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Abstract 

In this report we will use continued fractions to solve Fell's equation 

We explore some of the properties of simple continued fractions, discuss the relationship 
between reduced quadratic irrationals and purely periodic simple continued fractions and 
then give the solution to Fell's and the negative Pell equation. We close by summarizing 
the entire process in the PQa algorithm which also shows us how to solve some Pell-like 
equations. 

1 Introduction 

For more than a millennium, mathematicians have been intrigued with the equation 

where :t, y, D are all natural numbers. The equation has been cropping up in places since the 
time of Archimedes [1, Page 249] and is now named after the 17th century mathematician 
John Pelland referred to as Fell's equation. This is not because John Pell had a great deal to 
do with the equation, but because in the 18th century Euler called it the Pell equation, due to 
mistaldng a solution method given by William Brouncker as Fell's work [1, Page 248] 

Among the better ways to solve Fell's equation is the use of continued fractions. Contin­
ued fractions have also intrigued mathematicians for centuries and have been worked on by 
mathematicians such as Lagrange and Euler. [4, Page 30] Despite this, continued fractions can 
just be seen as a fraction that may contain another fraction, that may contain another, and 
so on. They behave the same as normal fractions and throughout this report will commonly 
be manipulated as such. 

This report first focuses on continued fractions, exploring some of the basic concepts that 
may be found in most textbooks about continued fractions (for example, the convergents of 
a simple continued fraction). We then go on to Section 3 which describes the relationship 
between reduced quadratic irrationals and purely periodic simple continued fractions. This 
section follows Chapter 4 of C.D.Olds' book quite closely [4, Page 7], with some of the proofs 
being shortened and improved on. The solution to Fell's equation is given and then we diverge 
from [4] to discuss some variants of the Pell equation and give an algorithm that summarizes 
the entire process, enabling us to quickly solve Fell's equation by hand. 
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2 Continued Fractions 

General Continued Fractions and Simple Continued Fractions 

A gener-al continued fr·action is arw expression of the form 

bl 
ao+-------

bz 

where the an and bn are independent variables, called the par·tial denominators and the partial 
numerators respectively, and o.0 is the integer part of the general continued fraction. In his 
book Continued Fractions, C.D.Olds [4, Page 7] explains that the partial denominators and 
partial numerators may be real or complex numbers, and there may be a. finite or infinite 
number of them. 

This report focuses on simple continued fr-actions, a subset of general continued fractions 
of the form 

1 
(1) ao+ 

1 
al + 

1 
O.z + 

1 
o.3+-

The above notation at times can be too cumbersome and so an abbreviated form of 
[o.0 ; a1 , o.2 , o.3 , ..• ] is preferred and is equivalent to equation (1 ). 

The an are referred to as the partial quotients or quotients of the simple continued fraction. 
Unlike general continued fractions, they are all integers, and, with the exception of o.0 , must 
be positive. Furthermore, the simple continued fraction is called a finite simple continued 
fraction if the sequence O.n is finite, and an infinite simple continued fraction if the sequence 
is infinite. 

The Floor and the Fractional Part of a Number 

In this report one of the most common operations that we will use on a number is the floor 
function.[7] \Vhen applied to a number, the floor function returns the greatest integer that is 
no greater than the number itself. For example, the floor of 5 is 5, the floor of 2.48 is 2, and 
the floor of -8.3 is -9. The notation for the floor of x is L:r J 

Another important concept in this report is the fractional part of a number. [8] This is 
defined as the number minus its floor, and is denoted as { x}. That is 

{:r} = :r- LxJ. (2) 

Intuitively we can see that for all :r, 

o:::;{:r}<l. (3) 

For example, {5} = 0, {2.48} = 0.48, and { -8.3} = 0.7. 
It is important that we recognize that dividing a number up into its floor and its fractional 

part is the only way that we car1 divide it into two parts with one part an integer and the 
other part equal or greater than 0 and still less than 1. 
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Lemma 2.1. If a= a+ :r = b + y where a, bE Z and 0 S :r, y < 1 then a= b and :r = y. 

Proof. If 

a+x=b+y 

then 

(],- b =y-:E. 

Note that a - b E Z and y - :r E ( -1, 1). Because 0 is the only integer in the interval ( -1, 1) 
it follows that a= b and :r = y. D 

Representation of Numbers 

Simple continued fractions are another way to represent real numbers. For example, the 
number ~~ can be represented in any of the following ways: 

1 54 
2 + 1 = [2; 1, 5, 3] = 19 = 2.8421 ... 

1+--
1 

5+ 3 

This simple continued fraction representation can be checked by simplifying the expression 
starting from the bottom-right. 

Such a simple continued fraction is calculated by first obtaining the floor and the fractional 
part of n. This fractional part is then expressed as the reciprocal of the reciprocal of the 
fractional part. Because the reciprocal of the fractional part is greater than 1, it may then be 
divided into its floor and (a new) fractional part. This fractional part is then treated the same 
as the last and the process is repeated twice more until there are no more fractional parts. 
Symbolically the whole process looks like 

54 1 1 1 
19 = 2+ 19 = 2+ --1 = 2+ ---,---1-= [2; 1,5,3]. 

16 1+ T6 1+ --
1 

3 5+-
3 

The previous method seems unique and leads us naturally to the following theorem, a 
rework of [4, Tlnn 1.1]: 

Theorem 2.2. Every rational nv,mber has exactly two finite simple contirwed fraction expan­
sions, and every finite simple continued fr·action expansion Tepr·esents a mtional number·. 

