
     

External Validation and Sub-cohort Analysis of Stochastic Forecasting 
Models in NICU Cohorts 

 
Richard P Floyd*, Jennifer L. Dickson*, Aaron J. Le Compte*, J. Geoffrey Chase*, Adrienne Lynn**, 

Geoffrey M. Shaw*** 
 

* Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand 
** Neonatal Department, Christchurch Women’s Hospital, Christchurch, New Zealand  
*** Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand 

Abstract: Hyperglycaemia is a prevalent complication in the neonatal intensive care unit 
(NICU) and is associated with worsened outcomes. It occurs as a result of prematurity, 
under developed endogenous glucose regulatory systems and clinical stress. The stochastic 
targeting (STAR) framework provides patient-specific, model-based glycaemic control 
with a clinically proven level of confidence on the outcome of treatment interventions, 
thus directly managing the risk of hypo- and hyper- glycaemia. However, the stochastic 
models that are over conservative can limit control performance. Clinical data from 61 
episodes (25 retrospective and 36 from a prospective BG control study), of insulin therapy 
in very-low birth weight (VLBW) and extremely-low birth weight (ELBW) neonates are 
used to create a new stochastic model of model-based insulin sensitivity (SI). Sub-cohort 
models based on gestational age (GA) and birth weight (BW) are also created. 
Performance is assessed by the percentage of patients who have 90% of actual intra-patient 
variability in SI captured by the 90% confidence bands of the cohort based (inter-patient) 
stochastic variability model created. This assessment measures per-patient accuracy for 
any given cohort model. Per-patient coverage trends were very similar between 
prospective and retrospective cohorts, providing a measure of external validation of cohort 
similarity.  Per patient coverage was improved though the use of BW and GA dependent 
stochastic models,  which ensures that the stochastic models more accurately capture both 
inter- and intra- patient variability. Stochastic forecasting is limited by significant inter-
patient variability, which implies that more patient specific methods will be required to 
improve forecasting and glycaemic control. 
Keywords: Insulin sensitivity, control algorithms, physiological models, simulation, 
intensive care 

1.0 INTRODUCTION 

Premature infants are a large proportion of neonatal intensive 
care unit (NICU) populations. Severity of prematurity is 
commonly quantified by gestational age (GA) and birth 
weight (BW). Birth weight classifies infants into low birth 
weight (LBW < 2,500g), very low birth weight (VLBW < 
1,500g) and extremely low birth weight (ELBW < 1,000g). 
Similarly GA classifies prematurity as preterm (< 36 weeks), 
very preterm (< 31 weeks) and extremely preterm (< 27 
weeks). Each classification carries increased risk of long term 
complications, impaired development, and mortality with 
decreasing BW and GA.  

Persistent hyperglycaemia is reported in 57% of ELBW 
infants (Hays et al. 2006) and 32-86% of VLBW infants 
(Beardsall et al. 2010; Cowett et al.  2004). Hyperglycaemia 
has been linked to worsened outcome, but no study has 
conclusively determined if hyperglycaemia itself is harmful, 
or simply represents of severity of condition. The associated 
negative outcomes include sepsis, increased ventilator 
dependence, retinopathy of prematurity, increase hospital 
length of stay, and mortality (Alaedeen et al. 2006; Heimann 
et al. 2007) 

Loss of glucose regulation is a possible cause of 
hyperglycaemia, as preterm neonates are in a transition from 
complete dependence on the mother to physiological 
independence. Hence, metabolic regulation systems are still 
under development attenuating natural glucose regulation 
capability. Glucose regulation can be further impaired by 
clinical stress, which can increase hepatic gluconeogenesis 
and decrease insulin sensitivity (McCowen et al. 2001). 

Hyperglycaemia is typically regarded as blood glucose (BG) 
greater than 10mmol/L, but there is no standard definition, 
nor an accepted threshold for intervention (Alsweiler et al. 
2007). The approach to managing hyperglycaemia is different 
for each NICU, but effective treatment remains elusive. This 
lack of treatment structure stems in part from the lack of 
reliable evidence in favour of glycaemic control for preterm 
neonates (Bottino et al. 2011) 

Current treatments include glucose restriction, and insulin. 
However, glucose restriction  (Hemachandra et al.  1999)  
deprives the neonate of energy vital for growth and 
development (Cowett et al.  2004), and is therefore not ideal.  
The American Academy of Pediatrics has supported the use 
of insulin since 1985 (American Academy of Pediatrics 
Committee on Nutrition 1985) and several trials have been 
completed. In particular, using insulin infusions to treat 



 
 

     

 

hyperglycaemia and/or promote growth has shown positive 
outcomes including reduced proteolysis, improved glucose 
tolerance, increased IGF-I levels, and improved caloric intake 
and weight gain (Agus et al. 2004; Beardsall et al. 2007a; 
Beardsall et al. 2008).  

