
Magnesium hydroxide is a sustainable material for CO2 sequestration, according to an acid 1 
digestion and electrolysis method using olivine-rich silicate rocks in a fully recoverable 2 
system. 3 
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Abstract:  19 

Global climate change related to anthropogenic CO2 emissions is one of the most 20 

significant challenges for the future of human life on Earth. There are many potential 21 

options for reducing or even eliminating atmospheric CO2 emissions including 22 

underground sequestration, carbon mineralization and ocean storage. One of the most 23 

promising materials for carbon mineralization is Mg(OH)2 which is highly reactive and 24 

capable of forming stable carbonates. Here we show a novel low-carbon method of 25 

producing Mg(OH)2, from globally abundant olivine-rich silicate rocks. A combination 26 

of acid digestion and electrolysis of olivine were used to produce Mg(OH)2 in a fully 27 

recoverable system. The use of Mg(OH)2 from olivine provides a viable pathway for 28 

significant industrial scale reductions in global anthropogenic greenhouse gas emissions. 29 

 30 

Introduction:  31 

The effects of unchecked CO2 emissions on global climate change are being 32 

increasingly seen and felt across the world. Examples of issues include increased land and sea 33 

temperatures, glacier and sea ice loss, and sea level rise (1). Urgent action is needed to limit 34 

future emissions and sequester existing atmospheric CO2 in order to circumvent issues related 35 

to global warming (2). In 2018, ~37 billion tonnes of CO2 was released into the atmosphere 36 

(3). Point source emissions such as power generation and industrial production account for 37 

approximately 60% of the total CO2, but this is expected to decrease to 50% by 2050 (4). 38 

 Methods for long-term storage of CO2 can be classified as either underground 39 

sequestration or carbon mineralization, of which underground sequestration in sedimentary 40 

formation is considered the most mature technology (5). Carbon mineralization can be further 41 

divided into 3 approaches:  1) ex-situ, where material is transport to the site and reacted with 42 

CO2 typically at elevated temperatures and pressures, 2) surficial, using dilute or 43 
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concentrated CO2 and 3) in-situ, where the CO2 is transported to site with suitable geological 44 

formations, typically containing serpentine or olivine-bearing basalts (5).  Ocean storage has 45 

also been proposed as a potential means of CO2 sequestration, but comes with a number of 46 

environmental consequences (4). 47 

A number of materials have been proposed for carbon mineralization including 48 

serpentine, olivine, wollastonite, magnesium oxide and magnesium hydroxide (6-10). Of the 49 

various materials which may be suited for transport to the emissions source, Mg(OH)2 is one 50 

of the most reactive for carbonization (5). Aqueous carbonation of Mg(OH)2 can result in the 51 

formation of a hydrated Mg-carbonate such as nesquehonite (MgCO3·3H20), dypingite 52 

(Mg5(CO3)4(OH)2.5H2O), and hydromagnesite (Mg5(CO3)4(OH)2·4H2O) under atmospheric 53 

or near atmospheric conditions (11). The formation of magnesite (MgCO3) is also possible 54 

but this typically requires higher temperatures (>100 oC) and pressures above 100 bar. 55 

Seeding Mg(OH)2 slurries with magnesite at elevated pressures and temperatures has been 56 

shown to produce a stable anhydrous magnesite (12). One of the benefits of Mg(OH)2 with 57 

regard to overall conversion rates and transportation is that it does not contain significant 58 

quantities of unreactive material, such as silica or iron which are typically found in olivine or 59 

serpentine.  60 

MgO and Mg(OH)2 are usually sourced from either the calcination of magnesite or 61 

precipitated from Mg-rich brines and sea water (13). Recovery of Mg(OH)2 from seawater 62 

has the potential to provide virtually limitless supplies of the material; however, its 63 

commercial production typically requires the use of lime, which itself has significant 64 

embodied CO2, resulting in little overall environmental benefit. The high temperature 65 

pyrohydrolysis process of using MgCl2·6H2O to form MgO and HCl (14) could potentially 66 

provide a low carbon Mg(OH)2 alternative; however, concentrations of Mg-chloride in 67 
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seawater are relatively low which limits the efficiency of the process unless highly 68 

concentrated brines are used. 69 

Magnesium-rich silicate minerals, such as olivine ((Mg,Fe)2SiO4), in ultramafic and 70 

mafic rocks have the potential to produce reactive Mg(OH)2 with zero CO2 emissions. Until 71 

