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Abstract:  Hyperglycaemia is prevalent in critical care, as patients experience stress-induced 
hyperglycaemia, even with no history of diabetes. Hyperglycaemia in critical care is not largely benign, as 
once thought, and it has a deleterious effect on outcome. Recent studies have shown that tight glucose 
regulation to average levels from 6.1-7.75 mmol/L can reduce mortality 25-43%, while also significantly 
reducing other negative clinical outcomes. 
 
However, clinical results are highly variable and there is little agreement on what levels of performance can 
be achieved and how to achieve them. A typical clinical solution is to use ad-hoc protocols based primarily 
on experience, where large amounts of insulin, up to 50U/hr, are titrated against glucose measurements 
variably taken every 1-4 hours. When combined with the unpredictable and sudden metabolic changes that 



characterise this aspect of critical illness and/or clinical changes in nutritional support, this approach results 
in highly variable blood glucose levels. The overall result is sustained periods of hyper- or hypo- glycaemia, 
characterised by oscillations between these states, which can adversely affect clinical outcomes and 
mortality. The situation is exacerbated by exogenous nutritional support regimes with high dextrose content. 
Hence, there is an emerging, strong need for the more rigorous analysis and methods that model-based 
control methods bring to this type of problem. 
 
This paper reviews the state of the clinical and model-based control systems approach to the problem of 
managing hyperglycaemia in critical care, emphasising emerging methods and results. The overall goal is to 
present the fundamental problem and associated science and technologies involved. Thus, it is less a 
discussion of specific advantageous approaches than a presentation of the different factors that impact the 
problem and the different approaches taken to address them in the limited clinical engineering research 
done to date. These discussions are presented in the context of current and emerging clinical studies, both 
model-based and empirical protocol driven. Analogies to the Type 1 diabetes mellitus control problem are 
also noted where relevant and significant. Hence, it is more overview than specific analysis, where the 
overall conclusion is that there are many opportunities and unanswered questions remaining on which 
model-based control research can have significant clinical impact. 
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Abstract 
 
Hyperglycaemia is prevalent in critical care, as patients experience stress-induced 
hyperglycaemia, even with no history of diabetes. Hyperglycaemia in critical care is 
not largely benign, as once thought, and it has a deleterious effect on outcome. Recent 
studies have shown that tight glucose regulation to average levels from 6.1-7.75 
mmol/L can reduce mortality 25-43%, while also significantly reducing other 
negative clinical outcomes. 
 
However, clinical results are highly variable and there is little agreement on what 
levels of performance can be achieved and how to achieve them. A typical clinical 
solution is to use ad-hoc protocols based primarily on experience, where large 
amounts of insulin, up to 50U/hr, are titrated against glucose measurements variably 
taken every 1-4 hours. When combined with the unpredictable and sudden metabolic 
changes that characterise this aspect of critical illness and/or clinical changes in 
nutritional support, this approach results in highly variable blood glucose levels. The 
overall result is sustained periods of hyper- or hypo- glycaemia, characterised by 
oscillations between these states, which can adversely affect clinical outcomes and 
mortality. The situation is exacerbated by exogenous nutritional support regimes with 
high dextrose content. Hence, there is an emerging, strong need for the more rigorous 
analysis and methods that model-based control methods bring to this type of problem. 
 
This paper reviews the state of the clinical and model-based control systems approach 
to the problem of managing hyperglycaemia in critical care, emphasising emerging 
methods and results. The overall goal is to present the fundamental problem and 
associated science and technologies involved. Thus, it is less a discussion of specific 
advantageous approaches than a presentation of the different factors that impact the 
problem and the different approaches taken to address them in the limited clinical 
engineering research done to date. These discussions are presented in the context of 
current and emerging clinical studies, both model-based and empirical protocol 
driven. Analogies to the Type 1 diabetes mellitus control problem are also noted 
where relevant and significant. Hence, it is more overview than specific analysis, 
where the overall conclusion is that there are many opportunities and unanswered 
questions remaining on which model-based control research can have significant 
clinical impact. 
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1.0 Introduction and Problem Definit ion 

 

Critically ill patients often experience stress-induced hyperglycaemia and high insulin 

resistance, even with no prior diabetes [1-5].  The increased counter-regulatory 

hormone and cytokine response stimulates endogenous glucose production and 

increases effective insulin resistance.  Absolute and relative insulin deficiency and 

steroid-based therapies are further causes.  Studies also indicate that high glucose 

content nutritional support regimes result in excess glucose [6-9].  More recently, 

reductions in enteral nutrition [9-11] or its carbohydrate content [6] led to reductions 

in glycaemic levels. Similarly, the reduced use of dextrose as a diluent in intravenous 

medication [12], resulted in reductions in glycaemia. Both changes have been shown 

to alleviate the impact of the hyperglycaemic counter-regulatory response that drives 

this problem [3, 4, 13, 14].  

  

Although hyperglycaemia can be a marker of severity of illness and is associated with 

mortality, it is also associated with increases in other negative clinical outcomes, 

including severe infection [15], sepsis and septic shock [16-19], myocardial infarction 

[1], as well as polyneuropathy and multiple-organ failure [2, 20]. In each of these 

cases or patient subgroups, lower glucose levels were associated with reduced 

mortality and/or complications. Similar studies have associated early hyperglycaemia 

with mortality in trauma patients [21-23]. Finally, there is also evidence of significant 

reductions in need for dialysis, bacteremia and number of blood transfusions with 

aggressive blood glucose control using intensive insulin therapy [2, 24, 25].   
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There are two landmark studies that have observed and defined this problem and the 

impact of tight control on mortality and other clinical outcomes. First, van den Berghe 

et al [2, 24] showed that tight blood glucose control to less than 6.1mmol/L reduced 

cardiac surgical ICU patient mortality by up to 45% in a randomised controlled trial. 

Krinsley [25, 26] reported a 17-29% total reduction in mortality over a wider, more 

critically ill, ICU population with a higher glucose limit of 7.75mmol/L, however this 

study was a comparison to a matched cohort of retrospective data with enough 

patients to show statistical power for the intervention. The exact reasons for the 

reductions in mortality and other clinical outcomes is not fully known, but has been 

extensively analysed in these and other works [2, 20, 24-34].  

 

Both van den Berghe et al [2, 24] and Krinsley [25, 26] used ad-hoc protocols that did 

not employ models or control theory, and relied only on exogenous (intravenous) 

insulin intervention to reduce blood glucose levels. The main differentiators of these 

two landmark studies are the glycaemic limit used and the level of critical illness of 

the cohorts, as measured by APACHE II score. In particular, Krinsley studied a 

broader, more representative critical care cohort with a much greater level of critical 

illness, reporting an average APACHE II score of 16.9 (IQR: 13-24). Due perhaps to 

the severity of illness of their cohort, a higher titration limit and goal was established. 

In contrast, van den Berghe et al reported a much lower median APACHE II score of 

9 (IQR: 6-13), in combination with their much lower glycaemic target limit.  

 

Thus, two important results can be drawn from these initial clinical studies. First, 

tighter control with lower glycaemic limits appears to offer increased benefit in terms 

of reduced mortality and reductions in other measurable negative clinical outcomes. 



5 

Second, the level of critical illness is generally proportional to observed 

hyperglycaemia and insulin resistance [24, 28, 35-38], which will result in a 

decreased ability to reduce blood glucose with insulin alone for more critically ill 

cohorts. However, neither study addressed issues such as blood glucose variability, 

time within a desired glycaemic band, nor other typical control system oriented 

performance metrics that would help further clarify the requirements for tight 

glycaemic control. It is these two conclusions and the other unanswered questions that 

help define the overall problem, and illustrate the potential for applying dynamic 

systems modeling and control methods to achieve significant clinical improvements. 

