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Abstract 

The quality of New Zealand’s surface waters has been identified as the most important environmental issue in 

agricultural landscapes. Waterways are degraded through nitrogen (N), phosphorus (P), sediments and 

pathogens that enter via stock access to drains, streams and rivers as well as runoff and leaching from adjacent 

fields. Often, NZ-native vegetation, which is depauperate in agricultural landscapes, is established in riparian 

zones to improve water quality by intercepting these contaminants before they enter waterways. Such plantings 

have expensive initial costs; it requires retirement of productive agricultural land, vegetation planting, labour 

costs and maintenance as well as fencing to prevent stock intrusion into the waterways. However, it is estimated 

that national-level planting initiatives could yield net benefits of $1.7 billion to $5.2 billion per year. Greenhouse 

studies have shown that the NZ-native species Mānuka (Leptospermum scoparium) and Kānuka (Kunzea robusta) 

affect the N-cycle, and may therefore reduce the flux of N into waterways. This finding indicates that the efficacy 

of riparian plantings, to reduce contaminant spill over, may be greatly influenced by the species used. I aimed 

to test the null hypothesis that there is no difference between NZ-native plant species when considering their 

effect on the concentration and speciation of N, P and other essential nutrients in soils adjacent to waterways. 

I measured chemical differences in the rhizosphere of Lolium perenne, Phormium tenax, Kunzea robusta, 

Leptospermum scoparium, Coprosma robusta and Pittosporum eugenioides at three different locations in New 

Zealand field conditions.  Specifically, in each rhizosphere I measured (1) Soil pH and total C, (2) total N and N-

speciation, (3) total P and Olsen-P, (4) Other essential nutrients that may affect the use of vegetation for 

freshwater protection. I found there were no significant interspecific differences in the rhizosphere 

concentrations of TN, NO3
-, NH4

+, TP and Olsen P under all five NZ-native species. However, TP was affected by 

cut-and-carry of Lolium perenne at SFFP. TS and SO4
2- generally had significantly higher interspecific differences 

in the rhizosphere concentration of P. tenax and K. robusta at SFFP and Lake Ellesmere. All other NZ-species 

showed no significant differences. Soil pH and TC were not significantly influenced by different native species, 

which could be due to different cycling processes. There was higher Na concentration under L. perenne than P. 

tenax at SFFP. This was thought to be from wastewater application onto pasture. The age of plants may be a 

significant factor in determining interspecific differences in chemical concentrations. Lake Waikare showed no 

significant interspecific differences in rhizosphere concentrations of chemicals, but the NZ-species planted were 

less than 2 years of age. The lack of differences does not indicate that NZ-native plant species is not an important 

consideration for riparian plantings. There are many other potential benefits that specific NZ-species may 

exhibit, which were not been tested in this study. The selection of NZ-species for riparian plantings should not 

solely rely on the rhizosphere chemical differences, as found in this research, but should consider ecological and 

farm management requirements. 
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1. Introduction 

1.1. New Zealand Native plants and agriculture  

For the past 85 million years, New Zealand (NZ) native plants have historically depended on soils 

derived from primary rocks low in essential plant nutrients: soils that are naturally fertile are rare in 

NZ (Wardle, 1991). This changed in the past two centuries when 45% (12 Mha) of NZ’s land area was 

converted to agriculture and soil fertility was increased through the application of fertilisers and lime 

(Agricultural and horticultural land use 2018a). Native vegetation covered an estimated 82% of land 

surface area, before Maori and European settlement (Fleet, 1986). In 2019, the Ministry for Primary 

industries recorded that native vegetation covered 24% of NZ. Native vegetation has been cleared and 

converted to productive agriculture pasture. Plants take up nutrients from soil, which must be 

replaced to maintain soil fertility. Consequently, intensive fertiliser and liming schemes have been 

introduced to maintain optimal nutrient levels (McLaren and Cameron, 1996; Molloy, 1988). The two 

most important nutrients in NZ soils through fertilisers are nitrogen (N) and phosphorus (P) (OECD 

environmental performance review 2017c; Parfitt et al., 2012). In NZ, N fertiliser use has increased 

637% from 1990 to 2015 (Stats NZ fertilisers 2019b). The 2017 Organisation for Economic Co-

operation and Development (OECD) report stated that NZ had the largest N balance increase of any 

OECD country, in terms of quantity applied per unit of agricultural land, at 25% from 2000 to 2010 

(OECD environmental performance review 2017c). Phosphorus fertiliser use has increased 41% from 

1990 to 2015 (Stats NZ fertilisers 2019b). Phosphorus fertiliser use peaked in 2005 at 219,000 tonnes, 

but has since decreased to 155,000 in 2015 (Stats NZ fertilisers 2019b). Phosphorus fertiliser use per 

unit area remains among the highest on record in the OECD nations (OECD environmental 

performance review 2017c). Intensive agricultural systems and urban landscapes degrade adjacent 

waterbodies (Julian et al., 2017; Larned et al., 2016; Larned et al., 2004; McDowell et al., 2009; 

McDowell et al., 2013; Parfitt et al., 2012). The ‘big’ four contaminants responsible for degraded water 

quality in NZ are N, P, sediments and pathogens. This thesis will not seek to investigate the effects of 

sediments or pathogens.   

A nationwide survey conducted by Cosgrove (2019) indicated that 82% of NZ residents were 

concerned about the pollution of rivers and lakes. A range of initiatives are being used in the 

agricultural industry to reduce contaminant leaching to freshwater bodies, including the 

establishment of riparian buffers (Franklin et al., 2015; Hahner et al., 2014; Marden et al., 2007). 

Daigneault et al. (2017) estimates that national-level riparian planting initiatives could yield net 
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benefits of $1.7 billion to $5.2 billion per year. There potentially is a large economic benefit from 

riparian planting schemes. Diverse native riparian planting also provides many environmental benefits 

including increased biodiversity and fauna shelter, reduction of soil erosion, carbon sink and 

moderating stream temperature and light through shading from leaf canopies (Franklin et al., 2015; 

Pan et al., 2011; Pusey and Arthington, 2003). Plants have been shown to affect nutrient cycling in soil 

(Figure 1-1) (Dollery et al., 2019; Esperschuetz et al., 2017b; Franklin et al., 2015; Hahner et al., 2014). 

Nutrients in the form of ions are taken up by plant roots (McLaren and Cameron, 1996). Transpiration 

is responsible for the convective transport of nutrients towards the roots of plants. As water is 

transpired from the leaves, roots take up water from the soil as well as some fraction of the dissolved 

nutrients that this soil moisture contains. When roots take up dissolved nutrients faster than soil 

moisture (active accumulation), the depleted nutrient is replenished in soil solution through diffusion 

(Hinsinger et al., 2009). The quantity of nutrients moved is directly related to the mass flow of water 

(McLaren and Cameron, 1996).  

1.2. Plant roots and the mobility of N and P 

The rhizosphere is the portion of soil directly surrounding the roots of a plant (Hinsinger et al., 2009). 

Physical, chemical and biological changes in the rhizosphere can significantly change the synthesis of 

available nutrients. Plant roots change the conditions in the rhizosphere (Franklin et al., 2015; 

Hinsinger et al., 2009). As a root grows, some of the outer tissue is removed. This provides a source of 

organic carbon for microorganisms to feed from. Hence, there is more microbiological activity in the 

rhizosphere soil than bulk soil. Sloughed off root material as well as root exudates such as organic 

acids can lead to changes in pH compared to bulk soil. Soil pH affects nutrient solubility and nutrient 

cycling. Therefore, by changing soil pH, plants may affect the solubility and mobility of N and P, two 

of the major contaminants in waterways (McLaren and Cameron, 1996). Nitrification is the oxidation 

process of ammonia (NH3) to nitrate (NO3
-), which is available for plant uptake. Different soil chemical 

properties can change the rate of nitrification in soil. Kyveryga et al. (2004) recorded 89% nitrification 

of NH3 to NO3
- in soils with pH >7.5, whereas only 39% nitrification of NH3 to NO3

- in soils with pH <6.0. 

Sahrawat (1982) evaluated 10 different soils with contrasting pH values and found that soils with a pH 

from 6.1 to 8.6 formed more NO3
- than soils with pH <6.0. As well as changing the chemical properties 

of soil, roots change the physical structure of soil. They can create preferential pathways for water to 

percolate to groundwater, taking with them dissolved nutrients. Plant foliage may contribute to the 

net cycle of nutrients within the plant system, if it is not removed for harvesting purposes. The plant 

canopy increases the quantity of water that is evaporated, therefore reducing the quantity of water 

fluxes in soil which reduces the total leaching of nutrients. Plant litter will add nutrients and other 
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chemicals back into the soil (McLaren and Cameron, 1996). This can be avoided if the crop or plant is 

harvested or removed from the cycle. An example of this would be cut-and-carry processes of 

ryegrass, like L. perenne. All of these properties can change how a plant takes up nutrients from soil. 

Therefore, riparian plants have the potential to interact with soil nutrients differently, possibly having 

different properties when protecting freshwater quality of adjacent streams, rivers and lakes. This 

thesis aims to evaluate how different NZ native vegetation interacts with chemical concentration and 

speciation compared to adjacent pasture. 
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Figure 1-1: Nutrient cycling around the plant-soil interface. A) Evaporation of rainfall from the 
canopy, reducing water flux through soil. (B) Harvesting of crops removes nutrients from the plant 
cycle. (C) Roots stabilise the soil, reducing erosion of soil to waterways. (D) Falling leaves 
decompose in soil, increasing the organic matter and nutrients. Some nutrients may be soluble and 
susceptible to leaching. (E) Toxic contaminants in soil may inhibit growth of roots. (F) Roots can 
change soil conditions, which may change speciation of nutrients. (G) Roots create preferential 
pathways when they create macro pores in soil, which may increase leaching of nutrients to 
groundwater. (H) Roots take up water from soil through transpiration, convection and 
concentration gradients. Since water is a transport for soluble nutrients, it reduces leaching if taken 
up by the plant. Adapted from Robinson et al. 2009 
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1.3. Previous work 

Several studies from 2014 to 2019 in NZ investigated the interactions of NZ native plants with nutrients 

and contaminants in soil. Most studies have investigated N fluxes, as N is a well-known nutrient to 

leach from agricultural land. Hahner et al. (2014) found different soil conditions beneath native species 

and soil planted with shallow-rooted pasture grass (ryegrass). However, they found no difference 

between soil NO3
- in the rhizosphere of ryegrass compared to NZ-native species Phormium tenax, 

Coprosma robusta and Kunzea robusta. Franklin et al. (2015) found significant variation in soil mineral 

N concentrations in the rhizosphere of different native species in pot trials. Native species tolerated 

high N-loadings, but showed no significant growth response to different N-loadings. They found that 

native monocots were generally better at sequestering N than native dicots. Dollery et al. (2019) found 

that native non N-fixing plants more effectively lowered soil NO3
- concentrations than native N-fixing 

plants in pot trials. The interaction between pH and N speciation appeared to be important in 

establishing native vegetation on fertile agricultural soils. The application of Olsen P and lime without 

N application had little or detrimental effects on plant growth. (Esperschuetz et al., 2017b) found that 

the addition of urea fertiliser produced a positive growth response from all native vegetation in the 

experiment. Additionally, L. scoparium and K. robusta leached lower amounts of NO3
- (2 kg ha-1 NO3

-) 

compared to non-native species P. radiata (53 kg ha-1 NO3
-). Overall, it seemed that L. scoparium and 

K. robusta had similar or better efficacy at reducing nitrification and hence denitrification (N2O 

emissions) as they had higher N uptake.  

Several studies have investigated the impact of adding biosolids in soil as a fertiliser to assist in native 

vegetation growth. This elevates N, P and other nutrients as well as contaminants in the soils. This has 

had different effects on native vegetation. (Esperschuetz et al., 2017a) reported an increase of total 

dry biomass of Mānuka and Kānuka of 117% and 90%, respectively, after the addition of biosolids 

(1,250 kg N ha-1 equivalent). Biosolids increased the foliage concentrations of N, P and trace elements, 

suggesting the increase of plant uptake of chemicals. Although foliar concentrations increased, they 

did not exceed threshold values. Seyedalikhani et al. (2019) found an increase of dried biomass of L. 

scoparium and K. robusta of 120% and 170%, respectively, from the addition of biosolids (1,500 kg N 

ha-1 equivalent). Oil production, following biosolids addition, increased by 211%, increasing the 

economic value of the plants. Although foliar concentrations increased, they did not exceed threshold 

values.  
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1.4. Hypothesis/Aims 

There is evidence to indicate that there are inter specific differences in NZ native plants, with regards 

to their effects on chemical fluxes in their rhizospheres. I sought to test the null hypothesis that there 

is no difference between NZ-native plant species when considering their effect on the concentration 

and speciation of nitrogen, phosphorus and other essential nutrients in soils adjacent to waterways.  

The aim of this thesis is to determine chemical differences in the rhizosphere of Phormium tenax, 

Kunzea robusta, Leptospermum scoparium, Coprosma robusta, Pittosporum eugenioides and Lolium 

perenne (non-native control) that will affect the concentration of nitrogen, phosphorus and other 

essential nutrients. Specifically, in each rhizosphere I sought to measure:  

- (1) Soil pH and total C,  

- (2) Total N and N-speciation, 

- (3) Total P and Olsen-P,  

- (4) The concentration of other elements that may affect the use of the species for waterway 

protection. 

The overarching goal of this research was to provide stakeholders with a broader collection of native 

riparian planting species that have improved N and P attenuating characteristics. The expectation is 

that riparian planting initiatives can be planned more effectively and efficiently, if the chemical 

rhizosphere conditions are better understood, to protect freshwater quality of streams, lakes and 

rivers adjacent to intensively farmed land. 
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2. Background 

2.1. New Zealand’s Freshwater Resources 

Freshwater has been an important source of mahinga kai to tangata whenua for generations. Ki uta ki 

tai (from the mountains to the sea) encompasses the numerous interactions freshwater will have with 

the surrounding environment as it traverses from the mountains to the sea (Our Fresh Water 2017b). 

To determine the health of freshwater quality, systematic long-term monitoring of chemical, 

ecological, physical and biological parameters is required (Ballantine and Davies-Colley, 2014). The 

National Rivers Water Quality Network (NRWQN) is a monitoring network operated by the National 

Institute of Water and Atmospheric Research (NIWA). The NRWQN provides reliable scientific data on 

chemical, physical and biological characteristics. It consists of 77 monitoring sites on 35 rivers across 

NZ. The National Policy Statement for Freshwater Management (NPS-FM) is the NZ guideline to assist 

regional councils and communities to plan more efficiently for integrated and sustainable freshwater 

objectives. The NPS-FM sets national bottom line standards for key scientific parameters, providing a 

baseline which safeguards freshwater quality (NPS - Freshwater Management 2017a). However, 

national bottom line standards are not the target to aim for, but merely a foundation to build off 

towards improved quality. The value of NZ’s freshwater resources emerge from the significance 

humans have for water quality and human wellbeing (Table 2-1). Communities, stakeholders and 

iwi/hapu have various values and opinions regarding the use of freshwater, which may be conflicting 

(Gluckman et al., 2017).  

Table 2-1: Different values of freshwater ecosystems. 

Economic Urban Cultural Social/Recreational Environmental 

 Aquaculture 

 Hydroelectricity 

 Agricultural 

 Industrial 

 Tourism 

 Household 

use 

 Clean 

drinking 

water 

 Mahinga Kai 

 Mauri (life) 

 Ki uta ki ta 

(mountains 

to sea) 

 Swimming 

 Boating 

 Fishing  

 Kayaking 

 Aesthetic 

 Biodiversity 

 Indigenous species 

 Chemical, physical, 

biological and 

ecological factors 

 Ecosystem services 

 

The NPS-FM sets minimum benchmark values for total N & P, NO3
-, NH4

+, dissolved oxygen and E. coli 

that are consistent across NZ. The local community must assist the local council to take responsibility 

to facilitate the pathway and timeline to ensure minimum benchmarks are not exceeded.  
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2.1.1. Influence of land to freshwater 

An extensive change to land use over the last century has occurred worldwide coinciding with 

exponential population growth. Human activity has altered atmospheric composition, hydrological 

cycles and ecosystem habitats (Foley et al., 2005). A major land use change observed in NZ has been 

the clearing of indigenous forests for agriculture (Fleet, 1986). Agricultural fertilisers for modern day 

cropping are fundamental to meet the nutritional needs of humans (Bennett et al., 2001; Vitousek et 

al., 1997). During 2017, NZ used three primary fertilisers that made up 75% of fertiliser use. An 

estimated 403,000 tonnes of Urea (N-fertiliser), 818,000 tonnes of Superphosphate (P-fertiliser) and 

1,020,000 tonnes of Lime were used throughout NZ. This is adding significant quantities of nutrients 

and contaminants into the environment. There is a well-documented relationship between high-

intensity agriculture and urban landscapes adjacent to water bodies causing a decline in freshwater 

quality (Ballantine and Davies-Colley, 2014; Julian et al., 2017; Larned et al., 2016; Larned et al., 2004; 

McDowell et al., 2009; McDowell et al., 2013). Cullen et al. (2006) presents four key reasons for water 

quality coming under increasing pressure, (1) non-point (diffuse) discharges; (2) access to waterways 

by stock; (3) urban development; and (4) forestry. This study focuses primarily on diffuse discharges 

to freshwater environments.  