now, Mg(OH)2 recovery from olivine has not been used primarily because of the slow rate of 72 

hydration (i.e., serpentinization)(15, 16) or ultramafic mineral extraction efforts have been 73 

focused on silica recovery (17) rather than Mg(OH)2 production. Furthermore, a satisfactory 74 

energy efficient industrial process has not been developed yet (18).  75 

Here, we extract Mg(OH)2 directly from olivine using a combination of acid digestion 76 

and electrolysis. The acid used in the digestion process is completely recoverable and 77 

provides a source of usable energy. Recovered Mg(OH)2 was found to have a similar level of 78 

reactivity compared to commercially available Mg(OH)2. A slurry of recovered Mg(OH)2 and 79 

water was shown to effectively sequester CO2 forming a hydrated Mg-carbonate. In addition 80 

to Mg(OH)2, amorphous silica, which has the potential for use as a partial cement 81 

replacement, was also recovered from the olivine.  82 

 83 

Methods: Synthesis of Mg(OH)2 84 

The synthesis of Mg(OH)2 uses olivine from ultramafic rocks and/or olivine-rich 85 

basalts as the raw material and source of magnesium (Fig. 1). Olivine is sparingly soluble 86 

under standard state conditions with a total Mg concentration of less than 6 mg L-1 resulting 87 

in excessive energy demands for the recovery process. As the pH of the reaction solution 88 

decreases, the solubility of Mg increases considerably. In our investigation, 100 g of finely 89 

ground forsteritic ((Mg0.9Fe0.1)2SiO4) olivine (19), with a mean particle size of 28 µm, was 90 

combined with 500 ml of 2 M HCl, resulting in the formation of a solution containing MgCl2 91 

and FeCl2 and SiO2. The silica is produced through a process of hydrolysis and subsequent 92 
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polymerization and condensation of silicic acid (Si(OH)4). Strong acids such as HCl are 93 

known to accelerate the hydrolysis process, whereas, a high pH favours the polymerization 94 

and condensation process that is supported by the addition of Mg(OH)2 in this study. Here the 95 

pH of the solution increased rapidly from less than 0 to ~3 after 4 hours of mixing at 20 oC.  96 

The concentration of Mg2+ in solution was determined by complexometric titration 97 

used to measure total hardness of water. 1 ml of sample solution was added in a conical flask 98 

containing 10 ml of 0.05 M ethylenediaminetetraacetic acid (EDTA) solution and 10 ml of 99 

ammonia buffer solution. Eriochrome black T was used as an indicator. The solution was 100 

titrated using a 0.025 M magnesium chloride solution until its colour changed from blue to 101 

pink. The concentration of complexed EDTA solution was used to determine the magnesium 102 

ion concentration. Since the concentration of calcium ions in the sample solution was 103 

negligible, it was assumed that all the ions complexed with EDTA were magnesium. The Mg 104 

concentration was found to be ~24 g L-1, which is more than 19 times the concentration of 105 

Mg in seawater and over three orders of magnitude greater than the concentration resulting 106 

from serpentinization reactions involving pure water. The potential Mg extraction efficiency, 107 

therefore, is considerably higher using an acid digestion solution than it is from seawater. 108 

Once the initial digestion phase was completed the solution was allowed to settle for 1 109 

hour after which it was decanted to separate the solution containing the Mg, Fe and Si ions 110 

from any unreacted olivine (Fig. 1). Silica was precipitated from solution by increasing the 111 

pH to >3.5 through the addition of 1 g of Mg(OH)2. The pH of the remaining solution was 112 

further increased to almost 7 to precipitate the dissolved iron using 0.32 g of NaOH. The 113 

silica and iron were separated from the solution using a centrifuge in this proof of principal 114 

testing, whereas, an industrial filtration system would be used in practice. It should be noted 115 

that the formation of gel-like products during the precipitation of silica and iron can cause 116 

challenges to any filtration system. Regular flushing and cleaning of the membranes would be 117 
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necessary and likely require a number of cross flow filters, such as those used for silica 118 

removal from geothermal waters, to be run in parallel to maintain operations. An alternative 119 

approach and potentially more efficient method for the removal and recovery of the silica and 120 

iron is by precipitate flotation.  121 

The MgCl2 solution was electrolysed in an H-cell with a carbon anode and platinum 122 

cathode. A DC power supply was used to generate a current of approximately 100 mA 123 

resulting in the formation of Cl2 gas at the anode and H2 gas at the cathode. Mg(OH)2 was 124 

formed at the cathode where the pH of the solution increased rapidly to ~9.5. The recovered 125 