More specifically, while other studies are being undertaken to further validate many 

of the results already available across broader populations and cohorts, the clinical 

evidence for tight control is greater than for some current practice of tolerating a level 

of hyperglycaemia [39]. 

 

1.1 Similarities to the General Diabetes Control Problem 

It should be noted that the management of hyperglycaemia in critical care has many 

parallels to managing glycaemic levels in Type 1 and insulin dependent Type 2 

diabetic individuals. Given the growing and predicted epidemic incidence level of 

both types of diabetes in western populations [40, 41], modeling and control of 

diabetes mellitus has been a periodically popular research area over the last 25 years. 

In particular, predictions [42] that the cost of diabetes and its complications will reach 

up to 10% of healthcare costs by 2020 are driving research at a variety of levels. 

However, while this review is directed primarily towards controlling glycaemic levels 

in critical care, it might be expected that the commonalities of these problems will see 
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successful clinical results from critical care work their way towards clinical 

management of diabetes. 

 

Both problems share the metabolic system models for the pharmacokinetics of insulin 

and the pharmaco-dynamic interaction of glucose and insulin. Equally importantly, 

the critical care environment offers a more controlled environment for developing 

control methods and models, as well as added modeling simplicity given the typical 

use of intravenous insulin, and intravenous or enteral nutrition delivery. Thus, one 

approach would see solutions developed in critical care “trickling down” to solutions 

for ambulatory diabetic individuals, as shown in Figure 1, where the number of 

variables, non-linearities and uncertainties increases down the pyramid. Hence, this 

work focuses on the top of the pyramid, model-based control of hyperglycaemia in 

critical care where the patient’s environmental variables and inputs are better known 

and/or more readily controlled. 

 

 

 

 

 

 

 

 

 
 
 

Figure 1: Pyramid description of glycaemic control problems in terms of ability to 
control variables based on knowledge of their value or input (vertical axis), and the 

range of variables to be considered and resulting level of uncertainty (horizontal axis). 

ICU 

Less Dependent Wards 

 Insulin Pumps + Embedded Sensors 

Ambulatory Type 1 and Type 2 diabetic 
individuals using injections and infrequent measurement 

Greater control 
of environment 
and variables 

Increasing range of variables and system non-linearities, 
and decreasing knowledge of inputs 
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1.2 Main Elements and Preface 

There are typically three main elements in any similar control problem: 

 

•  Sensors and signal processing 

•  Dynamic modeling and parameter identification 

•  Control method or protocol 

 

Sensors and signal processing determine the quality and frequency of data for the 

controller. The dynamic model and parameter identification methods relate to the 

(predictive) accuracy of any controller, and thus its ability to safely and accurately 

lower glucose levels in this case. Finally, the control algorithm employs both these 

elements to determine the appropriate intervention to achieve a set performance goal. 

Generically, these three elements are all inter-related and lower complexity or quality 

from one is typically offset by requiring greater quality or complexity from the others. 

Figure 2 shows a schematic of the basic control schemes employed and to outline the 

general control problem and its major elements.  

 

This review covers all three elements for the hyperglycaemia control problem in 

critical care. Significant commonalities to the more general diabetes management 

problem are also discussed as they arise. The discussions in each case focus on what 

is currently available and those emerging technologies or methods that may offer 

significant potential to improve capability. Hence, it is a review of the existing state of 

the art in each of these areas listed above, as well as discussing the potential new 

approaches and technologies that will affect the problem in future. 
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Figure 2: Basic model-based glycaemic control loop schematic showing the primary 
blocks encompassing sensing, actuation and control implementation. The control 
system boundary is shown by dash-dot lines, and the nutritional input line is dashed to 
indicate that this quantity may be controlled as part of glycaemic control or set based 
on other clinical requirements. Sensor errors are shown as a separate block due to 
their potential size and impact on control. 
 

2.0 Sensors and Signal Processing 

 

In glycaemic control, the primary measurement available is plasma glucose level. 

Current glucose sensing methods can be broken into four broad areas for control 
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applications. These areas represent distinctions in quality, time, software storage and 

links, and data density, all of which impact the resulting control problem.  

 

•  Lab or Gold Standard Measures: These tests consist of laboratory reference 

measurements using standard techniques. They offer the lowest error (< 3%) 

and best repeatability [43]. Turnaround time for results can be quite long due 

to the logistics of sending samples to a lab. However, modern blood gas 

analysers can now be installed in specific units offering similar results to 

clinical staff within 1-3 minutes [43-45]. 

•  Point of Care Tests (POCT): These tests can be linked directly to patient 

databases and records and are becoming standard in many ICUs. They range 

from blood gas analysers to specialised POCT pin-prick test strip devices. 

Accuracy ranges from blood gas analysers (< 3%) [43, 44, 46, 47] to pin-stick 

results (typically 7-12%) [48, 49]. Data density is typically no greater than 

hourly due to discomfort and the effort required around other clinical duties. 

•  Pin-Stick Bedside Test Kits: The current standard in many ICUs and most 

ambulatory diabetic individuals. They offer rapid results in less than 30 

seconds and require only 1-2 minutes of total clinical effort, but have errors of 

7-12% over common glycaemic ranges [50-56]. They are rarely used more 

than hourly. In critical care, pin-stick measures can be used to extract 

subcutaneous blood or sampled from an arterial line. The latter approach 

eliminates the 5-20 minute lag in plasma glucose levels that can exist between 

plasma and interstitial fluid [57-59].  

•  Semi-Invasive “Continuous” Sensors: Emerging sensors offering automated 

or semi-automated measurement of blood glucose concentration. The most 
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commonly reported types, at this writing, are the Minimed/Medtronic CGMS 

and the GlucoWatch Biographer [60-62]. They offer very frequent 

measurements every 5-15 minutes, but with errors up to 40% reported over a 

wide variety of studies [60-72]. 

 

Portable blood gas analysers offer the best quality results for fitting models to 

determine control inputs due to their lower error. At the other end of the spectrum, 

emerging sensors, such as the CGMS, offer very high data density, but with greater 

error. The standard pin-stick bedside testing kit is still the most commonly used 

measure. It offers greater ease of use than a portable or local blood gas analyser with 

slightly greater error, but much lower data density than emerging continuous sensors. 

Finally, note that plasma insulin measurement would offer added information for 

modeling and control, however the lab turnaround time for this measurement is 

generally too long to be of direct use in real-time clinical control. 

 

Hence, there is a significant tradeoff involved in selecting the type of measurement or 

accounting for the type available in a specific clinical setting. Less frequent 

measurement requires greater prediction capability from the model. More frequent 

measurement allows potentially much simpler models. In contrast, greater errors will 

require more intensive signal processing, as well as models more robust to those 

errors in patient specific parameter fitting and prediction. 

 

Perhaps the most common clinical measurement issue in glycaemic control is 

frequency. More frequent measurement than most typical clinical practice has been a 

hallmark of both initial landmark glycaemic control studies [2, 24-26], varying 
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between 1 and 4 hours. However, specialised additional staff were required to manage 

the extra workload reported. Other pilot studies and surveys have reported the extra 

clinical burden of intensive insulin therapy for glycaemic control as “burdensome” or 

“taxing” [73-77]. Hence, the ability to limit or automate measurement via implanted 

continuous sensor could be seen as critical. Thus, emerging sensors offer significant 

promise for automating glycaemic control in this regard. 

 

Frequent measurement and its impact on glycaemic control have been studied both in 

simulation [78-80] and clinically [79, 81-83], including the analysis of long-term 

retrospective data [84]. Results show that fewer, less frequent measurements often 

result in greater glycaemic variation in critical care and poorer outcome [80, 85, 86]. 