However, many insulin trials were unsuccessful in safely 
providing glycaemic control due to increased hypoglycaemia 
(Beardsall et al. 2008; Meetze et al. 1998). The NIRTURE 
trial was stopped early, in part due to increased 
hypoglycaemia (Beardsall et al. 2008). All reported insulin 
therapy trials used protocols that fixed insulin dosing based 
on weight or other factors (Beardsall et al. 2007b) or 
depended on clinical judgement to determine insulin infusion 
rates. Thus, these protocols failed to account for the large 
variability observed in the insulin sensitivity of neonates (Le 
Compte et al. 2010). Increased variability with fixed or 
relatively fixed insulin dosing protocols results in poor 
control, excessive glycaemic variability and hypoglycaemia 
(Chase et al. 2011). 

This variability is clearly evident in the hour-hour variation in 
model-based insulin sensitivity (SI) obtained from an 
analysis of clinical data for preterm VLBW and ELBW 
neonates (Le Compte et al. 2010), and shown in Figure 1. It 
shows model-based SI from a clinically validated model of 
neonate metabolism (Le Compte et al. 2009) and its variation 
from one hour (SIn) to the next (SIn+1) over a cohort. The 
potential variation is quite large. Over 3-4 hour measurement 
and intervention intervals typical in glycaemic control studies 
these variations, given an exogenous insulin dose, can result 
in significant unanticipated changes in BG levels. Only the 
Stochastic TARgeted, model-based controller (Le Compte et 
al. 2009) directly accounts for this variation in dosing and has 
been the clinical standard of care in Christchurch Women’s 
Hospital since 2009. 

However, this stochastic model can be too conservative for 
some neonates, with wide stochastic forecasting bands that 
are not representative of all neonates resulting in low doses of 
insulin and persistently high BG. To enable better and 
equally safe control for all patients, the stochastic models 
need to be improved. One avenue is to create stochastic 

models for the variation of SI over specific sub-cohorts by 
GA and BW, which are variables readily available at 
bedside. The goal is to create models that not only account 
for inter-patient variability over cohorts, but also capture 
intra-patient variability (per-patient) more accurately. 

2. METHODS 

2.1 System model 

The clinically validated (Le Compte et al. 2009) NICING 
model variables are defined in Table 1, and is defined:  

 

 

 

 

 
 
 
 

 

2.2 Clinical Patients 

SI profile was fitted from clinical data using Equations (1)–
(7). This clinically validated method (Chase et al. 2010) 
allows the performance and stochastic forecasting of STAR 
to be optimised before clinical trials.  

The patient cohort consists of data from 21 retrospective 
patients (with 25 patient episodes), and 8 short term and 22 
long term patients from a prospective BG control study using 
STAR. The 8 short term patients received insulin therapy for 
24 hours in a validation trial of the existing model and 
controller (Le Compte et al. 2009).  Long term patients were 
treated using STAR as a standard of care at Christchurch 
Women’s Hospital. There are 61 clinical patient datasets, as 
there are 28 treatment episodes for the 22 long term patients. 

2.3 Improving Stochastic Forecasting with Increased Cohort 

The current stochastic model used in the STAR controller 
was designed using a retrospective cohort of 25 patients (Le 
Compte et al. 2010). Hence, the relevance of its performance 
in virtual trials may be limited. A stochastic matrix created 
using the larger 61 virtual patient cohort is compared to the 
current stochastic matrix.  

Performance for 3-hour forecast intervals is compared. A 
perfect model would capture 90% of each individual patient’s 
variations in the 5-95th percentile interval, but this may vary 
for individual patients. Performance is assessed by the 
percentage of patients whose individual stochastic 
performance comes close to this ideal, for a more accurate 
and general the stochastic model.  

 
Figure 1: Hourly insulin sensitivity variation data with 
probability bounds and example curve showing probability 
bounds.  