 

2.1.2. Non-point (diffuse) sources of pollution 

Non-point source pollution refers to contaminants that enter the catchment through an array of 

sources, largely from agricultural or urban discharge (Roygard et al., 2012). With heavy rainfall, surface 

water flow can transport natural and anthropogenic contaminants into rivers, streams, lakes, estuaries 

and groundwater, thereby degrading freshwater quality (Caruso, 2000). Non-point contaminants 

move into water bodies through three main processes: (1) surface runoff, (2) direct access of livestock 

to waters, and (3) leaching of groundwater contaminants (Howard-Williams et al., 2010). The 

contaminants broadly associated with non-point pollution are fine sediments, pathogens and 

nutrients (Caruso, 2000; Dillaha et al., 1989; Howard-Williams et al., 2010). Elliott et al. (2005) 

estimated that point sources (e.g. pipe discharges) in NZ contribute just 3.2% and 1.8% of the TN and 

TP, respectively, to nutrient fluxes in streams/rivers. The remaining contribution to nutrient fluxes in 

streams/rivers is assumed to derive from leaching of natural and anthropogenic non-point sources. 

Howard-Williams et al. 2010 estimate that some 75% of non-point nutrients (N and P) are from 

modified landscapes, while the remaining 25% is natural, illustrating the large influence non-point 

pollution has on nutrient fluxes. 
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2.1.3. Eutrophication 

Eutrophication is the process of excessive plant growth in aquatic environments resulting from 

nutrient enrichment induced by human activity (Smith and Schindler, 2009). The primary drivers of 

eutrophication in NZ are from excess N and P. These exacerbate the growth of harmful algae (Álvarez 

et al., 2017) that deoxygenate stratified freshwater lakes (Abell et al., 2010) and release toxins (Larned 

et al., 2016). The result is damaging physiological stress in fish and loss of pollution-sensitive 

invertebrates (Larned et al., 2016). Larned et al. (2016) analysed NZ river-water quality and found that 

water-quality adjacent to pastoral and urban land is generally poorer compared to natural vegetated 

areas. This was shown by elevated median concentrations of nutrients and E. coli. They also found 

that water-quality at lowland sites was generally poorer than upstream sites. NZ has implemented 

strategies to reduce the quantities of N and P entering waterways. This includes limits on fertiliser use 

(MPI Stock Exclusion Reports 2016; Agricultural and horticultural landuse 2018a), reducing stock 

access to waterways and riparian planting (Stutter et al., 2012a). 

 

2.1.3.1. Management of Nutrients in New Zealand 

OVERSEER Nutrient Budgets (Overseer) was designed as a support tool to calculate nutrient flows 

around localised farm systems. Overseer is used extensively, as it is the primary backbone for decisions 

regarding farm fertiliser systems in NZ (Shepherd and Wheeler, 2012). In its simplest form, Overseer 

measures the inputs and diffuse outputs of nutrients across a defined boundary (Wheeler et al., 2003). 

Quantifying the diffuse outputs of nutrients is challenging, hence the extent of contribution of the 

deleterious effects of nutrients to surrounding ecosystems can be ambiguous. Overseer integrates 

decades of applied farm research into local farm scale models (Murray et al., 2016).  

 

2.1.4. Riparian Zones 

The riparian zone is the interface between the aquatic and terrestrial environment; inclusive of stream 

beds, banks and floodplains (Swanson et al., 1982). Riparian zones are regularly referred to as buffer 

zones, as they contribute significantly to aquatic ecosystem resilience. They are a fundamental habitat 

for both aquatic and terrestrial species (Pusey and Arthington, 2003; Swanson et al., 1982). Riparian 

zones are three-dimensional spatial and temporally diverse environments (Lee et al., 2003; Lee et al., 

2004). Stutter et al. (2012a) reports that wider riparian buffer zones are more effective in reducing 

the pressure exerted from adjacent farmland on aquatic ecosystems. However, a wider buffer zone is 

more expensive, which incentivises cost-effective riparian zones. Parkyn et al. (2000) recommended a 
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vegetation buffer width of >10 m for urban environments to develop a self-sustaining, indigenous 

vegetation strip that will achieve most aquatic functions. However, each unique situation should be 

treated as an individual case as to fulfil the specific aims and outcomes for that local environment. 

Below is a table of benefits that riparian zones bring to ecosystems (Table 2-2).  

 

Table 2-2: Benefits of riparian planting to the surrounding freshwater environments. 

Benefit Result Reference 

Shading, moderating stream 
temperature and light 

Riparian canopy regulates the 
transfer of thermal energy to 
aquatic ecosystems. 

(Pusey and Arthington, 2003) 

Woody debris A habitat for fish, 
invertebrates & microalgae. 
Important for bird life. 

(Everett and Ruiz, 1993) 
(Crook and Robertson, 1999) 

Reduction in soil erosion  Root systems hold soil in place, 
resulting in less soil erosion by 
wind and water processes. 
Retaining the depth of fertile 
topsoil. 

(Lovell and Sullivan, 2006) 
(Stutter et al., 2012a) 

Food source Debris and organic material 
can be a food source for both 
aquatic and terrestrial biota. 

(Kuglerová et al., 2014) 

Carbon Sink Riparian plants can be carbon 
sinks, absorbing carbon from 
the atmosphere and 
surrounding soil. 

(Pan et al., 2011) 

Contaminant Runoff 
 
 
 
 

Can assist in removing 
nutrients, pesticides and/or 
pathogens. But in saturated 
conditions, this reduces their 
effectiveness. 

(Radkins Jr et al., 1998) 
(Magette et al., 1989) 
(Lee et al., 2003) 
(Stone et al., 2004) 
(Kovacic et al., 2000) 

 

 

Renouf and Harding (2015) characterised the width and vegetation composition of riparian zones in 

Canterbury. Some 65% of riparian zones surveyed were <5 m. Exotic plant species were present at 

99% of sites and dominant at 81% of sites. Exotic willows and poplars were the most common exotic 

trees, as they were extensively used for river protection and bank stability from the 1930’s (Marden 

et al., 2007; Phillips, 2005). P. tenax and native sedges (e.g. Carex secta) were the most abundant 

native species, present at 34% of sites and dominant at 14%. There were no other native species 

dominant in a riparian zone. Greenwood et al. (2012) found riparian buffers were on average <5 m 

wide and dominated by exotic weeds and/or shrubs. However, they found adequate stock exclusion 

from waterways, most of which were either fenced or had natural barriers that limited access. Most 
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riparian zones in Canterbury are less than adequate for effective nutrient management (Parkyn et al., 

2000). They lack the diversity of tree species to cope with the changes of land use activity and intensity 

(Renouf and Harding, 2015). There is a large upfront cost associated with riparian planting. A planting 

model with plants at 1.5 metre spacing and a planting density of 4500 plants per hectare, would cost 

an estimated NZ$3.67 per linear metre for a combination of native flax and sedge/grass (MPI Stock 

exclusion costs report 2016). Assuming these numbers, to plant a riparian zone that is 500 metres long 

and with a buffer width of 15 metres, it would cost an estimated NZ$150,000. There would also be 

additional ongoing costs for maintenance and profits lost due to less available land for primary 

production.  

 

2.1.5. Historic Vegetation Cover in New Zealand  

New Zealand’s indigenous forests, before Maori and European settlement, was estimated to cover 

82% of the land surface area in NZ (Fleet, 1986). The Ministry for Primary Industries record that 

indigenous forests now cover just 24%, a total loss of some 14 million ha of land. The greatest loss has 

occurred on the east coast of the South Island and the lower North Island (Ewers et al., 2006). Most 

deforested land has been converted into urban, horticultural or agricultural land (Ewers et al., 2006). 

Large-scale clearance of forested areas began in the 1870s. Early European settlers were required by 

law to improve their land. This resulted in extensive burning of indigenous forests, which freed land 

for the expansion exotic grasses. Proce et al. (2006) recorded 31% was legally protected land in 2005. 

This indicates an upward trend for the protection of indigenous land area cover. Cieraad et al. (2015) 

recorded that 35.3% of NZ land in 2012 was legally protected for natural heritage purposes. NZ has 

set the goal to plant one billion trees before 2028. As of May 18th 2020, nearly 150 million trees have 

been planted (One billion trees programme 2020). Although, only 12% of the trees planted are native.  

 

2.2. Importance of nutrients for plants 

Most nutrients required for plant growth are taken up from soil. Therefore, roots have the potential 

to intercept nutrient fluxes from adjacent agricultural land and protect freshwater quality (Stone et 

al., 2004; Stutter et al., 2012a). Plants interact with the chemicals in soil, from both natural and 

anthropogenic sources. Essential nutrients are by definition, elements needed by a plant to complete 

their life cycle (Fageria, 2016). These elements are not replaceable and are directly involved in plant 

metabolism processes (Fageria, 2016; McLaren and Cameron, 1996). There are 17 essential elements 

required for optimal growth and development. These are carbon (C), hydrogen (H), oxygen (O), 



12 
 

nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), zinc (Zn), 

copper (Cu), iron (Fe), manganese (Mn), boron (B), molybdenum (Mo), chlorine (Cl) and nickel (Ni) 

(Fageria 2009). Most elements are taken up from the soil, apart from C, H and O, which are 

atmospherically sourced. Based on the average quantities recorded in plants, elements are 

categorised as either micronutrients or macronutrients (McLaren and Cameron, 1996). Micronutrients 

are required in smaller quantities than macronutrients. Some 2-10% of plant biomass is composed of 

mineral nutrients. The remaining biomass is composed of non-essential nutrients, organic compounds 

and water (Jobbágy and Jackson, 2004; McLaren and Cameron, 1996). Nutrient concentrations in soils 

are an indicator of the soil fertility within the agricultural industry.  

 

2.2.1. Nutrient availability  

Nutrients undergo several processes in the soil before being absorbed by the plant. All processes are 

influenced by climate, soil, plant species and location (Fageria, 2016). Plants take up nutrients in ionic 

form (McLaren and Cameron, 1996). However, for most nutrients in soil, ions only make up a small 

fraction of the total nutrient. The bulk of the nutrients are commonly fixed in soil organic matrices or 

adsorbed to soil colloids (Ghani et al., 1991). Physical, chemical and biological changes in the 

rhizosphere of plants can significantly change synthesis of available nutrients (Franklin et al., 2015). 

As a root grows, some of the outer tissue is shed. This can provide a rich source of carbon for 

microorganisms. This can lead to changes in pH and moisture compared to bulk soil, hence significant 

changes in the availability of nutrients (Fageria, 2016; McLaren and Cameron, 1996). 

 

2.2.2. Nutrient cycling in the soil – plant system 

In natural environments, plants return essential elements back to the soil through foliage that 

undergoes decomposition (Jobbágy and Jackson, 2004). Nutrient cycling is the term used to define 

this mechanism. Deep-rooted plants draw nutrients from lower soil depths. Nutrients are then 

concentrated in the top soil as nutrient cycling takes place (McLaren and Cameron, 1996). When the 

natural vegetation of an environment is removed, this process ceases. Overtime, the soil loses fertility 

as nutrients are not being replaced. Fertilisers are the primary method for replenishing essential 

nutrients in intensively worked soils (McLaren and Cameron, 1996). The two elements most 

replenished by agricultural fertilisers in NZ are N and P (OECD Environmental Performance Review 

2017c; Parfitt et al., 2013; Parfitt et al., 2012).  
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2.3. Nitrogen 

2.3.1. From natural to anthropogenic  

Nitrogen is the fourth most abundant element Earth’s crust (McLaren and Cameron, 1996). It is a 

primary constituent of amino acids, proteins, enzymes and nucleic acids  (McLaren and Cameron, 

1996; Stein and Klotz, 2016). It is essential for life and fundamental for successful agricultural 

processes. The Haber-Bosch process, developed in 1909, quadrupled productivity of N worldwide by 

industrially converting atmospheric inert dinitrogen gas (N2) to NH3. This was the beginning of 

agricultural intensification from anthropogenic nutrients inputs. Anthropogenic N is now the 

dominant source of N for most agricultural systems (Stein and Klotz, 2016).  

 

2.3.2. Sources of nitrogen in soil 

Nitrogen in the soil is present in three primary forms: (1) organic compounds, (2) NH4
+ and, (3) NO3

-. 

More than 95% of total N in soil is found in organic compounds, which are unavailable for plant uptake. 

NH4
+ and NO3

- are available for plant uptake (McLaren and Cameron, 1996) (Figure 2-1). Until the late 

1980s, agricultural production in NZ depended on biological N fixation. Trifolium repens (White 

clover), an N-fixer in the Fabaceae family, was the introduced species that held the backbone of NZ’s 

successful agricultural economy (Caradus and Hay, 1989). Rhizobium bacteria form nodules on T. 

repens clover roots. The nodules capture atmospheric N, which plants take up. In return, T. repens 

provides carbohydrates for Rhizobium bacteria, forming a symbiotic relationship (Bouwman et al., 

2009; Ledgard and Steele, 1992). Optimal soil and environmental conditions were required when 

introducing T. repens to NZ (Ledgard and Steele, 1992). 
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Figure 2-1: An overview of the Nitrogen Cycle in soil. Specifically the above and 
below-ground transformations of nitrogen. This includes the input sources and 

losses. 

 Adapted from McLaren & Cameron (1996). 
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Since the 1980’s, NZ has widely accepted the use of N fertilisers. N-fixation from legumes, such as T. 

repens, diminishes with increased fertiliser input (Parfitt et al., 2012). This has increased NZ’s 

dependence on N fertilisers for agricultural production. From 1985 to 2015, N fertilisers increased 

from 25,000 t/yr to some 430,000 t/yr, respectively (Stats NZ - Nitrogen and Phosphorus fertilisers 

2019b; Parfitt et al., 2012). Urea, in the form of CO(NH2)2 is the primary N fertiliser used in NZ, 

contributing 85 % of the total N applied to land via fertilisers (Stats NZ - Nitrogen and Phosphorus 

fertilisers 2019b). The 2017 Organisation for Economic Co-operation and Development (OECD) report 

stated that NZ had a 25% increase in N balance per unit of agricultural land, from 2000-2010. The 

largest N balance increase of any OECD country during this period (OECD environmental performance 

review 2017c).  

 

2.3.3. Total Nitrogen and Total Carbon 

Soil organic matter (SOM) is mainly composed of total nitrogen (TN) and total carbon (TC) as well as 

other essential nutrients (Batjes, 1996). The quantities of TN and TC are strongly correlated in soil. 

SOM levels range from 3 % to 20 %, depending on environmental factors such as climate, soil acidity, 

drainage, soil parent material, human activity and the carbon cycle (McLaren and Cameron, 1996). Soil 

microbes interact with SOM during cycling processes (Piwpuan et al., 2013). Soils contain between 0.1 

% and 0.3 % TN in the top 15 cm of soil (McLaren and Cameron, 1996). The soil is the largest terrestrial 

pool of TC, with an estimated 1600 Pg of C (Batjes, 1996). The C:N ratio is used as a guide to evaluate 

the ease of decomposition or mineralisation of nutrients from organic residues. This is useful for 

planning fertiliser-use within a farm system, as it helps govern how well a certain crop is expected to 

grow. For most soils, the C:N ratio ranges between 16:1 and 4:1 (McLaren and Cameron, 1996). 

Organic matter is often most concentrated in topsoil, where plant roots are also most concentrated. 

Fertilisers increase the concentration of N in topsoil (McLaren and Cameron, 1996; Parfitt et al., 2012).  

 

2.3.4. Nitrification 

In soil, dissolved ammonia (NH3 (aq)) is in equilibrium with NH4
+, which is a function of pH (Beeckman 

et al., 2018). Nitrification is the oxidation reaction of NH4
+ to NO3

-. This is primarily a two-step process. 

Firstly, ammonia-oxidising bacteria and ammonia-oxidising archaea convert NH4
+ to NO2

- (Eq. 2-1). 

Nitrite-oxidising bacteria convert NO2
- to NO3

- (Eq. 2-2) (Stein and Klotz, 2016).  

2NH4
+ + 3O2 → 2NO2

− + 2H2O + 4H+ + energy                                                                                    (2-1) 
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2NO2
− + O2 → 2NO3

− + energy                                                                                                                     (2-2) 

Nitrite, under most soil conditions, rapidly converts to NO3
-. This is a favourable reaction for plants, as 

NO2
- is toxic and may inhibit plant growth. With a high NH4

+ concentration and soil pH >7.0, NO2
- will 

accumulate, as nitrifying bacteria are more likely to be inhibited (Burns et al., 1996). However, this 

phenomenon is rare, as the oxidation of NH4
+ acidifies the soil (Eq. 1.1). A third mechanism, discovered 

in 2015, completes the nitrification reaction in only one step, from NH4
+ to NO3

- directly. Instead of 

bacteria or archaea that oxidise ammonia, the process is controlled by microorganisms called 

commamox (Stein and Klotz, 2016; Van Kessel et al., 2015). The reaction requires specific soil 

conditions, which are still being characterised. In general, nitrification will be supported by bacteria 

and archaea in a two-stage reaction, in which ammonia is oxidised, as described in equations 2-1 and 

2-2.   