Similar results have been seen in treating ambulatory diabetic individuals [87, 88].  

 

Overall, the different types of measurement offer a series of fundamental tradeoffs. 

Typically, a given unit will have a standard set of measures and practices, which the 

control engineer will have to work with, removing choice in the type of sensor. It 

might be expected that if current semi-invasive sensors continue to improve they will 

come to replace many of the other types. However, significant hurdles related to error, 

ease of use, and reliability remain [89, 90]. Hence, while there may currently be little 

choice in many practical cases, this area is rapidly developing. 

 

3.0 Models and Patient Specific Parameter Fitting 

 

Metabolic modeling has been used to study physiological behaviour and/or to control 

glycaemia for a long time, with a very deep history in the published literature. The 
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vast majority of these models have their roots in basic compartment modeling with 

differential equations [91]. The primary use of metabolic models has been the 

development of model-based measures to assess metabolic parameters, with a 

particular focus on measuring insulin sensitivity  [92-99]. Hence, the main feature in 

the development of many metabolic models has been increasing levels of 

physiological accuracy and/or resolution with a concomitant increase in the number of 

patient specific parameters to be identified. The fundamental physiology typically 

modelled for this control problem is shown schematically in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Basic outline of the fundamental physiology of glucose sources, insulin 
sources and their utilisation to remove glucose. Bi-directional arrows indicate 
potential for flow in both directions of glucose and/or insulin. Exogenous insulin is 
assumed intravenously administered in this case, and exogenous glucose appears via 
absorption from the gut or intravenous nutrition. 
 

Clinical glycaemic control modeling is similar in its need for physiological accuracy 

to ensure accurate prediction of the outcome of a clinical intervention and thus, good 

control. However, it may require less physiological resolution given the lesser amount 
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of data typically available to fit patient specific parameters in critical care, as 

compared to the frequent sampling typical of clinical physiology studies. Hence, most 

clinical model-based control applications look for the simplest model to be effective.  

 

3.1 Metabolic Models 

Given the extensive history of metabolic modeling of the glucose-insulin system this 

paper will not go into great length in this regard. In particular, a number of very good 

reviews exist [91, 100, 101] that offer a broader overview. Instead, a briefer overview 

of the basic model types used for clinical glycaemic control is presented to illustrate 

the basic approaches employed thus far. 

 

Metabolic control systems and models start with titration models and controllers, such 

as the bio-stator [102]. However, perhaps the best known model is the Minimal Model 

of Bergman et al [94, 103]. This simple model had two compartments for insulin 

pharmacokinetics and a third equation for insulin-glucose pharmacodynamics.  

 

           (1) 

)())(()()()( 1 tPtGGptGtXtG b +−+−=        (2) 

 

where t is time, G(t) is the plasma glucose concentration at time t, I(t) is the plasma 

insulin concentration at time t, and X(t)  is the interstitial insulin at time t.  Gb is the 

basal plasma glucose concentration, P(t) is the appearance rate of glucose from 

exogenous input and Ib is the basal plasma insulin concentration. Patient specific 

parameters p1, p2 and p3 are transport rates between the various compartments with 

))(()()( 32 bItIptXptX −+−=
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the ratio p3/p2 representing insulin sensitivity. Note that several forms of this model 

have evolved and are reported across a wide range of the literature. 

 

Typing “minimal model bergman” into the PubMed database returns over 130 results, 

including at least 6 review articles, indicating the interest and use of this model. 

Similar searches deliver even more results. Most of the compartment models used for 

physiological studies or control have some origin in the Minimal Model. More 

importantly, this model clearly illustrates the three basic dynamic terms that must be 

captured for any glycaemic control problem: 

 

•  Insulin pharmacokinetics and distribution 

•  Glucose pharmacokinetics and/or appearance, where meal models for P(t) in 

Equation (2) would add compartments 

•  Glucose-insulin pharmacodynamics accounting for the removal of glucose 

 

For each point, more or less compartments or terms may be used, as compared to 

Equations (1)-(2). Additionally, non-linearities for specific observed, or hypothesized, 

physiological dynamics may be added as necessary.  

 

However, the Minimal Model has some significant limitations, particularly with 

regard to use in clinical glycaemic control [104, 105]. More specifically, it does not 

account for saturation of glucose removal by insulin [106-108], saturation of insulin 

transport [106, 109-111], measurable and unmeasurable glucose compartments [112-

115], or the dynamics of insulin receptors and their mass [116], to name a few. All of 
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these issues have been raised in the extensive physiological modeling literature, and 

several modified versions of this model developed as a result.  

 

All of these models are of import and worthy of consideration in the clinical 

glycaemic control problem in critical care, particularly given the diversity of 

dynamics and non-linearities considered. However, there is not the scope in this 

article to do justice to metabolic modeling as a whole. Perhaps the best overall review 

of metabolic modeling in its entirety is by Carson and Cobelli [91]. 

 

3.2 Metabolic Models Used in Critical Care Glycaemic Control 

There have been three metabolic models used in clinical examination of critical care 

patients and glycaemic control [82, 83, 117-121]. Each model is substantially 

different, based in part on the different control approaches used. The first model is 

that of Chee et al [119, 120] who used an optimised PID form of control. 
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The integral control (Equation (3)) is implemented when sliding tables do not provide 

adequate glycaemic reduction and the amount of additional insulin is calculated using 

Equation (4), a normalized weighted average of the BGL (blood glucose level) zones 

using a 2-hour triangular window.  Derivative control is implemented using Equation 

(5)-(8). Expert control is implemented by keeping an active sliding table and 

‘offsetting’ the recommended sliding table input according to several conditions, 

based on Equations (3)-(5), in order to determine a the control input.   

 

The second model is that of Hovorka et al, which was used for controlling Type 1 

diabetes [117] and, in similar form, for critical care glycaemic control trials [121]. 
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where Q1 and Q2 represent masses of glucose in the accessible and inaccessible 

compartments, k12 the transfer rate between the inaccessible and accessible 

compartments, VG the distribution volume of the accessible compartment, y and G the 

measurable glucose concentration, and EGP0 the endogenous glucose production 

extrapolated to the zero insulin concentration. F01
c is the total non-insulin-dependent 

glucose flux corrected for the ambient glucose concentration and FR is the renal 

glucose clearance above the glucose threshold of 9 mmol/l.  UG(t) is the gut 

absorption rate, dependent upon the carbohydrates digested, DG, carbohydrate 



18 

bioavailability, AG, and the time-of-maximum appearance rate of glucose in the 

accessible compartment, tmax,G.  The insulin subsystem is described by Equations (14)-

(19).  S1 and S2 are a two-compartment chain for absorption of subcutaneously 

administered rapid-acting insulin, u(t) the insulin input (bolus/infusion), and tmax,I the 

time-to-maximum insulin absorption. I(t) is the plasma insulin concentration, ke is the 

fractional elimination rate and VI the distribution volume.  The insulin action 

subsystem consists of three components, endogenous glucose production, 

transport/distribution and disposal (x1, x2 and x3).  Finally, kai and kbi (i=1,..,3) 

represent the activation and deactivation rate constants of insulin action respectively.    

 

Finally, Chase et al used a model loosely based on Bergman’s minimal model with 

additional non-linear terms and a grouped term for insulin sensitivity [78, 81-84, 118].  

