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Abstract: Accurate glycemic control (AGC) is difficult due to excessive hypoglycemia risk. Stochastic 

TARgeted (STAR) glycemic control forecasts changes in insulin sensitivity to calculate a range of 

glycemic outcomes for an insulin intervention, creating a risk framework to improve safety and 

performance. An improved, simplified STAR framework was developed to reduce light hypoglycemia 

and clinical effort, while improving nutrition rates and performance. Blood glucose (BG) levels are 

targeted to 80 – 145mg/dL, using insulin and nutrition control for 1-3 hour interventions. Insulin changes 

are limited to +3U/hour and nutrition to ±30% of goal rate (minimum 30%). All targets and rate change 

limits are clinically specified and generalizable. Clinically validated virtual trials were run using clinical 

data from 371 patients (39,841hours) from the SPRINT cohort. Cohort and per-patient results are 

compared to clinical SPRINT data. Performance was measured as time within glycemic bands, and safety 

by patients with severe (BG<40mg/dL) and mild (%BG<72mg/dL) hypoglycemia. Pilot trial results from 

the first 10 patients (1,458 hours) are included to support the in-silico findings. In both virtual and 

clinical trials, mild hypoglycemia was below 2% versus 4% for SPRINT. Severe hypoglycemia was 

reduced from 14 (SPRINT) to 6 (STAR), and 0 in the pilot trial. BG results tighter than SPRINT clinical 

data, with 91.6% BG within the specified target (80–145mg/dL) in virtual trials and 89.4% in pilot trials. 

Clinical effort (measurements) was reduced from 16.1/day to 11.8/day (13.5/day in pilot trials). This 

STAR framework provides safe, accurate glycemic control with significant reductions in hypoglycemia 

and clinical effort due to stochastic forecasting of patient variation – a unique risk-based approach. Initial 

pilot trials validate the in silico design methods and resulting protocol, all of which can be generalized to 

suit any given clinical environment. 

Keywords: Decision support and control; Decision support systems for the control of physiological and 

clinical variables 

1. INTRODUCTION 

Stress-induced hyperglycemia is a significant issue in critical 

care, affecting up to 30-50% of patients and increasing 

morbidity and mortality (McCowen et al., 2001, Krinsley, 

2004). Controlling glycemia has proved difficult due to the 

associated risk of hypoglycemia when highly dynamic 

patients are treated with exogenous insulin (Griesdale et al., 

2009). Both extremes, as well as glycemic variability, have 

been independently linked to increased morbidity and 

mortality (Bagshaw et al., 2009, Egi et al., 2006, Krinsley, 

2008), creating a difficult clinical problem safely and 

effectively regulating glycemia to a physiologically and 

clinically safe range. 

Accurate glycemic control (AGC) can mitigate these 

outcomes(Chase et al., 2008b, Van den Berghe et al., 2001), 

but has proven difficult to achieve safely and consistently 

(Casaer et al., 2011). Only one study (Chase et al., 2008b) 

reduced both mortality and hypoglycemia. However, the 

higher nursing workloads due to high density glucose 

readings are impractical in many units (Mackenzie et al., 

2005, Aragon, 2006). Hand-held glucometers are easier for 

measurement, but their larger errors can add additional 

difficulty for some AGC protocols. Finally, clinical 

compliance determines much of the efficacy of any AGC 

method, with quality of glycemic control thus also limited by 

the confidence and compliance of nursing staff (Aragon, 

2006, Chase et al., 2008a). All of these issues interact with 

the inherent inter- and intra- patient metabolic variability 

(Chase et al., 2011) to exacerbate the difficulty of achieving 

good control. Hence, glycemic control targets are often raised 

to mitigate these factors and avoid hypoglycaemia as a best 

outcome compromise, despite the physiological and clinical 

evidence on the negative impact of even moderate 

hyperglycemia (McCowen et al., 2001, Krinsley, 2004). 

