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Foreword 

Type 2 diabetes mellitus is an irreversible disease state that is characterised by the sufferer’s 

inability to produce sufficient insulin to maintain safe blood glucose concentrations.  Although the 

precise mechanism is ambiguous, it is generally agreed that insulin resistance is the predominant 

driver of the pathogenesis of type 2 diabetes mellitus.  Thus, identification of the insulin resistant 

state could prevent or delay the onset of diabetes, and potentially ameliorate the worst symptoms 

of the disease.   

Many test protocols have been proposed to quantify a participant’s insulin sensitivity.  However, 

these tests are generally either too intensive, or inaccurate to be used in widespread screening 

programmes and thus limit etiological investigations of type 2 diabetes.  This thesis presents a 

validation investigation of the dynamic insulin sensitivity and secretion test (DISST) and a series 

of mathematical and clinical developments.  In particular: 

Chapter 1 describes the physiology that is relevant to insulin sensitivity testing and the 

pathogenesis of type 2 diabetes. 

Chapter 2 describes and compares the established insulin sensitivity tests. 

Chapter 3 shows various model parameter identification methods.   

Chapter 4 defines the DISST protocol, model and identification method.  It also presents the 

outcomes of the DISST pilot investigation. 

Chapter 5 introduces a novel a-priori model identifiability analysis that can uniquely define 

parameter trade-off with respect to assay error. 

Chapter 6 presents the validation study outcomes of the DISST.  The study measured the 

descriptive capability and gold-standard equivalence of the DISST 

Chapter 7 compared the efficacy of the DISST model against the much-touted Minimal Model 

for the identification of insulin sensitivity from sparse data 

Chapter 8 presents the quick DIST (DISTq) which is a novel real-time capable very low-cost 

insulin sensitivity test. 

Chapter 9 shows how DISST based tests can form a spectrum of tests of differing compromises 

of accuracy, economy and information.  A hierarchal system was also defined to enable low 

cost yet very high resolution diagnosis. 



Chapter 10 presents two DISST protocol variations.  While the former reduces clinical intensity, 

the latter increases information yield. 

Chapter 11 describes how the DISST test can aid the tracking of insulin sensitizer and 

secretagogue drugs in-silico. 

Chapter 12 summarises and concludes the outcomes of this thesis. 

Chapter 13 summarises the future work and possibilities that may arise from the outcomes of this 

thesis. 
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Given the high and increasing social, health and economic costs of type 2 diabetes, early 

diagnosis and prevention are critical.  Insulin sensitivity and insulin secretion are important 

etiological factors of type 2 diabetes and are used to define an individual’s risk or progression to 

the disease state.  The dynamic insulin sensitivity and secretion test (DISST) concurrently 

measures insulin sensitivity and insulin secretion.  The protocol uses glucose and insulin boluses 

as stimulus, and the participant response is observed during a relatively short protocol via glucose, 

insulin and C-peptide assays.   

In this research, the DISST insulin sensitivity value was successfully validated against the gold 

standard euglycaemic clamp with a high correlation (R=0.82), a high insulin resistance diagnostic 

equivalence (ROC c-unit=0.96), and low bias (-10.6%).  Endogenous insulin secretion metrics 

obtained via the DISST were able to describe clinically important distinctions in participant 

physiology that were not observed with euglycaemic clamp, and are not available via most 

established insulin sensitivity tests.  

The quick dynamic insulin sensitivity test (DISTq) is a major extension of the DISST that uses the 

same protocol but uses only glucose assays.  As glucose assays are usually available immediately, 

the DISTq is capable of providing insulin sensitivity results immediately after the final blood 

sample, creating a real-time clinical diagnostic.  The DISTq correlated well with the euglycaemic 

clamp (R=0.76), had a high insulin resistance diagnostic equivalence (ROC c-unit=0.89), and 

limited bias (0.7%).  These DISTq results meet or exceed the outcomes of most validation studies 

from established insulin sensitivity tests such as the IVGTT, HOMA and OGTT metrics. 

Furthermore, none of the established insulin sensitivity tests are capable of providing immediate 

or real-time results.  Finally, and most of the established tests require considerably more intense 

clinical protocols than the DISTq. 

A range of DISST-based tests that used the DISST protocol and varying assay regimens were 

generated to provide optimum compromises for any given clinical or screening application.  Eight 

DISST-based variants were postulated and assessed via their ability to replicate the fully sampled 

DISST results.  The variants that utilised insulin assays correlated well to the fully sampled 

DISST insulin sensitivity values R~0.90 and the variants that assayed C-peptide produced 

endogenous insulin secretion metrics that correlated well to the fully-sampled DISST values 

(R~0.90 to 1).  By taking advantage of the common clinical protocol, tests in the spectrum could 

be used in a hierarchical system.  For example, if a DISTq result is close to a diagnostic threshold, 

stored samples could be re-assayed for insulin, and the insulin sensitivity value could be 

‘upgraded’ without an additional protocol.  Equally, adding C-peptide assays would provide 

additional insulin secretion information.  Importantly, one clinical procedure thus yields 

potentially several test results. 



In-silico investigations were undertaken to evaluate the efficacy of two additional, specific DISTq 

protocol variations and to observe the pharmacokinetics of anti-diabetic drugs.  The first variation 

combined the boluses used in the DISTq and reduced the overall test time to 20 minutes with only 

two glucose assays.  The results of this investigation implied no significant degradation of insulin 

sensitivity values is caused by the change in protocol and suggested that clinical trials of this 

protocol are warranted.  The second protocol variant added glucose content to the insulin bolus to 

enable observation of first phase insulin secretion concurrently with insulin sensitivity from 

glucose data alone.  Although concurrent observation was possible without simulated assay noise, 

when clinically realistic noise was added, model identifiability was lost. Hence, this protocol is 

not recommended for clinical investigation.   

Similar analyses are used to apply the overall dynamic, model-based clinical test approach to 

other therapeutics. In-silico analysis showed that although the pharmacokinetics of insulin 

sensitizers drugs were described well by the dynamic protocol.  However, the pharmacokinetics 

of insulin secretion enhancement drugs were less observable. 

The overall thesis is supported by a common model parameter identification method.  The 

iterative integral parameter identification method is a development of a single, simple integral 

method.  The iterative method was compared to the established non-linear Levenberg-Marquardt 

parameter identification method. Although the iterative integral method is limited in the type of 

models it can be used with, it is more robust, accurate and less computationally intense than the 

Levenberg-Marquardt method.  

Finally, a novel, integral-based method for the evaluation of a-priori structural model 

identifiability is also presented.  This method differs significantly from established, derivative 

based approaches as it accounts for sample placement, measurement error, and probable system 

responses. Hence, it is capable of defining the true nature of identifiability, which is analogous, 

not binary as assumed by the established methods. 

The investigations described in this thesis were centred on model-based insulin sensitivity and 

secretion identification from dynamic insulin sensitivity tests with a strong focus on maximising 

clinical efficacy.  The low intensity and informative DISST was successfully validated against the 

euglycaemic clamp.  DISTq further reduces the clinical cost and burden, and was also validated 

against the euglycaemic clamp. DISTq represents a new paradigm in the field of low-cost insulin 

sensitivity testing as it does not require insulin assays.  A number of in-silico investigations were 

undertaken and provided insight regarding the suitability of the methods for clinical trials.  

Finally, two novel mathematical methods were developed to identify model parameters and asses 

their identifiability, respectively.  
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Chapter 1.  Relevant physiology 

The contents of this chapter summarise the physiology that is associated with insulin resistance 

and the pathogenesis of type 2 diabetes mellitus. 

1.1  Glucose 

Glucose is a simple sugar that is used by the body as a primary energy source.  It is absorbed by 

the body as a significant constituent of dietary carbohydrate intake.  Glucose is absorbed into the 

blood stream from the small intestine after being broken into the simple form from longer chain 

carbohydrate molecules found in food.  Figure 1.01 shows the molecule structure. 

 
Figure 1.01.  A glucose molecule (grey-carbon, white-hydrogen, red-oxygen) 

 

Glucose is transported around the body passively in the blood stream.  It can be directly taken up 

by the brain and some specific types of intestinal cells.  However, most of the body’s cells require 

the hormone insulin to mediate uptake.  In this form of uptake, insulin, acts as a biochemical 

signal to unlock the cell so glucose can pass inside. 

In the cells, glucose can either be stored or consumed to release energy.  Storage (glycogenesis) 

involves conversion of glucose to glycogen, which, in turn, is later broken down for release of the 

stored energy (glycogenolysis).  Glucose can also be metabolised to release energy (glycolysis).  

Glycolysis involves a series of transformations, some of which release significant energy, and 

results in the pyruvate molecule (C6H1206 to C3H303).  Amino acids or other dietary 

monosaccharides can also undertake the glycolysis process, or be converted to glycogen to store 

energy. 



Page 4 

Blood glucose concentration in the body is highly regulated in healthy individuals.  A healthy 

glucose concentration is approximately 4 to 5 mmol/L with brief, regulated excursions after 

meals.  Prolonged malnutrition or exposure to insulin can result in hypoglycaemia (low blood 

glucose).  Severe hypoglycaemia (<2.2 mmol/L) can limit the availability of energy to the brain 

and nervous system and result in un-consciousness or death.  Hyperglycaemia occurs when blood 

glucose is elevated above safe levels.  Incidents of hyperglycaemia can result in coma (<25-30 

mmol/L), stupor, polyphagia (excessive hunger), polydipsia (excessive thirst), and polyuria 

(excessive urinary output) amongst other symptoms (>10 mmol/L).  Prolonged hyperglycaemia is 

also highly toxic to a wide range of tissues and can result in diabetic retinopathy, leading to partial 

blindness, and decay of peripheral capillaries, which may finally require hands or feet be 

amputated.  Thus, continual tight glucose control is very important for positive ongoing health 

outcomes. 

1.2  Insulin 

Insulin is a hormone that is produced in the β-cells of the pancreas with the primary function of 

reducing glucose concentration in the blood stream.  Insulin’s principle function is to stimulate 

cellular uptake of glucose.  Insulin reacts with specific insulin-receptors on the cell wall and 

causes the cell to open channels of transport that allow glucose to transition into the cell where it 

is used as the primary energy source.  Figure 1.02 shows six insulin molecules arranged in a 

hexamer configuration. 

 

Figure 1.02.  Ribbon diagram of the insulin hexamer 

 

Insulin is generally released by the pancreas in response to an increase in blood glucose 

concentration.  Insulin release generally consists of two distinct phases.  The first phase is a 
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release of stored insulin and is in reaction to sudden, larger changes in glucose concentration.  

Cherrington found that the magnitude of the first phase of insulin release was proportional to the 

rate of change in glucose and the glucose gradient between the periphery and the portal vein 

(Cherrington 1999).  In daily life, this behaviour only occurs as a result of food ingestion.  The 

second phase of insulin production is in response to the glucose concentration.  The rate of 

production is a function of glucose concentration over a basal level of 4 to 5 mmol/L and is 

designed to slowly reduce elevated glucose levels. 

Insulin is produced by β-cells, which are located in islets of Langerhans in the pancreas.  These 

specialised β-cells first produce long peptide chains called proinsulin.  This long peptide is then 

cleaved yielding a single insulin molecule and a single C-peptide molecule.  Insulin is then 

secreted along with C-peptide in equimolar amounts into the portal vein, which drains directly to 

the liver and then the bloodstream via the hepatic vein, vena cava, then finally the arterial system.  

Transport to the interstitium, where cellular glucose uptake occurs in the periphery, is achieved 

via passive diffusion across membranes.   

It should be noted that insulin production can be suppressed by high insulin concentrations 

(Argoud et al. 1987), acting as a form of necessary counter-regulation.  Equally, low glucose 

levels shut off insulin production and lead the pancreas to secrete counter-regulatory hormones 

(e.g.  glucagon) to raise blood glucose.  Together the system regulates overall glucose levels. 

Endogenous insulin is predominantly cleared by the liver but also by the kidney in smaller 

quantities and broken down at the cell after utilisation.  Initially, endogenous insulin travels 

through the portal vein to the liver, where much of it is extracted and used in the creation and 

storage of glycogen.  Specifically, 60-80% of the portal vein insulin content is extracted by the 

liver during the first pass after secretion (Cobelli & Pacini 1988; Ferrannini & Cobelli 1987; 

Meier et al. 2005; Toffolo et al. 2006).  Insulin is then subsequently further extracted from the 

blood stream by the liver or kidney, or passes into the interstitial regions of the body where it is 

broken down at the cellular level after mediating glucose uptake.  

In the interstitium, insulin binds to receptors of muscle and adipose cell outer membranes and 

activates an intracellular reaction that results in glucose uptake.  Specifically, insulin prompts the 

insulin receptor to initiate a series of intracellular reactions that result in the translocation of 

glucose transporter proteins (GLUT-4) from the interior of the cell to the cell membrane.  Once 

GLUT-4 is situated in the cell membrane, it opens a channel through which glucose can diffuse.  