Mg(OH)2 was placed in a drying oven at 105 oC for 1 day after which it was analysed by 126 

scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-ray powder 127 

diffraction (XRD). For the commercial production of Mg(OH)2, H2 and Cl2 would be 128 

combined to produce HCl for re-use and as an energy resource, as is typically done in the 129 

chemical process and manufacturing industry.  130 

 131 

Results and Discussion  132 

From this process, a total of 35 g of Mg(OH)2 was produced from 100 g of olivine, 133 

with 1 g of Mg(OH)2 added in the silica precipitation stage. Approximately 5 g of iron oxide 134 

was precipitated with the addition of 0.32 g of NaOH, which represented less than 1 % of the 135 

total Mg(OH)2 recovered. 35 g of amorphous silica was also recovered from the precipitation 136 

stage. The SEM image and TGA graph provided in Fig. 2 a,b show the material recovered 137 

after electrolysis was primarily Mg(OH)2. XRD results provided in Fig 2c. show the 138 

recovered silica was predominantly amorphous SiO2 with some residual unreacted olivine 139 

and confirm the material recovered after electrolysis was predominately Mg(OH)2. The 140 

composition of the raw olivine sand, recovered Mg(OH)2, and recovered silica from olivine, 141 
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determined by X-ray fluorescence (XRF), are provided in Table 1 and are consistent with the 142 

other material characterization analysis.  143 

In addition to the primary recovered Mg(OH)2, secondary materials of iron hydroxide 144 

and silica may also be of use. The iron hydroxide for instance could be used as a high purity 145 

raw material for iron production or as an absorbent while the amorphous silica can be used as 146 

a partial replacement for Portland cement, in the production of concrete, which is a 147 

significant industrial contributor to global CO2 emissions (20). Our approach provides an 148 

almost completely closed system for the production of Mg(OH)2 with the only additions 149 

being olivine, as the source of Mg, and minor amounts of NaOH. 150 

 151 

CO2 and energy implications of Mg-hydroxide extraction 152 

 Overall, conversion of olivine into Mg(OH)2 produces no direct CO2 emissions and 153 

the HCl used for digestion was completely recoverable. The large scale and industrial use of 154 

strong acids such as HCl have serious consequences if released into the environment. 155 

However, this is only an issue if there is a loss of containment from the process.  The large 156 

scale handling of HCl without loss of containment is well established in the chemical process 157 

industries due to its use in commodity materials such as the manufacture of PVC and pickling 158 

of steel.  What is most important is that neither HCl nor chlorine leave the process described 159 

in our work, as they are recycled within the process. 160 

The total energy required, including quarrying and grinding, to produce Mg(OH)2 161 

from olivine was calculated to be 6.28 GJ tonne-1 (see Fig. 1 and Supplementary Methods 162 

for energy determinations and calculations). Further refinement of the process may allow 163 

greater use of recovered Mg(OH)2 for pH control, a decrease in the total energy required, and 164 

a reduction in NaOH. The Mg(OH)2 could be further processed into MgO but for CO2 165 

sequestration; however,  Mg(OH)2 is known to be a faster reactant than MgO (10).  166 
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For every tonne of CO2 sequestered as a Mg-carbonate, including nesquehonite and 167 

hydromagnesite, 1.3 tonnes of Mg(OH)2 is required, resulting in an energy consumption 8.17 168 

GJ tonne-1 of CO2 (Fig. 1, see Supplementary Methods for calculations). Using the method 169 

outlined in this paper would result in a net negative CO2 emission, even if coal was used to 170 

provide the necessary energy, though at ~25% sequestration efficiency. The overall carbon 171 

sequestration benefits would improve substantially if a low carbon energy sources, or even a 172 

mixed electrical supply, was used. For example, in California where roughly 50% of the 173 

electricity is from non-fossil fuels , ~500 kg of CO2 would be emitted for every 1,000 kg of 174 