Nitrification is an essential soil mechanism as it regulates the efficiency for vegetation and crops in 

agricultural processes to use N. Several physical and chemical factors increase or decrease the rate of 

nitrification and are needed to improve agricultural production. Important physical factors include 

moisture content, oxygen availability and temperature (Haynes, 1986; Kyveryga et al., 2004; McLaren 

and Cameron, 1996; Vitousek et al., 1997). A saturated water column fills soil pores with water, 

reducing the available oxygen for nitrification (Sahrawat, 2008). Therefore oxidation of NH4
+ will not 

proceed as readily. McLaren and Cameron (1996) & Haynes (1986) reported that the optimal 

temperature for nitrification ranges from 25 °C to 35 °C. Nitrification ceases when the temperature is 

<5 °C and >40 °C (McLaren and Cameron, 1996). The microorganisms responsible for supporting the 

nitrification reaction require different temperature profiles, to achieve optimal nitrification rates. This 

temperature is often directly related to their localised climate, as microorganisms can adapt weather 

patterns (Taylor et al., 2017). Important chemical factors include pH, C:N ratio, abundance of NH4
+ 

ions and abundance of nitrifying bacteria and/or archaea. The optimal pH for nitrification ranges from 

5.5 to 9.0 (Kyveryga et al., 2004; McLaren and Cameron, 1996; Sahrawat, 1982; Sahrawat, 2008). In 

acidic soils, nitrification may be inhibited by Al toxicity. In alkaline soils, toxic levels of NH3 may be 

present, which can limit oxidising bacteria and archaea (McLaren and Cameron, 1996). High soil C:N 

ratios will immobilise NH4
+. With less NH4

+ ions, there is reduced nitrification (Sahrawat, 2008). An 

abundance of NH4
+ and nitrifying archaea or bacteria will maintain high nitrification rates. 
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2.3.5. Nitrogen soil losses 

2.3.5.1. Denitrification 

Denitrification is the reduction reaction of NO3
- or NO2 to the gases nitric oxide (NO), nitrous oxide 

(N2O) and N2 (Groffman et al., 2006). Luo et al. (1999) reported that denitrification in soil is promoted 

by key physicochemical factors, such as high soil moisture, high soil temperature, a reduced rate of 

oxygen diffusion into soil and the presence of reducing N (i.e. NO3
- or NO2

-). Spatial and temporal 

variations in physicochemical factors at local, regional and national scales will influence the rate of 

denitrification in soil. For example, Serca et al. (1994) estimated the emission rate of N2O in a Congo 

Rainforest to be 2.9 kg N2O-N ha-1 yr-1. Hall et al. (2004) estimated the emission rate in a Malaysian 

Rainforest to be 1.15 kg N2O-N ha-1 yr-1. Choudhary et al. (2002) estimated the emission rate in a NZ 

tilled agricultural field to be 9.2 kg N2O-N ha-1 yr-1.  

Denitrification in soils is estimated to contribute 56% – 70% of N2O emissions globally. Total emissions 

of N2O have increased 19% since pre-industrial times (Saggar et al., 2004). N2O is a significant 

greenhouse gas (GHG), with a global warming potential some 298 times greater than that of CO2. To 

make matters worse, N2O also degrades ozone (Butterbach-Bahl et al., 2013; Wrage et al., 2001). 

Forster et al. (2007) estimated that N2O emissions from anthropogenic influences quantify to 45% of 

the total N2O emissions globally. After N fertiliser has been applied, a higher N2O:N2 ratio is observed. 

There is a higher rate of N2O volatilisation directly after fertiliser application (Dalal and Allen, 2008). 

Within a number of days, N2O volatilisation will slow while N2 production increases (Letey et al., 1980).  

 

2.3.5.2. Leaching 

Most soils have a larger cation exchange capacity (CEC) than anion exchange capacity (AEC). The 

exception is allophanic soils, which have a high AEC. The CEC and AEC of a soil is the quantitative 

measure of a soil’s ability to hold exchangeable cations or anions, respectively (McLaren and Cameron, 

1996). Sparling and Schipper (2002) found the CEC ranged from 4 to 69 cmol cm-3 across a range of NZ 

soil profiles. The CEC in NZ topsoil is often highly correlated to the organic content. A CEC is a 

prerequisite for farmers to test for before applying fertiliser, as this gives an indication of how the soil 

will store the fertiliser. NH4
+ are immobilised on negative exchange sites and may bind.  Nitrate is more 

mobile in soil than NH4
+, due to its negative charge, repelling it from cation exchange sites (Beeckman 

et al., 2018; McLaren and Cameron, 1996). Hence, NO3
- has higher leaching rates than NH4

+. Leaching 

rates of NO3
- depends on concentration, plant N uptake, soil moisture content, soil composition and 

soil structure (McLaren and Cameron, 1996; Rao and Puttanna, 2000). Up to half of the available N 
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may be lost in soil before plant uptake (Beeckman et al., 2018). NO3
- that has leached is not available 

for plant uptake, reducing the efficiency of the fertiliser. Leached NO3
- can promote eutrophication in 

aquatic environments (Abell et al., 2010; Álvarez et al., 2017; Beeckman et al., 2018; McDowell et al., 

2009; Parfitt et al., 2012; Smith et al., 2006; Smith and Schindler, 2009). This can cause significant 

adverse health effects to native fauna and flora (Abell et al., 2010; McDowell et al., 2009; McDowell 

and Nash, 2012; Parfitt et al., 2012). 

 

2.4. Phosphorus  

2.4.1. From natural to anthropogenic 

Phosphorus is a key nutrient for growth of pasture and crops. It helps the metabolism of carbohydrates 

and assists storage and/or transfer of energy from photosynthesis (McLaren and Cameron, 1996). 

Total P in bulk soil ranges from 0.02 % to 0.15 %, depending on the parent material, weathering 

process and leaching rates. Natural weathering processes cause minerals high in P, known as apatites, 

to release P in soil. Tricalcium phosphates (Ca3(PO4)2) account for 35%-70% of total soil P (Shen et al., 

2011). Historically, agricultural production relied on the weathering of P minerals. However, this is a 

timely process and with the increasing demand for more productive agricultural processes, P fertilisers 

have been widely introduced. Figure 2-2 describes the soil P cycle in a grazed pasture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: An overview of the phosphorus cycle in a 
grazed pasture. This includes the input sources and 
losses. 

Adapted from McLaren & Cameron 1996 
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2.4.2. Sources of phosphorus in soil for plants 

Weathering of apatite minerals liberates P and consequently P can be: adsorbed by plants, 

incorporated into the soil organic matter or redeposited as insoluble mineral forms and occluded. 

With the demand for intensive agriculture and the need for P in crop propagation, P fertilisers are the 

primary source of plant available P in NZ agricultural processes (Gillingham and Thorrold, 2000). 

Phosphorite, a sedimentary rock naturally high with P, is the primary constituent of many phosphate 

(PO4
2-) fertilisers. However, phosphorite rock by itself is composed of insoluble tricalcium phosphates. 

Sulphuric acid or phosphoric acid must be added to obtain soluble superphosphate or triple 

superphosphate fertilisers (Eq. 2-3 to 2-5) (Dawson and Hilton, 2011; McLaren and Cameron, 1996).  

Superphosphate: 

2Ca3(PO4)2 + 6H2SO4 → 4H3PO4 + 6CaSO4                                                                                        (2-3) 

Or  

Ca3(PO4)2 + 4H3PO4 + 3H2O → 3Ca(H2PO4)2H2O                                                                           (2-4) 

Triple Superphosphate: 

Ca3(PO4)2 + 4H3PO4  → 3Ca(H2PO4)2                                                                                                   (2-5) 

Monocalcium phosphate (Ca(H2PO4)2) and dicalcium phosphate (Ca2HPO4) are the primary forms of 

soluble PO4
2-. Soluble forms of P are important, as these are available to plants where insoluble are 

not (McLaren and Cameron, 1996). However, there are two issues with extracting PO4
2- from 

phosphorite rock. Firstly, phosphorite rock is a limited resource that is only estimated to last another 

100 to 400 years (Dawson and Hilton, 2011; Scholz et al., 2013; Schröder et al., 2011). This finite 

resource is under threat and a suitable renewable option is required for future sustainability. 

Secondly, the quality of PO4
2- ore has been declining. There has been a decrease in the amount of 

average PO4
2- that can be extracted from a given amount of phosphorite (Dawson and Hilton, 2011). 

Plants take P up through their roots in the form of phosphate ions (i.e. H2PO4
- and HPO4

2-) (McLaren 

and Cameron, 1996). There are three primary factors that control the equilibria of plant available P, 

(1) pH, (2) concentration of competing anions with P ions for ligand exchange, and (3) concentration 

of metals that adsorb or precipitate out P ions. The most significant condition in soil that influences 

speciation of PO4
2- ions is pH (Figure 2-3).  
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2.4.3. Phosphorus soil losses 

2.4.3.1. Phosphate fixation 

Phosphate fixation reduces PO4
2- availability in soil (McLaren and Cameron, 1996; Mengel, 1997). It is 

one of the four primary mechanisms of soil P loss (Ward et al., 1985). The other three primary losses 

of soil P are: (1) embodied P in vegetation removed from the farm, (2) animal transfer of P and (3) P 

lost via water runoff and erosion. There are two key mechanisms responsible for PO4
2- fixation: (1) the 

formation of less soluble calcium phosphates, and (2) adsorption of soluble PO4
2- to soil particles 

(Mengel, 1997). McLaren and Cameron (1996), Mengel (1997) & Hinsinger (2001) all report that PO4
2- 

adsorption to soil particles reduces the availability of PO4
2- at higher rates than PO4

2- forming less 

soluble Ca(H2PO4)2 or Ca2HPO4. Up to 75% of plant available P from fertilizers may undergo PO4
2- 

fixation (McLaren and Cameron, 1996; Stutter et al., 2012b). Leaching rates of PO4
2- are low, due to 

the strong absorbing potential with metal colloids in soil. Leaching rates are so small that they are 

often looked at over a geological timescale and not a yearly event (McLaren and Cameron, 1996). 

Therefore, leaching rates of PO4
2- are negligible.  

Figure 2-3: Speciation of different phosphate ions at a range of pH levels. 

Adapted from Hinsinger. 2001 
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Metal oxides (notably Iron (Fe) and Aluminium (Al) oxides) sorb PO4
2- ions via ligand exchange 

reactions on the surface of soil particles (Hinsinger, 2001). Phosphate anions exchange with hydroxide 

(OH-) ligands on metal oxides, forming a mononuclear bond. Phosphate is deprotonated and binds to 

a second OH- ligand, forming a binuclear bond, thermodynamically more stable than the mononuclear 

bond (Mengel 1997) (Figure 2-4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Occlusion is the process of Fe or Al oxides coating adsorbed PO4
2-. This makes PO4

2-
 ions even less 

available for plant uptake (McLaren and Cameron, 1996). Acidic soils promote better adsorption of 

PO4
2- ions to soil particles, reducing in mobility of P (Hinsinger, 2001). Soil pH is the most significant 

factor in determining the concentration of Fe or Al colloids in soil, which then influences the rate of 

adsorption from PO4
2-.  

 

Figure 2-4: Primary method of phosphate adsorption onto adsorbing surface. (1) Ligand 
exchange reaction of OH- and phosphate. (2) Deprotonation of monobound phosphate. 
(3) Second ligand exchange reaction with deprotonated phosphate and OH- to form a 

binuclear bond. 

Adapted from Mengel et al. 1997 
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2.4.3.2. Runoff and soil erosion 

Runoff and soil erosion are two primary pathways for P loss in agricultural landscapes. This can lead 

to a decline of freshwater quality (McLaren and Cameron, 1996). Runoff is the process of overland 

water flow into freshwater environments due to a saturated soil column. Runoff may occur in a storm 

event, where soil moisture capacity has reached a maximum and the result is overland flow of rainfall. 

Soil erosion is a natural process that occurs as a result of change to the flow regime and sediment 

supply (Hughes, 2016). A large increase to flow regime (e.g. a storm event) will carry with it a large 

pool of sediment. Soil-bound P is released in large quantities to aquatic environments when soil 

erosion is high (McLaren and Cameron, 1996; Withers and Jarvie, 2008). Vegetation increases soil 

stability, which lowers the rate of soil erosion. When vegetation is removed from riparian zones, the 

subsequent effect is an increase of erosion (Magette et al., 1989). 

 

2.5. Sediments & Pathogens  

2.5.1. Sediments 

The transport of sediments to aquatic environments is an important pathway to global geochemical 

cycles and an integral component to habitat and ecological health (Kemp et al., 2011). Soil erosion is 

a natural process that occurs as a result of change to the flow regime and sediment supply (Hughes, 

2016). Anthropogenic soil erosion increases the sediment loads in water bodies. Human activities such 

as agriculture, deforestation, mining and urbanization have increased sediment loading to adjacent 

freshwater bodies (Owens et al., 2005). Sediments can transport soil-bound nutrients, trace elements, 

pathogens and other toxic chemicals that may cause adverse effects to freshwater quality. Sediments 

may adversely affect key components of the food chain, by reducing the photosynthetic processes. 

High sediment loading can cause high turbidity, blocking light and therefore limiting photosynthesis 

(Kemp et al., 2011). This reduces plankton growth, which decreases invertebrate diversity and count. 

This causes significant adverse effects on fish communities (Kemp et al., 2011). NZ has relatively high 

erosion rates, with an estimated 200 megatonnes of suspended sediment delivered to the ocean 

annually, contributing 1.7% of global ocean sediment delivery (Hicks et al., 2011). There are four main 

processes that increase erosion of stream banks: (1) changes to catchment hydrology, (2) removal of 

natural riparian planting, (3) direct stream channel modification and (4), unrestricted livestock access 

to streams (Hughes, 2016). Riparian vegetation provides bank stability to reduce soil erosion and may 

uptake plant available nutrients (Aye et al., 2006; Withers and Jarvie, 2008). However, plants may 

return nutrients back via plant matter decomposition. Vegetation has varying bank stability 
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properties, depending on the root structure, size and distribution. Planning the species selection and 

variety for planting initiatives are essential for maintaining soil erosion rates (Withers and Jarvie, 

2008). Modelling of soil erosion is an effective way to manage nutrient losses. For more accurate 

model predictions, key knowledge such as volume water discharge, water quality and local expert 

knowledge are essential (Farkas et al., 2013). Modelling is widely used for NZ farm management. This 

provides better decision making for farm systems to prevent soil erosion.  

 

2.5.2. Pathogens  

Pathogens or other infectious contaminants are biological agents that arise from faecal 

contamination. This can cause diseases or illness to its host (NIWA - Infectious Substances2019a). 

Faecal contamination sources are widespread and diverse but may derive from point sources such as 

wastewater from sewage plants and animal processing plants. Pathogens may enter freshwater 

surfaces from direct contact by domestic or uncultivated animals, if appropriate fencing schemes have 

not been established (Collins et al., 2007). However, even with fencing, diffuse sources of faecal 

contamination pathways may contaminate freshwater surfaces from surface runoff or subsurface flow 

through soil (Collins et al., 2007). This is a problem in NZ, as every year over one million New 

Zealanders participate in swimming in aquatic environments (Claridge et al., 2015). Freshwater 

contaminated with pathogens increases the risk of gastrointestinal illnesses as well as non-enteric 

infections such as rashes, eye and ear irritations and infected cuts (Soller et al., 2010). However, 

regional councils have monitoring programmes for E. coli at popular swimming sites to protect the 

public from pathogen exposure. NZ has set guidelines values for E. coli levels based on the quantitative 

microbial risk assessment for campilobacteriosis (Julian et al., 2017). If guidelines are exceeded, 

swimmers are advised to stay away. Regional councils will mitigate contaminant pathways and do 

what is needed to obtain guideline values once again. Fencing of waterways have been identified as a 

priority by the Sustainable Dairying Water Accord launched in 2013. As of May 2017, all stock must be 

excluded from: (1) any permanent flowing rivers more than a metre wide and 30cm deep, (2) all lakes, 

and (3) any significant wetlands as identified in a Regional Plan or Policy Statement. This strategy 

effectively manages direct faecal contamination from stock. The task of eliminating direct pathways 

of faecal contamination to freshwater is an easier task that eliminating diffuse sources of faecal 

contamination (Collins et al., 2013). The infiltration rate of water into soil affects the transfer of faecal 

contaminants to freshwater (Collins et al., 2007). Riparian plantings may assist the contamination to 

freshwater from diffuse runoff, but may also reduce pathogens. Roots and worms can create porous 

channels for a preferential flow of water to percolate into soil (Collins et al., 2007; Prosser et al., 2016). 
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This may increase the amount of subsurface flow, potentially increasing the quantity of pathogens 

entering freshwater bodies. However, some native species, namely L. scoparium and K. robusta, 

exhibit antiseptic properties from root exudates, which could mitigate the threat of microbial 

contamination of soil (Prosser et al., 2016). 