 
 

     

 

2.4 Improving Stochastic Forecasting in Sub-Cohorts 

Two variables easily identified at the bedside are birth weight 
(BW) and gestational age (GA). Stochastic model matrices 
are created for each variable by tertiles. A Kolmogorov–
Smirnov (KS) test was used over a full range of possible BW 
and GA groupings to identify groups with the greatest 
differences in relative change in insulin sensitivity to create 
additional stochastic models to differentiate behaviours. 
Performance is assessed using per-patient coverage.  

3.0 RESULTS 

3.1 Stochastic Forecasting with Increased Cohort 

Figure 2 shows the per-patient coverage of the 5th to 95th 
percentile of forecasted change in SI for the current (N=25), 
short/ long term trial based (N=36), and new (N=61) whole-
cohort stochastic models. There is no significant difference 
between the per-patient coverage of the different stochastic 
matrices.  All stochastic matrices have a minimum coverage 
over 70% and tight distributions around 90%. This result 
provides a measure of external validation in that the 
retrospective (N=25) cohort showed similar performance to 
the prospective (N=36) cohort. The same results can be seen 
for 2 and 4 hour measurement intervals (not shown). 
However, small improvements can be seen in the coverage 
distribution for the new whole-cohort stochastic matrix 
(N=61). It is important to note that Figure 2 is the per-patient 
coverage, and not all patients have equal number of 
measurements and thus, do not have the same weighting on 
stochastic model forecast limits. In addition, manipulation of 
stochastic matrices to bring the overall whole-cohort 
percentage coverage closer to the target 90% tends to adjust 
the percentiles to capture a single data point, thus making the 
matrix more cohort-specific and adding no extra value for use 
outside of the existing cohort. 

3.2 Gestational Age and Birth Weight Sub-Cohort 

The cumulative distribution functions (CDFs) of SI for 
tertiles of BW and GA are shown in Figures 3 and 4. The 
lower tertile has significantly lower SI than the other groups 
for both GA and BW (p < 0.05, KS-test). In both cases, the 
relative changes in SI (lower plot) are not significantly 
different. Thus, these tertiles are different in absolute SI, but 
not in variability. 

Table 3 shows the results for the tertiles in Figures 3-4, as 
well as other statistically significant cut-off values found (p < 
0.05) for SI over BW and GA sub-cohorts. Figure 5 shows 
the resulting per-patient coverage for each of the sub-cohort 

Table 1: Glucose-insulin metabolic model variable definition 

Variable Description Values 
G Blood glucose level (mmol/L) 
I Plasma insulin concentration (mU/L) 
Q Interstitial insulin 

concentration 
(mU/L) 

pG Endogenous glucose 
clearance 

0.0030 (min−1) 

αG Saturation parameter for 
insulin mediated glucose 
removal 

0 (L/mU) 

αI Saturation parameter for 
plasma  insulin clearance 

0.0017 (L/mU) 

SI Insulin sensitivity (L/mU/min) 
EGP Endogenous glucose 

production 
0.0284 

(mmol/min) 
CNS Central nervous system 

glucose uptake 
0.088 

(mmol/min) 
P(t) Glucose appearance in plasma 

from dextrose intake 
(mmol/min) 

PN Parenteral Nutrition (mmol/min) 
Pmax Maximal glucose flux from 

gut to plasma 
6.11 

(mmol/min) 
P1 Glucose level in stomach (mmol) 
P2 Glucose level in gut (mmol) 
VG Plasma glucose distribution 

volume 
0.5961 (L) 

kI Interstitial insulin transport 
rate 

0.1 (min−1) 

IB Endogenous insulin 
production 

15 [mU/L/min] 

nI Rate of transport between 
plasma and interstitial insulin 
compartments 

0.003 (min-1)  

nK Renal insulin clearance 0.150(min−1) 
nL Hepatic insulin clearance 1 (min−1) 
nC Interstitial insulin degradation 0.003 (min−1) 

 First-pass hepatic insulin 
clearance 

0.67 

uex(t) Exogenous insulin (mU/min) 
uen(t) Endogenous insulin 

production 
(mU/min) 

VI Plasma insulin distribution 
volume 

0.0450 (L) 

d1 Glucose absorption rate from 
stomach 

0.0347 (min−1) 

d2 Glucose absorption rate from 
gut 

0.0069 (min−1) 

D(t) Dextrose intake (mmol/min) 