Proof. Let a E Q and divide it into its floor and fractional part. 
If the fractional part of a is 0, a is an integer and one simple continued fraction expansion 

is [o:] and a second is [a -1; 1]. We can see that these both satisfy the conditions of a simple 
continued fraction as the quotients are all integers and both are equal to a. These are the only 
two expansions. There are no more with only one quotient as a only has one value. There are 
no more with two quotients because if the second quotient is not 1 then the expansion consists 
of a fraction that is less than 1 and o: would have had a fractional part. Finally, for the same 
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reason there are no expansions with three or more quotients. Thus there are only two ways to 
express an integer as a simple continued fraction: 

[a] =a or 
1 

[a -1; 1] =(a- 1) + 1 . (4) 

If the fractional part of o: is not 0 then define the 1st r-esidue of alpha, and in general, of 
any continued fraction, as the reciprocal of its fractional part. Then 

where a0 E Z and is the floor of a, and r 1 is the pt residue of a. Note that 1 < r 1 because of 
equation (3). 

Now if the kth residue is not an integer it has a fractional part and we can define the 
(k + l)th residue recursively by the relationship 

1 
where ak = Lrd and TJ-.,+1 = {rk} · 

1 
TJ.., = aw + -­

rw+l 
(5) 

Now if 1 < rk then aJ.., EN, and of course 1 < rk+l· Because 1 < r 1 it follows by induction 
that 1 < Tn for each Tn which is defined. 

It can easily be seen that if a is rational and not an integer then r 1 is rational, and also 
that if rn is rational and not an integer then rn+l is rational. Now let ~ = rk where rw is 

not an integer and b, c EN with their only common factor being 1. That is, ~ is in its lowest 
c 

terms. Because TJ.., is not an integer 1 <c. Then from equations (2), (3) and (5) 

where 0 < b- akc = dEZ. Then 

and so 
d <c. 

Now because rw has a denominator of c and rw+l has a denominator of d each subsequent 
rational residue has a smaller integer denominator when reduced to its lowest terms. So then 
the denominators of the residues form a decreasing sequence of integers that are all greater 
than zero. Eventually one of the denominators must be 1 and then the residue is an integer. 

Let the first residue that is an integer be rn. Then the recurrence relationship given in 
equation (5) will not hold as there is no fractional part of rn. Instead let 

Notice that again we have ak = Lrkj. 
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At this point we have n different equations that look like 

1 
o:=ao+­

r1 

1 
rn-1 = an-1 + -

rn 

Combining these into one equation generates a simple continued fraction: 

1 
o: = ao + ------- = [ao; a1, ... , an]· 

1 

To establish uniqueness, assume that 

o: = [ao; a1, ... , an]= [bo; b1, ... , bm] 

where each bi EN. Also assume without loss of generality that neither an or bm are 1.* 
Now 0 < [0; bm] < 1. Also, because 1 < bm-1 + [0; bm] it follows that 0 < [0; bm-1, bm] < 1. 

One can prove by induction that 

for j = 1 .. . m. 
Because 

ao + [0; a1, ... , an] = bo + [0; b1, ... , bm] 

by Lemma. 2.1, ao = bo and 

a1 + [0; a2, ... , an]= b1 + [0; b2, ... , bm]· 

Continuing on in this way one finds that ao = bo, a1 = b1, ... , an = bm and aL<Jo that n = m, 
So if the last pa.rtia.l quotient is not 1 then the simple continued fraction expansion is unique. 

However, as stated earlier, an integer can be represented in two ways, given by equations 
(4). So o: can be represented one of two ways as a simple continued fraction; 

Proving the second part of the theorem is trivial; it is evident that any finite simple 
continued fraction represents a rational number as the simple continued fraction can just 
be simplified from the lower right-hand corner upwards to generate the rational number it 
represents. 0 

The previous theorem has a counterpart that follows on naturally, found in [4, Page 52]. 

Theorem 2.3. Every ir-r-ational nv.rnber- has a infinite simple continued fmction expansion. 

*If an = 1 then r'n-1 = an-1 + 1 E N and so we can replace [ao; a1, ... , an] = [ao; a1, ... , an-1, 1] with 
[ao; a1, ... , an-1 + 1]. Likewise for bm. 
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Proof. Let a E JR; o: ¢:. Q. Even though a is irrational, the residues are defined the same 
as in Theorem 2.2. In fact, because a is irrational its fractional part is not 0 and so there 
must be a 1st residue. Now it is obvious that r 1 is irrational, else o: equals the sum of two 
rational numbers, and would not be irrational. Furthermore, for every irrational rn, rn+I is 
irrational, because of equation (5). So all the residues a.re irrational. Thus there will never 
be a residue such that r,.,. = a,.,. and so the irrational number has an infinite simple continued 
fraction expansion. 

Now from the recursion formula of equation (5) an infinite number of equations are pro­
duced that look like 

1 
a=a0 +­

rl 
1 

r1 = a1 +­
r2 
1 

r2 = a2 +­
r3 

Vve can combine these into one equation and generate an infinite simple continued fraction: 

ai+----
1
--

a2 + 
1 

a3+-

Convergents 

D 

For these infinite continued fraction expansions, and even the finite expansions, we can crop 
the expansion to a finite number of quotients. If we crop the (finite or infinite) expansion 
a= [ao; a1, ... , an, an+ I, ... ] to the nth quotient we get the rational number [a0; a1, ... , an]· 
This is called the nth convergent of a. Notice for a with a finite number of convergents, the 
last convergent is equal to a. 

For example, the oth convergent of a is [a0] = a0 . It is more common to see convergents 
divided into their numerators and denominators so we use Pn to denote the numerator and qn 
to denote the denominator of the nth convergent when it is in its lowest terms. Thus 

The pt convergent is 

and so 

Po= ao 

qo = 1. 

PI= a1ao + 1 

ql = (1,1· 
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Continuing in this fashion, the 2nd convergent is 

and so 

1 
[ao; a1, a2] = ao + ---

1
-

a1+­
(.l2 

a2a1ao + a2 + ao 

(),2(},1 + 1 

P2 = a2a1ao + a2 + ao = a2P1 +Po 

q2 = a2a1 + 1 = a2q1 + qo. 