Directly quantifying and managing hyperglycemic and 

hypoglycemic risk as a function of inter- and intra- patient 

metabolic variability can leverage AGC benefits and 

minimize risk of unintended harm. STAR (Stochastic 

TARgeted) is a model-based AGC framework that can be 

implemented across a range of clinical scenarios and 

approaches, and uses dynamic and stochastic models to 

regulate BG levels, workload and patient safety within a pre-

defined risk management approach. STAR uses stochastic 

forecasting of a patient's potential metabolic variability(Lin et 

al., 2008) in conjunction with a clinically validated 

mathematical model (Lin et al., 2011, Chase et al., 2010b) to 

determine optimal insulin and nutrition treatment 



 

 

     

 

combinations with specified risks of moderate hyper- and 

hypo- glycemia. In essence, it is a patient-specific approach 

to manage inter- and intra- patient variability that overlaps 

the glycemic outcome range for a given intervention with a 

clinically specified desired glycemic range. It thus provides 

both control and a clinically specified risk of moderate 

hypoglycemia. Hence, STAR provides a framework of 

models and methods to manage intra- and inter- patient 

variability to mitigate the significant difficulty and risk seen 

in current glycemic control approaches (Griesdale et al., 

2009, Chase et al., 2011). 

This paper presents an enhanced and simplified STAR 

protocol, and its development and optimization using virtual 

trials. Specific focus is placed on reducing mild 

hypoglycemia (BG < 72mg/dl) and its associated risk 

(Bagshaw et al., 2009), while maintaining glycemia in bands 

with the best evidence for improved outcome. Protocol 

simplicity and transparency are optimized to increase 

compliance. 

2. METHODS 

2.1  Model 

The clinically validated Intensive Care Insulin-Nutrition-

Glucose (ICING) metabolic model was used to simulate the 

fundamental metabolic dynamics (Lin et al., 2011). Table I 

lists the population constants of the model defined in 

Equations 1-6. 
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where G(t) [mmol/L] is the total plasma glucose, I(t) [mU/L] 

is the plasma insulin and interstitial insulin is represented by 

Q(t) [mU/L]. Exogenous insulin input is represented by uex(t) 

[mU/min] and endogenous insulin production is estimated 

with uen [mU/min], modeled as a function of plasma glucose 

concentration determined from critical care patients with a 

minimum pancreatic output of 1U/hr. P1 [mmol] represents 

the glucose in the stomach and P2 [mmol] represents glucose 

in the gut. Enteral glucose input is denoted P(t) [mmol/min]. 

2.2  Virtual Patients 

Clinically validated virtual trials (Chase et al., 2010b) were 

carried out using the SPRINT AGC cohort clinical data 

(Chase et al., 2008b) to create virtual patients. Virtual 

patients are created using clinical data to identify an hourly 

treatment-independent insulin sensitivity profile SI(t) (Hann 

et al., 2005), allowing virtual trials to realistically simulate 

patient response to a given (modified) treatment. This 

approach has been clinically validated on independent 

matched cohort data (Chase et al., 2010b) and in several 

AGC trials (Penning et al., 2011, Evans et al., 2011). Patient 

demographics are given in Table II.  

Patients were considered to require AGC once BG > 

7.0mmol/L, and this value was used to determine the 

beginning of a virtual trial. Interruptions in nutrition are 

common for some patients in clinical practice, and are 

incorporated by setting P(t) = 0 mmol/min over the same 

periods they occurred in the clinical data. Equally, clinically 

specified parenteral nutrition (PN) was included in the 

simulations just as it was given clinically. 

2.4  Stochastic Control Method 

STAR provides patient-specific treatment in real time. 