The glucose concentration gradient across the cell membrane drives diffusion.  Once glucose 

enters the cell, it undergoes a transformation to glucose-6-phosphate.  Glucose-6-phosphate then 
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either undergoes energy-releasing glycolysis, or is converted to glycogen, a rich source of stored 

energy for the cell. 

Insulin also performs a number of functions other than mediation of cellular glucose uptake that 

have an effect on glycaemia.  Importantly, it suppresses the hepatic release of stored glucose.  

Hepatic glucose release or endogenous glucose concentration (EGP) is primarily suppressed by a 

postprandial (post-meal) increase in glucose concentration.  However, increased insulin 

concentrations also occur postprandial and serve to amplify the suppression of glucose release.  

Insulin causes storage of glucose in the liver through promotion of glycogen synthesis and insulin 

reduces the production of glucose from non-carbohydrates sources through the inhibition of the 

gluconeogeneisis process.  In summary, every glycaemic-related function of insulin serves to 

reduce the blood glucose concentration. 

Insulin also mediates a number of non-glycaemic-related functions as well.  It increases the 

uptake of lipids and fatty acids in the blood stream for conversion to triglycerides.  Insulin also 

increases the uptake of amino acids and potassium to the cell.  Finally, it can cause the arterial 

muscle to relax increasing the blood flow rate acting as a dilatory agent (Barrett et al. 2009).  

Insulin can also improve cognitive ability (Benedict et al. 2004; Craft et al. 1999) and mediates 

the hunger impulse (Hallschmid & Schultes 2008). 

1.3  Type 2 diabetes mellitus 

The first recorded use of the term ‘diabetes’ was first used in 1st century Greece wherein the 

Greek word for ‘siphon’ was used to characterise the sufferers excessive urinary output.  The 

suffix ‘mellitus’ meaning ‘honey’ was added in the 17th century.  This latter term describes the 

sweetness of the urine that occurs as a result of the high glucose content in the urine caused by 

renal glucose clearance.  Renal clearance of glucose only occurs when (unregulated) glucose 

levels are very high (Arleth et al. 2000) and thus, does not occur in healthy individuals who 

regulate glucose via insulin. 

There are three main types of diabetes: Type 1, Type 2 and gestational diabetes.  Type 1 diabetes 

occurs when the body’s immune system attacks β-cells causing a total, or near total, loss of 

insulin production. Thus, type 1 sufferers must use exogenous insulin to maintain safe glucose 

concentrations.  Gestational diabetes occurs during pregnancy and is caused by some of the 

hormonal changes associated with pregnancy.  Gestational diabetes is typically alleviated post-

partum, but can occasionally trigger type 2 diabetes.  Type 2 diabetes occurs when the 
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participant’s ability to produce insulin becomes insufficient to maintain healthy glucose 

concentrations.  Over time, excessive insulin resistance and increased insulin production 

requirements lead to an eventual loss of β-cell function.  It is generally agreed that the 

development of type 2 diabetes is predominantly driven by increased resistance to insulin.  Insulin 

resistance is typically caused by obesity or a genetic disposition.  Thus, etiological studies of the 

disease frequently measure participant’s insulin resistance with purpose designed clinical tests.   

Type 2 diabetes is characterised by the sufferer’s inability to regulate their blood glucose 

concentrations with their own endogenous insulin production response.  Untreated or uncontrolled 

diabetic individuals often experience hyperglycaemia, wherein glucose concentrations are above 

healthy levels.  Healthy individuals have a basal glucose concentration of approximately 4.2 and 

4.7 mmol/L, whereas diabetic individuals can have basal blood sugar concentrations between 7 

and 25 mmol/L.  

Blood glucose concentrations over 20 mmol/L can trigger seizures or coma, while concentrations 

of over 11 mmol/L cause oxidative processes to take place that have a damaging effect on a wide 

range of tissues.  This damage is the driver of the worst long-term diabetic symptoms and 

complications.  Blood vessels are most susceptible to this oxidative process and, as such, the most 

prevalent symptom of uncontrolled diabetes is cardiovascular disease.  Other significant negative 

outcomes include renal failure, loss of feeling or amputation of hands and feet, and damage to the 

optical nerve or retinopathy.  In particular, damage to the optical nerve results in diabetic 

retinopathy wherein blood vessels close to the eye rupture and release small amounts of blood 

onto the retina, damaging vision.  Equally, renal failure requires these patients to undergo kidney 

dialysis up to 3 times per week, a time consuming, costly and debilitating procedure.  The overall 

outcome is decreased function and quality of life, and often earlier mortality. 

The first irregularity sufferers of type 2 diabetes often notice is excessive urinary output.  This 

symptom is a result of the sufferers thirst response to elevated glucose concentrations.  Drinking a 

lot of water has a diluting effect on blood glucose.  However, the body responds to the increase in 

body fluid and the kidney generates more urine.   

Diagnosis of diabetes can be made with a fasting glucose measurement of over 7.0 mmol/L, a 

glucose concentration of over 11.1 mmol/L 2 hours after a 75g oral glucose load, and, more 

recently, a glycosylated haemoglobin (HbA1c) of over 6.5% has also been an accepted diagnostic 

(ADA 2010).  Confirmation of the disease state must be made with a second test undertaken on a 

separate day.  However, these diagnostic thresholds are set at levels that maximise positive 

predictive value and thus for many patients some damage and complication may already have set 

in. 
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Type 2 diabetes can be treated a number of ways.  Typically, subjects attempt to maintain safe 

glucose concentrations though diet and exercise control, or with the aid of insulin sensitizers or 

insulin production enhancement drugs.  However, the worst sufferers are not sufficiently 

controlled with such measures and require exogenous boluses of insulin to maintain safe glucose 

levels.  These individuals use skin pricks to determine blood glucose concentrations and must use 

varying doses of insulin to maintain safe levels of glycaemia, essentially like type 1 diabetic 

individuals.  In effect, the resulting control can be stable, but in the absence of adequate control 

systems, or as a result of rapidly changing physiological requirements, this control can become 

instable, potentially causing dangerous hyperglycaemia or hypoglycaemia.  With adequate 

glucose control, diabetic subjects can live a relatively normal life.  However, long-term β-cell 

damage is currently irreversible and ongoing treatment will be required.   

The New Zealand Ministry of Health has predicted that 180,000 individuals (~5% of NZ 

population) will have diagnosed type 2 diabetes in 2011 (NZMoH 2007).  This represents an 

increase of 45% from 2001.  It is claimed that two thirds of this increase is associated with 

increased life expectancy and population growth.  However, the remaining third can be attributed 

to the growing obesity epidemic (NZMoH 2007).  Current health spending associated with 

diabetes is approximately $800 M/year in New Zealand with a projected cost increase to $1.4 to 

1.8 B/year in 2021 (PriceWaterhouseCoopers 2007).  Thus, although the health cost associated 

with type 2 diabetes currently places a significant burden on national health resources 

approaching 1% of GDP, it is likely to increase significantly in the coming decades.   

Equally, this is not just a New Zealand problem.  There are currently an estimated 220M sufferers 

of type 2 diabetics worldwide, with significant increases expected in developing countries in the 

coming decades (Gakidou et al. 2010).  Perhaps more importantly, the number of un-diagnosed 

type 2 diabetic individuals is estimated at 30-50% of all such individuals, implying an unknown 

increase of 60-100% over those already diagnosed (Gakidou et al. 2010). 

1.4  Loss of insulin production and the pathogenesis of diabetes  

Type 1 diabetes occurs when the pancreas ceases to produce insulin as a result of an immune 

response irregularity (Bluestone et al. 2010).  The individual’s natural immune system begins to 

attack the insulin producing β-cells of the pancreas.  This generally occurs in juvenile individuals, 

but can occur at any stage of life. 
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In contrast, type 2 diabetes is generally brought on by excessive insulin demand on the pancreas 

resulting in a loss of β-cell mass, and insulin production capability.  Although the precise 

mechanism for the loss of insulin production during the pathogenesis of type 2 diabetes is 

unknown, it is generally agreed that it is often an artefact of obesity due to excessive dietary 

intake over an extended period, a genetic predisposition or as an effect of another disease state 

(Ahrén & Pacini 2005; Kahn et al. 2006).  The initial stage of the pathogenesis of type 2 diabetes 

is always marked by an increase in insulin resistance.  Thus, the body requires a greater amount of 

insulin to maintain safe glucose concentrations.   

In particular, the pancreas is generally capable of producing much more insulin than is required 

by relatively healthy, insulin sensitive individuals.  Although individuals with increased insulin 

demand can usually maintain safe, normal appearing glucose concentrations, their decreased 

insulin sensitivity implies that they have impaired glucose tolerance (IGT) (ADA 2005).  

However, if insulin resistance is significantly exasperated, the maximal possible rate of insulin 

production can become incapable of maintaining safe, normal basal glucose concentrations.  At 

this stage, type 2 diabetes can first be diagnosed with typical tests. 

Further exacerbation of insulin resistance or prolonged exposure to this state often results in β-cell 

damage.  Due to over-working of the pancreas, or damage relating to elevated glucose, the β-cell 

mass is diminished, reducing the amount of insulin that the participant can produce.  Thus, long-

term and recently-diagnosed type 2 diabetic individuals can be readily distinguished by their 

distinctive insulin production rates.  While the recently-diagnosed diabetic individual’s 

endogenous insulin production is elevated, the long-term diabetic individual’s endogenous 

production is significantly reduced and may be near zero.   

Figure 1.03 shows the pathogenesis of type 2 diabetes by tracking the typical daily glucose 

concentration, typical daily insulin production demand and insulin sensitivity.  The increase and 

subsequent decline of insulin production is known as Starlings curve of the pancreas (Clark et al. 

2001; Gastaldelli et al. 2004).  A  similar curve was also shown by Ferrannini et al. (Ferrannini 

1997). Figure 1.03 clearly shows that glucose concentration does not rise to allow diagnosis until 

well after the loss of insulin sensitivity. 
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Figure 1.03.  A generalisation of the inter-relationships between insulin production, sensitivity 

and glucose concentration during the pathogenesis of type 2 diabetes. 

  

Therefore, unfortunately, the IGT state often goes unnoticed, and diagnosis often only occurs 

when insulin production becomes impaired.  Thus, some irreversible damage is usually done prior 

to the initiation of measures that could potentially mitigate the development or symptoms of 

diabetes.  Hence, the disease can be well established before diagnosis and many individuals may 

go undiagnosed.  Early diagnosis based on insulin resistance (reduced insulin sensitivity) could 

allow earlier treatment to better reduce costly damaging long-term complications.  Hence, there is 

a need for accurate insulin sensitivity based diagnostic tests.  Ideally, the test would provide a 

picture of participant status relative factors shown on Figure 1.03 and the aetiology of diabetes. 

Insulin Production
Insulin Sensitivity

Glucose Concentration

NGT IGT T2D
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Chapter 2.  Insulin sensitivity tests 

In order to appraise the tests that are presented later in this thesis properly, they should be placed 

in context of the insulin sensitivity tests that are currently available.  Thus, this chapter describes 

the established, commonly used insulin sensitivity tests.  This chapter reviews these tests in terms 

of parameter resolution and diagnostic accuracy, as well as clinical burden and cost. 

2.1  Introduction 

Most insulin sensitivity tests aim to measure the efficiency that insulin has on reducing blood 

glucose concentrations.  The meaning of insulin sensitivity, or even the role of insulin sensitivity 

tests, is controversial as insulin predominantly reduces blood glucose concentrations in two ways.  

Primarily, it facilitates the transport of glucose into cells, removing it from the bloodstream, thus 

reducing concentration (peripheral sensitivity).  Secondly, insulin suppresses endogenous glucose 

production (hepatic sensitivity).  Either effect, or a combination of effects will be measured 

depending on a particular test’s design.  Thus, although the general aim of insulin sensitivity tests 

is agreed upon, the subtleties of the effect measured are different, and the correct use or definition 

is somewhat ambiguous (Pacini & Mari 2003).  Notably, virtually none of the established tests 

consider the other factors in Figure 1.03 relating to insulin production. 

There is considerable evidence that a loss of peripheral insulin sensitivity is a critical factor on the 

pathogenesis of type 2 diabetes (DeFronzo & Ferrannini 1991; Ferrannini 1997; Harris et al. 

2003; Lorenzo et al. 2010; Martin et al. 1992; Zethelius et al. 2004).  Whereas some isolated 

studies have shown that the disease state is sometimes also characterised by the loss of  the insulin 

suppression of hepatic glucose release effect that is observed in healthy individuals (Consoli 

1992; Martin et al. 1992).  While there is a clear and consistently observed physiological 

contribution of the former to the pathogenesis of type 2 diabetes, the latter is also an important 

symptom of the disease state.  Thus, both conditions have relevant clinical implications for the 

risk assessment, diagnosis and treatment of diabetes.   