This can be generalized in the following theorem, similar to [4, Tlun 1.3]. 

(6) 
(7) 

Theorem 2.4. The numerator and denominator- of the nth convergent of a r-eal number· a = 

[a0 ; a1, .. . ] wher·e 0 < ai E lR is given by 

so that the nth convergent is 

Pn = anPn-1 + Pn-2 

qn = anqn-1 + qn-2 
(8) 

(9) 

Pr-oof. From equations (6) and (7) we can see that the theorem holds for n = 2, for all 
0 < a0 , a1 E R Let us now assume that the theorem holds for n = 1 ... k and then we will 
prove that it holds for n = k + 1 and so the result follows by strong induction. Specifically, 
assu1ne 

and 

Now note that 

Pk = akPk-1 + Pk-2 

qk = akqk-1 + qk-2 

1 
[ao;a1, ... ,ak,ak+1] = ao + -------

1
-----

(},1 + ---------
1 

(10) 

(11) 

1 
Because 0 < ak + -- E JR,the only difference between the (k + 1)th convergent and the kth 

0),+1 
1 

convergent is that a~; + -- is in place of a~;. So if we replace ak in equation (10) we get 
ak+1 
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au expression for (k + 1)th convergent. This is valid because it is evident from the recursion 
relationships of the numerators and denominators of the convergents, given from the induction 

1 
assumption, that changing the value of ak to a~,, + -- will have no effect on the value of 

ak+1 
Pn-1,Pn-2, ... or qn-1, qn-2, .... From equations (10) and (11); 

( a,,+ -
1
_ -) Pk-1 + Pk-2 

ak+1 
[ao;a1, ... ,a~,,,a~,+1] = -(-7--------!);---------

a, + -
1
_ - qk-1 + qk-2 

ak+1 

ak+lakp/.,-1 + P/.,-1 + aJ.,+1Pk-2 

a/.+1akq/.·-1 + qk-1 + ak+1qk-2 
ak+lPk + Pk-1 

ak+lq,, + qJ.,-1 
Pk+1 

qk+1 

and the theorem is proved by the induction principle. D 

It is common practice to define p_2 = O,p_ 1 = 1, q_2 = 1 and q_ 1 = 0. Then the previous 
theorem can apply to n = 0 and n = 1. 

Because in this section there are no requirements that an are integers, we can use the idea 
of residues to prove this corollary to the previous theorem; an expanded form of [3, Thm 5]. 

Corollary 2.5. If rn is the nth residue of a and the rwrnerators and denominators of the 
convergents of a are defined as in Theor·em 2.4 then 

(12) 

Proof. ·when assembling a simple continued fraction from the recursion relationships given by 
equation (5), if we stop at the nth equation we will end up with the equation 

1 

While this may not be a simple continued fraction because rn may not be an integer, all 
the terms of the continued fraction are real, so Theorem 2.4 still applies. So in equation (9) 
we can replace an with rn to make a modified form of the last convergent, and thus 

rnPn-1 + Pn-2 
a= 

rnqn-1 + qn-2 

D 

The formulae derived in Theorem 2.4 lead us to a very important relation that is central 
in solving Pell's equation. 
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Theorem 2.6 ([4, Thm 1.4]). If the numerators and denominators of the convergents of a 
continued fraction ar·e defined as in Theorem 2.4 then 

(13) 

Proof. Using the extended definitions of p_2,p-1, q_2 and q_1 we can establish the relation 
true for n = -2. 

P-1q-2- JJ-2q-1 = 1·1- 0 · 0 = 1 = (-1)-2. 

Now assume the relation true for n = k. That is 

Then consider when n = k + 1. 

from equations (8) 

= p~,,q/.'+1- Pk+1qk 

= (-1)(Pk+lqk -pkq~,+1) 

= (-1)"'+1 

(14) 

by the induction assumption of equation (14). So the theorem is proved by induction. D 

In a simple continued fraction the an are all integers and it is easy to see from the recnrrence 
relations given in equations (8) that all the Pn and qn will be integers. They also have a.u 
important property described by a corollary of Theorem 2.6. 

Corollary 2.7 ([4, Cor 1.5]). When defined by eqv.ations (8), the numerators of each conver­
gent of a simple continued fraction share no common factors with their corTesponding denom­
inator· other than 1, and so the convergents are in their lowest terms. 

Proof. Any cormnon factor of Pn and qn could be factored out of the left-hand side of equation 
(13) and so must also be a factor of the right-hand side. However, the only factors of the right­
hand side are -1 and 1. Thus they share no common factors other than 1, and the convergents 
are in their lowest terms. D 

3 Reduced Quadratic Irrationals and Purely Periodic Sim­
ple Continued Fractions 

A quadratic irrational is an irrational number in the form F + GVM where F, G E tQ and 
!VI E N and is not a perfect square. We go on to show in Lermna 3.3 that this means it is 
the solution to a quadratic equation with integer coefficients, but first we will prove that it is 
irrational with the following theorem, a modified version of [2].t 

Theorem 3.1. VM is irrational if MEN and is not a perfect square. 

tProof originally by Richard Dcdckind. 
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Proof. If ]\![ E N and is not a perfect square then 3 n E N such that n < VM < n + 1 and so 1 

n 2 < M < (n+ 1)2
. 

l7l"":i 171"":i(J, If v 11'l is rational then it can be expressed as v ]\![ = b where a, b E N or as 

a2 c2 
M=b2=d2 

where the latter is just the former except in its lowest terms (again c, dEN). So 

c2 = MrP. 