2.6. Other nutrients 

2.6.1. Sulphur  

Sulphur (S) is naturally derived from soil parent materials and atmospheric inputs. It is cycled through 

the environment from above and below-ground transformations (Figure 2-5). Total soil S can range 

from 0.01 % to more than 0.1 % of bulk soil (McLaren and Cameron, 1996). Sulphur has many forms 

in soil, the two primary forms are inorganic and organic S (Metson and Blakemore, 1978). Organic S 

accounts for some 90% of S in most topsoil. Sulphate (SO4
2-) is the form of S available to plants for 

uptake from soil. Plants can also adsorb SO2 emissions from the atmosphere (Eriksen, 1997).  Similar 

to the PO4
2- fixation, where PO4

2- becomes adsorbed and occluded, SO4
2- can become adsorbed to soil 

surfaces and undergo occlusion (Metson and Blakemore, 1978). Occluded SO4
2-

 is unavailable for plant 

uptake. Metson and Blakemore (1978) found that weakly bound SO4
2- was rapidly replaced by PO4

2-, 

following addition of superphosphate. The SO4
2- ion is extremely soluble and can therefore leach from 

the soil in high quantities (McLaren and Cameron, 1996). Leaching of SO4
2- can potentially be amplified 

with the addition of P to soil, as SO4
2- is displaced (Metson and Blakemore, 1978). Sulphate may be 

lost from soil following reduction to hydrogen sulphide (H2S).  
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2.6.2. Potassium 

Potassium (K) generally accounts for 0.1 – 4% of the total weight in soils (McLaren and Cameron, 

1996). Total K has four major forms in the soil, each having different availability properties to plants. 

(1) Mineral K (90 – 98% of total K) is nearly completely unavailable for plants. Primary minerals, such 

as feldspars and micas, are extremely important for long-term availability of K in soil. (2) Fixed K (1 – 

10% of total K) becomes slowly available to plants when K+ is released. K+, like NH4
+, binds readily to 

soil colloids, rendering it unavailable to plant uptake. Exchangeable K (1 – 2% of total K) and soil K (0.1 

- 0.2% of total K) are in an equilibrium (McLaren and Cameron, 1996). 

 

2.6.3. Calcium 

Calcium (Ca) is the fifth most abundant element in the earth’s crust. Ca is found predominantly in 

minerals such as feldspar, apatite (Ca-phosphates) and calcite (CaCO3) (McLaren and Cameron, 1996). 

The amount of Ca found in soil depends on the dominant parent material and the extent of weathering 

Figure 2-5: Above and below-ground 
transformations of the Sulphur Cycle. 
Adapted from McLaren & Cameron 1996 
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processes. However, Ca is also added from lime and superphosphate fertilisers (McLaren and 

Cameron, 1996).  

 

2.6.4. Magnesium 

Magnesium (Mg) roughly composes 2% of the earth’s crust. It is found in minerals such as dolomite, 

biotite and serpentine (McLaren and Cameron, 1996). Magnesium is essential for both plants and 

animals. Magnesium is found in three forms in soil: i) Mineral Mg, ii) Exchangeable Mg, and iii) soil 

solution Mg (McLaren and Cameron, 1996). Most Mg is found in mineral Mg and released slowly 

through weathering processes for more plant available forms.   
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3. Vegetation and site selection 

This chapter describes the native plant species selected for this research, including foliage and root-

systems. As this research project was one year from start to finish, native species had to be pre-existing 

at each sampling site. This reduced the availability of native species for selection. Adequate time had 

to be taken to scout an area for pre-existing vegetation, to ensure that the correct vegetation was 

available and easy to access. Permission from landowners was sought before sampling.  

 

3.1. Vegetation Selection 

Native plant species used for riparian restoration planting throughout NZ were selected, as preferred 

to non-native species. Sampling sites were selected upon the availability of suitable NZ-native species. 

Five native species were selected, along with non-native Lolium perenne (Table 3-1). L. perenne was 

found in agricultural land adjacent to the riparian zone at each sampling site. It acts as a control for 

chemical concentrations in this study. Native vegetation, at each respective site, was compared to L. 

perenne concentrations in the adjacent land.NZ agricultural industries have traditionally relied on T. 

repens for L. perenne to flourish. However, due to the increase of fertiliser use, T. repens has decreased 

(van den Pol et al., 2015).  

 

Table 3-1: An overview of the native species sampled, including their common name, Maori name, scientific 
name and family. 

 

 

Common Name Maori Name Scientific Name Family 

New Zealand Flax Harakeke Phormium tenax (J.R. Forst & G. Forst) Hermerocallidaceae 

Kānuka Kānuka Kunzea robusta (de Lange & Toelken) Myrtaceae 

Mānuka Kānuka Leptospermum scoparium (J.R. Forst & G. Forst) Myrtaceae 

Karamu Karamu Coprosma robusta (Raoul) Rubiaceae 

Lemonwood Tarata Pittosporum eugenioides (A. Cunn) Pittosporceae 

Perennial Ryegrass N/A Lolium perenne (L.) Poaceae 
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3.2. Species Description  

3.2.1. Phormium tenax, New Zealand Flax, Harakeke 

Phormium tenax [J.R. Forst & G. Forst] (P. tenax) has historical, ecological, cultural and economic 

values for NZ. A monocotyledon, endemic to NZ, Norfolk Island, and the Chatham Islands, P. tenax is 

one of only two species of the genus Phormium (Wehi and Clarkson, 2007). P. tenax is the most 

popular NZ native species used in restorative riparian planting, along with other NZ-native sedges 

(Renouf and Harding, 2015). Renouf and Harding (2015) found that P. tenax, along with native sedges, 

are the only native species that were dominant in restorative riparian plantings throughout the 

Canterbury region. Foliage colours vary from a yellow-green to a dark, deep green (Figure 3-1). The 

youngest leaves are located in the middle of the plant and sprawl outwards in a fan-like orientation 

(Critchfield, 1951). The longest leaves can grow to 3 m in length and 120 mm in diameter. Native birds 

pollinate the red/brown flowers on tall stalks that can grow to 5 m in length. Due to the tough, fibrous 

leaf structure, Maori have historically used P. tenax to weave items such as nets, clothing and baskets 

(Wehi and Clarkson, 2007). 

P. tenax roots extend the same distance vertically and laterally as the above-ground bush. Most roots 

are in the top 0.5 m of soil, with a radius of roughly 1.5 m (McGruddy, 2006). P. tenax are thought as 

suitable for restoration programs due to roots that penetrate deep and have high water-absorbing 

potential. However, to thrive in riparian initiatives, P. tenax requires a well-drained, organic soil 

(Wardle, 1991). 

 

3.2.2. Kunzea robusta, Kānuka 

Kunzea robusta [de Lange & Toelken] (K. robusta) is a member of the Myrtaceae family. K. robusta is 

often mistaken for Leptospermum scoparium ([J.R. Forst & G. Forst]) (L. scoparium), as they have 

similar physical properties (Essien et al., 2019). The simplest method of distinguishing between the 

two plants is to touch the foliage. K. robusta have softer leaves, while L. scoparium leaves are typically 

sharper to the touch (de Lange, 2014). However, the most reliable method of distinguishing between 

the two is to identify the capsules. K. robusta have smaller (4-5 mm) capsules and L. scoparium have 

larger (8-10 mm) capsules. K. robusta trees are found in coastal to low alpine (1600m) landscapes. The 

leaves are a yellow-green colour and small in size; 4.0-25.0 x 0.5-1.8 mm (Figures 3-2 & 3-3). K. robusta 

flowers are white, and typically have five orbicular petals surrounding an orange-brown circular seed 

(de Lange, 2014; Essien et al., 2019). K. robusta can live for 60 to 150 years, and can grow to heights 

of 30m with a trunk up to 1m in diameter (de Lange, 2014).   
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Essential oils can be extracted from the leaves. The yield and content of the essential oils depends on 

the extraction method, temperature, part of K. robusta used and other physicochemical properties 

(Harris et al., 2004). Essential oils from K. robusta have been reported to have anti-inflammatory (Chen 

et al., 2016), antibacterial & antifungal (Lis‐Balchin et al., 2000) properties, at varying levels of success.  

K. robusta was not studied by Marden et al. (2007), but it is likely to have a heart-rooted system. Heart-

rooted systems originate from or near the root bole in a compact system (Marden et al., 2007). Roots 

descend vertically or obliquely to vertical lengths of over 2 m (Phillips, 2005). Watson et al. (1999) 

correlated root depth to the stoniness and depth of loose soil on a given slope, not necessarily the age 

of the plant. For the first six years of growth, roots will have an average lateral growth of 0.25 m/year 

(Watson et al., 1999). K. robusta requires a well-drained soil to survive in riparian initiatives (Essien et 

al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: A row Phormium tenax bushes located at Silver Ferns Farms Pareora 
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Figure 3-2: K. robusta tree located at Hart's Creek Figure 3-3: Close up of K. robusta leaves. 
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3.2.3. Leptospermum scoparium, Mānuka 

L. scoparium is a member of the Myrtaceae family (Essien et al., 2019). L. scoparium is smaller than K. 

robusta, usually growing 4-8 m in height (Derraik, 2008), but has been recorded to reach up to 12 m 

(Ronghua et al., 1984). The leaves are a dark-green, and vary in size from 7-20 mm x 2-6 mm (Stephens 

et al., 2005) (Figure 3-4). Flowers are most often white, but on rare occasions may be pink or red and 

are 8-12mm in diameter.  

 

Of all the NZ native species, L. scoparium has the greatest economic potential (Reis et al., 2017). Maori 

traditionally used the plant for medicine, food and timber. Its primary economical use has shifted to 

essential oils and Mānuka honey (Alvarez-Suarez et al., 2014). The chemical composition of essential 

oils varies within the L. scoparium population. The variety depends on plant age, environmental 

conditions, geographic location and distillation procedure (Stephens et al., 2005). L. scoparium honey 

has antibacterial properties, exterminating bacteria and inhibiting pathogens within the human body, 

an appealing attribute of an everyday food-item (Carter et al., 2016). 

 

L. scoparium have a heart-rooted system, a compact system with slanting roots (Figure 3-5). In the 

first year of growth, roots descend rapidly to 0.2 m, but slow in the next four years to reach 0.25 – 0.3 

m (Marden et al., 2007). However, roots rapidly spread laterally in the initial five years, to 1.5 m. L. 

scoparium is adaptable to many soils. It can tolerate low fertility, high acidity and severe exposure to 

high winds, unlike many other woody species in NZ (Burrows, 1973; Derraik, 2008). Contrary to K. 

robusta, L. scoparium can grow in water-logged landscapes and can tolerate continuous flooding for 

prolonged periods, making it ideal for low-lying wetland restoration projects (Derraik, 2008; Essien et 

al., 2019). 
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Figure 3-4: L. scoparium tree located at Hart's Creek. Note the larger 
capsules on this plant, compared to K. robusta in figures 3-2 & 3-3. 

Figure 3-5: A graphic visualisation of L. scoparium roots spreading 
in soil 

Watson and O’Loughlin 1985 
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3.2.4. Coprosma robusta, Karamu 

Coprosma robusta [Raoul] (C. robusta) is a member of the Rubiaceae family (Stewart, 1993). C. robusta 

is found throughout NZ, from coastal scrubland through to lowland forest (Poole and Adams, 1964). 

C. robusta is a shrub that can grow up to 6m in height. Leaves are a shining green colour and have an 

elliptic-oblong shape that have a length of 50 – 120 mm and a diameter of 30 – 50 mm (Poole and 

Adams, 1964; Stewart, 1993) (Figure 3-7). C. robusta produces a small, red berry-looking fruit called 

Drupes, which are eaten by native birds. Flowers are a greenish-yellow colour and accumulate in a 

dense cluster (Poole and Adams, 1964; Stewart, 1993). 

C. robusta has a heart-rooted system, similar to K. robusta and L. scoparium (Marden et al., 2007). 

Marden et al. (2007) recorded an average maximum root depth of 0.15 m after one year, growing to 

0.35m after five years. Lateral root spread grew from 0.2 m in the first year to 1.5 m after five years.  

 

3.2.5. Pittosporum eugenioides, Lemonwood, Tarata 

Pittosporum eugenioides [A. Cunn] (P. eugenioides) is a member of the Pittosporaceae family (Stewart, 

1993). P. eugenioides is mostly found in lowland forests scattered throughout NZ. P. eugenioides is a 

small, rounded tree that can grow to a height of 13m, and have a trunk diameter of 0.6 m (Poole and 

Adams, 1964; Stewart, 1993). Leaves are a glossy, light yellow-green colour (Figure 3-6). They are 

oblong in shape and their length is 5-10 cm long. Leaves emanate a slight lemon scent when crushed 

(Poole and Adams, 1964).  

P. eugenioides has a heart-rooted system. Marden et al. (2007) recorded an average maximum root 

depth of 0.2 m after one year, growing to 0.25 m after five years. However, of all the native plant root 

systems described by Marden et al. (2007), P. eugenioides had the greatest mean maximum spread of 

3m after five years. The distribution of roots laterally were asymmetric, as large areas of soil were 

absent of roots. Branching of the roots is a common feature at the extremities.  
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Figure 3-7: A small (<2m) C. robusta tree at Lake Waikare. 

Figure 3-6: P. eugenioides tree located at Birdlings Brook. 
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3.2.6. Lolium perenne, perennial ryegrass 

Lolium perenne ([C. Linnaeus]) (L. perenne) is the most widely used temperate grass in NZ (Figure 3-

8). It is proven to have high yields, easy to establish and grow, can be used in intensive grazing and 

adapted to fit a wide range of farm management practices (Easton et al., 2011). It is used for long-

term pasture systems with fertile conditions. It is compatible with T. repens and other pasture species 

(Charlton and Stewart, 1999). This was significant when it was introduced, as T. repens was a primary 

source of N for many farming practices. L. perenne is used in NZ primarily for farming livestock, as it 

can withstand treading and grazing. However, it requires moist fertile conditions as it performs poorly 

during hot dry conditions. The root system is shallow, with some 80% of the root mass in the top 0.15 

m of soil (Bolinder et al., 2002). Another potential issue for L. perenne is the formation of endophyte 

toxins that may be present within fresh pasture (Charlton and Stewart, 1999). Endophyte toxins are a 

fungus that pose a risk to livestock and if not dealt with accordingly, can be detrimental (Pirelli et al., 

2016). Resowing endophyte-free pasture every 1-5 years (depending on environmental conditions) 

will assist with keeping endophyte levels down (Charlton and Stewart, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3-8: A soil pit dug to sample L. perenne in the adjacent paddock to native 
vegetation at Lake Waikare. 
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3.3. Site Selection 

Four sampling sites at native riparian restoration sites in Canterbury and Waikato were selected for 

the field study. Each site had a well-established riparian zone, but varied between age and species. As 

riparian sites were already established, the native species present at each site was a significant factor 

in deciding the plant selection. Control samples were collected from adjacent pasture, containing 

ryegrass. Adjacent pasture at each site had a history of agricultural production.  

Three locations were in the South Island, at Silver Ferns Farms Pareora (SFFP), Hart’s Creek and 

Birdlings Brook respectively (Figure 3-9). Although Hart’s Creek and Birdlings Brook were two separate 

sampling sites, they both were on the south face of Lake Ellesmere, had similar species diversity, age 

and soil types. Therefore, the results have been combined from both sites and are reported as ‘Lake 

Ellesmere Tributaries’. The remaining location was in the North Island, on the south face of Lake 

Waikare. Each sample site was unique, as they each had a different mix of native plants and different 

agricultural activity in the adjacent paddock. In total, there were 164 soil samples taken across all sites 

and vegetation. 
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Figure 3-9: The 
locations of each 
sampling site within 
New Zealand.  
 
1 = Pareora 
 
2 = Lake Ellesmere 
tributaries 
 
3 = Lake Waikare 
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3.3.1. Silver Ferns Farms Pareora (44°28'50.6"S 171°13'01.8"E) 

Permission was granted by Daryn Jemmett (Group Environmental Manager) & Phil McGuigan 

(Environmental Land Manager) at SFFP to gather soil samples to analyse. Robert Grant (Pareora Farm 

Manager) was the onsite contact at SFFP. He provided an induction and a tour of the farm. While 

working onsite, I was accompanied by Lindsay Paul (General Farm-hand), who kindly assisted with soil 

collection. The farming practices at SFFP where samples were taken was to grow pasture. No stock 

had access to this pasture. 

Wastewater at SFFP generated from meat processing must be appropriately discharged as to not 

break the conditions of their consent. Historically, SFFP has discharged 100% of their wastewater into 

the ocean. However, during 2018, 50% of wastewater on average was discharged to land through five 

fixed centre-pivot irrigators and K-lines (Conway et al., 2018). Under the fixed centre-pivot irrigators, 

perennial ryegrass is cut-and-carried and sold for feed. SFFP report adding lime and S to these 

paddocks to reduce sodium (Na) concentrations and avoid mineral accumulation (Conway et al., 

2018). Nutrients and chemicals that are susceptible to leaching may follow the natural flow of 

groundwater to a small stream, dominated by a monoculture of P. tenax. The width of the riparian 

zone was one bush wide (<5m width). This is the only riparian zone at SFFP with native planting. SFFP 

have plans to construct additional riparian zones at another small stream on site.  

The soil at SFFP is a silty loam, fragic pallic derived from schist or greywacke. Fragic pallic soils are dry 

in the summer while can be saturated in the winter, have weak structure but high density and a low 

content of iron oxides. The drainage of water through soils are slow and they are susceptible to 

erosion. 

Control samples were collected from the soil containing L. perenne under four fixed centre-pivot 

irrigators, at depths of 0-10 cm, 10-30 cm, 30-45 cm and 45-60 cm (Figure 3-10). Rhizosphere soils 

from P. tenax were collected from five locations along the riparian zone, and at depths of 0-10 cm, 10-

30cm, 30-45cm & 45-60 cm (Figure 3-11). Samples were collected between the 14-15/05/19. 
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Figure 3-10: A bird's eye view of Pareora, showing the sampling plan that was used. The red stars indicate 
where soil under L. perenne was sampled. The blue stars indicated where P. tenax was sampled. 