 Body mass (kg) 

 Brain mass (14% ) (kg) 
Table 2: Clinical patient summary statistics.  
 Short-term (N=8) Long-term (N=28) Retrospective (N=25) 
 Median [IQR] Median [IQR] Median [IQR] 
Gestational age at birth (weeks) 25.6 [24.9 - 26.4] [25.4 [25.0 - 26.8] 26.6 [25.4 - 27.7] 
Weight at birth (grams) 745 [681 - 814] 760 [601 - 925] 845 [800 - 904] 
Age at start of trial (days) 6.6 [3.6 - 7.7] 3.6 [1.5 - 6.4] n/a 
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Figure 2: Per-patient coverage between the forecasted 5th and 95th percentile change in insulin sensitivity using the current 
stochastic matrix compared with new stochastic matrix.  (N = number of patients used to create stochastic matrix). 
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Relative Delta SI = (SI n+1 – SIn)/2*(SI n+1 + SI n)
 

Figure 3: Correlation of insulin sensitivity and change in 
insulin sensitivity with birth weight. 

Figure 4: Correlation of insulin sensitivity and change in insulin 
sensitivity with gestational age. 

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

# 
 o

cc
ur

an
ce

s

Stochastic forecasting using
 BW=<700g (N=20) 

and BW>700g (N=41)

 

 

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

# 
oc

cu
ra

nc
es

Stochastic forecasting using
BW<800g (N=27)              

and BW>800g(N=34)           

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

# 
oc

cu
ra

nc
es

Stochastic forecasting using 
BW<700g (N=20),              

700g<BW<=865g (N=20)         
and BG>865g (N=21)           

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

#o
cc

ur
an

ce
s

Stochastic forecasting using 
BW<805g (N=32),              

805g<BW<=925g (N=17)         
and BG>925g (N=12)           

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

# 
oc

cu
ra

nc
es

Stochastic forecasting using 
GA=<26.3 (N=37) 

and GA>26.3w (N=24)

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

# 
oc

cu
ra

nc
es

Stochastic forecasting using 
GA<26.15w (N=34),            

26.15<GA<=27.05g (N=13) and  
 GA>27.05g (N=14)            

0 20 40 60 80 100
0

5

10

15

20

25

30

% time in 5-95th band

# 
oc

cu
ra

nc
es

Stochastic forecasting using
 GA=<27.05 (N=37) 

and GA>27.05w (N=14)

0 20 40 60 80 100
0

5

10

15

20

25

30

per-patient percentage time in 5-95th band

nu
m

be
r o

f o
cc

ur
an

ce
s

Stochastic forecasting using 
GA<25.05w (N=22),            

25.05w<GA<=26.9g (N=23) and  
 GA>26.9 (N=16)              

3hr BW and GA dependent
whole cohort

 

Figure 5: Comparison of per-patient coverage for BW and GA dependent point to point 4 hourly stochastic forecasting. 



 
 

     

 

groups in Table 3. There is noticeable improvement from the 
whole cohort (N=61) result shown for comparison. Thus, the 
BW and GA dependent models add greater resolution and 
per-patient accuracy. 

4.0 DISCUSSION 

Comparison of per-patient percentile band coverage for 
different cohort based stochastic matrices has shown that the 
cohorts are essentially similar in behaviour. The addition of 
36 patient episodes (N=25 to N=61) has improved per-patient 
stochastic model coverage slightly. This similarity in 
coverage with the use of different cohort stochastic 
forecasting verifies that the original data set is as 
representative of the NICU population as previously thought, 
where initial work with stochastic matrices in adult ICU 
patients indicated N = 25 would be suitable (Lin et al. 2006).  

The high proportion of coverage above 90%, and in particular 
above 95% in the 5-95th band suggests that this band width is 
determined by the behaviour of a few patients. Ideally, for 
patient specificity, the majority of per-patient coverage would 
be around the target 90%. The patient coverage of the 25-75th 
percentiles is much wider, indicating significant inter-patient 
variability within these bounds. In particular, the short and 
long term cohorts have higher average coverage in the 25th-
75th band suggesting that differences between cohorts arise 
within the extremes of behaviour. Overall it seems that inter-
patient variation is more significant than intra-patient 
variation as a limiting factor in this stochastic forecasting 
model and patients are essentially different in behaviour. 