Stochastic forecasting provides a framework for control of 

future outcomes, particularly the mitigation of mild, 

moderate, and severe hypoglycemia. STAR was also 

developed with the intent to use the simplest, most 

TABLE I 

CONSTANTS USED IN SYSTEM MODEL OF EQUATIONS (1)-(6) 

Model 

var. 
Description 

Numerical value 

[typical range] 

pG Endogenous glucose clearance 0.006 min-1 

SI Insulin sensitivity 
[1x10-7-1x10-2] 

L/(mU.min)a 

αG 

Saturation of insulin-dependent glucose 

clearance and receptor-bound insulin 

clearance from interstitium 

1/65 L/mU 

d1 
Rate of glucose transfer between the 

stomach and gut 
-ln(0.5)/20 

d2 
Rate of glucose transfer from the gut to 

the bloodstream 
-ln(0.5)/100 

Pmax Maximum disposal rate from the gut 6.11 mmol/min 

EGPb 

Basal endogenous glucose production 

(unsuppressed by glucose and insulin 

concentration) 

1.16 mmol/min 

typically 

CNS 
Non-insulin mediated glucose uptake by 

the central nervous system 
0.3 mmol/min 

VG Glucose distribution volume 13.3 L 

nI, nC 
Rate of transport between plasma and 

interstitial insulin compartments 
0.0075 min-1 

αI 
Saturation of plasma insulin clearance by 

the liver 
1.7x10-3 L/mU 

VI Insulin distribution volume 4.0 L 

xL First-pass hepatic insulin clearance 0.67 

nK 
Clearance of insulin from plasma via the 

renal route 
0.0542 min-1 

nL 
Clearance of insulin from plasma via the 

hepatic route 
0.1578 min-1 

aInsulin sensitivity (SI) is identified from clinical data in the range shown. 

 

TABLE II 

PATIENT DEMOGRAPHICS 

 SPRINT cohort 

Total patients 371 

Age (years) 65 [49 – 74] 

% Male 63.6% 

APACHE II score 18 [15 – 24] 

APACHE II risk of death 25.7% [13.1% - 49.4%] 

Diabetic history 62 (16.7%) 

   

 



 

 

     

 

transparent control logic (Chase et al., 2008a). This latter 

aspect had the goal of ensuring its choices were as 

understandable as possible, and thus directly translated into 

safe, effective and clinically acceptable treatment 

recommendations to maximize compliance. 

When a BG measurement is entered, the model is used to 

evaluate current patient insulin sensitivity (Hann et al., 2005) 

and its likely variation (Lin et al., 2008) over the next 1 to 3 

hours. Insulin is administered in bolus form for safety from 

unintended delays (Lonergan et al., 2006). However, 

infusions may also be used. Robustness to glucometer 

measurement error limits increases in insulin rate to 

+2U/hour, with upper limits on the total bolus dose (6U/hr) 

and any added infusion rate for highly resistant patients 

(3U/hr). Thus, total insulin is limited to 9U/hr. Insulin can be 

reduced to 0U/hr from any rate if required. Enteral nutrition 

is controlled between 30-100% of ACCP goal (Cerra et al., 

1997), and changes are limited to ±30% per intervention 

cycle. However, nutrition administration can be set to a fixed 

constant rate or zero if clinically specified. 

Measurement or treatment interval is specifically limited 

when: 1) current measured BG is outside the specified target 

range of 80-145mg/dL (1-hourly limits); or 2) the patient is 

unable to be fed (2-hourly maximum interval). Otherwise, 

when the current measured BG is within the clinically 

specified target range, STAR calculates intervention options 

(insulin and nutrition) for 1, 2 and 3 hourly measurement 

intervals, and nurses choose from these intervals.  

For each allowed insulin/nutrition combination and treatment 

interval based on the limits specified, stochastic forecasts are 

generated for the predicted 5th percentile of BG outcomes 

(Figure 1, points A, B and C) and the predicted 95th 

percentile of BG outcomes (Figure 1, points D, E and F). For 

all treatment intervals, glycemic level is controlled by 

targeting the 5th percentile of BG outcomes to the lower limit 

of the desired range including tolerance (80-85mg/dL). 