CO2 captured and turned into Mg-carbonate.  175 

 To confirm the ability of the recovered Mg(OH)2 to sequester CO2, a Mg(OH)2 water 176 

slurry was pressurized to 4 bar with concentrated CO2. Over a 48 hour period more than 50% 177 

of the Mg(OH)2 was converted to a hydrated Mg-carbonate, demonstrating the potential 178 

conversion of CO2 into a solid. The reactivity of the recovered Mg(OH)2 was also confirmed 179 

by the rapid increase in pH to ~10.5 when it was added to de-ionized water. As previously 180 

noted, there are a number of other methods for sequestering CO2 with Mg(OH)2 using either 181 

aqueous (12,21) or direct solid-gas reaction methods (10). Our proposed process has the 182 

potential to provide a substantial source of energy efficient, low-carbon Mg(OH)2 for use in 183 

various carbon sequestration techniques currently being developed by other investigators.   184 

 185 

Olivine resources and feasibility 186 

Ultramafic rocks, enriched in olivine, constitute ~1% of Earth’s terrestrial landscape, 187 

a high proportion of  oceanic crust, and >50 % of the upper mantle (22). Olivine-rich deposits 188 

(Fig. 3) are primarily present within populated areas of the Circum-Pacific and 189 

Mediterranean regions (23, 24). Olivine is present in many rocks such as basalt and other 190 

ultramafics. We would like to note that although olivine was assessed and used in this study, 191 
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its metamorphic equivalent, serpentine (Mg3Si2O5(OH)4) with its high reactivity in HCl and 192 

worldwide deposits, could expand the scope and implications of this study.  Our preliminary 193 

investigations have shown Mg can also be extracted from basalt; however, we will primarily 194 

focus our discussion on two enriched and accessible olivine deposits: the Semail ophiolite 195 

(Oman) and the Red Hills Ultramafic Complex (New Zealand) which conservatively contain 196 

1.4x105 and 871 billion tonnes of olivine, respectively (see Supplementary Methods for 197 

sources and estimate calculations).  198 

Using Mg(OH)2 to remove and sequester anthropogenic CO2 estimated for 2020 (40 199 

billion tonnes) in a Mg-carbonate would require ~105 billion tonnes of olivine. Reducing 200 

global atmospheric CO2 levels by an additional 10 billion tonnes would necessitate a further 201 

26 billion tonnes of olivine. The sum of olivine required to do all of this would be 131 billion 202 

tonnes; 0.1 % of the Oman ophiolite or 16 % of Red Hills, New Zealand (Fig. 3). To 203 

sequester all anthropogenic CO2, these two deposits would last on the order of nearly a 204 

decade (Red Hills) to one thousand years (Semail), assuming the deposits contained at least 205 

60% olivine. The degree of serpentinization of each deposit and abundance of other minerals 206 

such as ortho- and clinopyroxene would affect the overall extraction efficiency. Smaller 207 

deposits, compared to the Semail ophiolite or Red Hills, around the world could significantly 208 

aid the global reduction of anthropogenic CO2.  209 

 210 

Implications  211 

The concept of using ultramafic rocks and its metamorphic equivalents as sources of 212 

Mg for CO2 sequestration has been considered for at least two decades.  However, one 213 

limitation with regards to previous and current approaches is related to the distance between 214 

the CO2 gas source and the ultramafic site.  Currently, concentrated CO2 is being 215 

transported/piped to ultramafic sites to be directly injected into the subsurface.  Although 216 
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ultramafic sites are around the world, many are not sufficiently close to areas of high CO2-217 

producing industries.  Our approach allows bulk Mg(OH)2 to be transported more efficiently 218 

to locations/industries where it can be used on site for point source emissions control.  For 219 

example, transporting enough Mg(OH)2 to sequester 1 tonne of CO2, from its production 220 

location to a point source such as a cement plant 1,000 km away by rail, would result in 37 kg 221 

of CO2 emissions (25).  222 

Additionally, slight modifications to this approach through the further refinement of 223 

Mg(OH)2 to MgO has the potential to produce construction materials such as Mg-masonry 224 

blocks (26) rather than simply burying the CO2. There is considerable interest in the potential 225 

use of MgO as an alternative to traditional Portland cement (13); however, there are a number 226 

of issues which must be addressed, including: the low pH of the pore solution, which makes 227 

its use in steel reinforced structures challenging, and high water demand which makes 228 

handling more difficult. One of the major environmental issues associated Mg-based cements 229 

is the vast majority of MgO is produced from MgCO3 which results in the release of CO2 at a 230 

similar proportion to that of Portland cement. The alternative of recovering MgO from sea 231 

water, as previously noted, also has considerable embodied CO2 due to the use of CaO, 232 