BW and GA dependent stochastic models can be used to 
further improve per-patient coverage, as seen in Figure 5. The 
proportion of coverage around the 90% target for the 5-95th 
percentiles is much greater, indicating BW and GA can be 
used to introduce greater patient specificity in stochastic 
forecasting. Due to the relatively small number of patients 
used, the ideal combinations of BW and GA found may not 
fully represent all NICU populations or be perfect divisions 
for other NICU cohorts. Equally, there may be differences 
between NICUs due to differences in cohort or case mix. 
However, the results clearly illustrate potential to improve 
patient-specific forecasting and glycaemic control based on 
easily measured variables. Further investigations using larger 
independent cohorts should be completed to validate these 
initial insights, and create more generalisable results. 
However, these results provide a template for further 
analysis. 

5.0 CONCLUSIONS 

Stochastic  model based forecasting based on a larger patient 
database provides a more accurate representation of the 
NICU population, but is limited by inter-patient variability.  
Birth weight and gestational age dependent stochastic 
forecasting can be used to further increase per-patient 
accuracy and coverage.  Increased per-patient coverage 
improves patient-specific accuracy and thus has potential to 
improve the performance and safety from hypoglycaemia of 
model based glycaemic control for preterm infants in the 
NICU. Significant inter-patient variability as a dominant 

Table 3: Effect of weight and gestational age on insulin sensitivity statistics. 

Data Set SI  -Median [IQR] 
(L/mU/min) 

Relative delta SI – Median (P) 
[IQR] 

# hours #Patients 

Whole Cohort 0.0017 [0.0010 - 0.0027] 0.004204 [-0.0303 - 0.0351] 6968 61 

BW<700g 0.0013 [0.0007 - 0.0020] 0.004116 [-0.0299 - 0.0339] 3032 20 

BW>865g 0.0020 [0.0013 - 0.0031] 0.006074 [-0.0289 - 0.0376] 1426 20 

700g<BW<865g 0.0021 [0.0013 - 0.0032] 0.003114 [-0.0312 - 0.0360] 2510 21 

BW<805g 0.0015 [0.0008 - 0.0025] 0.003640 [-0.0310 - 0.0344] 4566 32 

BW>925g 0.0024 [0.0015 - 0.0037] 0.008583 [-0.0194 - 0.0353] 748 12 

805g<BW<925g 0.0019 [0.0013 - 0.0030] 0.003678 [-0.0312 - 0.0385] 1654 17 

BW<700g 0.0013 [0.0007 - 0.0020] 0.004116 [-0.0299 - 0.0339] 3032 20 

BW>700g 0.0021 [0.0013 - 0.0032] 0.004254 [-0.0305 - 0.0369] 3907 40 

BW<800g 0.0014 [0.0007 - 0.0021] 0.003866 [-0.0289 - 0.0334] 3519 27 

BW>800g 0.0021 [0.0013 - 0.0033] 0.004446 [-0.0315 - 0.0382] 3449 34 

GA<25.1wks 0.0013 [0.0007 - 0.0021] 0.004001 [-0.0314 - 0.0343] 3196 22 

GA>26.9wks 0.0020 [0.0013 - 0.0032] 0.008319 [-0.0215 - 0.0370] 1200 16 

25.1<GA<26.9 wks 0.0020 [0.0013 - 0.0031] 0.002614 [-0.0316 - 0.0364] 2572 23 

GA<26.15wks 0.0015 [0.0008 - 0.0026] 0.003139 [-0.0316 - 0.0340] 4561 34 

GA>27.05wks 0.0021 [0.0014 - 0.0033] 0.008422 [-0.0205 - 0.0374] 1141 14 

26.15wks< GA <27.05 wks 0.0019 [0.0013 - 0.0027] 0.004314 [-0.0315 - 0.0389] 1266 13 

GA<26.3 wks 0.0015 [0.0008 - 0.0026] 0.003138 [-0.0310 - 0.0340] 4842 37 

GA>26.3 wks 0.0020 [0.0014 - 0.0030] 0.007230 [-0.0287 - 0.0385] 2126 24 

GA<27.05 wks 0.0016 [0.0009 - 0.0026] 0.003364 [-0.0316 - 0.0349] 5827 47 

GA>27.05 wks 0.0021 [0.0014 - 0.0033] 0.008422 [-0.0205 - 0.0374] 1141 14 

 



 
 

     

 

factor implies more patient-specific methods will be required 
to improve further. 
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