Figure 3-11: A 60 cm soil pit that was dug at Pareora to gather soil at each depth beside P. tenax. 
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3.3.2. Birdlings Brook (43°47'39.5"S 172°18'49.5"E) and Harts Creek (43°48'11.4"S 

172°19'03.3"E) 

The sampling site at Birdlings Brook was accessed from John Leggs’ Farm. This farm is used for dairy 

cow holding and grazing. However, it has not had fertiliser application for the past two years. Birdlings 

Brook stream flows into the lower part of Harts Creek, which discharges into Lake Ellesmere. Riparian 

zones to the south of Lake Ellesmere are experiencing native restoration programmes. Locals have 

removed mature willows and replaced them with a diverse range of NZ native vegetation. This 

restoration is still ongoing at many sites. The vegetation at this particular site was relatively new, at 

about 10 years old. Native vegetation that was selected to be sampled from this location were P. 

tenax, K. robusta and P. eugenioides.  

The soil at Birdlings Brook is a silty loam Orthic Gley that represents the original extent of a NZ wetland. 

Orthic Gley soils are commonly water logged, have a high bulk density, high organic matter and soil 

organisms are usually restricted because of anaerobic conditions. 

Control samples were collected from the adjacent paddock, at depths of 0-10cm, 10-30cm, 30-45cm 

and 45-60cm (Figure 3-12). Rhizosphere soils were collected from two K. robusta, P. tenax and P. 

eugenioides plants, respectively, at depths of 0-10 cm, 10-30 cm, 30-45 cm and 45-60 cm. Samples 

were collected on the 26/06/19. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12: A bird's eye view of Birdlings Brook. The vegetated cover in the middle is where the 
sampling for native vegetation took place. 
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The sampling site at Harts Creek was accessed from the public bridge along Creamery Road (Figure 3-

13). Similar to Birdlings Brook, Harts Creek has undergone restoration of diverse NZ-species. The 

vegetation sampled at this site were 10-15 years old, a similar age to the vegetation at Birdlings Brook. 

Vegetation selected to sample here were P. tenax, K. robusta, P. eugenioides, L. scoparium and C. 

robusta. The adjacent field was used for primary production.  

The soil at Harts Creek is a silty loam Orthic Gley that represents the original extent of a NZ wetland 

(S-map reference), similar to the soil at Birdlings Brook. Water logging is common during winter 

periods. 

Control samples were collected from the adjacent paddock, at depths of 0-10 cm, 10-30 cm, 30-45 cm 

and 45-60 cm. Rhizosphere soils were collected from two P. tenax plants and one P. eugenioides, C. 

robusta, K. robusta and L. scoparium plants, respectively, at depths of 0-15 cm, 15-30cm, 30-45cm, 

45-60cm. Samples were collected on the 28/06/19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13: A bird's eye view of Hart's Creek. Creamery Road runs from SE to NW. 
Sampling took place to the left hand side of the bridge on Creamery's Road. 
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3.3.3. Lake Waikare (37°28'26.8"S 175°13'56.3"E) 

The sampling site at Lake Waikare was accessed from Tahuna Road. Permission was granted from 

Tawera Nikau, the farm owner, to collect samples from his land. Tawera donated a small section of his 

land to plant NZ native vegetation in June and October of 2017. He, and the Matahuru iwi, are 

passionate about restoring Lake Waikare. They have invited scientists, the Waikato Regional Council 

and other NGO’s to monitor, sample and analyse the effects of reintroducing native plants to this area. 

Lake Waikare is a Hypereutrophic Lake with high suspended sediment loads restricting light for 

macrophyte growth and frequently suffers from algal blooms. Lake Waikare was historically a ‘food-

bowl’ for the ancestors of the Matahuru iwi, before the wetlands were drained for farming. The land 

adjacent to the sampling site has been used for dairy farming for decades. Tawera’s vision, shared 

with the local iwi, is to plant native riparian vegetation around the entire lake edge to protect Lake 

Waikare from the adjacent land. Tawera reports that plants here are growing at more than one meter 

per year.  

The soil at Lake Waikare is an Orthic Gley soil that represents the original extent of NZ wetlands. The 

soil shares similar key features to those at Hart’s Creek & Birdlings Brook.  

Samples were collected from the south side of Lake Waikare, near the Matahuru Marae (Figure 3-14). 

Control samples were taken from the adjacent paddock, at depths of 0-10cm, 10-30cm and 30-45cm. 

Maria Gutierrez-Gines and her team from the Institute for Environmental Science Research (ESR) 

collected rhizosphere soil samples from L. scoparium and mixed species, at depths of 0-10cm, 10-30cm 

and 30-45cm on the 10-11/12/2018. Additional rhizosphere soil samples from Karamu species, at 

depths of 0-10cm, 10-30cm & 30-45cm were collected on the 2-3/07/2019.  
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Figure 3-14: A bird's eye view of the Lake Waikare sampling location. The white box indicates the area that has 
been put aside for riparian planting. Although this image does not show it, this has had vegetation present 

since 2017. Samples were collected within the boundaries of the white box. 
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4. Methods  

4.1. Soil preparation 

4.1.1. Soil drying  

Soil samples were dried on an aluminium tray in a large drying oven at 40 °C for 96 hours (Figure 4-1). 

Apart from KCl extraction and moisture content, every other analytical analysis technique used the 

oven dried soil samples. A pestle and mortar was used to crush the soil break soil aggregates. The 

pestle and mortar were washed with deionised water, followed by a rinse of ethanol and dried 

between each soil sample. This was rigorously maintained to ensure there was no cross-contamination 

between soil samples. The ground soil was passed through a 2 mm research grade sieve to remove 

excess vegetation and homogenise the soil. The short abbreviation of “air-dried, <2 mm” in the 

method section indicates this procedure has been performed on the soil samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Drying oven used to dry all soil samples. 
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Following drying and sieving, soils were crushed using a ring mill grinder in the School of Earth and 

Environment department at the University of Canterbury. Between every run, the ring mill was 

washed thoroughly with D.I. water and then rinsed with ethanol before being used for the next soil 

sample. Each sample took, on average ten minutes, to grind soil and wash the ring mill. The result was 

a dry fine soil which was used for the chemical analysis.  

 

4.1.2. Potassium Chloride extraction  

Soils used for the potassium chloride (KCl) extraction were moist and had not undergone the soil 

drying method as stated in section 4.1.1.  

40mL of 2M potassium chloride was added to a 4 g ± 0.05 sample of moist soil and shaken for 1 hour. 

Samples were centrifuged at 2000 rpm for 10 minutes and filtered through a Whatman No. 41 filter 

pad (Blakemore, 1987). KCl extracts were frozen, until spectroscopic analysis for NO3
- and NH4

+. 

Spectroscopic methods for NO3
- and NH4

+ used this KCl extraction method and are recorded in sections 

4.2.3 and 4.2.4 respectively.  
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4.2. Chemical tests 

4.2.1. pH 

10 g of soil (air-dried, <2 mm) was weighed and stirred with 25 mL of deionized water. The solution 

was left to stabilize for 24 hours before being analysed using a HACH HQ440-d-multi pH reader 

(Blakemore, 1987).  

 

4.2.2. Moisture content 

Sub-samples of moist soil (10 – 20 g) were weighed into new cupcake cases and dried at 105 °C for 24 

hours. Each cupcake case was weighed individually before weighing in the moist soil. Sub-soils were 

cooled to room temperature and immediately weighed to three decimal places (Blakemore, 1987). 

Moisture content was calculated using the equation below (Eq. 4-1). 

 

Moisture Content % =  
(Wet soil weight−Dry soil weight)

(Wet soil weight)
 x 100                              (Eq. 4-1) 

 

4.2.3. Nitrate 

A 350 µL aliquot of KCl extract was added to a 1.5 mL semi-micro cuvette, followed 350 µL VCl3, 150 

µL N-(1-Napthyl) ethylenediamine dihydrochloride (NEDD) and 150 µL sulphanilamide (SULF). It took 

45 minutes to reach optimal colour development. A higher concentration of NO3
- turned the solution 

a brighter pink colour (Figure 4-3). A calibration curve was constructed using standard concentrations 

of 0, 0.5, 1, 2, 3 and 5 mg/L against the absorbance reading to give a linear concentration gradient 

with an R2 value of 0.991. The solution absorbance were analysed at 540 nm using a Cary 100-bio UV-

visible spectrophotometer and plotted along the calibration curve to attain a NO3
- concentration 

(Miranda et al., 2001). 

4.2.4. Ammonium 

A 650 µL aliquot of KCl extract was added to a 1.5 mL semi-micro cuvette, followed by 50 µL of 

ethylenediaminetetraacetic acid reagent, 200 µL sodium salicylate-sodium nitroprusside and 100 µL 

buffered hypochlorite. It took 40 minutes to reach optimal colour development. As the concentration 

of NH4
+ increased, the colour of the solution turned from a yellow-green through to a dark blue (Figure 

4-4). A calibration curve was constructed using standard concentrations of 0, 0.1, 0.2, 0.5, 1 and 2 
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mg/L against the absorbance reading to give a linear concentration gradient with an R2 value of 0.999. 

The solutions were analysed at 667 nm using a Cary 100-bio UV-visible spectrophotometer and plotted 

along the calibration curve attain an NH4
+ concentration (Dorich and Nelson, 1983).  

 

4.2.5. Total N & C 

The method used to obtain TN and TC could not be replicated with the equipment at the University 

of Canterbury. As a result, soil and plant samples were sent to Roger Cresswell at Lincoln University 

to be analysed with Vario-Max CN Elementar Analyser (Elementar®, Germany) 

 

4.2.6. Olsen P 

Soil (air-dried, <2 mm) weighed to 1.0 g was added to 20 mL of 0.5 M NaHCO3. The solutions were 

shaken on end over end shaker for 30 minutes. Followed by centrifuge at 2000 rpm for 10 minutes 

and filtered through a Whatman No. 42 filter pad to obtain the NaHCO3 extract with no particulates 

(Olsen, 1954).  

A 10 mL aliquot of the extract was added to 50 mL tube, 1-2 drops of p-nitrophenol indicator was 

added, followed by 1 mL of 2M H2SO4 and left to effervescence for 1 hour. 5 mL of working colour 

reagent was added and filled to 50mL with deionized water (Blakemore et al. 1987). Optimal colour 

development took 30 minutes. As concentration of soluble P increased, a deeper blue was observed 

(Figure 4-2). A calibration curve was constructed using standard concentrations of 0, 0.2, 0.4, 0.8, 1.2, 

1.6, 2 and 5 mg/L against the absorbance reading to give a linear concentration gradient with an R2 

value of 0.999. The solutions were analysed at 880nm using a Cary 100-bio UV-visible 

spectrophotometer and plotted along the calibration curve to attain an Olsen-P concentration (Olsen, 

1954). 
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Figure 4-3: Colour formation of KCl extract for analysis of 
NO3

-. 
Figure 4-2: Colour formation for analysis of Olsen P 

Figure 4-4: Colour formation of KCl extract for 
analysis of NH4

+. 
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4.2.7. Sulphate  

Soil (air-dried, <2mm) weighed to 5.0 g samples were added to 25 mL of 0.01M calcium tetrahydrogen 

di-orthophosphate. The solution was shaken end over end for 1 hour, then centrifuged at 2000rpm 

for 15 minutes and filtered through a Whatman No (Blakemore, 1987). 42 filter pad. Extracts were put 

into 13mm vials and given to Robert Stainthorpe for analysis via Microwave Plasma coupled to Atomic 

Emission Spectrometer (MP-AES). 

 

4.2.8. Trace elements 

Dried sieved (<2 mm) soil (0.5 g ± 0.02) or plant foliage (0.2 g ± 0.02) were weighed into 50ml 

Erlenmeyer flasks, followed by 10 mL of concentrated analytical grade nitric acid. An orange/brown 

gas composed of NOx’s was formed. Flasks were placed on a hotplate to boil for 30-45 minutes until 

NOx volatilisation ceased. Solutions were cooled and made up to 15 mL with DI water. Solutions were 

filtered through Whatman No. 41 filter paper and given to Rob Stainthorpe to analyse on MP-AES.  

 

4.3. Data Analysis 

Microsoft Excel 2016 was used for general data management and analysis. All graphs recorded were 

made using Excel’s graphing software. Excel was additionally used for correlation statistics between 

variables (e.g. NO3
- and pH). A correlation between analysed samples was performed in excel. Using 

the data analysis tool pack. Correlations were deemed significant if the p-value was greater than the 

designated p-value, which was dependent on the sample size. 

Minitab (version 18) was the statistical software used for all statistical analysis. A one-way ANOVA was 

performed between a selected chemical (e.g. NO3
-) and native vegetation (e.g. P. tenax) at a certain 

depth for each location. Variables were considered significant when p < 0.05. A Tukey post-hoc test 

was used to test differences between variables. Standard errors indicating upper and lower limits, 

represented on the graphs, were calculated (Eq. 4-2). Where n is the number of samples.  

 

 𝑠𝑡𝑑. 𝑒𝑟𝑟𝑜𝑟 =  𝑠𝑡𝑑. 𝑑𝑒𝑣. √𝑛⁄                                                  (Eq. 4-2) 
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5. Results & Discussion 

5.1. pH and gravimetric soil moisture 

The average soil pH in the rhizosphere of native vegetation and adjacent pasture ranged from 5.2 to 

6.6 (Figure 5-1). At SFFP, the soil pH under L. perenne was significantly (p < 0.05) higher than P. tenax. 

The higher pH under pasture is likely to be from the application of lime at SFFP. Regular application of 

lime was applied to maintain soil pH above 6.0, improve soil structure and reduce accumulation of Na 

in soil (Conway et al., 2018). At the Lake Ellesmere tributaries and Lake Waikare, there was no 

significant difference in soil pH between L. perenne and native vegetation. Lake Waikare had higher 

soil pH levels than at the Lake Ellesmere tributaries. The average gravimetric soil moisture content 

(GSMC) ranged from 15 % to 34% (Figure 5-2). At the Lake Ellesmere tributaries, GSMC under P. tenax 

was significantly (p < 0.05) higher than GSMC under other native vegetation and L. perenne. P. tenax 

at the Lake Ellesmere tributaries was planted closer to the streamside, relative to other native 

vegetation, which likely would have increased the GSMC. P. tenax was two-fold higher at the Lake 

Ellesmere tributaries than P. tenax at SFFP. This difference is likely to be from the difference in soil 

type. The Lake Ellesmere tributaries has a silty loam orthic gley soil, which frequently become 

waterlogged. SFFP has a fragic pallic soil, which is dry in summer and often saturated in the winter. 
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Figure 5-1: Soil pH in the top 150 mm of soil 
under native vegetation and L. perenne. Native 
vegetation are in black and non-native are in 
grey.  
Note: “Te Waihora” represents the Lake 
Ellesmere tributaries 

Figure 5-2: The average gravimetric soil moisture 
content under native vegetation and L. perenne. 
Native vegetation is in black and non-native are in 
grey. 
Note: “Te Waihora” represents the Lake Ellesmere 
tributaries. 
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5.2. Nitrate, Ammonium & Total N 

There were no significant differences in TN concentration in the top 0 to 30 cm rhizosphere soil of 

native species at any sampling sites (Tables 5-1 & 5-2). Similarly, there were no significant differences 

in TN between L. perenne and native vegetation. TN concentration decreased with increased depth. 