sourced from carbonates, in the recovery process. If MgO is to be used as a construction 233 

material then a low carbon mineral extraction approach will be needed. The scale and scope 234 

to mitigate climate change using Mg-bearing minerals from ultramafic and mafic rocks is 235 

massive, but our experiments and others support that this is feasible.   236 

Scaling up and improving efficiencies with regards to the processes described and 237 

proven here will require a significant development and industrialization effort. We anticipate 238 

that the engineering challenges to produce Mg(OH)2 for use in CO2 sequestration, as shown 239 

in Fig. 1, are comparable to other well known industrial processes. One of the great 240 

challenges, however, is how to use the billions of tonnes of carbonate produced to offset 241 
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anthropogenic CO2 emissions and this requires further circumspection. A more realistic and 242 

efficient approach to addressing global warming is to reduce CO2 emissions. Until then, we 243 

have demonstrated a process that is feasible and globally communal where many countries 244 

and industries can participate.  Overall, the recovery of magnesium hydroxide from olivine-245 

rich (and potentially serpentine-rich) rocks provides the basis for a direct route to reduce 246 

global anthropogenic CO2 and its associated climate change impacts. 247 

  248 
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Figures and Tables 255 

 256 

Figure 1: Simplified mineral extraction and carbon sequestration.  257 

Energy requirements are shown where E1 = 0.32, E2 = 6.6 and E3 = -0.64 GJ tonne-1 of 258 

Mg(OH)2 produced. Energy consumption details are provided in Supplementary Methods. 259 

Note: Direct solid-gas carbon mineralization is also possible and the most likely approach for 260 

point source CO2 sequestration. 261 

*Note: The carbonation product is likely to be hydrated Mg-carbonate such as nesquehonite, 262 

dypingite, or hydromagnesite, but MgCO3 formation is also possible depending on reaction 263 

conditions (27). 264 

 265 

Figure 2:  Characterization of recovered material.  266 

a) SEM image of recovered Mg(OH)2 from electrolysis of olivine digestion solution, b) TGA 267 

of recovered Mg(OH)2 from olivine, c) XRD of recovered Mg(OH)2 and of recovered silica 268 

(B: brucite, L: lizardite, F: forsterite). 269 

 270 

Figure 3:  Distribution of ultramafic rocks and olivine lifetime estimates.  271 

The general distribution of ultramafic rocks (including peridotites and serpentinites) is shown 272 

worldwide.  Ultramafic rock distributions are based on location data from Oze et al. (24) and 273 

compared to Real and Vishal (23). Please note that more ultramafic rock deposits are present 274 

than shown and that the squares do not represent particular sites.  The billions of tonnes of 275 

olivine per year needed to sequester all anthropogenic CO2, and reduce global atmospheric 276 

CO2 as well as the lifetime supply of olivine from the Red Hills (New Zealand) and Semail 277 

Ophiolite (Oman) is shown and based on calculations provided in the Supplementary 278 

Methods.    279 
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 280 

Table 1. Elemental compositions of raw olivine sand and recovered Mg(OH)2 and silica from 281 
olivine, determined by XRF analysis. 282 

  SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O LOI Total 

 ---------------------------------------------------Wt. %------------------------------- 

Raw olivine 39.6 0.38 10.7 0.73 45.0 0.14 0 3.2 100.0 

Mg(OH)2-olivine 0.1 0.11 6.4 0.30 60.4 0.03 <0.01 32.3 99.9 
Silica-olivine 63.2 0.23 4.7 0.57 13.9 0.03 0.06 16.4 99.0 
 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 



 
 

15

 303 

 304 

Data Availability 305 

Data files containing XRD and TGA results of the recovered materials from this investigation 306 

are available from the figshare data set repository: DOI 10.6084/m9.figshare.13543091.   307 
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Table 1. Elemental compositions of raw olivine sand and recovered Mg(OH)2 and silica from 
olivine, determined by XRF analysis. 

  SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O LOI Total 

 ---------------------------------------------------Wt. %------------------------------- 

Raw olivine 39.6 0.38 10.7 0.73 45.0 0.14 0 3.2 100.0 

Mg(OH)2-olivine 0.1 0.11 6.4 0.30 60.4 0.03 <0.01 32.3 99.9 
Silica-olivine 63.2 0.23 4.7 0.57 13.9 0.03 0.06 16.4 99.0 
 

 

 