This model has been employed in several critical care glycaemic control trials using 

different control approaches, as well as in retrospective analyses. 
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where G(t) is the plasma glucose above an equilibrium level, GE, and I(t) is the 

plasma insulin resulting from exogenous insulin input, uex(t).  The effect of previously 



19 

infused insulin being utilised over time is represented by Q(t), with k accounting for 

the effective life of insulin in the system.  Patient endogenous glucose clearance and 

insulin sensitivity are pG and SI, respectively.  V is the insulin distribution volume and 

n is the constant first order decay rate for insulin from plasma.  Total plasma glucose 

input is denoted P(t).  Michaelis-Menten functions are used to model saturation, with 

αI used for the saturation of plasma insulin disappearance, and αG for the saturation of 

insulin-dependent glucose clearance [84, 122].  kpr and kpd are the effective half lives 

of glucose transport from gut to plasma for both increasing (kpr) and decreasing (kpd) 

feed rates respectively, and iP  and 1+iP are the steps in enteral glucose feed rates. 

 

The final two equations account for glucose appearance from enteral nutrition via 

feeding tube as the glycaemic control studies using this model [81-83] modulate both 

insulin and nutrition inputs to reduce plasma glucose levels. This approach thus looks 

at both sides of the glucose balance, exogenous insulin removal of glucose and 

glucose appearance from exogenous nutrition, to reduce glycaemic levels in the face 

of insulin resistance and insulin saturation.  

 

This approach of modulating nutrition in addition to exogenous insulin is a significant 

departure from other approaches in this field, which use insulin alone to reduce 

glycaemic levels [2, 24-26, 118-122]. Despite concerns, recent studies show that low-

calorie nutritional inputs reduce hyperglycaemia [6, 9, 10, 123, 124], and above ~30% 

of standard goal feed rate do not increase infectious complications [125-127]. More 

specifically, Krishnan et al [128] showed that feeding over 66% of the ACCP 

recommended rates increased the likelihood of ICU mortality, and suggested that the 

ACCP caloric targets may thus be set too high. In addition, hyperglycaemia has also 
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been shown to exacerbate muscle protein catabolism in burn patients [129] indicating 

that excessive nutrition and hyperglycaemia should be avoided in this instance, as 

well. Similarly, parenteral administration of glucose up to 25kcal/kg, typically up to 

50% dextrose, did not increase hyperglycaemia or infections complications [124]. 

Finally, reduced caloric nutritional support has been effective in paediatric cases and 

for the obese [123, 126, 130]. Thus, there is reasonable evidence that moderate 

reductions in nutrition may increase survival and will not reduce other clinical 

outcomes. However, extreme or long-term underfeeding should be avoided [131]. 

 

Modulating nutritional dextrose inputs also provides a physiologically non-saturable 

path to reduce plasma glucose, at least to the point of eliminating nutritional input 

entirely. It is important to note that this approach is focused on controlling the 

dextrose carbohydrate content exacerbating hyperglycaemia, rather than the overall 

nutritional profile. This last issue could be practically addressed, for example, by 

separating the dextrose and protein-fat nutritional inputs infused. 

 

3.3 Fitting Methods and Patient Specific Parameter Identification 

Most model-based glycaemic control requires a patient specific model due to 

variation between patients in insulin sensitivity and other critical dynamic parameters. 

In particular, Hann et al [84] used the model of Equations (21)-(23) to show 

significant variation in insulin sensitivity over time for a critically ill cohort. These 

variations in glycaemic level and effective insulin resistance are due to the evolution 

of patient condition in the critically ill, where differences in cohort and level of 

critical illness will affect the behaviours observed.  
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In particular, as patient condition evolves the levels of stress and counter-regulatory 

hormones change dynamically, leading to significant variation in effective insulin 

resistance. An extreme case is the significant drop in insulin sensitivity (increase in 

insulin resistance) observed with the adrenergic surge prior to atrial fibrillation [81-

83]. Interactions from steroid and other drug therapies that affect insulin resistance 

also play a role [18, 132-134], although the effect of steroids has recently been 

preliminarily reported to be limited in some cases [135]. More specifically, steroid 

administration is strongly associated with higher glycaemic levels [132, 133] in many, 

but not all, cases [22]. However, the effect on glycaemic levels will also depend 

significantly on the level of dosing by the individual intensivist, as seen for example 

in the call for moderate steroid dosing in treating sepsis [18, 134]. 

 

Note that the amount of variation seen will also depend heavily on the patient cohort. 

For example, cardiac surgery critical care patients may be less variable and 

experience less hyperglycaemia during recovery than those suffering from sepsis, 

ARDS or multi-organ failure [24, 28, 35-38]. More specifically, less critically ill 

cohorts may experience a more straightforward, predictable evolution of patient 

condition than more critically ill cohorts. 

 

Thus, the fitting procedure and/or model used for glycaemic control must be able to 

account for significant patient variation over time. It must also be computationally 

simple enough to be performed in “clinical real time” of 1-5 minutes, or faster. 

Finally, fitting the patient specific parameters in any of the models presented typically 

presents a non-convex optimisation problem, due primarily to the series of non-linear 

differential equations involved [91]. 
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The most commonly used method for fitting parameters in compartment models is 

non-linear recursive least squares (NRLS) [91, 136]. Given the non-convex nature of 

the problem this method will produce results that are starting point dependent. Hence, 

to guarantee optimal results a range of initial values can be used [91, 109]. The 

minimum or average result is often used, or the full resulting distribution can be 

employed in further analysis [109].  

 

NRLS is also computationally intense [91], particularly where longer periods of data 

are being fit. The main reason is that it depends on re-simulating the data every 

optimisation step, leading to a large amount of computation for more complex models 

and/or longer periods of data [84]. However, modern computing power generally 

manages this issue, except for extreme circumstances, given the 1-5 minute period in 

which parameters must be identified for most real-time clinical control applications.  

 

Iterative, Bayesian and gradient descent based methods have also been used in a 

variety of forms [137-141]. Given the non-convex and non-linear models involved, 

these methods are all specific to the exact model and methods employed. Thus, they 

are essentially problem specific and not necessarily generalisable to broader 

situations. 

 

An emerging method that simplifies many of these problems is the integral method in 

Hann et al [84]. Integrating the differential model equations converts the problem to 

one of matching areas under curves. Parameterising unknown, time-varying patient 

specific parameters as piecewise constant or higher order functions recreates the 
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problem in terms of unknown constants that are more readily identified. Using 

measured data and numerical integration, the problem can thus be converted into a 

convex linear least squares problem to obtain these constants. More importantly, it 

does not require repeated re-simulation of the system model and optimises the 

parameters in what is effectively a single step. The result is thus convex and not 

starting point dependent. It has been used in a variety of clinical glycaemic control 

studies [81-84, 118] and in other similar biomedical models [142-144].  

 

Overall, a variety of fitting methods are available. Traditional methods, such as 

NRLS, offer results with some potential limitations depending on the specific 

problems. Integral methods are a newer, emerging method that may offer some 

advantages in simplicity and convexity, again dependent on the specific problem 

defined. Both approaches are capable of delivering the patient specific parameters 

required for most, if not all, models currently employed for clinical glycaemic control. 

Fitting method efficacy is also dependent on the data density available, creating an 

interaction with the measurement methods employed [84, 137]. Thus, the choice of 

fitting method is primarily dependent on the specific problem. The main requirement 

is to ensure that the method chosen works well with the models employed and the 

specific clinical situation [91, 145]. 

 

4.0 Glycaemic Control Methods and Results 

 

Given a model, a glucose sensor and patient specific parameter identification method, 

the fundamental glycaemic control problem is simply defined. The fundamental goal 

is to maintain glycaemic levels in an acceptable range, typically somewhere in the 4-8 
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mmol/L range. Tighter regulation toward 4.5-5.0 mmol/L is considered better, based 

on the limited large-scale clinical trials and validation to date. More specifically, the 

reductions in mortality seen by van den Berghe et al [2, 24] were greater with an 

average glycaemic target of 6.1 mmol/L than those of Krinsley [25, 26] with a higher 

target of 7.75 mmol/L, implying a potentially continuous scale of improved outcome 

mortality with lower glycaemic limit.  

