New Zealand population to cause a noticeable difference in drunk driving crashes 

and alcohol-specific driving offences. 

There are many reasons why drunk drivers with this specific preference order might only 

constitute a very small proportion of all drunk drivers. Many individuals who drive drunk, and 

especially those who are likely to cause crashes, may be beyond the threshold of rational decision-

making and are not in a suitable frame of mind to weigh up the costs and benefits of alternate 

transportation options. They may also possess an innate belief in their own driving ability while 

drunk, and hence the low likelihood of crashing or getting caught. It is also possible that using 

Uber does not provide substantially more utility than taking a taxi for most users, and therefore 

the number of people who consider drunk driving as a middle ground between those two options 

may be quite low. Additionally, Uber’s advantage of being easier to use when intoxicated may not 

always be relevant, as people often make transport arrangements when they make the initial 

decision, while sober, to leave home with or without their car.  
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Even if the group of marginal drunk drivers is a reasonable proportion of all drunk drivers, 

they may not have made a noticeable impact on drunk driving rates if the overall user base of Uber 

in each city is relatively low. It is possible that Uber has not “caught on” to the same extent in New 

Zealand cities as, for example, in New York City, where Peck (2017) found a substantial effect of 

Uber on the alcohol-related collision rate. 

In summary, we have found no strong indication of a causal relationship between the entry 

of Uber and the incidence of drunk driving in New Zealand. While the coefficients in the 

regressions frequently reflect small Uber-related decreases in the drunk driving indicators, they 

are generally not statistically significant at any reasonable confidence level. Therefore, our 

findings do not support Uber’s claim that they are having a beneficial impact on drunk driving, but 

also do not conclusively disprove this claim. 
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Appendix 

Figure A1: Monthly Number of Drunk Driving Crashes in Cities with Uber, not Including 

Auckland (January 2012 – March 2019) 

 
The vertical dashed lines represent Uber’s month of entry into the city of the corresponding colour.  Note that 

Uber entered into both Hamilton and Tauranga in January 2018, hence the yellow and grey vertical line. 
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Figure A2: Monthly Number of Drunk Driving Crashes in Cities with Uber, Including 

Auckland (January 2012 – March 2019) 

The vertical dashed lines represent Uber’s month of entry into the city of the corresponding colour.  Note that 

Uber entered into both Hamilton and Tauranga in January 2018, hence the yellow and grey vertical line. 

 

Figure A3: Monthly Number of Alcohol-Specific Driving Offences in Cities with Uber, 

not Including Auckland (January 2012 – March 2019) 

 
The vertical dashed lines represent Uber’s month of entry into the city of the corresponding colour.  Note that 

Uber entered into both Hamilton and Tauranga in January 2018, hence the yellow and grey vertical line. 
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Figure A4: Monthly Number of Alcohol-Specific Driving Offences in Cities with Uber, 

Including Auckland (January 2012 – March 2019) 

 
The vertical dashed lines represent Uber’s month of entry into the city of the corresponding colour.  Note 

that Uber entered into both Hamilton and Tauranga in January 2018, hence the yellow and grey vertical line. 
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