Now from equations (15) and (16) we get 

n2rP < MrP < (n + 1)2rP 
n2d2 < c2 < (n + 1)2rP 
nd < c < (n+ 1)d 
0 <c- nd< d 
0 < f < d 

where c- nd =fEN. 
Again from equations (15) and (16) we get 

n2c2 < l\i[c2 
n2c2 < ]1![2rJ2 

nc < Md 

< (n + 1)2 c2 

< (n + 1)2 c2 

< (n+ 1)c 
0 <Md- nc< 
0 < g < 

c 
c 

where J\!{d- nc =gEN. 
Then 

So 

g2 - Mf2 = M 2 rP- 2M ned+ n2c2 - M(c2 - 2ncd + n2d2) 

= (M2d2 - Mc2)- (2Mncd- 2M ned)+ (n?c2 - Mn2rP) 

=0. 

(15) 

(16) 

(17) 

(18) 

(19) 

c2 
But because of equations (17) and (18) in conjunction with equation (19) above, -12 was not 

L 

in its lowest terms, contrary to assumption. Hence there is a contradiction and VM must be 
irrational. D 

It is obvious that adding a rational number to an irrational number will produce an ir­
rational number; if the result were rational then an irrational number could be produced by 
subtracting a rational from a rational, which is clearly impossible. Furthermore, multiply­
ing an irrational by a rational produces an irrational. Else au irrational could be produced 
by dividing a rational by a rational, which we know only produces rational numbers. Thus, 
numbers of the form F + GVM as described previously are also irrational. There is another 
condition that holds that we will state in a theorem: 
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Theorem 3.2 ([4, Page 96]). If a+ bVM = c+ dVM wher-e a, b, c, dE Q, MEN and is not 
a perfect squar-e, then a = c and b = d. 

Pr-oof. If the above conditions are true and d - b # 0 then 

VM= (1,-C 

d-b 

and is rational, contra.ry to Theorem 3.1. So d-b= 0 and hence a= c aL<>o. D 

To go on to talking about reduced quadratic irrationals we must first discuss quadratic 
irrationals in general, and prove three crucial lemmas. 

Lemma 3.3. All q1tadratic ir1ntionals a: = F + GVM wher-e F, G E Q and M E N and is not 
a perfect squar-e, solve a quadratic equation with integer· coefficients and also have a conjugate 
of the form a:' = F - GVM which satisfies the same quadratic equation. 

Pr-oof. The quadratic equation 

0 = (:r- (F + GVM)) (:r- (F- GVM)) 

= :r2 - 2F:r + F 2 
- G2 M 

has roots a: and a:', and has rational coefficients. Now let H be the cormnon denominator of 2F 
and F 2 - G2 M. That is, let H be the least number that makes both 2F H and F 2 H- G2 M H 
integers. Then a: and a:' are roots of the quadratic equation 

H:r2 - 2FH:r + F 2 H- G2 MH = 0 

which has integer coefficients. D 

From now on, let the symbol 1 be the symbol for conjugate. So a:' means the conjugate of 
o: and (a: + (3) 1 means the conjugate of the sum of a: and (3. With this enhanced notation we 
can easily prove the second lemma. 

Lemma 3.4. When applying one of the following operations; 

i) addition 

ii) subtraction 

iii) multiplication 

iv) division 

between two quadratic irrationals involving the same integer- as the subject of the squar-e mot, 
conjugating the quadratic irTationals befor-e the operation is equivalent to conjugating the r-esv.lt 
after- the operation. 

Pmof. Let a: = F + GVM be a quadratic irrational and (3 = H +I VM be another. So a: and 
(3 have the scune integer under the square root. Now consider each operation: 

i) 

a/+ (3' = (F + GVM)' + (H + IVM)' 

= F-GVM +H -IVM 

= (F+ H)- (G +I)VM 

= (F+ GVM + H +IVM)' 

= (a:+ (3)' 
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ii) 

iii) 

iv) 

a'- (3' = (F+ GVM)'- (H +IVM)' 

= F-GVM -H +IVM 

= (F- H)- (G -I)VM 

= (F+ GVM- H -IVM)' 

= (o:- (3)' 

o:'(J' = (F-GVM)(H -IVM) 

= (FH + GIM)- (FI + HG)VM 

= (FH + GIM + FIVM + HGVM)' 

= ((F+ GVM)(H +IVM)) 

= ( o:(J)' 

o:' (F- GVM) (H +IVM) 
- = X --'-------=o::---
(3' (H- IVM) (H + IVM) 

(FH- GIM)- (HG- FI)VM 
H2 -J2M 

= ((FH- GIM) + (HG- FI)VM)' 
H2 -J2M 

= ((F+ GVM) X (H- IVM))' 
(H +IVM) (H -IVM) 

= (~)' 
Hence Lemma 3.4 is proved for all four operations. D 

It is useful expressing a quadratic irrational in the form F + GVM where F, G E Q and 
lvi E N and is not a perfect square, as it is simple and easy to manipulate as shown in the 
previous proo£s. However, as we go on it will be more useful for us to express quadratic 
irrationals in the form 

A±VD 
B 

where A E Z; B, D E N and D is not a perfect square. We can show that this is equivalent to 
the previous form. 

Lemma 3.5. Every expression in the form F ± GVM where F, G E Q; M E N and is not a 
perfect square and 0 < c+' has an equivalent expression in the for·m 

A±VD 
B 

+Notice the slight change: From now on we must specify if the multiple of the root is added or subtracted 
as in the new form there is no coefficient in front of the root that is able to be positive or negative. 
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wheTe A E Z; B, D E N and D is not a perfect squar·e. 

PToof. If F, G E QJ then they can be expressed F = k; G = t where h is the lowest common 

denominator ofF and G, and fEZ; g, hEN. Then 

F±GVM= j±gVM 
h 

f± ViJiM 
h 

A± -j]5 
B 

where A,B a.nd D satisfy the previously stated conditions and the two forms are equivalent. 0 

Using this new notation we can easily show the solutions to a quadratic equation with 
integer coefficients. The equation a:r2 + b.1: + c = 0 where a, b, c E Z; 0 < a. has two solutions, 

-b+ vb2 - 4ac A+ -j]5 
0:= 

2a B 

o:'= 
-b- vb2 - 4ac A- -j]5 

2a B 

where 

A= -b EZ 

O<B= 2a EN 

D= b2 - 4ac EN 

and a.ssume for now that 0 < D and is not a perfect square, otherwise o: would not be a 
quadratic irrational; it would either be complex or rational. 