Unfortunately, these two distinct effects are very difficult to observe concurrently in a clinical 

trial.  To do so requires labelled tracer elements, and the outcomes require complex modelling 

approaches that are often very sensitive to noise, limiting clinical utility (Avogaro et al. 1989; 

Cobelli et al. 1986; Mari 1998).  Ultimately, the noise-sensitivity of such tracer studies has 
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limited their use in recent years and ongoing studies seem to have been abandoned in the 

literature. 

Hence, most insulin sensitivity test protocols seek to reduce the suppression effect that insulin has 

on hepatic glucose release, while observing peripheral insulin sensitivity.  In contrast, some 

protocols measure a combined effect of insulin to reduce plasma glucose concentration and 

hepatic glucose release.  While the former measures peripheral sensitivity, the latter measures 

what is named ‘whole body’ sensitivity.  However, many tests do not clearly state specifically 

which effect they are measuring, which can lead to confusion in comparing results across studies. 

2.2  Uses for insulin sensitivity tests 

Insulin sensitivity is a relatively strong predictor of the development of type 2 diabetes and could 

potentially be used as a risk assessment tool (Ader & Bergman 1987; Groop et al. 1993; Martin et 

al. 1992; Vozarova et al. 2002).  Thus, instead of identifying the diabetic state on the right of 

Figure 1.03, the initial decline of insulin sensitivity could be identified and the subject could be 

given a diagnosis of increased risk. Mitigative measures could then be prompted that may 

alleviate the loss of β-cell function.   

In a general practice setting, the current techniques with regard to assessing and mitigating the 

risk of diabetes are limited to recommending weight loss where appropriate and perhaps 

monitoring basal blood glucose when obesity is sustained.  If the blood glucose is elevated for a 

prolonged period, the practitioner may recommend an oral glucose tolerance test (OGTT, 

described in Section 2.3.3) for an official diagnosis of type 2 diabetes mellitus.  Thus, significant 

interventional measures are only actively made once the patient’s glucose control is significantly 

inhibited, and poor lifestyle choices have usually become ingrained.  Unfortunately, this stage 

usually happens only after significant and often irreversible β-cell damage has occurred.  In 

particular, many obese individuals with significantly reduced insulin sensitivity can be normo-

glycaemic and produce false healthy OGTT results (McAuley et al. 2001). 

However, if the risk of diabetes were considered a possibility and an insulin sensitivity test were 

administered, the interventional measures could potentially be applied to prevent, offset or reduce 

the intensity of type 2 diabetes.  Thus, the significant health costs associated with long-term type 

2 diabetes could be ameliorated, and the individual could maintain a better quality of life for 

longer.  Hence, early and accurate diagnosis is the key to reducing the human and economic costs 

of (rising) type 2 diabetes costs. 
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However, improved lifestyle outcomes and reduced incidence of type 2 diabetes is dependent on 

the high-risk patients’ compliance to, and the effect of intervention measures.  Such interventions 

have observed positive impact on participant weight and insulin sensitivity over the study or 

intervention duration (Clark et al. 2004; McAuley et al. 2002).  However, it remains to be 

established whether such interventions have a significant positive long-term effect.  These 

important considerations are outside the scope of the investigations presented in this thesis, as 

they first rely upon having effective early diagnosis, which is the critical element considered here. 

2.3   Various existing insulin sensitivity tests 

Insulin sensitivity tests can be classified as steady state, dynamic or fasting.  Steady state tests 

generally apply continuous stimulus and measure the resultant steady state condition of the 

participant.  Dynamic tests typically use bolus stimulus and observe the species kinetics that 

result.  Fasting protocols do not use stimulus and merely measure some key molecular 

concentrations in the fasted participant.  This section will detail the protocols of some well-known 

insulin sensitivity tests, and focus on their diagnostic use, clinical ease or burden, and overall 

capability. 

2.3.1  The hyper-insulinaemic euglycaemic clamp test (EIC) 

The EIC test was first proposed by Defronzo et al in 1979 (DeFronzo et al. 1979) and has since 

achieved gold standard status in the field of assessment of insulin sensitivity (Ferrannini & Mari 

1998; Pacini & Mari 2003).  Sensitivity metrics of the test have been shown to be accurate in 

terms of repeatability (DeFronzo et al. 1979; Mari et al. 2001; Monzillo & Hamdy 2003) and 

relevant in terms of its use for risk assessment of a series of metabolic conditions.  These 

conditions include: type 2 diabetes (DeFronzo & Ferrannini 1991; Ferrannini 1997; Hanley et al. 

2003; Zethelius et al. 2004), cardiovascular disease (McLaughlin et al. 2007) including 

congestive heart failure (Ingelsson et al. 2005), the metabolic syndrome (Hanley et al. 2005; 

Zimmet et al. 1999), and, in some cases, liver disease (Hanley et al. 2005).  These conditions are 

all associated with poor diet and exercise lifestyles and, with the exception of type 2 diabetes, no 

immediate etiologic pathway exists between insulin resistance and any of these diseases. 

The EIC test protocol requires a cannula placed in the antecubital fossa to enable insulin and 

glucose infusions.  A second cannula is placed retrograde in the dorsum of the hand to enable 
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blood sampling.  Most study designs include the heating of the hand surface to mobilize blood in 

the capillaries and enable samples that are more representative of overall, whole body interstitial 

concentrations.  The surface of the hand is usually warmed using a purpose-built heated-hand-

box, which heats and circulates air around the participant's hand.  The temperature of the heated 

air is generally controlled between 40 and 70°C. 

The test proper begins when insulin is first infused and is generally infused at a rate proportional 

to the participant’s size.  The rate is usually defined to achieve a certain plasma insulin 

concentration (100 mU/L is a typical target).  This concentration is relatively hyper-physiological 

as a typical insulin concentration of a healthy fasting person is 2-10 mU/L and 50-70 mU/L at the 

postprandial peak. 

A glucose infusion begins soon after the insulin infusion to maintain euglycaemia between 4 to 5 

mmol/L.  Blood samples are taken with relatively high frequency (2-15 minute resolution) and 

assayed for glucose at the bedside.  This frequent sampling allows manual alterations of the 

glucose infusion for feedback control of the participant’s blood glucose concentration.  The 

insulin and glucose infusions are generally continued for 2.5 to 4 hours, but can continue for up to 

24 hours in some studies (Swinnen et al. 2008).  Some samples are spun and frozen to be assayed 

for plasma insulin typically during steady state.  Basal insulin is usually measured, as well as at 

t=15 to 30-minute intervals after an hour of infusion.   

The first hour of the test generally involves transient rates of glucose infusion as the 

hyperinsulinaemic conditions begin to suppress the endogenous productions of insulin and 

glucose (Argoud et al. 1987; DeFronzo et al. 1979; Ferrannini & Mari 1998) and the clinician 

begins to understand the particular metabolic dynamics of the participant.  After approximately 

60-90 minutes, a steady rate of glucose infusion can be achieved as the participant reaches steady 

state.  However, if the participant’s glycaemia is poorly controlled in the early stages of the test, 

the participants may exhibit counter-regulatory effects that can destabilise the remainder of the 

test and disable insulin sensitivity identification. 

The EIC insulin sensitivity value is calculated as the rate that glucose is infused to the participant 

in the later steady-state stages of the test.  Most studies normalise this infusion rate by the 

participant’s weight or fat-free mass, while others normalise further by the particular insulin 

concentration achieved during the identification period.  A “space correction” can also be used to 

account for changes in the participant’s glucose concentration during the identification period of 

the test. 
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The EIC protocol suppresses most of the daily variations that can partially obscure the resolution 

of other insulin sensitivity tests.  The strong insulin and glucose stimulus of the EIC protocol 

suppresses endogenous glucose and insulin production and also minimises the influence of 

variation in these effects on the identified sensitivity value.  Thus, the EIC is highly repeatable.  

However, the protocol is arduous for both the participant and the clinician, and a steady-state 

infusion rate is not always assured at the end of the test.  Thus, a result is not always guaranteed. 

The insulin sensitivity value identified by the protocol is dependent on the concentration of 

insulin achieved, which, in turn, is a function of the specific dose and protocol used.  In addition, 

the effect of insulin is saturable (Natali et al. 2000; Prigeon et al. 1996).  For example, if the 

insulin concentration achieved were doubled, glucose clearance may only increase by 80%.  Some 

studies have investigated this effect and its impact on EIC results.  While some studies repeated 

the protocol on different days with varying insulin infusion rates (Kolterman et al. 1980), others 

used arduous stepped EIC protocols, wherein once steady state was established, the insulin 

infusion rate was changed (Laakso et al. 1990; Natali et al. 2000; Rizza et al. 1981).  The average 

plasma insulin concentrations at half-maximal effect found by these studies was 160 mU/L.  This 

value is close to the 100 mU/L insulin concentration target of most typical EIC protocols.  As 

such, EIC metrics, although highly repeatable at consistent doses, lose relevance either in 

different tests or in EIC tests with a different dosing.  Thus, insulin sensitivity values from the 

EIC are not directly comparable across studies. 

The EIC has achieved gold standard status in the field of insulin sensitivity testing.  However, this 

outcome does not necessarily imply that it is the optimal test for the screening for type 2 diabetes 

risk.  In particular, the test cannot provide an evaluation of the participant’s insulin production 

capability, nor an indication of participant’s expected daily glucose concentration.  Figure 2.01 

summarises the ability of the EIC to track the pathogenesis of type 2 diabetes with reference to 

Figure 1.03, where the dotted lines indicate aspects not measured by the EIC. 
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Figure 2.01.  Characteristics of the pathogenesis of type 2 diabetes observable by the typical 

EIC protocol.  The hyperinsulinaemic EIC is designed to solely quantify the participant’s 

insulin sensitivity, insulin production is not measured.  

 

A second EIC test protocol is available for the quantification of a participant's β-cell function.  

Instead of a sustained hyper-physiological insulin concentration, a sustained hyper-physiological 

glucose concentration is used.  Thus, in the steady state the pancreas will respond to the raised 

glucose concentration and produce insulin.  This protocol is not extensively utilised and cannot be 

used in conjunction with the hyper-insulinaemic EIC.  Insulin production and insulin sensitivity 

cannot both be identified concurrently with the EIC approach. 

2.3.2  Dynamic intra-venous tests 

Typical dynamic insulin sensitivity test protocols use bolus glucose and take a series of assays to 

measure the participant’s glucose decay and insulin concentration.  The insulin concentration is 

often increased by the participant’s endogenous physiological response to the test stimulus.  

However, some protocols strengthen the insulin signal with the addition of an exogenous bolus, 

this is particularly useful for type 1 and some type 2 diabetic subjects.  The sensitivity metrics of 

such tests are often derived using models of the insulin/glucose pharmaco-dynamics and relatively 

complex mathematical processes.  Many dynamic protocols have been developed to produce data 

that can enable insulin sensitivity identification using various specific or generic models and 

mathematical methods or algorithms. 

The most popular dynamic protocol is the intravenous glucose tolerance test (IVGTT).  There are 

a number of distinct protocols that are regarded as IVGTT tests.  However, a typical protocol 
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includes cannula in the dorsum of the hand, and/or the antecubital fossa for blood samples and the 

application of a bolus glucose input.  A series of fasting blood samples are taken to establish the 

basal condition of the participant.  This sampling is followed by a glucose bolus (at t=0).  The 

magnitude of the glucose bolus is usually a function of the participant’s size.  A typical dose may 

be 25g of glucose for a 75 kg participant.  Further samples are taken after the bolus.  The timing 

of the samples often reduces in frequency from about 2 to 3 minutes immediately after the bolus 

to 15 to 30 minutes 2 to 3 hours into the test protocol.  The duration of these tests varies 

significantly between 1.5 to 4 hours.  All samples are assayed for glucose and either a significant 

proportion or all of the samples are assayed for insulin.  Some IVGTT protocols are suffixed with 

‘FS-‘ to denote the frequent sampling (FS-IVGTT). 

The data can be used to quantify insulin sensitivity in a variety of ways.  However, insulin 

sensitivity is usually estimated using the non-linear least-squares parameter identification method 

with the Minimal-Model of insulin glucose dynamics proposed by Bergman et al. (Bergman et al. 

1979; Bergman et al. 1981; Bergman et al. 1987; Boston et al. 2003; Caumo et al. 1999).  

Although this method has been extensively validated since it was devised (Bergman et al. 1987; 

Donner et al. 1985; Finegood et al. 1984; Saad et al. 1994), numerous issues have been identified. 

These issues include the over-parameterisation of the Minimal-Model that causes the inability to 

distinguish between insulin and non-insulin mediated glucose disposal, and the convergence to 

local, not global, error minima during the non-linear least-square identification process (Pillonetto 

et al. 2002; Quon et al. 1994b).  A novel investigation of this particular issue is presented later in 

Section 5.4.2.  The issue of over parameterisation can be mitigated somewhat by the application 

of complex Bayesian identification methods (Cobelli et al. 1999; Denti et al. 2009; Erichsen et al. 