 

The primary control input is the administration of exogenous insulin, typically 

intravenously in critical care. Other studies have examined the impact of reduced 

dextrose nutritional inputs on glycaemia with positive results [6-9], and this approach 

has been brought to clinical glycaemic control in critical care [80-83] offering a 

second control input. More importantly, since insulin effect saturates around 5-10 

U/hr in continuous infusion [106, 107], modulating the nutritional input offers a 

means of reducing glucose levels in the face of significant insulin resistance, as seen 

in the very critically ill. It is particularly relevant where insulin alone may not be able 

to fully achieve the desired glycaemic reductions.  

 

Finally, there have now been several reports on intensive insulin therapy with 

differing performance metrics. Recent surveys have shown that while tight control is 

recognised as important, there is little agreement on what levels are desirable or 

achievable [4, 33, 73, 74, 77]. This difficulty is likely due to the impact of trying to 

rationalise results from different protocols and patient cohorts to determine what 

methods might work best for a given clinical situation.  
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4.1 Performance Metrics 

A variety of performance metrics have been used in different critical care glycaemic 

studies. These metrics can be summarised as four basic goals: 

 

•  Average Blood Glucose Level: calculated over all measurements [25, 26] or 

over limited measurements, such as first morning measurement [2, 24]. The 

average is the simplest performance measure and the one used in both 

landmark clinical studies. However, it provides no further information on 

glucose excursions or tightness of control. An important consideration is the 

use of a trapezoidal mean to obtain the proper mean value if the sampling 

period is irregular [85, 86]. 

•  Time in a Glycaemic Band: calculated as the time or percentage of 

measurements in a specific band, such as 4-6.1 mmol/L [79-83] or 4.5-6.1 

mmol/L [121]. Maximising this metric is essentially equivalent to minimising 

the Hyperglycaemic Index (HGI) or area under the glucose curve level [29, 

146]. This metric provides a surrogate measure of the average value, as well as 

an indication of the tightness of the glycaemic control result. 

•  Glucose Variability: measured as the standard deviation or 90% interval over 

the data. This metric has only been employed recently [79, 88] and measures 

the tightness of blood glucose control around the average or target value. It is 

also increasingly important in managing Type 1 diabetes [87]. However, it 

provides no indication of the absolute glycaemic levels obtained and some 

methods assume normal or other distributions that may not match the data. 

Hence, confidence intervals determined from the data may prove more useful. 
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•  Hypoglycaemic Episodes: measured as the number or percentage of 

measurements that are below a defined hypoglycaemic threshold. The typical 

definition is 2.2 mmol/L, although some studies use higher thresholds [80, 

121]. Variability also captures some of this information when associated with 

the average or median glucose values. More importantly, this measure is a 

critical indicator of the safety of the control methods used. 

 

Hence, the performance metric chosen can be quite different depending on the 

specific clinical goals desired. In general, accounting for, or at least examining, all 

four metrics provides the most useful information in evaluating the impact of control.  

 

Note that only the first metric, the average glucose value, has been correlated with the 

clinical outcome mortality for cohorts of patients. More specifically, it is currently 

assumed, based on limited results to date, that tight control and mortality are linked by 

average glucose value obtained, and that the relation in between may be linear or a 

continuous range, as shown schematically in Figure 4. However, recent results also 

link range and/or peak glucose values to critical care mortality [23, 28, 36, 85, 86], 

providing impetus to using other, more easily measured or tracked metrics, as well.  

 

Note that further, large clinical studies, which are currently lacking, might help clarify 

the assumed relationship between hyperglycaemia and mortality, by adding more data 

points to Figure 4. In particular, the shaded area indicates the potential for different 

results due to patient cohort and/or protocol employed. More specifically, it is not yet 

proven that using the same protocol with a different cohort will have substantially the 

same results, and similarly for a different protocol on substantially the same cohort as 
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a prior study. Therefore, such studies would help clarify the performance 

requirements for clinical outcome. 

 

 

 

 

 

 

 

 

 

Figure 4: Average glucose value obtained and clinical outcome in reduced mortality 

with assumed linear relationship (dashed). The shaded area indicates the potential 

variability in results that could occur due to different patient cohorts or protocols. 

 

Thus, it is possible that control methods that are similar in one metric, but different in 

others, may have different clinical outcomes. Such a result would cloud the issue of 

what is required from a clinical control protocol to obtain the desired clinical 

outcome. This difficulty would be particularly apparent when balancing the clinical 

effort and time required implementing a protocol, and the clinical outcome achieved. 

However, it would also provide input as to what type of performance is necessary. 

Such further clinical studies and analyses are yet to be done, leaving the question of 

exactly what type of performance metrics and requirements are ideal unanswered at 

this time, particularly with respect to the added impact of patient cohort on the results. 
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4.2 Impact of Patient Cohort 

Figure 4 also illustrates how the composition of the patient cohort may have a 

significant impact on the performance achieved. The more critically ill the cohort, as 

measured by APACHE II, TISS or other relevant score, the more insulin resistant and 

variable [84] are their glucose dynamics. One reason is that the more critically ill 

cohorts have greater incidence of sepsis and multi-organ failure in particular, both of 

which are associated with increased insulin resistance and hyperglycaemia. In 

comparison, post-surgical ICU cohorts, such as after cardiac surgery in [2, 24, 121] 

tend to have fewer complications and a more straightforward, predictable evolution of 

their condition, resulting in lower APACHE II and other scores.  

 

Thus, the less critically ill cohort may be easier to control, or to achieve a lower 

target, than another more critically ill cohort. This result will also interact with the 

efficacy of the sensing and control schemes employed to deliver that control. More 

specifically, a poor control protocol may achieve lesser results on a similar cohort. 

Similarly, a control protocol may work well for a specific, defined patient cohort or 

type, but be less well matched to a different type or types of patient. Hence, the 

impact of patient cohort composition exists, but may be very difficult to separate from 

the control methods except for broad comparisons.  

 

One such comparison can be made between the two landmark studies [2, 24-26], 

where the cohort of van den Berghe et al had a median APACHE II score of 9 and the 

average score for Krinsley was 16.9. Similarly, Krinsley was unable to titrate glucose 

levels to a target lower than 7.75 mmol/L, achieving an average value of 

approximately 7.5 mmol/L, without excessive input and effort. In comparison, van 
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den Berghe et al achieved 5.8 mmol/L with a target of 6.1 mmol/L for their less 

critically ill cohort. More specifically, van den Berghe et al studied a post cardiac 

surgical population whereas Krinsley had a broader general ICU cohort with 

relatively much higher APACHE II scores. Note that not all published studies report 

APACHE II or other comparable scores, which makes comparison difficult. 

 

4.3 Clinical Model-based Glycaemic Control Results 

As noted previously, there are only three primary sets of model-based glycaemic 

control trials reported [81-83, 118-122, 147-149] based on the research group and 

modeling approach employed. A fourth is not model-based [79, 80], but was 

developed from the model-based trials of [81-83, 118, 122] to have similar behaviour 

and results to the computerised method, as shown in both simulation and clinical pilot 

trials. Each study takes a very different control approach, thus providing a brief 

overview of what is possible.  

 

Chee et al [119, 120] used PID control with CGMS sensors in an automated closed 

loop feedback system, while their earlier work used a sliding scale control method 

[147]. Their results were reported for trials over 4-9 patients in limited pilot studies. 