Reduced Quadratic Irrationals 

Thus far we have had much to say about quadratic irrationaLs, but not much to say about 
those that a.re reduced. A Teduced quadratic irrational is one whose value is greater than one 
a.nd whose conjugate's va.lue is greater than negative one but less than zero. [4, Page 101] In 
symbolic notation, o: is reduced if 1 < o: and -1 < o:' < 0. 

. . A+VD A-VD 
If o: IS reduced and m regular form B then o:' = B and we can deduce 

and 

1 A+VD 
< B 

B <A+ vD (20) 

A- -j]5 
-1 < ----=-­

B 
-B<A-VD 

VD-A<B. 
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Also because 0 < B we can deduce 

and 

A- VD 
B <0 

A-VD<O 

A<VD 

-1+1<o/+a 

2A 
0<-

B 
0 <A. 

From equations (22) and (23) we find 

and from equations (20), (21) and (24) we conclude 

This set of inequalities will allow us to state our next theorem. 

(22) 

(23) 

(24) 

(25) 

Theorem 3.6 ([4, Page 102]). There are only a finite number of reduced quadratic irrationals 
associated with any given D. 

Pmof. We know from equations (24) and (25) that for a to be a reduced quadratic irrational 
it is necessary that A must be between 0 and VD and B must be between 0 and 2VD. 
Furthermore, both A and B must be integers. Thus, if we fix D then there are a finite number 
of pairs of integers which meet this criteria. Thus there are only a finite number of potential 
candidates of A and B that make a reduced when D is fixed. D 

The next theorem will start to relate the idea of reduced quadratic irrationals to that of 
simple continued fractions: 

Theorem 3. 7 ([4, Page 102]). If an is reduced and an =an+ -
1

- where an is the floor of 
an+l 

an then an+l is r·edv.ced and has the same integer as the subject of the square mot. 

Pr·oof. First we show an+l is reduced. 

so 

Furthermore, from Theorem 3.4 

0< 

0< 

14 

<1 

<1 

(26) 



then because 1 < an a.nd -1 < o:~ < 0 

so 

-1 
1 < an - o:~ = - 1-

o:n+l 

-1 < 0:~+1 < 0. (27) 

Equations (26) and (27) fulfill the requirements for O:n+l being reduced. 
Now we show the subject of the square root is the same for o:n+l as it is for an. Let 

-b+ ,Jb2 - 4ac 
O:n = 

2a 

So 

0 = a o:; + b o:n + c 

= a (an + -
1 

) 
2 

+ b (an + -
1 

) + c 
O:n+l O:n+l 

2 2 a an a b 
=aan+ --+ - 2-+ban+ --+c 

O:n+l O:n+l O:n+l 

=(a a;+ ban+ c) o:;+l + (2aan +b) O:n+l +a. (28) 

Notice that the coefficients of this last quadratic equation are integers. Thus when we solve it 

for the positive root o:n+l = An+I; ~we will get An+I,Bn+I,Dn+I all integers. Now 
n+l 

solve for Dn+I: 

Dn+l = (2aan + b) 2
- 4(aa; +ban+ c)a 

= 4a2 a; + 4aban + b2
- 4a2a;- 4aban- 4ac 

= b2
- 4ac 

=D. 

Thus the theorem is proved. D 

Finally we come to the focal point of this section. The following theorem is shorter rework 
of [4, Thm 4.2] and is a key to solving Fell's equation. 

Theorem 3.8. If o: is a reduced q·uadratic irrational then its simple continued fraction expan­
sion is pv.rely periodic. 

PTOof. Theorem 2.3 proves that the simple continued fraction of o: is infinite. However, The­
orem 3. 7 implies that every residue of o: is reduced, and Theorem 3. 7 implies that there are a. 
finite number of these reduced quadratic irrationals. As a consequence of these two seemingly 
opposite statements, a.t some point there occurs some residue, rk, that is a repetition of a. 
previous residue, r j. 

Considering the simple continued fraction expansion of o:, because aj and ak are the largest 
integers less than r.i and rk respectively and Tj = rk, it follows that aj =a~., and 

rj = rk 

1 1 
aj + --= ak + --

Tj+I 1'1.+1 

rj+I = rk+I· 

15 



Furthermore, the same reasoning can be applied to show that rHz = r~;+2 , rH3 = r~;+3 
and so 011. 

1 
Now because rn- 1 = an-1 +-we can manipulate two expressions about ri-1 and r~;_ 1 

rn · 
side by side to eventually show that that they are equal. 

1 
rk-1 = ak-1 + -

r~, 

I 1 
rk-1 = a-1,:-1 + 1 

r~; 

from Theorem 3.4. Because rj = r~c it follows that rj = r[, and 

so 

I I aj-1- rj_1 = aJ.:-1- r~,_ 1 . 

Because rj-1 and rk-1 are reduced, it follows from Lemma 2.1 that aj-1 = a~,,_ 1 and rj_ 1 = 

r/,._1 and thus, rj-1 = r~,_ 1 . As before, the same method shows that rj-Z = r~;-2 , rj_3 = r~,_ 3 
and so on, up to r 1 = r~,,_j+ 1 and a= rk-j· 

Let m be the value where rm is the first residue where the value equals a. Then ri = rm+i 
for all i EN. Fnrthermore, taking the unique integer an for a and each of rn we get a0 = am 
a.ud ai = am+i for all i E N. 

Thus a= [ao; a1, ... , am-1JS and so is purely periodic. 0 

The variable m is known as the length of the period and will be quite important in solving 
Fell's equation. 