2004; Pillonetto et al. 2002).  However, there are no reported, complete solutions for all these 

issues, which affect the diagnostic resolution and repeatability of these tests. 

The Minimal Model defines the rate of glucose disposal as a function of glucose concentration 

(G) over the basal concentration (GB), and the 'action' of insulin (X) multiplied by the available 

glucose.  The model is defined: 

�� 	 
��
� 
 ��� 
 �� � ���� 2.01 

�� 	 
��� � ��
� 
 ��� 2.02 
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where: SG represents the decay of glucose as a function of glucose concentration over basal 

[1/min]; p2 lumps the rate of insulin transport into the in-accessible compartment (interstitium) 

and efficiency of insulin into a single parameter [1/min]; p3 lumps the clearance of insulin from 

the in-accessible compartment [L/mU/min2]; VG is the volume of distribution of glucose [L]; and 

I-IB is the plasma insulin concentration above basal [mU/L].    

Insulin sensitivity (SI) is estimated as a function of p2 and p3: 

�� 	 ���� 2.03 

Both SI and SG metrics are functions of glucose concentration and quantify glucose decay.  Thus, 

parameter value tradeoffs can occur during the identification process and intra-participant 

repeatability between tests can be poor (Gelding et al. 1994; Monzillo & Hamdy 2003; Pillonetto 

et al. 2003; Quon et al. 1994a).  This error is propagated by the susceptibility of clinical data to 

measurement noise from assay error, physiological mixing, ineffective cannula flushing or species 

decay prior to assay.   

Metrics of insulin sensitivity from the IVGTT correlate relatively well to the gold standard EIC in 

most studies, but some studies have shown significant differences (R=0.44-0.85) (Donner et al. 

1985; Foley et al. 1985; Galvin et al. 1992).  This uncertainty, coupled with the over-

parameterisation issue and the limited accessibility of the complex computer identification 

algorithms has limited the widespread acceptance of the IVGTT for use outside of research 

focused clinical trials.   

IM-IVGTT and TM-IVGTT 

Two variations of the IVGTT are also used.  The first incorporates an insulin bolus or 

occasionally infusion (Ward et al. 2001) 10 to 20 minutes after the glucose bolus: the insulin 

modified IVGTT (IM-IVGTT).  The second variation incorporates a tolbutamide bolus 10 to 20 

minutes after the glucose bolus (TM-IVGTT).  Tolbutamide stimulates a large, almost immediate, 

release of endogenous insulin.  These protocols produce a greater consistency of insulin 

concentration across participants and a stronger signal for the identification methods.  As such, 

the results are generally more stable and correlate somewhat more consistently with the EIC 

(R=0.70 to 0.89) (Bergman et al. 1987; Saad et al. 1997). 
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Figure 2.02 illustrates the aspects of the pathogenesis of type 2 diabetes that the various IM-

IVGTT protocols can typically quantify accurately.  Note that insulin sensitivity becomes poorly 

identified in the IGT/T2D regions and that insulin production is not measured at all. 

 

Figure 2.02.  Characteristics of the pathogenesis of type 2 diabetes observable by a typical 

IVGTT protocol.  Typical metric identification methods of the IVGTT cannot differentiate 

between insulin sensitivity of participants in the latter stages of the pathogenesis of type 2 

diabetes. 

 

ITT 

The insulin tolerance test (ITT) is a dynamic test that involves the administration of a relatively 

large bolus of insulin to a fasted participant.  Once a threshold of hypoglycaemia is reached, 

usually <2.2 mmol/L, the clinician quickly administers glucose to aid a return to euglycaemia.  

The rate that the participant’s glucose concentration declines is measured and a metric of insulin 

sensitivity is derived.  The test protocol is very dangerous, as severe hypoglycaemia is 

consistently and purposefully induced.  As such, it is has been abandoned for insulin sensitivity 

testing and is only used very infrequently to detect very unusual conditions, such as pituitary or 

adrenal dysfunction, amongst others.  However, the ITT has correlated particularly well to the 

EIC (R=0.83 to 0.9) (Bonora et al. 1989; Grulet et al. 1993), and it is relatively low in required 

clinical effort. 
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2.3.3  Oral glucose tolerance test (OGTT) 

The oral glucose tolerance test involves the oral consumption of a drink with pre-defined glucose 

content.  Various doses and sampling protocols are used.  However, the most common are the 75g 

2-hour trial and the 50g 1-hour trial.  The 75g protocol can be frequently sampled with assays for 

insulin and glucose, or sparsely sampled with only one blood test at the end of the test.  The 50g 

protocol usually only involves a single blood sample which is taken at the end of the trial.  

Diagnosis is typically made using the last glucose sample to determine whether the participant has 

the ability to reduce glucose loads adequately.  Thus, diagnostic use of the OGTT does not 

typically calculate insulin sensitivity directly. 

When samples from the frequently sampled 75g protocol are assayed for glucose and insulin a 

surrogate metric of insulin sensitivity can be obtained.  These surrogate metrics tend to involve 

simple mathematical equations of the assay values and have been extensively published 

(Cederholm & Wibell 1990; Gutt et al. 2000; Matsuda & DeFronzo 1999; Piché et al. 2007; 

Stumvoll et al. 2000).  Equations 2.04-2.07 show the equations of some popular OGTT metrics.    

 ���������� 	 10000 �!�!�"� " 2.04 

 ���#$�$%&'() 	 75000 � 39.3/0
�! 
 ��&�120 ln
� "� �"  
2.05 

 ������� 	 75000 � 0.19/0
�! 
 ��&�120 ln 
�! � �"�
�! � �"�4   
2.06 

 ���5��)6'(( 	 0.226 
 3.2 89�/:� 
 6.4589;�<�= 
 3.7589��>= 2.07 

where: �"  and � " represent the average of the t=0, 30 , 60 and 120 glucose and insulin assays, 

respectively.  

Some model-based methods for parameter estimation have also been proposed (Dalla Man et al. 

2005b; Mari et al. 2005; Mari et al. 2001).  However, the variable rate of absorption of glucose 

from the gut to the bloodstream is difficult to measure and causes significant variability in results 

and computational parameter identification issues.  The identified insulin sensitivity values in 

particular are affected by the variable rate of absorption.  Thus, variations in absorption or 

appearance rates play a major complicating role. 

One such model modifies Bergman’s Minimal Model to include a term for the absorption of 

glucose (Breda et al. 2002; Dalla Man et al. 2005a).  Bayesian techniques coupled with tracer 

elements enable high correlations to the EIC.  However, the limited availability of tracer glucose 

and the complexity of the modelling and identification required when using this approach has 
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limited it’s broader use.  Table 2.01 shows the correlations reported between these metrics and the 

gold standard EIC.   

OGTT Metric 
EIC SI 

correlation 
References 

Matsuda 0.57-78 (Lorenzo et al. 2010; Malita et al. 2010; Piché et al. 
2007; Pigeon et al. 2009; Soonthornpun et al. 2003) 

Cederholm 0.53-79 (Piché et al. 2007; Pigeon et al. 2009; Soonthornpun 
et al. 2003) 

Gutt 0.58-0.63 (Gutt et al. 2000; Soonthornpun et al. 2003) 

Stumvoll 0.51-0.75 (Malita et al. 2010; Piché et al. 2007; Soonthornpun 
et al. 2003) 

Oral Minimal 
Model 

0.71-0.81 (Breda et al. 2002; Dalla Man et al. 2005a) 

Table 2.01.  Reported performance evaluation values (when available) for the presented OGTT 

surrogate insulin sensitivity metrics. 
 

The OGTT is not often used in clinical investigations that require accurate insulin sensitivity 

values, nor is it used for the assessment of diabetes risk.  However, the OGTT is currently an 

accepted method for the diagnosis of type 2 diabetes.  Thus, the single blood test 2 hour 75g form 

of the OGTT will continue to be a commonly used glycaemic test.  Figure 2.03 shows that the 

participant’s insulin sensitivity and glucose concentration can be measured through the 

pathogenesis of type 2 diabetes.  However, insulin production characteristics are not frequently 

reported. 

An alternative version of the OGTT includes the administration of a pre-defined meal instead of 

the sugary drink (MTT).  The meal is usually a standard size with a reported energy composition 

by carbohydrate, protein and fats.  The MTT has been used to both predict insulin sensitivity 

(Caumo et al. 2000; Steil et al. 2004) and insulin production (Hovorka et al. 1998; Mari et al. 

2002).  MTT studies have shown a moderate SI identification equivalence with the EIC (R=0.76) 

(Steil et al. 2004), and an improved correlation with the FSIVGTT 0.89 (Caumo et al. 2000). 
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Figure 2.03.  Characteristics of the pathogenesis of type 2 diabetes observable by the OGTT. 

2.3.4  Fasting metrics 

Numerous fasting measures can be used to asses an individual’s metabolic health.  However, only 

those which are relevant to the pathogenesis of diabetes are discussed here.  Garcia-Estevez et al. 

and Ruige et al. contain more complete reviews of such tests (Garcia-Estevez et al. 2003; Ruige et 

al. 2006). 

Fasting glucose 

Fasting plasma glucose (GB) is the most frequently used test to assess a subject’s diabetic status.  

It is the least expensive and lowest intensity test available other than using anatomical 

characteristics like BMI or waist measurements.  Samples can be assayed in real-time in a general 

practice setting.  However, fasting glucose measurements can only become informative once an 

insulin production defect has already occurred (between IGT and T2DM in Figure 1.03).  Thus, it 

is a very poor predictor of insulin sensitivity or the risk of developing type 2 diabetes.   

Studies have correlated fasting plasma glucose to the EIC with results in the range R= -0.31 to -

0.56 (Gutt et al. 2000; Ruige et al. 2006) 

HOMA 

The homeostasis model assessment (HOMA) measures blood glucose and insulin in the fasting 

state.  The most common use of HOMA assays a single fasting sample for insulin and glucose.  

The concentrations of these species are multiplied and scaled to produce a measure of insulin 
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resistance (Equation 2.08).  This value can thus be inverted for an insulin sensitivity value as in 

Equation 2.09.   

 ?@:ABC 	 �!�!22.5 2.08 

 ?@:A5B 	 22.5�!�! 2.09 

However, this method was not what was intended by the creators of the metric.  The initial 

process requires a series of samples to be taken on subsequent days (Wallace et al. 2004).  Thus, 

the clinical intensity of the initially proposed method is significantly increased.  Almost all studies 

that use HOMA use the single sample method. 

HOMA has been validated against the EIC a number of times yielding a wide spread of 

correlations values between R=0.22 and R=0.93 (Bonora et al. 2000; Lorenzo et al. 2010; Mari et 

al. 2001; Mather et al. 2001; Matthews et al. 1985; Pacini & Mari 2003; Piché et al. 2007).  

Relatively high CV values have also been reported (10 to 20%) (Bonora et al. 2000; Matthews et 

al. 1985; Wallace et al. 2004). 

Figure 1.03 indicates that the pathogenesis of type 2 diabetes is intrinsically linked to insulin 

sensitivity and can be reasonably observed in changes in the subject’s insulin and glucose 

concentrations.  The HOMA metric thus assumes that insulin sensitivity will be inversely 

proportional to both insulin and glucose concentrations.  This assumption is generally correct until 

β-cell damage occurs and insulin production is impaired.  However, the lack of test stimulus 

means that the effect of the pulsatile release of insulin (Del Prato et al. 2002; Meier et al. 2005) 

and assay error have a notable and adverse confounding effect on the identified insulin sensitivity. 

HOMA is currently used by some general practitioners, primarily for a diagnostic of insulin 

resistance.  However, the relatively high coefficient of variation and the lack of real-time 

available results limit the tests value.  Thus, in many cases a simple fasting glucose is used, and is 

considered more practical in a general clinical setting.   

Figure 2.04 shows that the HOMA basal glucose measurement could approximate the location of 

the participant along the latter stages of the pathogenesis of type 2 diabetes.  However, during this 

stage of pathogenesis when the insulin production becomes inhibited, insulin sensitivity 

estimation becomes erroneous.  For example, a mildly resistant individual with normal fasting 

glucose and corresponding increased basal insulin might have an equal HOMA value to a diabetic 

individual with elevated glucose and depleted insulin production capability.  Thus, the resolution 

of the HOMA is poorest in the region of maximum clinical utility.  The insulin assay may infer 
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the participant’s insulin production capability to an extent.  However, it is not a direct or relied 

upon measurement. 

 

Figure 2.04.  Characteristics of the pathogenesis of type 2 diabetes observable with the HOMA 

metric (and contributory assays).   

 

QUICKI  

QUICKI is a simple inversion and log transform of the HOMA-IR value and as such has 

effectively performed the same as HOMA in validation studies (Chen et al. 2005; Hrebicek et al. 

2002; Katz et al. 2000).  There is thus no difference between them from the prospective of this 

research. 