The average glucose values obtained under control were 11.5 +/- 2.99 mmol/L using 

6.5 +/- 5.5 U/hr of insulin for the PID controllers [119, 120]. These results were 

shown to be tighter than achieved for these patients under standard hospital protocols 

before or after the trial period for each patient, indicating the potential of improved 

tightness of control with automation. Although the glucose levels are not very low the 

standard deviations were reduced by 50% from the hospital protocol results. The 
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similar trial by Chee et al [147] used a sliding scale method, which is not model-

based, but achieved similar results. 

 

However, these trials also required several interventions by medical staff where the 

controller failed to provide proper input. Some of these were due to difficulties with 

the larger sensor errors and sensor failure. Importantly, it should also be noted that a 

main goal of this trial was to employ emerging CGMS technology and link it to 

feedback control. In this aspect, it was successful and delineated some of the 

important issues related to using these sensors.  

 

Plank et al [121] use a model predictive controller (MPC) to provide tight control over 

a series of 48-hour trials for post-cardiac surgery patients. Results were compared to 

data for patients on standard unit protocol in a randomised trial. The controller and 

model are similar to those in a prior work for diabetic individuals [117]. Hourly 

adjustments of insulin infusions were used as the control input with a glycaemic target 

band of 4.5-6.1 mmol/L. The cohort was post-surgical with an APACHE II score 

averaging 10-12 across the three centres. Time in the target band ranged from 42-56% 

across the three centres with no time spent below the target minimum of 4.4 mmol/L. 

Average glycaemic levels ranged from 6.1-6.8 mmol/L and the MPC group used more 

insulin, as might be expected. Overall, the results show the efficacy of automated, 

model-based control in maintaining euglycaemia versus standard methods and the 

greater information arising from reporting time in a glycaemic band, as well as 

average glucose level. 
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Chase et al [81] and Wong et al [82, 83], undertook a series of 8 clinical case study 

patient trials where both exogenous insulin and nutrition feed rates were varied for 

control. The cohort was significantly more critically ill relative to other reported 

studies in intensive insulin therapy, with an average APACHE II score of 23 (range: 

17-31) and APACHE III scores of 40-91. The approach measures glucose every 30-60 

minutes and intervenes hourly to achieve a target blood glucose value set for the 

subsequent hour. The mean error between the achieved blood glucose and the targets 

over all trials was 8%, with 42% of all target glucose values achieved within 5%. 

More importantly, 94% of all target glucose measurements were within the reported 

sensor error. The remaining, large outlying errors are attributed to significant changes 

in patient condition, such as atrial fibrillation, observed over the hour between 

intervention and target measurement. Figure 5 shows the glucose targets, glucose 

measurements, model parameters for insulin and glucose, and insulin and glucose 

inputs as controlled for a typical patient [82]. However, these trials were only 10-24 

hours and thus primarily focused on blood glucose target accuracy, blood glucose 

reductions into a glycaemic band, and maintaining blood glucose levels, rather than 

long-term time in a band. Hence, longer trials are required to validate this control 

approach for long-term care. 

 

Finally, a paper-based protocol [79, 80] designed to mimic the computerised model-

based system from [81-83, 118, 122], was implemented to offer the efficacy of the 

computerised protocol with easy implementation. Implemented as a clinical practice 

change in the Christchurch Hospital ICU, it relies on 1-2 hourly measurements. 

Control is provided via hourly interventions modulating both insulin and nutrition.  
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Figure 5: Patient trial progression using Equations (21)-(25) in an adaptive, model 

predictive control scheme [82]. Glucose measurements every 30 minutes and hourly 
target values show measurement error bars. 

 
 

An initial 11 patient pilot study comprising over 1500 hours of control resulted in an 

average glucose level of 5.8 +/- 0.9 mmol/L over all patients. The average feed rate 

was 63% of the clinically determined goal feed, which is 7% higher (absolute) than 

retrospective hospital data [84]. The average insulin consumption was 2.6U/hour, 

indicating that reducing dextrose feed also enables insulin consumption at rates below 

reported saturation limits, while providing effective tight control. The minimum blood 

glucose reported across the 11 patients was 3.2 mmol/L with only 21 measurements 

less than 4.0 mmol/L. Finally, the time in the desired 4-6.1 mmol/L band was 63% 

with 89% of measurements in the 4-7.0 mmol/L band and 95% in the 4-7.75 mmol/L 
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band. Figure 6 shows the glucose response over 164 hours for an initial pilot study 

patient with APACHE II score of 21 that achieves a mean glucose value of 5.4 

mmol/L from an average use of 2.3 U/hour. Approximately 50% of all control used 2-

hourly measurements, addressing issues of patient comfort and clinical effort. More 

importantly, additional clinical intervention was never required for safety or other 

reasons. Overall, the results indicate the potential to achieve very tight control within 

clinically reported desirable glycaemic bands for a very critically ill cohort, with no 

extra medical intervention or hypoglycaemic episodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Long-term glycaemic control response for a single patient covering 164 
hours with 85% of the time spent in the 4.0-6.1 mmol/L range and 98% in the 4-7.75 
mmol/L band. Note that 50 of 112 measurements made were for 2-hourly sampling 
under this protocol [79, 80]. For clarity only the glucose measurement value is shown. 
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4.4 Comparison to Other Clinical Intensive Insulin Therapy Results 

Other clinical intensive insulin therapy trials for controlling hyperglycaemia in critical 

care have recently been reported [150, 151]. These protocols are not model-based and 

follow on from the initial major clinical studies [2, 24-26]. As they are primarily pilot 

studies, they have had more limited patient numbers and primarily focus on achieving 

tight control, rather than the clinical or mortality outcome. They also had different 

cohorts and, not unexpectedly, different results.  

 

Chase et al [79, 80] compares several of these protocols [2, 24-26, 79, 81, 82, 150, 

151] in a simulated trial using the virtual cohort of [84]. This virtual cohort consists of 

18 patients with an average stay of 3.6 days and consists of relatively more critically 

ill patients with a mean APACHE II score of 21.9. It was used to safely develop and 

analyse glycaemic control protocols [80-83, 118, 122] prior to clinical validation in 

pilot trials, and further details can be found in these references. Specifically, the 

virtual cohort used a model to fit the patient specific, time-varying profiles of insulin 

sensitivity and endogenous clearance [84]. These profiles are then used with the same, 

or different, nutritional and insulin interventions. Hence, these virtual patients provide 

a safe platform for testing new protocols before working directly with patients, as they 

are “driven” by clinically measured model-based variations in metabolic parameters. 

More importantly, the initial clinical results obtained are very similar to those found 

in the simulated trials, verifying the overall virtual cohort design approach [80]. 

 

The results in Table 1 show that the computerised protocol of [81-83] and its table-

based version [79, 80] offer far tighter control for this critically ill cohort. The 

primary reasons for this outcome are twofold. First, these protocols modulate both 
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insulin and nutrition, and for this level of critically ill cohort insulin alone may not be 

enough to reduce and maintain glycaemic levels [118, 122, 148]. Secondly, these 

protocols measure more frequently than most other protocols, providing more 

opportunity to intervene and correct highly dynamic patients before extreme 

excursions in glycaemic level occur. In particular, less frequent measurement leads to 

less frequent change in the intervention. For a highly dynamic patient, these less 

frequent changes result in larger excursions into hyper- and hypo- glycaemic ranges 

[78, 80]. 