4 Square Roots and Pell's Equation 

Square roots of natural numbers are not reduced quadratic irrationals because their conjugates 
are never between -1 and 0. Thus they are never purely periodic. However, they do have a 
special form. 

Theorem 4.1 ([4, Page 112]). Simple continued fr-actions of square mots take the form 

when D E N and is not a perfect square. 

Proof. If D E Nand is not a perfect square then 1 < Vf5. This means its conjugate -VJ5 < -1 
and so Vf5 is not reduced. However, if a0 is the greatest integer less than Vf5 then 

and its conjugate 

-1 < a0 - VJ5 < 0. 

STho overhead bar is tho standard mathematical notation used when tho content below it repeats forever. 
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So a0 + VJ5 is reduced and by Theorem 3.8 its simple continued fraction representation is 
pnrely periodic. 

So 

and 

1 
ao + Vf5 = 2ao + ------------

1 
a1+-----------

1 .. + ----------
1 

am-1 + 
1 

2a0 +-

0 

Before we go on to solving Pell's equation we will find the simple continued fraction rep­
resentation of V7 and show that it takes the form above. 

1 
First note that a0 = L ,f7J = 2. So ,f7 = 2 +-and 

r1 

1 V7+2 
r1 = V7 - 2 . V7 + 2 

V7+2 
3 

V7+2 V7+2 1 
Now a1 = Lrd = L--J = 1. So r1 = -- = 1 + - and 

3 3 ~ 

1 r2 = ----,------------.,---

( v'73+ 2 -1) 

3 V7+1 
V?-1. V7+1 
V7+1 

2 

V7+1 V7+1 1 
Now a2 = hJ = L--J = 1. So r2 = -- = 1 + - and 

2 2 ~ 

1 
r3 = ----,------------

(v"itl-1) 
2 V7+1 

= V?-1. V7+1 
V7+1 

3 

17 



V7+1 V7+1 1 
Now ag = LrgJ = L--J = 1. So rg = -- = 1 + - and 

3 3 ~ 

1 
r 4 = -,-----,----

( V'itl-1) 
3 V7+2 

= v"l-2. V7+2 

= v'7+2. 

1 
Nowa4= Lr4j = LJ7+2J =4. Sor4=J7+2=4+-and 

r5 

1 
r ----
5-v"l-2 

= r1. 

As a consequence, a5 = a1, a6 = a2, ... Thus the simple continued fraction representation 
is 

V7 = [2; 1, 1, 1,4] (29) 

which is consistent with Theorem 4.1. 

Pell's Equation 

Finally we come to solving Pell's equation x2- Dy2 = 1 for D E N. To do this we will exploit 
the fact given in Theorem 4.1 that square roots have a particular type of simple continued 
fraction expansion. Along the way we will also solve the negative Pell equation; a Pell equation 
with the right-hand side negative one instead of positive one. 

Theorem 4.2 ([4, Page 114]). Let DEN and not be a perfect square, so VJ5 = [a0 ; a1, a2, ... , am_1, 2a0]. 

Also let Pn and qn be defined as in Theorem 2.4. 
If the length of the per·iod, m., is even then (:r, y) = (Pm-1! qm-1) solves the Fell equation 

:r2 - Dy2 = 1 for· integers. If the length of the period, m, is odd then (x, y) = (Pm-t, qm-1) 
solves the negative Fell equation :r2 - Dy2 = -1 joT integer's and (:r,y) = (ZJ2m_1,q2m_1) 
solves the Fell equation x2 - Dy2 = 1 joT integer's. 

FTDoj. Because VJ5 = [a0 ; at, a2 , ... , am-1, 2a0] it follows that 

1 
v'J5 = ao + -----------

1 

Now from Theorem 2.5 we get 

(1,1 + ----------
1 

·.+-------
1 

am-1 + . rr:; 
ao+vD 

v'J5 = (ao + ffi)Pm-1 + Pm-2 

(ao + ffi)qm-1 + qm-2 

(ao + v'J5)qm-1 v'J5 + qm-2v'J5 = (ao + v'J5)Pm-1 + Pm-2 

qm-1D + (aoqm-1 + qm-2)v'J5 = aoPm-1 + Pm-2 + Pm-1 v'J5 

18 
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and from Theorem 3.2 it follows that 

and 

so 

and (31) 

We can adjust the formula given in Theorem 2.6 by letting n = m- 2 to show 

( -1 )m-2 
= Pm-1 qm-2 - Pm-2qm-1 

= Pm-1(Pm-1- aoqm-1)- (qm-1D- aoPm-dqm-1 

from equations (31). So 
(32) 

So when m is even (x, y) = (Pm-1, qm-d solves the Pell equation, and when m is odd it solves 
the negative Pell equation. 

Note that when setting up this proof in equation (30) we did not need to stop at the end 
of the first period. Instead, we could have stopped at the end of any period. If we stopped at 
the end of the second period, equation (30) would look like 

1 VJ5 = ao + -------
1
-----

(.l1 + ------------
1 

··+-------
1 

a2m-1 + In 
ao+vD 

From this equation the previous logic can be carried out the same with the only difference 
being that m - 1 is replaced by 2rn - 1 and m - 2 is replaced by 2m - 2. The new version of 
equation (32) will then look like 

P~m-1- Dq~m-1 = (-1) 2
m 

=1. 

(33) 

Thus when m is odd and it is not sufficient to stay in the first period to solve the Pell 
equation, (:r, y) = (P2m-lo q2m-1) will give a solution in integers. D 

That is not to say that equation (33) cannot be solved when m is even. The equation is 
just as valid for even rn as it is for odd m. In fact, the general form of equation (33) for the 
kth period is 

Prm-1 - Dqlm-1 = ( -1)"'m · 

fork EN., This shows when m is even, (.1;, y) = (Pkm-1, qkm-d will solve Pell's equation for 
all k, and when m is odd, (:r, y) = (Pkm-lo qkm-1) will solve Pell's equation for all even k, and 
will solve the negative Pell equation for all odd k. 