HbA1C 

HbA1c (glycated haemoglobin) effectively allows a measurement of the subject’s recent average 

plasma glucose concentration.  The indicative timeframe of HbA1c values has not been 

conclusively confirmed.  However most estimates fall between 2 weeks and 3 months.  This range 

is based on the lifetime of a red blood cell of 13 weeks.  However, with a 5 week half-life, the 

values are likely to be weighted towards a shorter-term period.  Hence, HbA1c is not an insulin 

sensitivity test.  Rather, it is an appraisal of the participant’s glucose control capability, which is a 

function of the subject’s insulin sensitivity and insulin production.  HbA1c assays are being used 

with increasing frequency to measure and quantify individuals’ glycaemic health, and have 

recently become an accepted test for diabetes diagnosis (ADA 2010). 

Specifically, haemoglobin makes up approximately 97% of the red blood cell and facilitates the 

transport of oxygen around the body.  However, glucose molecules in the plasma can become 
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attached to haemoglobin and remain attached for the duration of the cell’s three-month life cycle.  

The rate of attachment is proportional to the blood glucose concentration and thus, the proportion 

of glycated haemoglobin to total haemoglobin can be used to predict or illustrate the average 

blood glucose concentration of the subject during the life cycle of the haemoglobin.   

Nathan et al. (Nathan et al. 2008) presented a linear regression between 2700 glucose assays from 

661 subjects and their associated HbA1c levels.  The cohort was weighted towards individuals 

with type 1 and type 2 diabetes, but had a significant number of NGT participants.  Equation 2.10 

presents the regression line proposed by Nathan et al. that links HbA1c with average glucose 

concentration (�"). 
 �" 	 1.59?DA1E 
 2.59 2.10 

Equation 2.10 produces a particularly strong adherence to the measured data (R2=0.89). 

Barr et al. present a relatively low intra-participant CV of 2-4% and promotes the use of HbA1c 

assays for the diagnosis of diabetes (Barr et al. 2002).  Recently, HbA1c has increasingly become 

accepted and used as a method of diabetes diagnosis.  Until very recently the American Diabetes 

Association (ADA) has only recommended HbA1c as a tool to define optimal treatment of 

diabetes (ADA 2007).  However, now the organisation accepts the use of HbA1c for diabetes 

diagnosis (ADA 2010).  A threshold of 6.5% is used for diagnosis, which corresponds to recent 

average plasma glucose concentrations of approximately 7.8 mmol/L. 

Testing for HbA1c has some unique benefits over the sensitivity tests presented.  It does not 

require that the subject is fasted, and it only requires a single blood test.  Thus, the clinical 

intensity of the test is very low.  However, it must be re-iterated that it is not an insulin sensitivity 

test, it is a test for average glucose.  Thus, it is not capable of measuring changes in sensitivity 

during clinical trials or after interventions.  Furthermore, in reference to Figure 1.03, it is only 

capable of capturing the period around IGT when glucose is beginning to creep up.  It cannot 

observe when declining insulin sensitivity is counter-regulated by an increase in insulin 

production.  Thus, HbA1c can only provide a risk assessment for type 2 diabetes in the very late 

stages of pathogenesis when diabetes is imminent.  Figure 2.05 shows this outcome graphically.  

Nonetheless, the test remains an important tool for the diagnosis, treatment and investigation of 

the disease state and etiology of type 2 diabetes. 
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Figure 2.05.  Characteristics of the pathogenesis of type 2 diabetes observable using the 

HbA1c assay.  Note that HbA1c cannot discern insulin sensitivity or insulin production 
 

McAuley index 

The McAuley index is a surrogate insulin sensitivity value for that uses fasting assays of insulin 

and triglyceride (TAG) from a single blood test.  Triglycerides store the energy of dietary fat 

intake for later use.  Insulin promotes the generation of triglycerides that are thus elevated in 

insulin resistant individuals.  Equation 2.11 shows the McAuley index that was derived using a 

multivariable regressive analysis of data from a series of clinical studies (McAuley et al. 2002). 

 ����FG�($H 	 8�.;�9=.�I JK
BL�9=.�< JK
MG��
 2.11 

The McAuley index correlates relatively well to the EIC considering the low intensity of the test 

(R=0.48-0.61) (McAuley et al. 2002; Oterdoom et al. 2005; Ruige et al. 2006). 

Other studies have used functions of fasting assays, including fasting triglyceride levels, as 

surrogates for the EIC similar to this index.  They have found correlations in the range of R=0.40-

0.72 (Amato et al. 2010; Guerrero-Romero et al. 2010; Schwartz et al. 2008).  Hence, none 

provides a significant advance on the established methods, although they do incorporate more 

relevant physiological markers associated with type 2 diabetes and its etiology. 

Insulin Production
Insulin Sensitivity

Glucose Concentration

NGT IGT T2D



Page 27 

2.4  Relative uses, accuracies and costs 

The accuracy in terms of intra-participant repeatability and correlation to the gold standard EIC of 

a series of insulin sensitivity tests is summarised in Table 2.02. 

Insulin 
sensitivity test 

SI  

CV 
EIC-SI 

corr’n 
Clinical 
Intensity 

Assays 
Required References 

EIC 6-10% - very high 
12-36 Glucose 

3-10 Insulin 
(DeFronzo et al. 1979; Mari et al. 
2001; Monzillo & Hamdy 2003) 

IVGTT  

(incl 
FSIVGTT) 

14-82% 0.44-0.85 high 
12-36 Glucose 
12-36 Insulin 

(Donner et al. 1985; Ferrannini & 
Mari 1998; Ferrari et al. 1991; 
Foley et al. 1985; Galvin et al. 

1992; Mari & Valerio 1997; 
Scheen et al. 1994) 

IM-IVGTT 

TM-IVGTT 
6-88% 0.70-0.89 high 

12-36 Glucose 
12-36 Insulin 

(Bergman et al. 1987; Erichsen et 

al. 2004; Rostami-Hodjegan et al. 
1998; Saad et al. 1997) 

ITT 7-31% 0.81-0.9  extreme 
inhibitive 

10-15 Glucose 
(Bonora et al. 1989; Gelding et al. 
1994; Grulet et al. 1993; Monzillo 

& Hamdy 2003) 

2hr-OGTT 
for T2 

Diagnosis 
15-40% 0.43-0.74 low 1 Glucose (Ferrannini et al. 2005; Levy et al. 

1999; Stumvoll et al. 2000) 

OGTT 
surrogate 

metrics 
7-15% 0.51-0.79 moderately 

low 
4-8 Glucose 

4-8 Insulin 

(Gutt et al. 2000; Lorenzo et al. 
2010; Malita et al. 2010; Piché et 

al. 2007; Pigeon et al. 2009; 
Soonthornpun et al. 2003) 

OGTT 
Minimal 

Model 
12-15% 0.70-0.81 

moderately 
low 

4-8 Glucose 
4-8 Insulin 

(Breda et al. 2002; Dalla Man et al. 
2005a) 

MTT 15% 0.76 
moderately 

low 
4-8 Glucose 
4-8 Insulin 

(Hovorka et al. 1998; Steil et al. 
2004) 

HOMA 10-20%  0.22-0.93  very low 
1 Glucose 
1 Insulin 

(Bonora et al. 2000; Katsuki et al. 
2001; Katsuki et al. 2002; Lotz et 

al. 2008; Mari et al. 2001; Mather 
et al. 2001; Matthews et al. 1985; 
Pacini & Mari 2003; Piché et al. 

2007; Wallace et al. 2004) 

Fasting 
plasma 
glucose 

~3% -0.46 very low 1 Glucose Validation study data 

TAG metrics  

(incl McAuley 
index) 

21%+ 0.42-0.72 very low 
1 TAG 

1 Insulin (or 
similar) 

(Amato et al. 2010; Antuna-Puente 
et al. 2009; Guerrero-Romero et al. 

2010; McAuley et al. 2002; 
Oterdoom et al. 2005; Ruige et al. 

2006; Schwartz et al. 2008; 
Widjaja et al. 1999) 

HbA1c 2-4%* - 
extremely 

low 
1 HbA1c (Barr et al. 2002) 

Table 2.02.  Comparative statistics of the various tests (* the CV of the HbA1c assay is not 

indicative of the coefficient of variation of the mean glucose).  
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In summary, the hyperinsulinaemic EIC (EIC) is the gold standard of insulin sensitivity testing by 

merit of its consistent, irrefutably low intra-participant variation.  However, the test evaluates the 

efficiency of a supra-physiological insulin concentration to clear glucose to the periphery (skeletal 

muscle).  This information is an imprecise representation of the participant’s daily metabolic 

physiology.  In addition, the results are dose dependent and not readily comparable between 

protocols.  Furthermore, the procedure is arduous, for the clinician and participant and a result is 

not necessarily guaranteed.  Hence, the significant clinical burden and cost of this protocol has 

limited it’s use to either small scale or very expensive clinical research programmes. 

Dynamic tests that utilise intravenous stimulus (IVGTT, FS-IVGTT, IM-IVGTT and TM-IVGTT) 

have shown ambiguous outcomes in terms of both coefficients of variation and correlation to the 

EIC.  However, it is likely that the poorer outcomes may have occurred as a result of poor clinical 

data collection practice or model application.  Equally, they may represent flaws in models or 

identification methods or a lack of repeatability for other reasons.  Furthermore, the stronger 

outcomes are generally from studies that utilise Bayesian statistical methods to maximise 

performance outcomes, but do not provide a transparent value of insulin sensitivity at an 

individual level. 

The poor identifiability of the Minimal Model of glucose disposal has also obscured the outcomes 

of many studies that use dynamic IV test protocols.  Attempts to mitigate this poor identifiability 

have caused protocols to incorporate increasing sample frequency.  Thus, the clinical intensity of 

some FS-IVGTT dynamic test protocols has crept past that of the EIC.  Hence, like the EIC, such 

dynamic IV tests are typically only used in clinical research settings. 

The oral tests such as the OGTT, 2hr-OGTT and MTT generally produce less accurate insulin 

sensitivity values (if they produce one at all) compared to the EIC or dynamic IV protocols.  

However, the clinical intensity of the protocol is significantly reduced.  The tests are used to 

quantify insulin sensitivity in some studies, particularly when insulin sensitivity is the secondary 

consideration of a study.  The 2hr-OGTT is primarily used to diagnose diabetes status, both in 

research and for outpatients, but without an insulin sensitivity value.  Hence, it is not used to 

provide an early diagnosis or risk. 

Fasting tests have shown varied surrogate performance for the euglycaemic clamp and some 

ambiguity exists to the utility of such metrics.  HOMA and fasting insulin are frequently reported 

in studies that include insulin sensitivity as a secondary consideration.  Fasting glucose 

concentrations are occasionally used to characterise subgroups.  Triglyceride based metrics are 

relatively new and have not yet been incorporated into many insulin sensitivity studies. 
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Although HbA1c provides virtually no indication of insulin sensitivity, it is likely that it will 

become the norm of type 2 diabetes diagnosis.  It is a very low intensity test that needs only a 

single blood test from an un-fasted participant.  The assay allows a relatively accurate inference of 

the participant’s recent mean glucose concentration, which is a very good indicator of the test 

recipients recent glycaemic health.  However, the symptoms of diabetes occur as a result of 

excessive glucose concentration, and generally only after a long period of increased insulin 

resistance.  As such, quantification of mean daily glucose concentration is a very relevant diabetes 

diagnostic, but cannot provide an early diagnosis of risk.    

Figure 2.06 schematically summarises the cost and accuracy of the various tests presented.  Cost 

incorporates assay cost, clinical time and intensity, and participant time and discomfort.  

Accuracy measures the intra-participant repeatability and correlation to gold standard test.  The 

weighting of the contributing attributes cannot be fairly established.  Thus, the figure is 

dimensionless and only shows indicative costs and accuracies of the various tests. 

 

Figure 2.06.  The relative costs and accuracies of the established insulin sensitivity tests. 

 

The most notable feature of Figure 2.06 is the region toward the origin that is un-occupied by 

established tests.  This region presents an opportunity for the development of new approaches for 

the quantification of insulin sensitivity that incorporate low cost and high accuracy attributes. 
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Chapter 3.  Parameter identification 

This chapter describes some of the model parameter identification methods used in the analyses 

contained in subsequent chapters.  The integral method (Hann et al. 2005b) was used in the pilot 

and validation investigations of the DISST test (Lotz et al. 2010).  The iterative integral method is 

a development of the integral method that achieves greater accuracy.  The nonlinear least-squares 

method is included as it is typically used to identify insulin sensitivity parameters from dynamic 

tests and thus serves as a good comparator.   

3.1  Introduction and motivation 

Mathematical models have been developed for numerous phenomenons, and in the case of insulin 

sensitivity tests, many models have been postulated (Carson & Cobelli 2001; Caumo & Cobelli 

1993; Chase et al. 2010; Sherwin et al. 1974).  Most such models are systems of first order linear 

or nonlinear ordinary differential equations that describe the kinetics of insulin, or the dynamics 

of insulin dependent glucose decay.  A good model should be able to quantify the variation in the 

kinetics and dynamics between test subjects with distinct physiological responses by varying the 

values of key specific model parameters.  Typically, the parameter values that produce the closest 

adherence between the model simulations and observed reactions are used to quantify and 

distinguish the test participant’s responses.   