Hypoglycemia is thus directly managed as insulin rates 

cannot be recommended if the predicted 5th percentile is 

below this limit. The tolerance on the lower limit ensures 

consistent interventions between measurement intervals 

offered (1, 2 and 3-hourly). The 5th percentile target is 

prioritized for control due to the skewed nature of the BG 

outcome distribution, as depicted in Figure 1, which ensures 

BG outcomes best overlap the lower (80 - 125mg/dL) desired 

portion of the 80 - 145mg/dL range. This 80 - 125mg/dL 

range is associated with better outcomes (Egi et al., 2006, 

Van den Berghe et al., 2001) and is also associated with 

reduced rate and severity of organ failure (Chase et al., 

2010a). 

Tightness of the AGC provided by STAR is thus determined 

by the treatment of the 95th percentile forecast outcomes. 

This upper limit is used to restrict treatment interval only if a 

desired 2- or 3- hourly treatment allows 95
th

 percentile BG 

above the target range. Monitoring the likelihood of predicted 

BG outcome, as shown in Figure 1, allows for more explicit 

direct control over intra-patient variability and therefore 

directly limits the risk and occurrence of mild hyperglycemia. 

Hourly measurements are always offered, regardless of the 

95th percentile forecast. If the 5th percentile BG is forecast to 

be within tolerance of the target band lower limit the 

treatment is considered acceptable. For cases where the 

forecast BG range does not meet this criteria there are two 

possibilities. If the 95
th

 percentile BG is forecast below the 

upper limit of the target band hyperglycemia is satisfactorily 

controlled, and the insulin/nutrition combination is 

considered acceptable. Otherwise, neither hyper- or hypo- 

glycemia is satisfactorily controlled and the combination is 

not permitted. 

STAR maximizes performance (time in glycemic bands) with 

a minimum, clinically specified risk of mild hypoglycemia 

(5% for BG < 80mg/dL, ≈1% for BG <72mg/dL). Within this 

goal, the control determines the allowable insulin/nutrition 

combinations. Importance is placed on maximizing nutrition 

rates (Alberda et al., 2009), particularly for longer stay 

patients, but not at the risk of exacerbating hyperglycemia. 

Hence, STAR ranks allowable treatments by nutrition rate, 

ensuring the treatment with the highest enteral nutrition rate 

is selected.  

The longest measurement intervals are calculated first. If an 

acceptable treatment is found, the selected nutrition rate is 

used as a lower limit for shorter treatment intervals. This 

approach ensures treatment consistency across all 

intervention and measurement intervals to maximize 

transparency and clinical acceptance, and thus compliance 

(Chase et al., 2008a). Specifically, it ensures an intuitive 

combination of treatment options, where longer measurement 

intervals also generally yield wider stochastic forecasting 

bounds and thus more conservative (lower insulin) treatment 

choices. 

2.5  Virtual Trials 

Virtual trials were carried out to verify performance before 

clinical testing. STAR is simulated in two forms: a) 

maximum measurement interval available is chosen (“STAR 

- Max”); and b) select at maximum 2-hourly intervals when 

available (“STAR 2-hourly”) to best compare with SPRINT, 

which had a 2-hourly maximum interval. Results were 

compared to clinical SPRINT data to demonstrate 

 
Fig.1. Controller forecast schematic for BG a target range of 80 – 

145mg/dL. A BG measurement has been taken at 10hrs, and forecasts of 

BG have been generated (points A-F). The depicted distribution 

indicates the skewed nature of BG forecasts within the 5th-95th 

percentiles. 



 

 

     

 

improvements in performance and safety over the currently 

utilized SPRINT protocol that successfully reduced mortality 

(Chase et al., 2008b) and organ failure (Chase et al., 2010a). 

2.6 Analyses/Performance Metrics 

Performance was defined as percentage of BG within 

selected glycemic bands. Clinical effort is evaluated by BG 

measurement frequency as a surrogate (Mackenzie et al., 

2005, Aragon, 2006). Safety was defined as the incidence of 

severe (number patients with BG < 40mg/dL) and mild 

(%BG < 72mg/dL) hypoglycemia. All BG data was 

resampled hourly to provide a consistent time-basis for 

comparison across protocols with different measurement and 

intervention intervals. 