A direct consequence of this is that if there is a solution for Pell's equation given by 
Theorem 4.2, then there are an infinite number of solutions of Pell's equation. Furthermore, 

'If The process to get tllis equation is identical to the previous process but instead stopping at the end of the 
kth period. 
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if there is a solution for the negative Pell equation given by Theorem 4.2, then there are an 
infinite number of solutions of the negative Pell equation. 

Later we will go on to discuss how to obtain even more solutions of the Pell equation and its 
variants. For now though, let us consider an example, and solve the Pell equation :r2 -7y2 = 1. 

We know from equation (29) that J7 = [2; 1, 1, 1, 4]. We can see that the length of 
the period is 4 so Theorem 4.2 tells us that the numerator and the denominator of the 3rd 

convergent will solve the Pell equation for D = 7. The numerators and denominators of the 
first 7 convergents are calculated from Theorem 2.4 and are as follows: 

n -2 -1 0 
an 2 
Pn 0 1 2 
qn 1 0 1 

1 2 3 
1 1 1 
3 5 8 
1 2 3 

4 5 
4 1 

37 45 
14 17 

6 
1 

82 
31 

7 
1 

127 
48 

We can see that p3 = 8 and q3 = 3. This indeed is a solution to Pell's equation with D = 7 
as 82 - 7 X 32 = 1. Fmthermore, calculating into the second period shows that p7 = 127 and 
q7 = 48. A quick check with a. calculator shows it is true that 1272 

- 7 x 482 = 1. If more 
solutions are required this is easily extended into the 3rd period or further. 

When there are no solutions 

This report ha.<; now answered its main question: How to solve Pell's equation for D that is 
not a perfect square. Throughout all our explorations we have always maintained this for D 
and have never explained why. It is only right, then, to give an explanation to what happens 
when D is a perfect square. 

If D is a perfect square then there exists some d E N such that D = rP. Then 

where z =dyE N, and so 

1 = :r2
- Dy2 

= :r2 - rPy2 

= :r2- (dy)2 

= :r2- z2 

1 = (:r + z)(:r- z). 

Because the only possible factors of 1 are -1 and 1, this leaves us with one of two options. 
The first is that 

x+z=x-z=1 

and :r = 1 while z = 0 rf. N, and so this is not a. solution the Pell equation. 
The second is that 

x+z=:r-z=-1 

and :r = -1 rf. N and also z = 0 rf. N, and so this too is not a. solution to the Pell equation. 
Thus there is no way to obtain an integer solution to the Pell equation when D is a perfect 
square. 

However, Pell's equation is still quite gracious; there are solutions for all D that are not 
square. The negative Pell equation is less merciful; there are many D that do not have integer 
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solutions for the equation. For example, it can be easily shown that when D = 7 the equation 
:r2 - Dy2 = -1 does not have any integer solutions. II 

If .T2 -7y2 = -1 is true for some integers :r andy, then one of the following 4 cases is trne. 

i) x andy are both even 

Let x = 2u; y = 2v for u,v EN. Then 

x2
- 7y2 = 4u2

- 28v2 

= 4(u2
- 7v2

). 

Now because v.2 - 7v2 E Z, :r2 - 7y2 cannot equal -1 and so :r and y cannot be both 
even. 

ii) x andy are both odd 

Let .T = 2v.- 1; y = 2v- 1 for u, v EN. Then 

.1:
2

- 7y2 = (2u- 1)2
- 7(2v- 1)2 

= 4v?- 4v. + 1- 7(4v2
- 4v + 1) 

= 2(2u2
- 2v.- 14v2 + 14v- 3). 

Because 2v.2 - 2v. 14v2 + 14v- 3 E Z, :r2 -7y2 cannot equal -1 and sox andy cannot 
be both odd. 

iii) x is even and y is odd 

Let :r = 2v.; y = 2v- 1 for 11., v EN. Then 

:r2
- 7y2 = 4v?- 7(4v2

- 4v + 1) 

= 4(u2
- 7v2 + 7v- 1)- 3. 

Now let w = u2 
- 7v2 + 7v- 1 E Z. Assume that there is a solution where :r is even and 

y is odd. Then 
4w- 3 = -1 

and w = ~ rf_ Z. So there is a. contradiction; thus :r cannot be even a.nd y be odd. 

iv) x is odd and y is even 

Let :r = 2u- 1; y = 2v for v., v E N. Then 

:r2 
- 7y2 = 4u2 

- 4u + 1 - 28v2 

= 4( u2 
- v.- 7v2

) + 1. 

Now let w = u2
- u- 7v2 E Z. Assume that there is a. solution where :r is odd a.nd y is 

even. Then 
4w+1 = -1 

and w = -.} rf_ Z. Aga.in there is a contradiction and x cannot be odd and y be even. 

Because all 4 cases are not possible, x2 - 7y2 = -1 has no integer solutions. 

II Similar to the proof given in the appendix of [4] as to why :v2 - 3y2 = -1 has no integer solutions. 
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Other Solutions 

It has been shown that when one solution of Fell's equation is found fmm the simple continued 
fraction method, an infinite number of solutions can be generated. In 628 AD the Indian 
mathematician Bra.hmagupta showed a. general form of this without the need for continued 
fractions. [6, Pages 72-73] The result is as follows: 

Theorem 4.3. If:ri-Dvi = N1 and:r~-Dy~ = Nz then (xlxz+DY1Yz)2-D(:rlyz+:rzy1)2 = 
N1Nz. 

Proof. 

N1Nz = (:ri- Dyi)(:r~- Dy~) 

= :ri:r~ + D2yiy~- D:riy~- D:r~yi 

= :ri:r~ + Dx1:EzY1Y2 + D2yiy~ - D:riy~ - Dx1XzY1Y2 - Dx~yi 

= (:r1x2 + Dylyz)2 - D(:r1Y2 + :rzy1)2. 