Organic N makes up 94 – 98 % of TN and does not leach, unless converted to NO3
- (McLaren and 

Cameron, 1996). TN had significant (p < 0.05) positive and negative correlations with pH between 0 to 

30 cm at both the Lake Ellesmere tributaries and Lake Waikare (Figures 5-3 & 5-4). At the Lake 

Ellesmere tributaries, TN and pH were negatively correlated. In contrast, at Lake Waikare TN and pH 

were positively correlated. Soil acidity and pH have been demonstrated to affect both TN and TC 

concentrations (Marinos and Bernhardt, 2018). Soil acidity and drainage are important for organic 

matter decomposition (McLaren and Cameron, 1996). Acidic soils and water-logging both cause a 

reduction in decomposition. Other physicochemical factors in soil, such as pH, water composition, 

temperature, C content and nutrient cycling may be why these correlations are different. However, 

anthropogenic influence from different fertilisation schemes and lime treatment may also affect the 

correlation (Conway et al., 2018). The roots of L. scoparium and K. robusta are mostly concentrated in 

the top 30 cm of soil (Watson and O’Loughlin, 1985). The data in tables 5-1 & 5-2 represent the 

chemical parameters recorded in the top 0-15 cm and 15-30 cm of soil, respectively. See appendix 1 

for the tables with the data for chemicals at 30-45 cm and 45-60 cm. 
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Figure 5-3: Total Nitrogen against pH correlation between 0 to 300 mm of soil at the Lake Ellesmere tributaries. 
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Figure 5-4: Total Nitrogen against pH correlation between 0 - 300 mm of soil in Lake Waikare. 
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Table 5-1: Means (and standard error ranges) of the chemical parameters analysed in the top 15 cm of soil at each sampling location. The units for all data are mg/kg unless 
otherwise stated in brackets. Different letters indicate significant differences of that parameter (p < 0.05) between species in the same location. 
*Geometric mean calculated with the standard error range 

 

 

 

 

0-15cm SFFP Lake Waikare Lake Ellesmere tributaries 

Chemical L. perenne P. tenax L. perenne L. scoparium C. robusta 
Mixed (L. 

scoparium) L. perenne P. tenax 
P. 

eugenioides  K. robusta 

pH* 6.6 (6.5 - 6.7) a 5.9 (5.8 - 6.0) b 6.4 (6.3 - 6.4) 6.2 (6.1 - 6.4) 6.0 (5.9 - 6.2) 6.2 (6.1 - 6.3) 5.9 (5.7 - 6.2) 5.2 (4.9 - 6.1) 5.7 (5.7 - 5.7) 5.5 (5.3 - 5.9) 

NO3
- 11.7 ± 2.1 11.5 ± 3.0 17.9 ± 5.6 14.3 ± 4.5 6.6 ± 1.3 17.5 ± 3.1 4.6 ± 2.0 6.7 ± 3.7  2.5 ± 1.1  15.1 ± 13.3 

NH4
+  4.7 ± 2.3 4.4 ± 0.8 1.9 ± 0.7  2.4 ± 1.2 3.7 ± 0.6 6.4 ± 3.5 10.5 ± 2.5 12.7 ± 4.6 6.9 ± 1.1 10.0 ± 3.5 

Total N (%) 0.30 ± .02  0.27 ± .02 0.40 ± .04 0.40 ± 0.03 0.30 ± 0.02 0.39 ± 0.03 0.34 ± 0.07 0.56 ± 0.09 0.32 ± 0.05 0.51 ± 0.11 

Total C (%) 3.31 ± 0.23  2.71 ± 0.14 4.33 ± 0.38 4.60 ± 0.41 3.18 ± 0.16 4.16 ± 0.25 3.53 ± 0.76 6.63 ± 1.27 3.69 ± 0.61 5.58 ± 1.24 

Olsen P  23. ± 7 11.6 ± 2.0 42 ± 9 52 ± 5 39 ± 4 51 ± 5 12.3 ± 4.2 46 ± 21 21 ± 9 51 ± 22 

Total P 63 ± 8 b 113 ± 11 a 519 ± 129 721 ± 71 710 ± 66 619 ± 39 584 ± 51 715 ± 93 596 ± 31 695 ± 98  

Sulphate 23 ± 10 8.8 ± 0.6 7.1 ± 1.2 6.5 ± 1.5 5.3 ± 0.6  7.7 ± 1.7 7.4 ± 2.3 bc 50 ± 5 a 7.8 ± 0.5 bc 15.6 ± 5.7 b 

Total S  214 ± 50 b 438 ± 63 a 458 ± 51 a 314 ± 38 b 285 ± 62 b 329 ± 31 b 246 ± 68  489 ± 95 231 ± 42 384 ± 104 

Total K 1220 ± 170 1400 ± 90 656 ± 66 bc 870 ± 65 a 601 ± 67 c 739 ± 51 ab 2240 ± 190 2170 ± 140 2640 ± 200 2350 ± 220 

Cu 3.6 ± 0.7 2.4 ± 0.4 7.2 ± 1.0 7.4 ± 1.2 9.2 ± 3.1 8.1 ± 1.3 6.7 ± 0.9 9.3 ± 1.6 7.2 ± 1.2 9.9 ± 0.8 

Fe 7720 ± 660 b 9270 ± 120 a 17560 ± 1980 15920 ± 930  14480 ± 1310 15540 ± 1420 19200 ± 630 19170 ± 1340 21640 ± 2120 19850 ± 2280 

Mg 2370 ± 740 1930 ± 750 7950 ± 820 8140 ± 450 7330 ± 610  8140 ± 760 12580 ± 350 12600 ± 710 14350 ± 1200 13000 ± 1270 

Mn 276 ± 64 b 443 ± 33 a 830 ± 186 673 ± 153 566 ± 118 870 ± 155 435 ± 19 427 ± 24 466 ± 58 438 ± 48 

Zn 7.3 ± 2.2 4.6 ± 0.5 17.4 ± 3.7  17.5 ± 3.8 22.6 ± 2.0 27.1 ± 1.1 12.8 ± 3.4 24.9 ± 9.2 10.4 ± 5.2 43.4 ± 11.1 

Na 325 ± 9 a 245 ± 18 b 176 ± 23 233 ± 31 209 ± 33 211 ± 12 
 
191 ± 7 c 460 ± 36 a 265 ± 27 b 298 ± 53 b 

Ca 3820 ± 160 3270 ± 1603 7200 ± 2630 13750 ± 6780 4540 ± 380 4680 ± 640 5880 ± 280 7050 ± 960 6270 ± 590 6250 ± 280 
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Table 5-2: Means (and standard error ranges) of the chemical parameters analysed between 15 - 30 cm of soil at each sampling location. The units for are mg/kg unless 
otherwise stated in brackets. Different letters indicate significant differences of that parameter (p < 0.05) between species in the same location. 
*Geometric mean calculated with standard error range 
 

 

 

 

15-30cm SFFP Lake Waikare Lake Ellesmere tributaries 

Chemical  L. perenne P. tenax L. perenne 
L. 

scoparium C. robusta 
Mixed (L. 

scoparium) L. perenne P. tenax 
P. 

eugenioides  K. robusta 

pH* 6.4 (6.3 - 6.6) 6.1 (5.9 - 6.3) 6.7 (6.6 - 6.8) 6.4 (6.3 - 6.6) 6.2 (6.0 - 6.4) 6.3 (6.2 - 6.4) 5.7 (5.6 - 6.0) 5.3 5.7 (5.5 - 6.1) 5.1 (5.0 - 5.2) 

NO3
- 3.0 ± 1.1 2.6 ± 0.8 3.5 ± 1.4 6.1 ± 2.0 2.6 ± 0.9 5.9 ± 1.1 2.2 ± 1.3 3.1 ± 2.1 2.4 ± 0.6 2.9 ± 2.2 

NH4
+ 2.6 ± 1.0 4.1 ± 1.2 3.5 ± 0.7 5.1 ±  1.0 3.3 ±  0.1 6.0 ±  0.8 2.7 ± 0.5 7.9 ± 4.4 6.6 ± 0.7 4.1 ± 1.2 

Total N (%) 0.14 ± 0.03 0.15 ± 0.03 0.25 ± 0.04 0.27 ± 0.03 0.19 ± 0.05 0.26 ± 0.02 0.16 ± 0.05 0.37 ± 0.05 0.28 ± 0.04 0.34 ± 0.05 

Total C (%) 1.47 ± 0.34 1.54 ± 0.26 2.72 ± 0.40 3.18 ± 0.51 2.11 ± 0.41 2.87 ± 0.21 1.61 ± 0.48 4.91 ± 1.05 3.04 ± 0.37 4.09  

Olsen P  18 ± 7  4.5 ± 1.4 18.8 ± 4.8 24.4 ± 5.0 15.1 ± 4.7 24.6 ± 4.1 5.7 ± 3.2 28.2 ± 18.8 15.9 ± 7.3 40.4 ± 15.1 

Total P 57 ± 10 b 112 ± 16 a 435 ± 103 523 ± 77  408 ± 71 513 ± 35 585 ± 37 637 ± 83 561 ± 28 652 ± 53 

Sulphate 25.0 ± 6.1 a 8.3 ± 2.7 b 4.1 ± 1.7 5.5 ± 1.5 5.7 ± 1.5 5.4 ± 2.5 5.9 ± 1.9 b 42.7 ± 20.3 a 8.3 ± 3.6 b 58 ± 22 a 

Total S  153 ± 33 b 414 ± 76 a 448 ± 69 a 198 ± 34 b 245 ± 115 b 220 ± 27 b 120 ± 41 c 373 ± 58 a 193 ± 49 abc 320 ± 69 ab 

Total K 1500 ± 240 1140 ± 37 610 ± 57 645 ± 60 482 ± 24 533 ± 22 2330 ± 140 2270 ± 240 2380 ± 66 2400 ± 240 

Cu 4.1 ± 1.7 2.2 ± 0.5 6.1 ± 0.7 5.7 ± 1.1 9.2 ± 3.5 5.9 ± 1.4 4.1 ± 0.9 7.7 ± 1.4 6.7 ± 0.4 8.7 ± 1.9 

Fe 10440 ± 910 9550 ± 630 18350 ± 1620 17750 ± 1500 12780 ± 1450 15270 ± 1740 23950 ± 2560 22080 ± 1040 21380 ± 830 21710 ± 560 

Mg 2900 ± 910 1875 ± 860 8210 ± 620 9030 ± 750 6120 ± 760 8020 ± 940 15630 ± 1540 14430 ± 630 14200 ± 580 14260 ± 270 

Mn 393 ± 107 385 ± 32 752 ± 211 542 ± 133 407 ± 162 756 ± 162 488 ± 9  477 ± 82 479 ± 66 445 ± 83 

Zn 6.7 ± 2.5 4.3 ± 0.9 15.7 ± 3.5 a 10.3 ± 1.9 b 14.2 ± 1.6 ab 18.8 ± 1.0 a 7.9 ± 1.8 b 11.1 ± 4.5 b 7.3 ± 1.0 b 32.5 ± 2.3 a 

Na 354 ± 19 a 243 ± 15 b 149 ± 12 169 ± 29 166 ± 18 153 ± 9 228 ± 37 c 427 ± 12 a 224 ± 16 bc 346 ± 29 ab 

Ca 3520 ± 260 3020 ± 210 6270 ± 2380 13420 ± 6820 2820 ± 150 4540 ± 1010 6500 ± 750 7300 ± 820 6100 ± 540 6210 ± 180 



 

55 
 

There were no significant differences in NO3
- concentrations between rhizosphere soils of native 

species at any of the sampling sites. Similarly, there were no significant differences in the rhizosphere 

soil concentration of L. perenne when compared to native vegetation. The results showed that soil 

depth was more important in determining NO3
- concentration than native species or location. 

Different soil types at each location will influence NO3
- in soil, but not as significantly as the soil depth. 

In most cases, NO3
- decreased with soil depth. Olarewaju et al. (2009) found the same trend of 

decreasing NO3
- concentration with increasing soil depth. The bulk of NO3

- was concentrated in the 

topsoil (0-15 cm) and decreased with increased soil depth. This is likely to follow the same trend of TN 

with soil depth. Nitrification occurs at a maximum rate when soil moisture tension is at -10 kPa 

(McLaren and Cameron, 1996). This is when water will not percolate downwards naturally from gravity 

as water is held by soil particles. At this water tension, there is sufficient oxygen in soil pores to enable 

nitrification. When soil water tension is >0 kPa, water will naturally percolate due to gravity, as the 

tension exceeds the capacity for soil to hold water. Although soil moisture tension was not recorded 

in this experiment, this is a significant factor for the transport of NO3
-. Two other important factors for 

NO3
- transport mechanisms are convection and concentration gradients. Nitrate was significantly (p < 

0.05) and positively correlated with pH in the top 15 cm of soil at Lake Waikare (Figure 5-5). In Figure 

5-5 from pH 6 to 7, there was an estimated NO3
- increase of 20 mg kg -1 (Eq. 5-1).  

 

 𝑦 = 0.0015𝑒1.3966𝑥                                                          (Eq. 5-1) 

 

Ying et al. (2017) and Kyveryga et al. (2004) found significant positive correlations of nitrification with 

an increase of soil pH. Higher nitrification rates will encourage more production of NO3
-. This does not 

imply an increased concentration of NO3
-, as this also depends on the rates of NO3

- losses via leaching, 

denitrification and plant uptake (McLaren and Cameron, 1996). Figure 5-5 shows an increase of NO3
- 

with pH, which indicates a higher rate of nitrification relative to losses of NO3
- with increasing pH. This 

indicates that pH is a key factor for nitrification and NO3
- losses. Sahrawat (2008) records that 

maximum nitrification rates occur at pH 8.5. As the pH of soil raises closer to 8.5, the rate of 

nitrification may be increasing faster than NO3
- is being lost. This result would be an overall increase 

of NO3
- with increasing pH.  

Contrary to the trend at Lake Waikare, NO3
- concentration was significantly (p < 0.05) and negatively 

correlated with pH from 0 cm to 30 cm in soil at the Lake Ellesmere tributaries (Figures 5-7 & 5-8). 

There was a reduction of NO3
- with an increase of pH. Watros et al. 2018 found both positive and 
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negative correlations between mineral N and pH at different times of the year. A positive correlation 

with pH was more common during their study. Olarewaju et al. (2009) found a 14% decrease of NO3
- 

in wet seasons compared to dry seasons, showing that a seasonal variation of NO3
- is possible. This 

suggests that the time of the year may have influenced the negative correlation recorded at the Lake 

Ellesmere tributaries. My samples were collected from the Lake Ellesmere tributaries over two days 

in late June 2019, so an observation between seasons was not possible. A reduction of NO3
- 

concentration at higher pH may have been due to higher NO3
- losses than nitrification. There are other 

physicochemical factors that could influence the negative correlation of NO3
-
 and pH in Figures 5-7 & 

5-8. The Lake Ellesmere tributaries and Lake Waikare have loamy Orthic Gley soils. Maag and Vinther 

(1996) report denitrification rates in loamy soil respond significantly to changes in soil moisture 

content and temperature. A high soil moisture content (SMC) will increase both NO3
- leaching and 

denitrification rates. A higher SMC will generate more water-filled pore space, increasing soil moisture 

tension which increases percolation of water through soil. The result is higher rates of NO3
- leaching 

(Machefert and Dise, 2004). Additionally, SMC can affect biological denitrification (Friedl et al., 2016; 

Maag and Vinther, 1996). The net chemical reaction for denitrification in soil is: 

 

NO3
− ↔ NO2

− → NO (gas) →  N2O (gas) → N2 (gas)                                                                       (Eq. 5-2) 

 

Klemedtsson et al. (1988) found that denitrification was at its highest when water-holding capacity 

(WHC) was at 100%. Maag and Vinther (1996) found that denitrification rates doubled from 40% WHC 

to 100% WHC, respectively. If soil has anaerobic conditions through high SMC, biological 

denitrification will use NO3
- as the electron acceptor as opposed to oxygen and will form gaseous N 

(McLaren and Cameron, 1996) (Eq. 5-3). 

 

C6H12O6 + 4NO3
− → 6CO2 + 6H2O + 2N2                                                                                         (Eq. 5-3) 

 

Friedl et al. (2016) found that N2 emissions exceeded N2O emissions by a factor of 8 and 17 at 80% and 

100% WHC, respectively. This shows that N2 production will be dominant at higher WHC. Loamy Orthic 

Gley soils are susceptible to water-logging. The soil at the Lake Ellesmere tributaries may have been 

experiencing higher water-logging at the time of sampling, therefore could potentially have higher 

anaerobic conditions.  The soil at the Lake Ellesmere tributaries had a higher gravimetric soil moisture 
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content compared to Lake Waikare in the top 30cm at 25.4% compared to 24.5%. This small difference 

in gravimetric soil moisture content may have contributed to increased leaching and denitrification 

rates. The optimal temperature for nitrifying bacteria is 25 °C to 35 °C (Haynes, 1986; McLaren and 

Cameron, 1996). Below 5 °C, nitrification is considered to be at a minimum (McLaren and Cameron, 

1996). Maag and Vinther (1996) found that denitrification decreased three-fold from 5 °C to 20 °C 

respectively. The average high and low temperature at the Lake Ellesmere tributaries the week before 

sampling was 12 °C and -3 °C, respectively. The average high and low temperature at Lake Waikare 

the week before sampling was 15 °C and 6 °C. Therefore the lower temperature at the Lake Ellesmere 

tributaries has both decreased nitrification and increased denitrification. The net result is a less 

concentration of NO3
-. Both SMC and temperature are likely to have had an impact on NO3

- 

concentration, which may be responsible for the negative correlation with pH.  

 

There were no significant differences in NH4
+ concentrations between native vegetation. The only 

significant difference (p < 0.05) recorded was a lower concentration in 30-45 cm rhizosphere soil of C. 

robusta at Lake Waikare. Marden et al. (2007) recorded the average root depth of a three- year-old C. 

robusta to be 24 cm. The vegetation at Lake Waikare was two years old at the time of sampling. C. 

robusta roots and would have therefore not had the time required to grow to 30-45 cm depth. The 

significant difference observed in NH4
+ concentration cannot be from C. robusta roots influencing soil 

chemistry. The depth of soil was the most important factor for NH4
+ concentration. There was a 

significant decrease in NH4
+ concentration with depth. Ammonium was significantly and negatively 

correlated with pH in the top 15 cm of soil at Lake Waikare (Figure 5-6) In figure 5-6, from pH 6 to 7, 

there was a reduction of NH4
+ concentration of approximately 5 mg kg -1 (Eq. 5-4).  

 

 𝑦 = 4𝐸 + 12𝑒−4.578𝑥                                                      (Eq. 5-4) 
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There are more cation exchange sites at higher soil pH, as there is more dissociation of functional 

groups on both organic matter and clay minerals (McLaren and Cameron, 1996). With more clay 

minerals, there is increased fixation of NH4
+. Ammonium concentration will therefore decrease as 

fixation to clay minerals increases. This may explain the observation of a lower NH4
+ concentration 

with an increase of pH at Lake Waikare. The higher abundance of clay minerals will have a negligible 

influence on NO3
- concentration. Nitrate molecules are repelled from cation exchange sites, due to its 

negative charge. Therefore, they remain unbound and percolate through the soil profile with soil 

moisture (McLaren and Cameron, 1996).  
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Figure 5-5: Nitrate concentration (mg/kg) against soil pH in the top 150mm 
of soil at Lake Waikare. 
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Figure 5-8: Nitrate concentration (mg/kg) against soil pH in the top 150 mm 
of soil at the Lake Ellesmere tributaries. 