There are a number of methods to identify the most accurate parameter values relative to clinical 

data observations.  Furthermore, there are a number of ways to define precisely what ‘accurate 

parameter values’ means in the context of parameter identification.  Typically, parameter values 

that define the best fit between the measured data and the model-based simulation are considered 

the most accurate.  However, emerging Bayesian techniques can be used to shift identified values 

toward known population trends and away from the most accurate fit to data (Cobelli et al. 1999; 

Denti et al. 2009; Erichsen et al. 2004).  Thus, accuracy is considered in context of population 

trends by Bayesian methods.  Furthermore, some observations can be considered more 

representative than others, within any method, and thus the error mitigation is biased to what may 

be considered more relevant data points by the identification method applicator.  
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3.2  Integral method 

The integral method was introduced by Hann et al. (Hann et al. 2005a) and functions by obtaining 

the coefficients of the discretised integral formulation of the governing model equations.  The 

integral method was also used to define the parameter values of the pilot and validation 

investigations of the DISST test (Lotz et al. 2010). 

3.2.1  Generalised integral method process 

The integral method processes is demonstrated with a generalised system.  Consider a coupled 

first order differential equation system defined by Equations 3.01 and 3.02, and sampled in X. 

 �� 	 N
�, P, Q, R, D, ES� 3.01 

 P� 	 N
�, P, Q, ES, TS� 3.02 

where: X and Y are time variant mutually dependent species concentrations.  U is a known time 

variant, a and b are variable parameters and c and d are known a-priori parameters.  Assume that 

data is obtained in terms of X. 

The integral method uses the following steps to identify model parameters. 

1. The model is separated into linear coefficients of the parameters 

 �� 	 RN<
�, P, Q, ES� � DN�
�, P, Q, ES� � N�
�, P, Q, ES� 3.01a 

 U �� 	 R U N<
�, P, Q, ES� � D U N�
�, P, Q, ES� � U N�
�, P, Q, ES� 
3.01b 

2. The functions are evaluated using the best possible representation of the required 

parameters and time variant profiles.  In some cases, the best possible representation will 

be obtained by interpolation between measured points, and in other cases, physiological 

behaviour is simulated to approximate the system behaviour with reference to measured 

data.  Function 3.01b is integrated from i to j: 

 �V 
 �S 	 R U N<
�, P, Q, ES�V
S � D U N�
�, P, Q, ES�V

S � U N�
�, P, Q, ES�V
S  

3.03 
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where: i and j represent different discrete times.  The time between t=i and t=j represents 

a period over which the integral method is applied to identify the parameters.  For 

example, i could equal 0, while j = 0, 2, 4, ..., n-2, n indicating a series of periods that 

begin at t=0 and end on 2 minute intervals.  In contrast, i could equal 0, 2, 4, …, n-4, n-2.  

While j=2, 4, 6, …, n-2, n representing a series of two minute intervals, the first being t=0 

to 2 minutes then t=2 to 4 minutes.  These intervals are defined differently depending on 

the data resolution, model and potential parameter variations over time (Hann et al. 2006; 

Hann et al. 2005b). 

3. The selected periods are evaluated using the estimated parameters and profiles and then 

entered into a matrix equation defined: 

WX
XX
XX
XYU N<
�, P, Q, E�V<

S< U N�
�, P, Q, E�V<
S<U N<
�, P, Q, E�V�

S� U N�
�, P, Q, E�V�
S�Z ZU N<
�, P, Q, E�V[

S[ U N�
�, P, Q, E�V[
S[ \]

]]
]]
]̂

_RD` 	
WX
XX
XX
XY�V< 
 �S< 
 U N�
�, P, Q, E�V<

S<�V� 
 �S� 
 U N�
�, P, Q, E�V�
S�Z�V[ 
 �S[ 
 U N�
�, P, Q, E�V[
S[ \]

]]
]]
]̂
 3.03a 

Assuming sufficient periods are evaluated, the parameters a and b are over-defined and 

can be uniquely identified using linear least squares approaches.  Constraints can be 

placed on the values of a and b to meet physiological assumptions (e.g. non-negative 

clearance rates). 

3.2.2  Summary of the integral method 

The advantages of the integral method include: 

• Very fast identification time as it does not require numerous simulations to complete 

identification, and numerical integration of data is computationally efficient. 

• Convex, and thus very stable in computation. 

• Does not require accurate initial value estimation of parameters prior to identification, in 

contrast to non-linear least squares approaches. 

• Results are dependent on period selection, thus careful positioning can limit the effect of 

incorrect assays, or increase the influence of particular areas of the test  
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Disadvantages of the method include 

• Results are dependent on estimation of contributing species concentration.  Parameter 

identification accuracy is linked to the overall accuracy of the initial simulations. 

• The integral method is not iterative, and thus convergence of parameters and 

minimisation of residuals does not occur.   

• The model must be linearisable in terms of the variable parameter coefficients.  The 

governing equation must be separated into linear functions of the parameters. All 

parameters must be included in the governing equation of the assayed concentration 

(although the model may be re-arranged to achieve this in some cases).  This point is not 

a disadvantage for the models in this thesis, but does limit its use in some applications. 

3.3  Non-linear least squares  

Non-linear least squares is a parameter identification method frequently used with physiological 

models.  It is the dominant method used in a wide range of forms for physiological and metabolic 

system modelling.  The principle of the method is essentially similar to that of Newton’s 

derivative root finding method applied to error.  Parameter estimation values shift between 

iterations and are driven by derivative of a multidimensional error surface with respect to 

infinitesimal changes in the model parameters. 

3.3.1  Generalised non-linear least square method process 

Although there are numerous ways to apply non-linear least squares approaches, the general 

underlying method is presented using the generalised model of Equation 3.01 and 3.02. 

 �� 	 N
�, P, Q, R, D, ES� 3.01 

 P� 	 N
�, P, Q, ES, TS� 3.02 

1. The first step requires the initial value estimation of a and b (ak and bk).  X and Y are then 

simulated (XSimk and YSimk) which adds significant computational cost for complex models.  

The error between the assayed species measurements (Xmeas) and the simulated value 
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(XSimk) at the measurement times (tS) are squared then summed to produce the residual 

value (R). 

 a 	 bc�5S)d
e5� 
 ��$��
e5�f�[
<  3.04 

2. A Jacobian is then generated in which there are differential gradient values measuring the 

effect of parameter changes on residual error is generated. 

 g 	 WXX
XYTa�hTR<Ta�iTD< \]]

]̂ 3.05 

3. The values of a and b are then updated using, a function of the current parameter values 

and the Jacobian in Equation 3.05.  A local, or perhaps global, residual minima will occur 

when the Jacobian equals zero.  As such, the parameter values are driven in the negative 

direction of the residual slope.  The typical Gauss-Newton method uses Equation 3.05 to 

derive a k+1 and b k+1. 

 jRdk<, Ddk<l 	 m � jRd , Ddl 3.06 

where   m 	 gM
�5S)d
e5� 
 ��$��
e5��gMg  3.06a 

A great number of alternatives exist to stabilise or accelerate the overall convergence of 

the method.  Most notable is the Levenberg-Marquardt algorithm which introduces a 

damping factor (λ) to Equation 3.06a (Equation 3.06b) (Levenberg 1944; Marquardt 

1963).  The damping factor limits the rate of model parameter change between iterations, 

thus preventing potential overshoot and instability.  Therefore, although the Levenberg-

Marquardt method is more stable than the basic method, it requires more iterations for 

convergence.   

 m 	 gM0
�5S)d
e5� 
 ��$��
e5��gM0g � λ�  3.06b 
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where: I is the identity matrix; W is a weighting factor that allows parameter levels of 

influence for different data points (not exclusive to the Levenberg Marquardt algorithm); 

and λ is the damping factor.   

4. Steps 1 to 3 are iterated until the Jacobian value is below a certain threshold and either 

convergence is declared, or the maximum number of iterations is reached and failure to 

converge is declared. 

3.3.2  Evaluation of non-linear least squares 

Non-linear least squares is the preferred method for parameter identification in the field of insulin 

sensitivity testing and in a number of other model-based applications.  Positive aspects of the 

method include: 

• Capable of functioning with almost all model configurations 

• When convergence occurs, the method finds a local or global residual minima 

• Experienced users can tune the method to optimise stability and speed trade-off  

The method also has some intrinsic faults that can produce very inaccurate results.  In particular: 

• Initial parameter estimates are required, and solutions are starting point dependent.   

• There is no way of confirming whether the result is a global or local minima. 

• Stability is not assured and is dependent on the initial parameter estimation and 

convergence rate. 

• Each iterative step requires numerous full simulations of each relevant species.  This 

requirement can require extreme and, at times, inhibitive computation power or time. In 

particular, if there is no analytical solution to the model computationally expensive 

Runga-Kutta algorithms (or similar) are required numerous times for each step. 

The primary strength of the non-linear least squares method is in the unlimited number of models 

to which it can be applied.  This key aspect is the reason the method is widely used by 

investigators.  However, the method is very slow, particularly for models that do not have 

analytical solutions.  The method can also converge to values that are representative of local and 

not global minima.  Overall, the utility of the method is sufficient to convince most researchers to 

overlook the problems with the method, and its regular use has made it the effective gold-standard 

method of parameter identification. 
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3.4  Iterative integral method 

The iterative integral method is a significant development and extension of the integral method.  

The method does not require an accurate initial estimation of the relevant species time variant 

profiles as the single integral method does, which can afford significant advantages in terms of 

test sampling intervals.  The iterative method uses updating time-variant profiles to converge to 

accurate model parameter values and thus, sampling does not have to capture all specific 

dynamics comprehensively.   

3.4.1  Generalised iterative integral method process 

The iterative integral method uses a similar process to the single iterative method.  However, 

there are some notable and important changes.  The model of Equations 3.01 and 3.02 is used for 

this example also. 

 �� 	 N
�, P, Q, R, D, ES� 3.01 

 P� 	 N
�, P, Q, ES, TS� 3.02 

The method uses the following steps to identify model parameters a and b. 

1. The single and iterative integral methods both linearise the equation of the assayed 

species into the coefficients of the parameters.  The governing equation is integrated: 

 �� 	 RN<
�, P, Q, E� � DN�
�, P, Q, E� � N�
�, P, Q, E� 3.01a 

 U �� 	 R U N<
�, P, Q, E� � D U N�
�, P, Q, E� � U N�
�, P, Q, E� 3.01b 

2. In contrast to the single integral method, the periods over which identification is 

evaluated are defined by the sample timing.  Periods are defined between the first sample 

of the test and the times of each subsequent sample time.  Thus, if there are N available 

data points, there will be n-1 available identification periods.  In this case j= t(s2), t(s3), … 

t(send). 
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 �V 
 �= 	 R U N<
�, P, Q, E�V
= � D U N�
�, P, Q, E�V

= � U N�
�, P, Q, E�V
=  3.07 

3. These periods are evaluated using the estimated profiles.  In contrast to the single iterative 

method, the initial profile estimation can be quite incorrect without parameter 

dependence, subsequent profiles estimations use more accurate profiles estimations.  The 

outcomes of the period evaluations are entered into the matrix equation: 

WX
XXX
XX
YU N<
�, P, Q, E���o

= U N�
�, P, Q, E���o
=U N<
�, P, Q, E���p

= U N�
�, P, Q, E���p
=Z ZU N<
�, P, Q, E���q

= U N�
�, P, Q, E���q
= \]

]]]
]]̂ _RD` 	

WX
XXX
XX
Y���o 
 �= 
 U N�
�, P, Q, E���o

=���p 
 �= 
 U N�
�, P, Q, E���p
=Z���q 
 �= 
 U N�
�, P, Q, E���q
= \]

]]]
]]̂
 3.07a 

Parameters are identified using equation 3.07a and linear least squares methods with all 

the relevant advantages. 

4. In contrast to the single iterative method, the identified parameters are used to re-simulate 

the relevant profiles.  Two possible methods are possible, the first is stable, while the 

second much faster. 

Method 1.  The relevant profiles are identified using the analytical solution, a Picard 

iteration or stepwise methods such as Runga-Kutta or similar.  Analytical solutions to 

model equations do not always exist.  Thus, although they are the quickest method, they 

are only possible for simple linear models.  Stepwise methods are capable of simulating 

most models.  However, there is a trade-off between accuracy and computational time.  

These methods tend to require a lot of computational time to achieve simulations with the 

required level of accuracy.  Picard iterations are capable of simulating nonlinear systems 

particularly quickly and have been under-utilised in physiological model simulations 

(Kim & Kim 2007; Youssef & El-Arabawy 2007).  To simulate Equations 3.01 and 3.02 

using Picard iterations the model equations are discretised and rearranged: 

 �� 	 �= � R U N<
�, P, Q, E��
= � D U N�
�, P, Q, E��

= � U N�
�, P, Q, E��
=  3.01c 
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 P� 	 P= � U N
�, P, Q, ES, TS��
=  3.02c 

where: t=0, 1, 2,…,end. 