Table 1: Simulated glycaemic control protocol comparisons 

1. SPRINT Protocol [79] 
2. AIC4 Protocol [78, 81, 82] 
3. Mayo Clinic Protocol [25, 26] 
4. Leuven Protocol [2, 24] 
5. Bath University Protocol [150] 
6. Yale University Protocol [151] 

 

These virtual cohort simulation results are further validated by the fact that the 

reported percentages of hypoglycaemic measurements and average glucose levels 

achieved are very similar to those reported in the original studies. This latter result 

indicates that for more critically ill and highly variable patients, it is possible to 

achieve a similar average glucose value for less critically ill cohorts using the same 

protocol. However, glycaemic variability is significantly increased due to the more 

 SPRINT AIC4 Mayo clinic Leuven Bath Yale 

Log Median 5.79 5.93 8.59 5.60 6.21 6.70 
Multiplicative STD 1.29 1.35 1.29 1.65 1.45 1.4 

68.3% range (4.50-7.45) (4.39-8.01) (6.68-11.05) (3.40-9.24) (4.27-9.03) (4.78-9.40) 
95.5% range (3.50-9.58) (3.25-10.82) (5.20-14.20) (2.06-15.24) (2.94-13.13) (3.41-13.18) 

Time in 4-6.1 band 61.7% 62.2% 11.2% 35.8% 45.5% 22.3% 
Time in 4-7.75 band 83.5% 82.9% 27.4% 51.0% 70.0% 64.8% 
Time less than 4 4.4% 1.1% 0.6% 23.6% 7.1% 5.9% 
Time higher than 7.75 12.1% 16.1% 72.0% 25.3% 22.9% 29.3% 
Average insulin (U/hr) 2.4 2.6 1.6 3.0 5.8 4.6 
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dynamic and unpredictable patient dynamics. As a result, hypoglycaemic episodes can 

increase and the time in band can decrease as well.  

 

This last result is clearly evident in the recent study by Van den Berghe et al. [152], 

applying the Leuven protocol [2] on a more critically ill medical ICU cohort than the 

original study (mean APACHE II score 24±10), where hypoglycaemia was 

experienced by 25.1% of all patients with a stay longer than 3 days. While patients 

with length of stay greater than three days achieved a mean morning glucose level of 

6.0 mmol/L, the standard deviation was +/- 1.44 mmol/L, indicating significant 

potential variability and thus the potential for the hypoglycaemic events reported. 

Interestingly, the mean caloric intake from carbohydrate/dextrose in this study was 

700-900 kcal/day, which is significantly lower than in the original study and close to 

the second tertile of the ACCP guideline reported by Krishnan et al [128] to be a more 

optimal level of intake with respect to mortality. 

 

Overall, these results further reinforce several major aspects in controlling 

hyperglycaemia. First, is the need to measure frequently, perhaps with emerging 

continuous sensors. Second, is the use of more than average glucose values for 

reporting performance, such as considering the need to control blood glucose 

variability. Finally, safety is an important consideration for the highly dynamic, very 

critically ill patient, and all of these results indicate that frequent measurement with 

different forms of intervention is important to early detection, and correction, of 

emerging or actual hypoglycaemia and thus patient safety. 
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4.5 Impact of Measurement Frequency on Model-Based Control 

Section 4.4 notes that measurement frequency has a significant impact on the 

tightness of control that can be obtained as noted from the results of several studies. 

However, tighter control requires more frequent measurement for the highly dynamic 

critical care patient if safety is to be maintained. Hence, there is a tradeoff with regard 

to clinical applicability and capability, and the burden on clinical staff.  

 

The model-based and model-derived methods reported here require measurement 

intervals of 30-120 minutes for the insulin and nutrition protocols [78-80, 82, 83], 

with little difference reported between measurements of 30 and 60 minute intervals. 

Longer intervals of 120 minutes were established once a patient was defined as stable 

by the protocol and was used for approximately 50% of all patient treatment time. The 

model predictive methods of Plank et al [121] measured every 60 minutes to achieve 

their results. However, their trials followed patients for only 48 hours and longer trials 

might have encountered more stable patients and the opportunity to measure at longer 

intervals. Notably, both approaches and protocols reported no hypoglycaemic events 

after significant periods of tight control, where some ad-hoc protocols are reporting at 

least one hypoglycaemic event for 5-25% of patients [2, 152]. 

 

However, until more reliable continuous sensors emerge, this issue will hinder greater 

or more rapid uptake in clinical practice. Currently, hourly measurements with these 

protocols have not led to a reported increase in clinical burden, particularly where two 

hourly measurements are available in some cases. Thus, the tradeoff remains, 

regardless of measurement type, of measurement frequency versus safety for the 

highly dynamic critically ill patient. The primary question is then one of how to 
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identify these more critically ill and potentially more dynamic patients during those 

periods. This avenue has yet to have any reported results. 

 

4.6 Other Recent Clinical Intensive Insulin Therapy Results and Approaches 

It is important to note that those protocols discussed in Section 4.4, as well as other 

model-based approaches, are not the only protocols tested clinically. The area of 

glycaemic control in critical care is rapidly expanding in interest and publication 

numbers. In this instance, there are two other approaches that should be considered 

for completeness: 1) nomogram or sliding scale/titration approaches and 2) estimator-

based approaches. The former is one means of standardising care across patients, 

while allowing the flexibility to provide patient specific care, and the latter uses very 

simple equations based on clinical or empirical data, or very simple models. 

 

Nomograms do not use models per se, however they are not necessarily entirely ad-

hoc methods either. Instead, they use empirically based charts and tables, typically 

taken from clinical experience and trial, to adjust the therapy given and provide a 

patient specific approach. Chant et al [153] used a nomogram for an 86 patient study 

that showed that lowered average morning glucose levels 27% to an average level of 

7.1 mmol/L. However, hypoglycaemia occurred more often in the controlled group 

with 3.8% of patients having at least 1 episode. The measurement frequency averaged 

7 measurements per day for the nomogram group indicating a lighter clinical load for 

these results. Similarly, Thomas et al [154] used a web-based insulin dose calculator 

to determine the required intervention and reduced mean glucose concentrations to 6.3 

mmol/L from 7.3 mmol/L in a retrospective control group. However, patient mortality 

was unchanged over the 790 (total, with 502 intervention, 288 control) patient study. 
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Finally, Kanji et al [155] achieved a glucose target range of 4.5-6.1 mmol/L for 

11.5+/-3.7 hours/day using a standardised sliding scale and nursing-based titration of 

insulin infusions. However, while good average glucose levels were achieved for 

approximately 50% of the time, severe hypoglycaemia still occurred in 4% of 

patients, down from 16% under the regular care it compared with. Similarly, dextrose 

intervention therapy was required 0.91 times per patient per day. These latter results 

indicate the overall difficulty that can be encountered in controlling highly dynamic 

patients. Finally, all of these cases used only insulin as an intervention to reduce 

glycaemic levels. Overall, such standardised methods can be seen to work well for 

some cohorts or situations, but not necessarily over all possible units. 

 

There are two recent and significant results using very simple models or estimators to 

determine the necessary insulin intervention. These estimators are typically based on 

simple gradient estimations to estimate the impact of an intervention. This approach is 

taken by the GRIP system [156], which used insulin and a computer system to help 

control glycaemic levels in a surgical intensive care unit. GRIP treated 179 patients 

for 957 patient days with no system induced hypoglycaemia. Glucose levels were in 

the target range of 4.0-7.5 mmol/L 78% of the time where the system had a preset 

target level of 6.5 mmol/L. Nurses reported the system easy to use and an 

improvement over paper protocols due in part to the mean 4.9 glucose measurements 

required per day for the system. Finally, the Glucommander [157] is an impressive 

study with over 5000 patients and 120,000 hours of treatment. This system has been 

implemented for several years calculates insulin infusion level as a simple equation of 

current glucose level and then modifies that value for patient specificity using an 

array of insulin vs glucose multiplier slopes. Results show that a mean glucose level 
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of 8.33 mmol/L was achieved in an average of 3 hours and held that average level 

around 8.0 mmol/L over several days as required with variation of +/-1.0-1.5 mmol/L. 