Finally, the virtual trial approach is further validated in 

comparison to results for the first 10 patients in initial STAR 

pilot clinical trials (1458 hours, 70% male, median age of 67 

[51-70], APACHE II score of 27.5 [19-30], risk of death of 

52% [31%-60%], and total mortality of 30%). All patients 

were treated for length of stay after informed consent was 

obtained. Approval for this study and use of the data was 

given by the Upper South A Ethics Committee 

(URA/10/09/069). 

3. RESULTS 

Table III shows both versions of STAR reduce the number of 

cases of severe hypoglycemia and more than halve the 

measures of mild hypoglycemia compared to SPRINT. There 

is a 79% reduction in severe hypoglycemia between STAR 2-

hourly and SPRINT showing the importance of the STAR 

approach independent of measurement interval, as both 

protocols have a 2-hour maximum interval and similar 

measurements per day. These safety gains are introduced 

with reduced clinical effort of 11.8 and 14.9 measures/day 

compared to 16.1 for SPRINT, and with equivalent or higher 

time in desired glycemic bands. Importantly, median nutrition 

rates are raised by 32% (absolute) of ACCP goal rate. Thus, 

all indications show STAR will provide global improvements 

over SPRINT in performance, safety and effort when applied 

clinically. 

Figures 2 and 3 display major behavioral differences between 

STAR and SPRINT. Each figure categorizes the 

insulin/nutrition combination selected to display relative 

frequency. Figure 2 indicates the preferred behavior of STAR 

is to modulate insulin at a higher nutrition rate, while Figure 

3 indicates SPRINT typically modulates nutrition at 

moderate, relatively constant insulin administration levels. 

This difference implies a clinical advantage when high 

nutrition input is preferred. It equally highlights that insulin 

dosage behavior is relative to carbohydrate input, showing 

importance of accounting for nutrition in AGC, which many 

published protocols do not [34]. Finally, and equally 

importantly, the most common outcome in Figure 2 is 100% 

goal feed and 0 U/hr (11% of total interventions = 1 in 9), a 

safe and effective outcome enabled by the STAR 

framework’s stochastic model-based approach that was not 

possible with SPRINT. 

 
Fig.2. STAR Nutrition/Insulin Combination Frequency 
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TABLE III 

STAR VS. SPRINT FULL COHORT SIMULATION RESULTS 

Whole cohort 

statistics 

STAR - 

Max 

STAR 2-

hourly 

SPRINT 

Data 

STAR 

clinical 

data 

# patients: 371 371 371 10 

Total hours: 40101 40006 39841 1486 

# BG measures: 19634 24218 26646 836 

Measures/day 11.8 14.9 16.1 13.5 

BG median  

[IQR] (mg/dL): 

109 

[100-120] 

109 

[100-119] 

101 

[90-115] 

109 

[99-122] 

Normoglycemia:     

% BG in 80 - 

125mg/dL 81.0 82.5 78.5 78.2 

% BG in 80 - 

145mg/dL 91.6 92.1 86.0 89.4 

Hyperglycemia:     

% BG in 145-

180mg/dL 4.69 4.59 4.45 5.63 

% BG > 

180mg/dL 1.65 1.64 2.00 2.48 

Safety:     

% BG < 80mg/dL 2.06 1.69 7.83 2.48 

% BG < 72mg/dL 0.83 0.70 2.89 1.54 

# patients < 

40mg/dL 4 3 14 0 

Interventions:     

Median insulin 

rate [IQR] (U/hr): 

2.5 

[1.5 - 4.0] 

2.5 

[1.5 - 4.0] 

3.0 

[2.0 - 4.0] 

3.0 

[1.4 - 4.5] 

Median glucose 

rate [IQR] (g/hr): 

5.0 

[2.2 - 6.4] 

5.1 

[2.3 - 6.5] 

4.1 

[1.9 - 5.6] 

4.9 

[0.0 - 6.1] 

Median glucose 

rate [IQR] (% 

goal): 

90.0 

[30-100] 