Equations 3.01c and 3.02c must be evaluated a number of times in an iterative process to 

enable convergence.  However, due to the nature of computational process architecture, 

this process is quite fast.  Numerous methods can also speed up the process, such as the 

bounding of the simulation, or the damping of convergence (contrary to assumed 

behaviour damping actually increases the convergence rate). 

Method 2.  The profiles used in the evaluation of Equation 3.07 can be used to directly 

solve for Xt.   

 �� 	 �= � R U N<
�, P, Q, E��
= � D U N�
�, P, Q, E��

= � U N�
�, P, Q, E��
=  3.01d 

where: t=0, 1, 2,… end  

The remote species can then be simulated using the analytical solution or Picard 

iterations.   

Thus, no iterative process is required and a simulation can be achieved with very little 

computational cost.  However, given sufficiently inaccurate initial estimates of the 

relevant profiles this method can become unstable, which negates a significant advantage 

of this overall approach.  Thus, this method must be used with particular care. 

5. The updated profiles are used to re-evaluate Equation 3.07 in Step 2.  Steps 2-4 are 

iterated until convergence of the parameters is declared. 

3.4.2  Acceleration of the iterative integral method 

The iterative integral method can converge slowly depending on the level of coefficient similarity 

between the model parameters.  However, the rate of convergence can be amplified using positive 

feedback control of the derivative term to increase the convergence rate.  The conventional 

engineering strategy for dynamic control includes proportional and integral terms, as well as 
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derivative (damping) feedback.  However, concerning model parameter identification, the set 

point is the residual minima final solution, which is presumably unknown during identification.  

Thus, only derivative control, which measures the rate of change between iterations, can be used 

effectively.   

In particular, a gain is placed on the rate of change of the parameters between iterative steps.  

Equation 3.07a is thus altered: 

 _Rd   Dd` 	 θN9<M 
 
θ 
 1� _ Rd9<  Dd9< ` 3.08 

where: θ is the gain used to increase the rate of change between iterations and M/N is evaluated 

via the Moore-Penrose pseudo division for non-square matrix systems and M and N are defined: 

M 	
WX
XXX
XX
Y���o 
 �= 
 U N�
�, P, Q, E���o

=���p 
 �= 
 U N�
�, P, Q, E���p
=Z���q 
 �= 
 U N�
�, P, Q, E���q
= \]

]]]
]]̂ ;  and N 	

WX
XXX
XX
YU N<
�, P, Q, E���o

= U N�
�, P, Q, E���o
=U N<
�, P, Q, E���p

= U N�
�, P, Q, E���p
=Z ZU N<
�, P, Q, E���q

= U N�
�, P, Q, E���q
= \]

]]]
]]̂
 

 

3.08a 

Increasing the value of θ increases the rate of convergence.  However, it also increases the 

instability of the method.  Thus, care must be taken when employing this method in practice.  

When applied correctly the accelerating method can speed up the rate of convergence by up to 

400%.  In small studies using clinical data, the added complexity may not be justified.  However, 

in large in-silico analyses, when thousands of identification processes are required, an 80% 

reduction in computational time is particularly valuable to the investigator. 

3.4.3  Summary of the attributes of the iterative integral method 

The iterative integral method overcomes many of the issues presented by the single iterative 

method.  The particular advantages of the method include: 

• The method is convex and converges to a global minima 

• The simple method is universally stable.  Instability only occurs when acceleration of the 

process is attempted without appropriate care. 
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• The method does not necessarily require simulations between iterations.  Thus, it has 

greatly reduced computational intensity for non-linear models, particularly in comparison 

to non-linear least squares and similar gradient decent based methods. 

• Results are not dependent on initial estimates. 

Disadvantages of the method include: 

• Only models that have linearisable parameters in the equation of the assayed species can 

be identified, although the model may be re-arranged to achieve this in some cases.   

• More complex than the single iterative method and thus more difficult to apply, but not as 

complex as most non-linear least-squares process. 

• In contrast to non-linear least squares, no proprietary ‘toolboxes’ or other ‘freeware’ are 

available for the iterative integral method. 
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Chapter 4.  DISST model, protocol and 

pilot investigation 

Chapter 4 presents the dynamic insulin sensitivity and secretion test (DISST) that is the 

foundation of this research.  The DISST was developed and piloted during the doctoral 

investigation of Dr Thomas Lotz (Lotz 2007).  Much of the contents of this chapter are 

exhaustively described in publications by Lotz et al. (Lotz et al. 2008; Lotz et al. 2010). 

4.1  Introduction 

The DISST test was developed as a low cost, accurate alternative to the EIC during the doctoral 

investigation of Dr Thomas Lotz (Lotz 2007).  To provide any benefit and become an accepted 

insulin sensitivity  test, the proposed test must occupy a region of Figure 2.06 that is toward the 

origin from the existing tests.  Thus, the DISST test was developed to improve upon the IM-

IVGTT type tests by maximising the identifiability of the model and thus allowing a reduction in 

the protocol intensity while also improving accuracy.  Improvements to identifiability enable 

reduced sampling frequency and time, and reduce the overall cost of the test, better enabling low-

cost, wide-scale applications like insulin-resistance screening.   

A significant contributor to the burden of insulin sensitivity tests is the clinician and participant 

hours.  The established high accuracy tests all involve long, arduous protocols.  Thus, reducing 

the protocol time has a profound effect on the overall burden of a test, more so than reducing the 

cost of assays.  The DISST therefore incorporates C-peptide assays that provide information into 

the participant’s endogenous insulin production.  Although these assays are relatively expensive 

at an individual level, their contribution to the observation of the test participant’s condition 

allows a significant reduction in sample frequency, effectively lowering the overall cost of the 

test.  Fewer samples are required to simulate the participant’s insulin concentration as their time-

variant insulin production rate can be quantified.   

Furthermore, Figure 1.03 shows the importance of insulin production as well as insulin sensitivity 

for the risk assessment of type 2 diabetes.  Thus, the DISST is unique amongst the established 

tests as it provides both insulin sensitivity and insulin production metrics in a single, relatively 

short-duration and low-intensity test. 
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The DISST clinical protocol is effectively a low-dose, infrequently sampled insulin modified 

intravenous glucose tolerance test (IM-IVGTT).  IM-IVGTT tests often involve participant-

specific doses of glucose and insulin that are approximately 3 times the size of that administered 

in the DISST.  Thus, saturation effects are triggered during most IM-IVGTT tests, but are avoided 

by the DISST.  These effects vary across test participants and are difficult to identify (Natali et al. 

2000; Prigeon et al. 1996).  The DISST can be administered with as little as five samples in a 30-

minute protocol. In comparison, the IM-IVGTT often requires 20 to 40 samples during a 2 to 4 

hour protocol with intense sampling rates of 1 to 3 minutes close to the boluses.  Hence, the 

DISST was designed to maximise accuracy and resolution, to minimise the impact of variation, 

and to minimise clinical effort. 

The modelling strategy of the DISST provides the greatest distinction to the IM-IVGTT.  In 

contrast to IM-IVGTT tests, the DISST samples C-peptide, which can provide a direct estimate of 

the participants insulin production response to the test stimulus (Van Cauter et al. 1992).  This 

information is used to supplement a concentration-based simulation of the insulin pharmaco-

kinetics.  Thus, relatively sparse sampling is possible.   

In contrast, the IM-IVGTT forgoes C-peptide data and in the absence of an insulin production 

profile defines plasma insulin as a linear interpolation of frequently sampled data (Bergman et al. 

1979).  Thus, accurate IM-IVGTT plasma insulin profiles are dependent of the resolution of 

insulin assays, and thus the protocols designed for Minimal Model analysis have become 

particularly intense.  The intense clinical protocol is not necessarily intrinsic to the nature of 

IVGTT test; rather it is a requirement of the frequently adopted modelling strategy. 

The lower intensity of the DISST clinical procedure comes at the expense of some increased 

modelling and mathematical complexity.  However, this represents a very positive development in 

the field of insulin sensitivity testing.  Once the model parameter identification processes have 

been established, numerous simple tests can be undertaken that can enable high accuracy values 

for a lower overall cost-per-test.  In contrast, arduous tests that only need simple identification 

methods often limit the quantity of tests that are possible within a time or economic budget. 

4.2  DISST protocol 

The DISST protocol uses a series of blood samples to trace the participant’s response to glucose 

and insulin bolus stimuli.  Participants attend the test in the morning having fasted overnight 
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(water allowed).  The participants’ height, weight, sex and age are recorded prior to each test.  

Participants sit in a supine position for the duration of the test. 

In the pilot investigation of the DISST, blood samples were scheduled at t=0, 5, 10, 15, 20, 25, 

30, 35, 40 and 50 minutes.  However, some DISST protocols can use a much sparser sample 

frequency or shortened test duration.  Such protocols will be discussed in later chapters.  Due to 

cannulation issues and other clinical complications some samples are not necessarily taken at the 

desired times.  The actual sample times were recorded during testing and can be readily accounted 

for in the model identification methods.  Glucose and insulin boluses were administered 

immediately after the t=5 and t=15 minute samples, respectively.  During the pilot investigation 

of the DISST test, either high, medium or low doses were used.  The boluses used for the high 

dose contained 20 grams of dextrose in a 50% dilution and 2 units of insulin.  The medium dose 

used 10g of dextrose and 1U of insulin, while the low dose used 5g of dextrose and 0.5U of 

insulin.  These alternative doses were used to investigate the DISST model’s dose dependency 

(presented in Section 4.4.3). 

The DISST cost savings are achieved by the sparse nature of the DISST data from the low 

intensity clinical protocol.  However, a validated, high-resolution physiological model of the 

participant’s pharmaco-dynamics (PD) and pharmacokinetics (PK) must be used to enable 

identification of insulin sensitivity and insulin production. 

4.3  DISST model 

The DISST model incorporates successful elements of existing models with improvements of 

other models to produce a comprehensive model that can accurately capture a participant’s 

glucose and insulin concentration as well as insulin production profiles, in response to the test 

stimuli. 

The DISST model can be separated into the representations of the three assayed species: glucose, 

insulin and C-peptide.  The DISST model uses C-peptide assays to identify the endogenous 

insulin production response to the test stimulus.  This profile is used to supplement insulin assays 

and a physiological simulation of plasma and interstitial insulin.  Insulin sensitivity is defined as 

the ratio of proportional glucose clearance and interstitial insulin concentration. 
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4.3.1  Endogenous insulin production 

The DISST uses the endogenous insulin production estimation model defined by Eaton et al. 

(Eaton et al. 1980) and the deconvolution approach validated by Van Cauter et al. (Van Cauter et 

al. 1992).  C-peptide kinetics are modelled using a two compartment model that incorporates an 

accessible plasma compartment and a passive, un-measurable interstitial compartment.  Blood 

samples are representative of the plasma compartment.  C-peptide is only cleared in significant 

amounts by the kidney and clearance does not occur in the interstitium.  Hence, C-peptide assays 

can provide a much better indication of insulin secretion than insulin-based analysis. 

Equations 4.01 and 4.02 represent the plasma and interstitial C-peptide concentrations, 

respectively:  

 x� 	 y�P 
 
y< � y��x � Qz�{  
4.01 

 P� 	 y<x 
 y�P 4.02 

where: C and Y are the plasma and interstitial C-peptide concentrations respectively [pmol/L]; k1, 

k2 and k3 are rate constants [1/min]; UN is the rate of insulin production (which is assumed to be 

equimolar with insulin) [mU/min]; VP is the volume of plasma distribution [L] and | is a 

conversion factor between pmol and mU [6.94 pmol/mU]. 

The rate constants are a function of the participants anatomical characteristics (weight, height, 

age, sex) as defined by Van Cauter et al. (Van Cauter et al. 1992).  Equations 4.03 to 4.11 

describe the method by which these parameters are obtained.  Initially, the participant’s body 

mass index (BMI) is identified. 

 /:� 	 /0
y}�~8�}~e
��� 
4.03 

 

Passive clearance in a two-compartment model is best defined with a double exponential 

representation.  A regressive analysis by VanCauter et al. (Van Cauter et al. 1992) observed 

distinctly different rates between healthy and obese individuals for the short half-life decay, while 

the long half-life was most dependant on age.   

 

if BMI>30 ~R�N��N8< 	 4.55  4.04 



Page 48 

� 	 0.78 

if BMI<30 ~R�N��N8< 	 4.95  
� 	 0.76 

4.05 

 ~R�N��N8� 	 0.14 � R}8 � 29.2 4.06 

These clearance and transport half-lives must be converted to enable applicability to the first-

order linear physiological model of Equations 4.01 and 4.02. 