Hypoglycaemia less than 2.2 mmol/L was still recorded in 2.6% of patients, 

indicating that some patients are still quite variable. Overall, these systems and 

approaches offer less variability and more standardised control than sliding scales, 

nomograms or other current methods, however they do not appear to match some of 

the reported model-based methods for the potential to tightly regulate glycaemic 

levels at this time. 

 

4.7 Type 1 Diabetes Applications and Analyses of Model-based Control 

Although not the focus of this article, there have been clinical applications of model-

based control to ambulatory diabetic individuals and animal models. Given the 

similarity of the system to be controlled, they are worthy of mention as alternative 

approaches that might be applied to this problem. In addition, some of the works 

reported here have emerged from this research area and further crossover in both 

directions seems almost certain. 

 

The ADICOL project trialled closed loop, smart insulin pump technology by Hovorka 

et al [158]. Hovorka et al also utilised MPC methods for Type 1 diabetes [117] with 

some good success. Andreassen et al undertook a probabilistic approach to predicting 

blood glucose levels [159]. They also examined diabetes advisory capabilities with 

the DIAS system in Arleth et al [160], which also employed a specially developed 

mixed-meal model to account for the appearance of carbohydrate as plasma glucose 

[161]. The DIAS system was unique in using a discrete, empirical model of glucose-

insulin dynamics, based on a collection of euglycaemic and hyperglycaemic clamp 
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test results, rather than a dynamic model based on differential equations. Hence, this 

model predicted glucose levels as a series of finite states over time, based on the 

interventions and other dynamic inputs. Additional clinical results include the 

application of model-based PD control and relatively frequent measurement to 

investigate the regulation of post-prandial glucose excursions [162, 163]. Finally, PID 

control was implemented in an artificial pancreas using implanted sensors and insulin 

pumps as summarised in Steil et a l [164], showing the potential and technologies 

involved in achieving automated control with implanted sensors and systems. 

 

Finally, it bears mentioning that there have been several model-based control analyses 

performed in simulation. In fact, hundreds of papers exist on developing control 

systems for diabetes management using only simulation or limited clinical data. A 

brief, and definitely not exhaustive, overview of the types of control that have been 

examined would include the review by Lehman et al [100]. Many of the systems 

presented use control as a means of providing clinical advice or testing the efficacy of 

a new protocol [165-173] and are thus primarily diabetes management advisory 

systems rather than automated controllers. A more complex, higher performance 

example uses model predictive control on a 19th order, non-physiological model of 

the glucose-regulatory system, resulting in a 40% peak reduction and 23% reduction 

in settling time to basal level [174]. Optimal control using grid search theory, robust 

H-infinity control, simple PD controllers, and variable structure controllers have also 

been studied, to name a few, each using different models and/or approaches [173-

182]. In each case, the focus has been on controlling absolute blood glucose 

excursion, focusing on the post-prandial regulation of glucose levels in Type 1 

diabetes. The models used often required either patient specific parameters that are 
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not generically available, and/or knowledge of glucose or exercise inputs that would 

not be known a priori. Additionally, most were not clinically validated. However, 

these approaches do illustrate the very wide range of model-based control schemes 

that might be applied to clinical applications in critical care or broader populations. 

 

5.0 Future Developments and Requirements 

 

 A significant question that arises is what future developments will arise in this field. 

Although primarily speculative, there are some developments that will have to occur 

to see widespread implementation. These developments focus primarily not on 

providing tight control, but on making that provision clinically less burdensome. 

 

First, emerging continuous sensors will have to keep emerging as they offer the ability 

to automate the measurement process, which is reported as the most burdensome 

aspect of providing intensive insulin therapy and tight control. Currently, these 

sensors are not accurate or reliable enough to provide the quality required for model-

based protocols. Thus, improved sensors, which are undoubtedly under development, 

and/or improved signal processing is required to make the best use of these sensors in 

a real-time control system. 

 

The second area for significant development is in the signal processing and data 

analysis employed. Currently, signals are not significantly conditioned, which may 

well be ignoring significant added data of interest to the problem, such as variability. 

In addition, the measured and fitted results are not yet significantly analysed, and the 

development of stochastic models to better manage patient and signal variability is 
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already starting to occur [183]. Stochastic models based on observed clinical 

dynamics therefore represents a largely untapped area for further optimising 

management of these highly variable patients where significant impact can be made. 

 

Finally, current research focuses on controlling hyperglycaemia, as it is obviously not 

a fully solved problem. However, as more trials and methods are developed and 

improvements made, further applications are likely to be identified. In particular, the 

ability to monitor other conditions in the critical care patient using real-time 

identified, patient specific model parameters offers some significant potential [82]. 

This type of capability is not available with an ad-hoc protocol that does not use 

model-based control. However, such applications are likely to arise as methods and 

models develop, and any further correlations between patient metabolism and 

outcome become more apparent. 

 

6.0 Summary, Conclusions and Recommendations  

 

Hyperglycaemia is prevalent in critical care and has a significant impact on patient 

mortality, outcome and healthcare cost. Tight regulation can significantly reduce these 

negative outcomes, but achieving it remains clinically elusive, particularly with regard 

to what constitutes tight control and what protocols are optimal in terms of results and 

clinical effort. This overview has examined the current state of the art and, perhaps 

more importantly, the state of the possible in the clinical, model-based control of 

hyperglycaemia in critical care. The goal of such control would be the eventual 

automation or semi-automation of this treatment to achieve good outcomes with 



44 

minimal extra clinical effort. Hence, with limited published studies it is very much an 

emerging field rather than a mature area of research. 

 

The review outlines the main components of these type of control systems and 

outlines the current state of the art in each. In particular, the impact of choices on 

other control elements is noted where it has been reported in the literature. More 

importantly, this review attempts to set down the current state of the art, while 

outlining how emerging technologies and methods may impact these approaches. A 

simple conclusion is that there is a great deal of research still to be done, and this 

review perhaps indicates that there are still more unasked questions than those that 

have been answered in addressing this clinical biomedical control problem. 

 

Hence, a simple set of recommendations for future research areas for this problem, as 

well as broader metabolic control problems, might readily include: 

 

•  Enhanced models of insulin kinetics, particularly with regard to subcutaneous 

injection delivery and/or different types of insulin, would add robustness to the 

overall control problem, particularly where large insulin doses are utilised and 

extend capability to less acute wards and ambulatory individuals. 

•  Enhanced models of glucose-insulin kinetics in the interstitium would enhance 

an area where current models may not suffice. 

•  Better methods of managing measurement error, either via improved sensor 

design or improved signal processing methods, would allow emerging 

continuous sensors to be used more confidently.  
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•  Greater understanding of the dynamic physiological variability encountered in 

critical care and its root causes would enable more robust modeling and 

control, and some results would extend to broader metabolic control scenarios. 

In particular, how does insulin sensitivity, a major driving factor in this 

problem, vary with patient condition and how can this information be used to 

deliver better control? 

•  More trials are required to better define the relationships between measurable 

performance metrics, patient cohort, and clinical outcome, to enable better 

comparison of results and determine a more optimal, clinically recognised set 

of guidelines and goals.  

•  More futuristically, new methods of measuring other variables, such as insulin 

concentration or their surrogates, which are useful in clinical real-time 

applications, would enable more robust model identification and tighter 

control in clinical settings. 

 

All of these broader topics would result in improved understanding, and thus control, 

of metabolic function in critical care by reducing uncertainty. They would also enable 

the more comprehensive clinical trials required. However, they would also be critical 

steps towards moving, per Figure 1, towards less acute wards and managing the 

ambulatory diabetic individual, where a significant part of the long term future of this 

research area lies. 
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