Figure 5-7: Nitrate concentration (mg/kg) against pH between 150 mm and 
300 mm soil at the Lake Ellesmere tributaries. 

Figure 5-6: Ammonium concentration (mg/kg) against soil pH in the top 
150mm of soil at Lake Waikare. 
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5.3. Total Carbon 

There were no significant differences in TC in rhizosphere soil between native vegetation at any of the 

sampling sites. Total carbon ranged from 1.5 to 6.6% in the top 30 cm of soil across all sampling sites. 

The results found that TC was significantly and positively correlated with TN at all soils depths and 

sampling sites. Total carbon decreased with depth. This is expected, as C is added via litter 

decomposition and sequestering atmospheric CO2. At SFFP and the Lake Ellesmere tributaries, the C:N 

ratio decreased with depth (Table 5-3). This observation indicates that more TN relative to TC is 

entering deeper soils. This suggests that vegetation roots may have an influence on the distribution 

of TC and TN. Roots create preferential pathways for water flow to percolate through soil (Rao and 

Puttanna, 2000). Soluble N, in the form of NO3
-, can infiltrate through preferential pathways to deeper 

soil. At the well-established riparian zones of SFFP and the Lake Ellesmere tributaries, NO3
- can follow 

preferential root pathways. Whereas, at Lake Waikare, the younger roots may not have had sufficient 

time to establish significant preferential pathways for NO3
-.   
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Table 5-3: The C:N ratio of native species, at soils depths of 0-15 cm, 15-30 cm, 30-45 cm & 45-60 cm at SFFP, Lake Waikare & the Lake Ellesmere tributaries. 

 

 

 

 

 

 

 

 

 

 

 

C:N  SFFP Lake Waikare Lake Ellesmere tributaries 

 L. perenne P.tenax L. perenne L. scoparium C. robusta  Mixed L. perenne P. tenax P. eugenioides  K. robusta 

0-15 cm 11.2 ± 0.5a 10.2 ± 0.2b 10.7 ± 0.1 11.4 ± 0.4 10.6 ± 0.3 10.7 ± 0.1 10.5 ± 0.5b 11.9 ± 0.6a 11.4 ± 0.1a 11 ± 0.2ab 

15-30 cm 10.4 ± 0.6 9.9 ± 0.3 11.4 ± 0.5 11.6 ± 0.4 11.2 ± 0.7 11.2 ± 0.2 9.4  ± 0.7c 13.1 ± 1.3a 11 ± 0.4b 11.9 ± 0.3b 

30-45 cm 8.2 ± 0.4 8.8 ± 1.7 11.4 ± 0.6 11.6 ± 0.6 11.9 ± 0.5 11.5 ± 0.2 8.3 ± 0.8c 12.6 ± 1.1a 10.1 ± 0.6b 11.3 ± 0.2a 

45-60 cm 7.7 ± 0.7 7.8 ± 1.2     7.6 ± 0.7b 10.6 ± 1.6a 9.1 ± 0.6a 10 ± 0.3a 
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5.4. Total P & Olsen P 

There were significant differences (p < 0.05) in total P (TP) of rhizosphere soil at SFFP. At soil depths 

0-15 cm, 15-30 cm & 45-60 cm, P. tenax was significantly higher than L. perenne (Figure 5-9). Total P 

recorded at SFFP seemed to be 10 to 20 fold lower than literature values recorded by Burkitt et al. 

(2009) (1800 mg/kg), Aye et al. (2006) (450-3200 mg/kg) and McLaren and Cameron (1996) (200-1500 

mg/kg). All of the samples used the same method to measure TP. However, the concentrations of TP 

in this study were extraordinarily low. Nonetheless, there may be an explanation as to why the 

concentration of TP was still higher under P. tenax and L. perenne. SFFP are replenishing P via 

wastewater application at an average rate of 70 kg P/ha/year (Conway et al., 2018). However, TP may 

be removed through L. perenne uptake at faster rates than applied, causing a depletion in TP. There 

was no natural cycling of P due to the cut and carry practices of L. perenne at SFFP. Native species did 

not significantly affect the concentration of Olsen P in rhizosphere soil at any of the sites. Tang et al. 

(2016) found that Olsen P concentration in the rhizosphere between Durum Wheat and Faba Beans 

did not vary when exposed to differing levels of P fertilisation. Although not native plants to NZ, this 

study also found no significant influence by plant roots on Olsen P concentrations in rhizosphere soil. 

Assuming an average soil density of 1.3 g/cm3, Olsen P values recorded by SFFP ranged from 15 mg kg-

1 to 28 mg kg-1 (Conway et al., 2018). The values recorded from my study at SFFP in soil from 0 cm to 

30 cm ranged from 2 mg kg-1 to 42 mg kg-1. Total P and Olsen P had a significant negative correlation 

with pH in the top 30 cm of soil at the Lake Ellesmere tributaries (Figures 5-10 & 5-11). Barrow (2017) 

explained that a decrease of pH from 6 to 4 would cause P uptake by roots to increase, as well as the 

amount of P desorbed from soil to increase. At lower soil pH, PO4
2- ions can react with soluble iron 

and aluminium colloids to form insoluble precipitates that are unavailable to plants (McLaren and 

Cameron, 1996). Hence, uptake of P by roots and P desorption are likely to be the reason for an 

increase of Olsen P with a decrease in soil pH. Barrow (2017) additionally found an increase of soluble 

P in soil above pH 7. Phosphorus concentration was lowest at pH 5.5 to 6.5. Soil pH did not exceed 7.0 

in the top 30 cm of soil at the Lake Ellesmere tributaries, so it was unclear whether an increase of Total 

P and Olsen P would continue above pH 7.0.  
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Figure 5-9: Total P concentration at 
different rhizosphere soil depths of L. 
perenne & P. tenax at Silver Ferns 
Farms SFFP. Different letters indicate 
significant differences between 
species in each soil depth. 

 

Figure 5-10: Total P concentration (mg/kg) against soil pH in the top 300 mm of soil at the Lake Ellesmere 
tributaries. 

Figure 5-11: Olsen P concentration (mg/kg) against soil pH in the top 300 mm of soil at the Lake Ellesmere 
tributaries. 
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5.5. Total Sulphur and Sulphate 

Native vegetation had significant effects (p < 0.05) on the concentration of total sulphur (TS) and SO4
2- 

in rhizosphere soil at all sites. At SFFP, concentration of TS was significantly higher in the rhizosphere 

soil of P. tenax compared to L. perenne across all soil depths (Figure 5-13). Similar to P, S was added 

to SFFP paddocks via wastewater application. The total amount that is being removed from L. perenne 

uptake may exceed what is being added to soil. This may explain the lower TS concentration under L. 

perenne. Sulphur cycling in the soil from fallen P. tenax foliage will recycle S as microorganisms break-

down the plant matter. However, plant available SO4
2- will only account for a small amount of the 

recycled S, as it will mostly remain as organic S (McLaren and Cameron, 1996).  

At Lake Waikare, the concentration of rhizosphere TS under L. perenne was significantly (p < 0.05) 

higher than native vegetation (Figure 5-12). Rhizosphere TS did not differ between native vegetation, 

likely due to the young age of plants. Native vegetation roots may not have had sufficient time to 

influence soil chemistry in the rhizosphere compared to bulk soil. The surrounding pasture has been 

used for dairy farming. The land has been exposed to fertilisers and stock for decades. This may explain 

why TS under L. perenne is significantly higher. This farm has retired dairy farming practices since the 

time of sampling for this research. There may be an influence to TS concentrations in future years in 

the rhizosphere of L. perenne, as fertiliser will not be added to this pasture.  

At the Lake Ellesmere tributaries, concentration of TS significantly (p < 0.05) varied between native 

vegetation and pasture, at all depths except for 0-15 cm (Figure 5-14). There were insufficient 

rhizosphere samples from under L. scoparium and C. robusta to calculate the standard error (which 

requires at least three samples). Therefore, they cannot be compared to other native vegetation. TS 

concentration under P. tenax was significantly higher than L. perenne and P. eugenioides. Rhizosphere 

soil under K. robusta had significantly higher TS concentrations than L. perenne and P. eugenioides 

from 15 - 45 cm and 30 – 60 cm, respectively. Rhizosphere soil under P. eugenioides was similar to L. 

perenne. Soil TS decreased with an increase of soil depth. 

At SFFP, P. tenax had a significant effect (p < 0.05) on rhizosphere SO4
2- concentration at 15-30cm & 

30-45cm. Sulphate concentrations in rhizosphere soil were 2.5-fold lower under P. tenax than L. 

perenne (Figure 5-15). Sulphate is soluble and therefore has a high leaching potential (McLaren and 

Cameron, 1996). However, similar to the PO4
2- fixation processes, SO4

2- has the potential to form less 

soluble precipitates in acidic soils or can be adsorbed to soil particles in basic soils (McLaren and 

Cameron, 1996). Phosphorus has a higher absorption potential to SO4
2- and will therefore 

preferentially bind to soil particles (Metson and Blakemore, 1978). Therefore, the concentration of 

PO4
2- in soil will influence the concentration of SO4

2-. However, Olsen P concentration did not differ 
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significantly between L. perenne and P. tenax at SFFP. Therefore, Olsen P would not have influenced 

the SO4
2- concentration. Eriksen (1997) found the addition of fertiliser S to L. perenne increased SO4

2- 

periodically, before concentrations lowered again after plant uptake, leaching and conversion to 

organic S. On top of the wastewater being applied to pasture, SFFP report the application of S and 

lime to assist in Na accumulation (Conway et al., 2018). Prior to sampling, S fertiliser may have been 

applied, increasing the concentration of SO4
2- under L. perenne.  

At the Lake Ellesmere tributaries, SO4
2- concentration in rhizosphere soil under P. tenax and K. robusta 

was significantly higher (p < 0.05) than L. perenne and P. eugenioides. P. tenax was significantly higher 

at all depths whereas K. robusta was significantly higher at all depths except for 0-15cm. P. eugenioides 

was similar to L. perenne at all depths (Figure 5-16). On average, SO4
2- was five-fold higher under P. 

tenax and K. robusta than other species at the Lake Ellesmere tributaries. Sulphate concentrations in 

the rhizosphere soil of P. tenax were higher than L. perenne; the opposite was observed at SFFP. This 

supports the theory that the addition of wastewater and S fertiliser to L. perenne at SFFP has increased 

the concentration of SO4
2-. The trends of lower SO4

2- concentrations of L. perenne and P. eugenioides 

mirror those observed for TS in Figure 5-14. Sulphate and TS in rhizosphere soil at the Lake Ellesmere 

tributaries were significantly correlated across all soil depths. Therefore, at higher concentrations of 

TS, a higher concentration of SO4
2- is expected.  
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Figure 5-16 (right): Sulphate concentration (mg/kg) at 
different rhizosphere soil depths of L. perenne & native 
species at the Lake Ellesmere tributaries. 
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At the Lake Ellesmere tributaries, TS and SO4
2- had a significant negative correlation with pH in the top 

30 cm of soil (Figures 5-17 & 5-18). Total S may be higher at lower pH. Acidic soils have a higher content 

of Fe and Al cations (McLaren and Cameron, 1996). Sulphate will form precipitates with iron and 

aluminium at lower pH, potentially contributing to higher concentrations of TS (McLaren and 

Cameron, 1996). Ghani et al. (1991) and Pirela and Tabatabai (1988) have both recorded the negative 

correlation of pH and SO4
2-. Ionic SO4

2- does not bind as strongly to soil particles as PO4
- (Eriksen, 1997; 

McLaren and Cameron, 1996). Therefore, when in competition with PO4
2-, with lower amounts of 

cationic exchanges sites at lower pH, PO4
- will preferentially bind, releasing SO4

2- back into the soil-

solution phase.  
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5.6. Sodium 

Sodium was the only other element to have significant differences in the rhizosphere concentration 

at any of the sampling sites. Native species had both significantly (p<0.05) lower and higher 

rhizosphere concentrations at SFFP and the Lake Ellesmere tributaries, respectively, at depths of 0-15 

cm and 15-30 cm. At SFFP, Na concentration in rhizosphere soil of L. perenne was significantly higher 

than P. tenax (Figure 5-19). The average concentration of Na across all soils depths under L. perenne 

from my analysis was some 350 mg/kg. The average concentration reported by SFFP was less, with an 

average of some 250 mg/kg (Conway et al., 2018). This difference may be due to the time of sampling, 

or analytical techniques used to collect the results. The wastewater applied to pasture at SFFP contains 

high concentrations of salt. SFFP management said this is due to the salting process of fur pelts in 

production. This indicates why Na concentration was higher under L. perenne than P. tenax. At the 

Lake Ellesmere tributaries, Na concentration of P. tenax in rhizosphere soil from 0 - 30 cm was 

significantly (p < 0.05) higher than L. perenne (Figure 5-20). This further confirms that wastewater at 

SFFP has raised Na concentrations under L. perenne. At both sites, the standard error increased with 

increased soil depths. Comparisons at these depths could not be made due to the large standard error 

values.  
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6. General Discussion 

This study did not find large differences in the rhizosphere chemistry between native species used in 

riparian plantings. There were no significant differences of TN, NO3
-, NH4

+, TP and Olsen P in 

rhizosphere soil, the main drivers of water quality degradation. Only TS, SO4
2- and Na exhibited 

significant differences in rhizosphere soils at each sampling site. However, these significant differences 

were insufficient to demonstrate that native vegetation roots were responsible for the changes in TS 

and SO4
2- concentration. Therefore, this study does not falsify the null hypothesis that there is no 

difference between NZ-native plant species when considering their effect on the concentration and 

speciation of N, P and other essential nutrients in soils adjacent to waterways. The results for N-

species were consistent with Hahner et al. (2014), who reported no difference in rhizosphere NO3
- 

concentration between six native species. However, Hahner et al. (2014) found significant differences 

of TP and TS between L. perenne and native species. Chemical concentrations of TP and TS were on 

average 20 % and 10 % higher under L. perenne than native species, respectively. The difference in 

chemical concentration of TS and TP is likely because of how the land adjacent to the riparian zone 

was used. The land adjacent to the native species was used for dairy farming and had been exposed 

to fertiliser use. Native plant species sampled by Hahner et al. (2014) were five years in age. At SFFP 

and Lake Ellesmere tributaries, plants were more than five years in age. When there was a significant 

difference of TP and TS at these sites, this research found that native species generally had higher TP 

and TS concentrations than L. perenne. However, at Lake Waikare, TS concentration under native 

plants, which were only two years in age, was lower than L. perenne. This indicates that the age of 

native plants may be a factor that influences chemical concentration in rhizosphere soil. Moreover, 

the results from this study were inconsistent with Franklin et al. (2015), who found significant 

differences in mineral N concentrations in the rhizosphere of different native vegetation from pot 

trials. The inconsistency is likely due to differences in field trials and pot trials. With field trials, there 

are more unknown variables and soils are exposed to more changing conditions than pot trials. This 

increases that difficulty to interpret why there may or may not be significant differences in rhizosphere 

concentrations between native species.  

The results from this study indicate that soil heterogeneity between sampling sites results in large 

differences in chemical concentration and speciation. Soil heterogeneity originates from differences 

in factors such as climate, parent material, land use, native vegetation selection and native vegetation 

concentration. While soil heterogeneity would occur in pot trials, the changes between soil 

characteristics will not be as significant as field studies. However, planting a diversity of vegetation 
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species is essential for the best management of chemical fluxes in heterogeneous soils. While some 

native species have been propounded for managing specific chemical fluxes better than others 

(Dollery et al., 2019; Franklin, 2014; Franklin et al., 2015), this research has indicated that there are 

insignificant differences between the native species tested. This does not imply that all NZ-native 

species perform equally. This study investigated the chemical speciation in the rhizosphere of five 

native species, there may be important physical and antimicrobial differences between species that 

have not been investigated in this research.   

Hahner et al. (2014) reported considerable interspecific variability in roots structures of NZ-native 

species. These differences would affect infiltration rate, the distribution of root exudates, soil 

physicochemical properties, soil microbial activity and the solubility of nutrients. Higher infiltration 

rates may increase the leaching of chemicals (i.e. NO3
-). Many NZ-native species have shallow roots, 

confined to the top 30 cm of soil (Marden et al., 2007). This reduces their capacity to stabilise soil next 

to larger river systems. Consequently, PO4
2- or SO4

2- bound to soil particles may not be intercepted, as 

sediments are eroded. However, smaller river systems, native vegetation may stabilise soils effectively 

to intercept chemicals from entering freshwater bodies (Marden et al., 2007). Assuming that native 

species are spaced evenly, wider riparian zones may have better soil stabilising properties than 

narrower riparian zones due to a higher quantity of plants. A question that arises from this study is: 

how wide do riparian buffer strips need to be in order to protect the surrounding freshwater from 

contaminants? As mentioned in the background, a 7,500 m2 area of diverse native plantings would 

cost an estimated NZ$150,000 (MPI - Stock exclusion costs report 2016). On top of planting costs, 

there are additional costs to the farmer; the forfeit of productive land and ongoing maintenance costs 

make the introduction of a riparian zone an expensive procedure. The scope of this research did not 

include the determination of the ideal width of a riparian zone. There was insufficient data to begin 

this process. However, the riparian zones in my study, ranging from 2 m to 20 m, showed no significant 

differences between N & P concentration and speciation of rhizosphere soil in these areas. This was 

inconsistent with Fennessy and Cronk (1997), who found that riparian buffers that were 20-30 m in 

width removed up to 100% of NO3
-. However, that study did not include NZ native vegetation. The 

objective of this research was to determine any chemical differences between native vegetation, not 

to suggest an ideal width zone for riparian planting. The evidence points to wider buffer zones of NZ 

native riparian plantings for better contaminant management, as there is reduced soil erosion and 

better stock exclusion. However, the costs to farmers may prohibit wider riparian zone planting. 