D 

Sometimes this in itself is enough to solve the Pell equation, without knowing any prior 
solutions, but the method is not as straightforward as the simple continued fraction method. 
For more information, see [ 6, Page 75). 

5 Summary of Method; The PQa Algorithm 

The PQa algorithm** is an algorithm that automates the process on page 17 to work out the 
simple continued fraction representations of quadratic irrationals. The algorithm presented 
here is a simplified version that applies only to square roots, however the fnll version can be 
found online. [5, Page 4] 

It is desired to calculate the simple continued fraction representation of Jl5, where 0 < 
D E N and is not a perfect square. Define A0 = 0 and B0 = 1. To obtain the simple continued 
fraction, recursively define 

It then follows that 

= Ly75 + Anj = Lao+ Anj 
an B B . 

n n 

(34) 

(35) 

(36) 

This is especially effective if calculated in a table with the Pn and qn. The table when 
D = 7 for n up to 8 is as follows; 

**Traditionally, the variables used to represent a quadratic irrational arc p + VJ5. The algorithm is used to 
Q 

find the quotients of the simple continued fraction representation; the an. Hence the name 'PQa'. I have used 
the variables A and B instead thoughout this report to avoid confusion with the Pn and qn. It would make 
more sense to call this the ABa algorithm; however, more importance was placed on the official name than the 
correlation with the variables used. 
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n -2 -1 0 1 2 3 4 5 6 7 8 
An 0 2 1 1 2 2 1 1 2 
En 1 3 2 3 1 3 2 3 1 
an 2 1 1 1 4 1 1 1 4 
Pn 0 1 2 3 5 8 37 45 82 127 590 
qn 1 0 1 1 2 3 14 17 31 48 223 

. VD+Ai B fll .. Notice from the example on page 17 that ri = . y care u y exammmg the 
Bi 

equations (34), (35) and (36) we see this is because they are the same process. However, the 
PQa algorithm is much faster to use. It also allows us to state the last theorem of this report. 
This theorem is stated in [5] without a proof; the proof presented here is original. 

Theorem 5.1. Let DEN and not be a perfect square, and VD = [ao;a1,a2, ... ]. Jfpn and 
qn are defined as in Theorem 2.4 and An and Bn are defined as in equations (34) and (35) 
with A 0 = 0 and B 0 = 1 then 

Proof. Consider when n = 0: 

2 D 2 _ ( 1)n+1B Pn- qn- - n+1· 

L.H.S. = P6 - Dq6 

=a6-D 

= ( -1) ( D - a5) 

= R.H.S. 

Now assmne that the statement holds for 1 ... k = n. Specifically, assume that 

and 

( )k+1B -1 k+l· 

Before we go on let us prove a lmmna that 

(37) 

(38) 

(39) 

For k = 0, L.H.S. = a0 - 0 = A1 = R.H.S. Now assume that the lemma is true for k = j. 
That is, 

PjPj-1 - Dqj qj-1 = ( -1)j AH1· 

Now consider when k = j + 1: 

L.H.S. = Pj+!Pj- Dqj+lqj 

= o'i+1PJ + PjPj-1- D (aj+lq] + qjqj-1) 

= aj+l (PJ- DqJ) + (pjPj-1- Dqjqj-1) 

( 2 2) . 
= aj+l Pj - Dqj + (-1)2 Aj+l 
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from the induction assumption of equation ( 40); 

from the induction assumption of equation (38); 

+1 = ( -1)J AH2 = R.H.S. 

from equation (34). Thus, the lemma holds if the assumption of equation (38) holds. 
Getting back to the original hypothesis, consider when n = k + 1: 

L.H.S. = P%+1 - Dq~+l 
= (ak+lPJ., + PJ.·-1)- D (aH1qk + qk_I) 

= a%+1P% + 2aH1PkPk-1 + PL1- D (a%+lq~ + 2ak+lqkqk-1 + qL1) 
= a%+1 (P%- DqZ) + (P%-1 Dq%_1) + 2ak+l (PkPk-1- Dq~.;qk-1) 

= a%+1 ( -1)H1 B~,+l + (PL1 - Dq~-1) + 2aH1 (PkPk-1- Dq~,,qk-1) 

from equation (38); 

from equation (37); 

from equation (39); 

from equation (35); 

= (-1)k+2 D- a%+1B~+l- A%+1 + 2a~,+1Ak+ 1 B~,+l 
Bk+1 

= (-1)k+2 D- (a~,+lBk+l AH1)
2 

Bk+1 

= (-1)k+2D- A%+2 
Bk+1 

from equation (34); 

from equation (35). Thus, the theorem is proved by strong induction. 0 

This theorem is one of the first steps to solving Pell's equation with a general right-hand 
side. This is much more complicated than the regular Pell's equation, but more information 
can be found in [5]. 
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6 Conclusion 

Over the course of this report we have investigated simple continued fractions and explored 
an application of solving Fell's equation. Furthermore, a practical method of solving Fell's 
equation quickly was given in the PQa. algorithm. Bra.hmagupta once said "A person solving 
the equation :r2 - 92y2 = 1 within a year is a mathematician." [6, Page 73] [1, Page 252] 
Using the methods in this report I managed to solve it using only a pen and paper in less 
than 7 minutes. tt A solution is :r = 1151 and y = 120. A brute force method by hand would 
take much longer than this and to find a solution within a. week would be extremely doubtful. 
Brahmagupta seemed to think it would take more than a. year. Thus, this calculation of less 
than 7 minutes demonstrates the efficiency of using simple continued fractions to solve Fell's 
equation. 

As stated earlier, this report could lead on to a study of Fell's equation with a. generalised 
right-hand side. But for now we have accomplished our main purpose of solving Fell's equation. 
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