90.0 

[30-100] 

68.1 

[30-85] 

80.0 

[0.0-109] 

 

 
Fig.3. SPRINT Nutrition/Insulin Combination Frequency 
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The simulation results are supported by the initial pilot trial 

results presented in Figure 4 for the first 10 patients. The 

clinical BG results (Table III) are very similar to simulation 

results with 89.4% of BG within 80-145mg/dL and 78.2% 

BG within 80-125mg/dL. Safety has been maintained with 

1.54% of BG < 72mg/dL and no severe hypoglycemia events 

(BG < 40mg/dL). Median BG was 109mg/dL [IQR: 99.5-122 

mg/dL], which matches very closely with the location and 

spread of BG in virtual trials. 

4. DISCUSSION 

STAR virtual trials demonstrate safe, effective AGC in a 

clinically applicable fashion. Significant safety improvements 

would be likely compared to the current generation of BG 

control in Christchurch Hospital (SPRINT), which was the 

safest published protocol targeting BG ≤ 110mg/dL. Most 

significantly, only 4 patients out of 371 (1.1% by patient and 

a reduction of 71% from SPRINT) showed severe 

hypoglycemia, and, in all cases, this hypoglycemia was 

quickly resolved. Clinical applicability is strongly supported 

by the initial pilot results, with both the performance and 

safety benefits seen in virtual trials being realized in practice. 

The relatively higher enteral nutrition rate for STAR 

compared to SPRINT is likely to increase clinical acceptance. 

Higher feed is generally preferred in many cases (Alberda et 

al., 2009), despite some recent contradictory evidence 

(Casaer et al., 2011, Krishnan et al., 2003). However, STAR 

can be easily adjusted by setting nutrition administration 

goals to match any emerging evidence, and insulin rates will 

automatically modify to maintain glycemic balance. 

The comparison between STAR-Max and STAR 2-hourly 

illustrates a known trade-off between measurement rate 

(nursing workload) and patient safety. However, both provide 

quality AGC. Thus, the main impact of measurement interval 

in the STAR framework is on safety from intra-patient 

variability.  

Equally importantly, the ability of nursing staff to choose 

between measurement interval options means that an 

informed decision can be made at each BG reading. Thus, 

nurses self-manage this workload. This choice or feature is 

expected to also have a positive impact on compliance and 

acceptance. 

A notable enhancement of the model-based approach of 

STAR compared to the fixed approach in SPRINT is the 

ability to change the desired target range and other factors or 

limits. This ability has implications for the balance between 

workload, safety and nutrition. For example, raising the target 

BG range could provide increased nutrition intake at the 

expense of higher BG. Providing a wider target band may 

allow reduced workload with fewer BG measurements under 

the target-to-range scheme presented, but may result in 

increased glycemic variability within that band for which the 

clinical outcomes are not fully known. These decisions can 

be made by the attending clinical team based on their goals 

for a particular patient and assessment of current evidence. 

Hence, the framework can be directly and easily adopted and 

generalized to any clinical culture and practice, unlike 

previously published protocols. 

More importantly perhaps, STAR can thus provide the power 

to automatically balance the clinical treatment, based on 

clinical goals for each patient. It thus avoids forcing a clinic-

wide target or approach onto patients who have requirements 

outside the norm, or subjecting them to ad-hoc decisions to 

handle their particular cases. Thus, for example, different BG 

target ranges could be readily specified for different clinical 

conditions based on diagnosis and this target range could be 

updated as treatment progresses. 

5.  CONCLUSIONS 

AGC requires accounting for patient metabolic variability 

while balancing safety and workload requirements. In-silico 

results indicate the developed STAR algorithm provides a 

safe and effective method for management of glycemia. The 

model-based nature of STAR allows easy adjustment of BG 

and nutrition to match emerging clinical evidence, and 

permits individualization of treatment goals to particular 

patient outcomes. Finally, the overall framework presented is 

unique in its stochastic, risk-based approach, as well as 

completely generalizable. 
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