Further studies should look at the physical transportation of chemicals and sediments in riparian 

zones, to characterise a riparian width zone that is optimised for environmental benefits and 

associated financial costs. 
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A wider riparian zone will provide improved environmental conditions for native fauna (Parkyn et al., 

2000). A wider riparian buffer may be economically feasible, if there are methods to offer commercial 

value or have alternative incentives to reduce the large initial costs. The production of mānuka honey 

is a viable commercial option for riparian zones. Mānuka is a highly sought after food commodity, due 

to its natural antimicrobial and antioxidant properties (Adams et al., 2009; Alvarez-Suarez et al., 2014). 

There are many factors when evaluating the estimated earnings from producing Mānuka Honey. For 

example: market value of honey, quantity of mānuka plants, quantity of bee hives, productivity of 

hives and quality of honey (MPI - Apiculture 2018b). From 2013 to 2018, mānuka honey exports have 

resulted in some $1.5 billion of export earnings (MPI - Apiculture 2018b). The number of registered 

bee hives in NZ have doubled from some 450,000 to almost 900,000 during the period of 2013 to 

2018. Bulk honey prices per kilogram have similarly doubled in price during the period (MPI - 

Apiculture 2018b). This has been driven by the strong overseas market demand for mānuka honey. 

Although mānuka honey does not reduce the large initial costs option, it could provide the farmer 

with a diverse stream of income, offering an improved future income stability. Tourism could add 

commercial value to riparian zones (Krukowska and Krukowski, 2013). NZ tourism relies greatly on a 

pristine and clean environment. Riparian zones can capture the attractive element of the freshwater 

to land interface, providing a unique experience of the natural environment. Opportunities for 

commercial value may arise from a required payment or donation at the beginning of the walk. This 

would not be a primary method for funding the riparian zone, rather another small method of 

compensating costs. An option can be that groups planning to plant native riparian zones seek funding 

and/or grants. There are grants available to assist landowners with options for planting native 

vegetation. For example, the One Billion Trees Fund has offered $240 million in grants and funding to 

landowners, organisations and communities who want to plant more trees (MPI - One billion trees 

programme 2020). For the most part, funding for native vegetation is a case-to-case basis due to how 

specific the conditions of each site are. The correct native species, count and distribution of vegetation 

must be put in place for each planting project. There may be an opportunity for extra funding or grants 

from different industries or communities. Riparian zones are known to provide several benefits to 

freshwater environments (Lee et al., 2003; Pan et al., 2011; Pusey and Arthington, 2003). This would 

eventually benefit freshwater fishing, as riparian planting offers improved habitats for fish species 

(Crook and Robertson, 1999; Everett and Ruiz, 1993).  The freshwater fishing industry could offer 

funding or grants to farmers to provide riparian zones that will environmentally improve the 

conditions of adjacent freshwater, improving the opportunity for commercial or recreational fishing.  
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7. Conclusion 

In the root-zones of NZ-native species, there were insignificant interspecific differences in the 

concentration and speciation of N & P. Therefore, the null hypothesis for this research cannot be 

rejected. Additional research must be completed to develop the understanding of how each species 

interacts with contaminants in contrasting soil types. This research has shown that: 

- There were no significant differences in the rhizosphere concentrations of total N, NO3
- and 

NH4
+ between Phormium tenax, Kunzea robusta, Leptospermum scoparium, Coprosma 

robusta and Pittosporum eugenioides at SFFP, Lake Ellesmere tributaries and Lake Waikare 

sites. These elements were significantly correlated with pH, however the sign of the 

correlation (negative or positive) was site dependent.  

- As with N, there were no significant interspecific differences in the concentrations of TP & 

Olsen P. However, TP was affected by cut-and-carry of Lolium perenne at SFFP. 

- TS and SO4
2- had significantly different rhizosphere concentrations between native species. TS 

concentration under P. tenax and K. robusta was significantly higher than L. perenne at SFFP 

and Lake Ellesmere. However, while SO4
2- concentration under P. tenax and K robusta was 

higher than L. perenne at Lake Ellesmere, P. tenax was lower than L. perenne at SFFP. The 

results showed that TS and SO4
2- concentration under P. tenax and K. robusta was generally 

higher than L. perenne. Leptospermum scoparium, Coprosma robusta and Pittosporum 

scoparium showed no significant differences between TS and SO4
2-. 

- Soil pH and TC were not significantly influenced by different native species. This could be due 

to different cycling processes. 

- Soil properties, rather than native species were the overriding importance in affecting the 

concentration of speciation of N, P & S in the root-zone. For example, decreasing depth of 

concentration in TN with increased soil depth. 

- The lack of interspecific differences at Lake Waikare in this study may be due to the age of the 

plants being less than three years of age.  

The lack of differences does not indicate that NZ-native plant species selection is not important in 

riparian plantings: water quality is also a function of other factors, such as antimicrobial activity and 

increased infiltration, which were not measured in this study. Species selection should also be 

informed by ecological and farm management requirements. 
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7.1. Recommendations for Further Research 

The key finding of this research is that there were negligible differences in the chemical speciation of 

N & P in the rhizosphere of five NZ native species. However, this does not imply that species selection 

is unimportant for riparian planting.  

Other biological and physicochemical soil parameters 

There was a range of biological (e.g. microorganism diversity, count and species), physical (e.g. soil 

water capacity, oxygen availability and soil temperature) and chemical (cation exchange capacity) 

parameters that this study did not evaluate. This study focused on chemical concentration and 

speciation of essential nutrients. Other parameters, such as microorganism diversity, cation exchange 

capacity and oxygen availability may reveal differences in nutrient speciation under specific plants. 

Additional parameters would reduce the uncertainty that arises from completing field trials. 

Heterogeneity of soils across different sampling sites is difficult to characterise, but these additional 

parameters would bring a better context to the overall picture of chemicals moving through soil in 

native riparian zones.  

Nutrient Cycling 

Complex factors such as transpiration, leaf litter decomposition, soil leaching rates and microbial 

community control the cycling of nutrients. Characterisation of these complex factors would better 

show the influence of native roots on chemical concentration and speciation. This will give total mass 

balance for riparian and/or pasture land, quantifying the inputs and outputs of nutrients.  

Soil types 

This research only looked at chemicals in fragic pallic and orthic gley soils. There are 15 main categories 

of soil orders in NZ (Hewitt and Dymond, 2013). They are ordered based on factors during their 

formation such as: age, climate, wetness and parent rock type. Each factor during the soil formation 

process will give different chemical, physical and biological properties to the soil (Hewitt and Dymond, 

2013). Collectively, the semiarid, pallic, brown and podzol order soils make over 73% of total soils in 

NZ. Future studies should consider the soil type when looking at how native vegetation influences 

chemical concentration and speciation. Soil type can be important for GSMC, SMC and oxygen 

availability as recorded in this research.  

Variety of Native Species  

Future work should consider looking at a wider scope of native vegetation. The goal of this research 

is to contribute further towards the understanding of how native vegetation interacts with chemical 
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concentration and speciation so that farmers, catchment groups and councils can more efficiently use 

financial resources to establish native vegetation in riparian zones. A wider variety of native vegetation 

will provide the opportunity to open up a larger collection of vegetation diversity for stakeholders.  

Seasonality effects 

Seasonality can affect physicochemical factors such as soil moisture content, oxygen availability and 

temperature, which can lead to changes in pH and microorganism composition and availability. 

Olarewaju et al. (2009) found a 14% decrease of NO3
- in wet seasons compared to dry seasons. Other 

important nutrients such as P or S have no record of seasonality effect in the rhizosphere of NZ native 

plants.  

Age of plants  

It was evident that the age of plants had an influence of soil chemistry in rhizosphere soil. At Lake 

Waikare, plants had only been planted two years prior to sampling. The results showed consistent 

nutrient concentrations between native vegetation. At the other sites, vegetation had had longer to 

influence soil chemistry in the rhizosphere.  

Other forms of N loss 

This project only looked at N loss via leaching in the form of NO3
-. This is not the only form of N loss 

during the N cycle. Firstly, it would be important to further characterise the individual root stability 

properties of native vegetation. This would be useful when predicting P contamination of freshwater 

bodies through sediment displacement. Sediment would also carry soil bound N. Gaseous losses from 

denitrification are important to consider. Particularly, N2O due to its adverse impacts on global 

warming and the ozone layer. Esperschuetz et al. 2017 Esperschuetz et al. (2017b) reported that L. 

scoparium and K. robusta were better at reducing N2O emissions. Although denitrification does not 

directly impact freshwater quality, which was what this project examined, it is still an important 

environmental consideration to evaluate the impact to the atmosphere.   
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Appendices  

Appendix 1: Tables for all chemical parameters measured in soil 30 -45 

cm and 45 – 60 cm 
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Table 7-1: Means (and standard error ranges) of the chemical parameters analysed between 30 - 45 cm of soil at each sampling location. The units for all data is mg/kg 
unless otherwise stated in brackets. Results that are significant have different letters to represent this. 
*Geometric mean calculated with the standard error range.  

 

 

30-45cm Pareora Lake Waikare Lake Ellesmere Tributaries 

Chemical  L. perenne P. tenax L. perenne L. scoparium C. robusta 
Mixed (L. 

scoparium) L. perenne P. tenax P. eugenioides  K. robusta 

pH* 
6.3 (6.0 - 
6.8) 

6.5 (6.4 - 
6.6) 

7.0 (6.9 - 
7.1) 6.3 (6.1 - 6.6) 

6.6 (6.5 - 
6.7) 6.7 (6.6 - 6.9) 6.1 (5.9 - 6.3) 6.0 (6.0 - 6.1) 5.8 (5.6 - 6.0) 5.7 (5.4 - 6.3) 

NO3
- 0.6 ± 0.2 2.1 ± 1.1 2.2 ± 1.0 2.1 ± 0.7 0.3 ± 0.1 1.8 ± 0.7 0.8 ± 0.5 2.3 ± 1.6 0.8 ± 0.2 2.2 ± 1.0 

NH4
+ 1.7 ± 0.7 2.1 ± 0.9 1.7 ± 0.4 a 3.5 ± 0.9 a 0.4 ± 0.1 b 3.5 ± 1.4 a 3.4 ± 2.4 6.5 ± 3.8 2.2 ± 0.7 4.4 ± 1.3  

Total N (%) 0.06 ± 0.01 0.09 ± 0.03 0.10 ± 0.02 0.13 ± 0.03 0.07 ± 0.01 0.10 ± 0.01 0.08 ± 0.02 0.34 ± 0.14 0.15 ± 0.02 0.24 ± 0.01 

Total C (%)  0.47 ± 0.14 0.85 ± 0.3 1.06 ± 0.21 1.52 ± 0.39  0.82 ± 0.08 1.12 ± 0.14 0.70 ± 0.24 4.49 ± 2.31  1.50 ± 0.23 2.68 ± 0.16 

Olsen P  11.7 ± 7.7  5.4 ± 2.7 5.7 ± 2.7  7.4 ± 2.7 1.2 ± 0.7 4.8 ± 0.7 3.8 ± 1.0 8.4 ± 4.7  4.9 ± 1.4 10.3 ± 3.2 

Total P 66 ± 12 108 ± 23 238 ± 35 318 ± 50 252 ± 36 261 ± 25 560 ± 22 572 ± 44  510 ± 35  553 ± 11.3 

Sulphate 22 ± 2.6 a 9.3 ± 5.0 b 6.2 ± 2.8 12.7 ± 3.1 8.4 ± 5.4 8.2 ± 3.9 2.8 ± 0.9 b 29.7 ± 8.2 a 5.8 ± 3.3 b 40.0 ± 17.8 a 

Total S  108 ± 35 b 453 ± 25 a 346 ± 89 79 ± 22  173 ± 144 73 ± 6.2  47 ± 12 b 351 ± 192 a 80 ± 19 ab 193 ± 28 a 

Total K 1477 ± 215  1215 ± 234  609 ± 57 a 645 ± 60 a 482 ± 24 b 533 ± 22 ab 2198 ± 34  1917 ± 316 2579 ± 141  2811 ± 289  

Cu 3.3 ± 1.8 3.3 ± 1.0 5.7 ± 0.6 6.0 ± 0.7 6.2 ± 2.9 5.7 ± 1.1 7.5 ± 2.3 7.5 ± 1.6 6.4 ± 0.2 9.5 ± 0.9 

Fe 
13600 ± 
1100 

10800 ± 
2100 

23300 ± 
3000 26500 ± 3400 

21600 ± 
1600 21000 ± 3400 23000 ± 900 24900 ± 3800  22900 ± 1100  24400 ± 340 

Mg 4360 ± 1070 2920 ± 900 
10300 ± 
1040 13600 ± 1740 10100 ± 470 11000 ± 1940 15000 ± 450 16100 ± 2060  15100 ± 600 16200 ± 80 

Mn 354 ± 155 331 ± 78 206 ± 61 210 ± 94  82 ± 36 250 ± 73 428 ± 32 417 ± 77  511 ± 103 473 ± 24 

Zn 2.6 ± 1.2 2.8 ± 1.3 3.3 ± 1.6 3.9 ± 1.8 3.2 ± 1.6 7.4 ± 0.5 3.2 ± 1.9 11.4 ± 6.4 2.3 ± 1.8 10.8 ± 10.3  

Na 353 ± 19 291 ± 61 125 ± 10 149 ± 17 187 ± 26 151 ± 6 225 ± 21 195 ± 115 320 ± 122 290 ± 157 

Ca 3270 ± 210 3220 ± 590 3330 ± 880 6230 ± 3530  1190 ± 130 2370 ± 470 6220 ± 400 8090 ± 690 6120 ± 340 7020 ± 300 
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Table 7-2: Means (and standard error ranges) of the chemical parameters analysed between 45 - 60 cm of soil at each sampling location. The units for all data is mg/kg 
unless otherwise stated in brackets. Results that are significant have different letters to represent this.  
*Geometric mean calculated with the standard error ranges.  

 

45-60cm Pareora Lake Ellesmere Tributaries 

Chemical  L. perenne P. tenax L. perenne P. tenax P. eugenioides  K. robusta 

pH* 6.2 (5.9 - 6.6) 6.4 (6.3 - 6.7) 6.5 (6.4 - 6.8) 6.8 (6.6 - 7.1) 6.0 (5.8 - 6.3) 6.5 (6.2 - 7.4) 

NO3
- 

0.6 ± 0.3 1.5 ± 0.6 0.5 ± 0.2 0.3 ± 0.1 0.4 ± 0.2 1.2 ± 0.6 

NH4
+ 1.0 ± 0.4 1.5 ± 0.6 0.4 ± 0.3  5.5 ± 2.4 0.7 ± 0.1 1.4 ± 0.7 

Total N (%) 0.05 ± 0.01  0.08 ± 0.03 0.06 ± 0.02 0.15 ± 0.03 0.07 ± 0.01 0.08 ± 0.02 

Total C (%) 0.37 ± 0.06 0.78 ± 0.44 0.49 ± 0.22 1.66 ± 0.49 0.69 ± 0.11 0.83 ± 0.25 

Olsen P  13 ± 8.9 9.2 ± 6.0 2.5 ± 0.8 4.6 ± 1.5 2.0 ± 0.7 1.5 ± 0.3 

Total P 51 ± 7 B 110 ± 15 A 550 ± 42 536 ± 8 495 ± 58 532 ± 45 

Sulphate 19.0 ± 3.1 9.1 ± 2.8 2.5 ± 1.0 B 10.2 ± 2.3 A 3.7 ± 1.9 B 21.4 ± 10.8 A 

Total S  148 ± 45 B 460 ± 61 A 24 ± 8 B 136 ± 61 A 17 ± 5 B 37 ± 10 AB 

Total K 1583 ± 211 1337 ± 118 2158 ± 222 1974 ± 146 2208 ± 246  2323 ± 146 

Cu 4.0 ± 1.4 4.3 ± 1.5 8.4 ± 1.8 10.0 ± 0.2 8.1 ± 0.6 11.8 ± 1.3 

Fe 12800 ± 490 11900 ± 840 22100 ± 1000 23300 ± 770 23300 ± 930 25000 ± 1600 

Mg 4300 ± 1350  4000 ± 650 14600 ± 780 15500 ± 490 15500 ± 540 16500 ± 920 

Mn 139 ± 7 B 359 ± 66 A 371 ± 14 359 ± 61 433 ± 83 454 ± 27 

Zn 2.3 ± 1.8 1.0 ± 0.5 1.5 ± 1.0 3.3 ± 2.8 0.5 ± 0.1 1.1 ± 0.6 

Na 354 ± 26 306 ± 42 226 ± 23  200 ± 106  265 ± 56  322 ± 163  

Ca 3140 ± 160  3140 ± 200 5920 ± 230 7090 ± 570 6310 ± 410 7240 ± 370 