  R 	 ��$
2�~R�N��N8<  4.07 

 D 	 ��$
2�~R�N��N8�  4.08 

 y� 	 � � 
D 
 R� � R  4.09 

 y� 	 RD2y�  4.10 

 y< 	 R � D 
 y� 
 y�  4.11 

The volume of distribution of plasma and interstitium insulin and C-peptide is defined using a 

function of body surface area (BSA). 

 /�A 	 16  /0
y}� � ~8�}~e
�� p   4.12 

if male �{ 	 1.92 � /�A � 0.64  4.13 

if female �{ 	 1.11 � /�A � 2.04  4.14 
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4.3.2  Insulin pharmaco-kinetics  

The insulin pharmaco-kinetics are described by a two compartment model that incorporates 

plasma and interstitial compartments.  Insulin assays are drawn from the plasma compartment, 

which incorporates insulin clearance to the kidney and liver, and exogenous and endogenous 

insulin input.  The interstitial compartment incorporates clearance of insulin to cells, and is 

representative of the amount of insulin available for the clearance of glucose to cells.  It is thus 

the most critical to the identification of insulin sensitivity. 

The model equations are defined: 

 �� 	 
��� 
 �� �1 � �B� � �B�{ 
� 
 �� � Q��{ � 
1 
 ��� Qz�{  
4.15 

 �� 	 �B�� 
� 
 �� 
 �#�  4.16 

where I and Q represent the insulin concentrations in the plasma and interstitium respectively 

[mU/L]; nK is the kidney clearance rate [1/min]; nL is the hepatic clearance [1/min]; �B is the 

saturation of hepatic insulin clearance [L/mU]; nI is the transition rate between the plasma and 

interstitial compartments [L/min]; UX is the exogenous insulin bolus [mU/min]; xL is the 

proportional first pass hepatic extraction of endogenously produced insulin [1]; VQ is the 

distribution volume of insulin in the interstitium [L] and nC is the rate of insulin clearance to cells 

in the interstitium [1/min].   

The DISST identification method typically identifies nL and xL as variable parameters, while the 

other parameters are defined a-priori based on anatomical functions.  The values of VQ, nK and nI 

are defined: 

 �� 	 y<y� �{  4.17 

 �� 	 y�  4.18 

 �B 	 y���  4.19 
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where nC is defined as a function of nI to ensure a steady-state (�� 	 �� 	 0) concentration gradient 

(γ) in accordance with published data (Barrett et al. 2009). 

 � 	 0.5 4.20 

 �# 	 �B�� 
1� 
 1�  4.21 

The saturation of insulin clearance �B is defined as a population constant 0.0017 L/mU that 

implies half maximal insulin clearance occurs at I=588 mU/L (Thorsteinsson 1990; Thorsteinsson 

et al. 1986). 

4.3.3  Glucose-insulin pharmaco-dynamics 

The glucose model uses a representation of total glucose in a single compartment model.  The 

model defines the rate of glucose decay with both insulin dependent and independent clearance.  

The model is defined: 

 �� 	 
��
� 
 ��� 
 ��
�� 
 ����� � ���� 
4.22 

where: G is the glucose concentration [mmol/L]; pG is the glucose dependent glucose clearance 

[1/min]; SI is the insulin sensitivity [L/mU/min]; PX is the glucose bolus [mmol/min]; VG is the 

glucose distribution volume [L] and the ‘B’ subscript denotes the basal concentrations of the 

respective species. 

The typical use of the DISST model sets pG as a constant (0.004 1/min) and identifies SI and VG as 

variable parameters (Lotz et al. 2010). 

The development of the DISST model and a full justification was presented in the doctoral thesis 

of Dr Thomas Lotz (Lotz 2007) and abbreviated in (Lotz et al. 2010).  It will not be repeated here 

for brevity.  However an electronic copy is available (Lotz 2007).   A comprehensive comparison 

between the DISST model the established Minimal-Model that is typically used in insulin 

sensitivity tests is presented in Chapter 7.   

The entirety of the DISST model is summarised graphically in Figure 4.01. 
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Figure 4.01.  Physiological model for the PK and PDs of C-peptide, insulin and glucose.  Note 

that plasma and interstitial glucose is modelled as a single compartment due the fast glucose 

transition between these compartments. 

4.4  Identification of the pilot cohort model parameters 

The pilot investigation was exhaustively described in Lotz et al. (Lotz et al. 2010), but will be 

repeated here in lesser detail as it is important prior background for the developments of the 

DISST tests presented in this thesis. Furthermore, many investigations presented later in this 

thesis use the pilot data and refer to the pilot outcomes. 

4.4.1  Study design and participants 

The pilot investigation of the DISST test sought to measure the repeatability of the DISST tests 

within participants at varied and consistent bolus doses.  The study was conducted in two parts.  

The first part measured the inter-dose, within subject repeatability of the DISST.  Part 2 measured 

the intra-dose, within subject repeatability.   

C-peptide Insulin Glucose

P
la

sm
a

In
te

rs
ti

ti
u

m

C

Y

I

Q

Kidney

Liver

Exogenous 

Boluses

Endogenous insulin-

C-peptide Production

Insulin 

mediated 

cell uptake

SI

Glucose 

production 

suppression

G



Page 52 

Participants were sought to encompass the anatomical characteristics of a general western adult 

population.  Although predefined guidelines were not set, care was taken to ensure that a range of 

BMI, ages and diabetic statuses were tested.  Table 4.01 defines the characteristics of the study 

cohort. 

Participant Sex 
Age 
[yrs] 

Weight 
[kg] 

BMI 
[kg/m2] 

Fasting 
glucose 
[mmol/L] 

Fasting 
insulin 
[mU/L] 

NGT 

IFG 

T2D* 

1 f 57 89 33.9 5.8* 30.8 IFG 

2 f 59 67 25.5 5.9* 1.4 IFG 

3 f 59 87 39.2 4.7 12.5 NGT 

4 f 21 78 25.2 5 5.2 NGT 

5 m 41 76 21.7 4 0.5 NGT 

6 f 45 76 25.4 4.1 1.7 NGT 

7 m 55 73 24.1 4.5 4.4 NGT 

8 f 51 67 27.2 4.3 1.4 NGT 

9 f 35 66 24 4.8 6.6 NGT 

10 f 30 50 19.5 4.2 3.2 NGT 

11 f 55 85 30.1 6.8 9.2 T2D 

12 m 60 76 23.7 4.4 3.2 NGT 

13 f 48 91 33.4 5.2 9.5 NGT 

14 f 41 111 41.3 4.5 3.9 NGT 

15 m 29 84 25.9 5.1 2.5 NGT 

16 m 49 105 35.1 6.3* 16.6 IFG 

17 f 25 60 25.3 4.5 3 NGT 

18 m 22 65 21.5 4.1 1.9 NGT 

Q1  

Q2 

 Q3 

m/f 
6/12 

30 
46.5 
55 

67 
76 
87 

24 
25.5 
33.4 

4.3 
4.6 
5.2 

1.9 
3.6 
9.2 

14 NGT 
3 IFG  
1 T2D 

Table 4.01.  Anatomical description of the pilot investigation study cohort.  (* IFG was diagnosed 

using a cut-off value of 5.56 mmol/L) 

 

There were three dosing regimens used during the two-part study.  The low dose included a 5g 

dose of glucose, with a 0.5U dose of insulin.  The medium dose was 10g glucose with 1U insulin, 

and the high dose used 20 grams of glucose and 2U insulin.  Participants of Part 1 had at least one 

test at the medium dose with at least one test at either low or high dosing.  Participants of Part 2 

received two or more tests at either low dose or medium dose.  Table 4.02 lists those participants 
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who received which specific doses and thus, and for which parts of the study they provided 

results. 

Participant 
Tests Part 

5g 
0.5U 

10g 
1U 

20g 
2U 

1 2 

1  1 1 X  

2  1 1 X  

3  3   X 

4 1 1  X  

5‡  5 1 X X 

6  2 1 X  

7 1 1  X  

8 1 1  X  

9  1 1 X  

10 2 1  X X 

11 2 1  X X 

12*  1    

13  3   X 

14  2 1 X X 

15 2 1  X X 

16 2 1  X X 

17†  1 1   

18*  1    

totals 11 28 7 13 8 

Table 4.02.  Participant test doses.  (*Participants 12 and 18 only undertook 1 test and thus could 

not provide evidence of repeatability.  † The medium dose test of this participant mistakenly used 

a 0.5U bolus of insulin, invalidating their results for analysis.  ‡ Three of this participant’s 

medium dose tests were omitted from the study to reduce the effect of this individual on the 

cohort’s outcomes.) 

 

Individuals were intended to take tests within a few days of one another.  However, significant 

delays occurred between the tests of some participants.  All participants signed informed consent 

prior to each test.  Ethical approval was obtained from the Upper South A Regional Ethics 

Committee.  All tests were completed using the protocol defined in Section 4.2 with the dosing 

schedules defined in Table 4.02  



Page 54 

Blood samples were assayed at the ‘bedside’ for glucose using the C8000 enzymatic glucose 

hexokinase assay (Abbott Labs, Abbot Park, Illinois).  Samples were then spun and frozen for 

later insulin and C-peptide assays.  The electrochemiluminoessescence (ELICA) immunoassay 

(Roche Diagnostics, Mannheim, Germany) was used to assay the insulin and C-peptide 

concentrations. 

4.4.2  Parameter identification 

Participant-specific parameter values were identified from the DISST pilot investigation data 

using the integral method (Hann et al. 2005a; Lotz 2007; Lotz et al. 2010).  Detailed 

identification processes are described (Lotz et al. 2010). 

Initially, the C-peptide model was de-convolved using a linear interpolation of the plasma C-

peptide data (Cinterp) (Lotz et al. 2009).  Equation 4.02 can thus be solved analytically for Y(t). 

 P� 	 y< U xS[�$%�89dp
�9���
= T� 4.02a 

This term was incorporated into the integral formulation of Equation 4.01: 

x�< 
 x�= 	 y<y� U U xS[�$%�89dp
�9���
= T�Te�<

�= 
 
y< � y�� U xTe�<
�= � U | Qz�{ Te�<

�=  

 4.01a 

Equation 4.01a was rearranged for the participant’s endogenous insulin production response to the 

test stimulus, UN. 

| Qz
e<� 
 Qz
e=��{ 	  x�< 
 x�= 
 y<y� U U xS[�$%�89dp
�9���
= T�Te�<

�= � 
y< � y�� U xTe�<
�=  

 4.01b 

Thus, UN was defined using Equation 4.01b at a 1-minute resolution between t=0 and t=end. 

Secondly, the participant’s insulin concentration response to the test stimulus was defined using 

the physiological model of Equations 4.15 and 4.16, the a-priori parameter values defined in 

Equations 4.17 to 4.21, and the UN profile identified with Equation 4.01b. 
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To estimate minute-wise insulin profiles, insulin data was interpolated between t=0 and t=15 

when the insulin bolus is administered.  From this point, a double exponential decay was defined 

using the insulin data from 10-minutes post-bolus, and a ‘false’ insulin concentration value was 

used to model the bolus-induced concentration increase, in a least squares approach.  This process 

produced a minute-wise profile of plasma insulin (I).  The corresponding interstitial insulin 

concentration was identified using the analytical solution of Equation 4.16: 

   �S 	 89 � [�k [���  �� 
�= � �B�� U 8� [�k [��� ��S
= �� 4.16a 

Thus, profiles for both plasma and interstitial insulin responses to the test stimulus were defined.  

The integral method (Hann et al. 2005b) was used identify participant-specific hepatic clearance 

(nL) and extraction (xL) values.  The integral formulation of Equation 4.15 was separated into the 

coefficients of the known and unknown parameters:  

�� U �1 � RB�
�<

�=�������#z
� �� U 
Qz

�<
�=�����#�

	 ��< 
 ��= 
 U �����<
�= 
 �B�{ 
� 
 �� � Q��{ ��������������������������#

 4.23 

These coefficients were identified over a series of consecutive 2 minute periods that began at t=0 

([t0, t1, t2, … , tend]=[0, 2, 4, … , end]).  This approach allowed the generation of a matrix equation 

in terms of nL and xL to be formed: 

   

WXX
XXY

x��=�< x��=�<x��<�� x��<��x�����Zx���q ¡o��q 
x�����Zx���q ¡o��q  \]]

]]̂ _����` 	
WXX
XXY

x�=�<x�<��x����Zx��q ¡o��q  \]]
]]̂ 

4.23a 

Thus, nL and xL were able to be constrained as necessary and identified using linear least square 

approach.  The plasma and interstitial insulin concentration profiles were re-simulated using the 

physiological model with the identified hepatic clearance parameters. 

The physiological simulation of interstitial insulin was then used with the glucose data and the 

integral method (Hann et al. 2005b) to identify participant-specific values for insulin sensitivity 

and glucose distribution.   
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Initially a ‘false’ data value was added immediately after the glucose bolus.  The glucose 

concentration of the point was identified by dividing the bolus content by a function of the 

participant’s body-weight and adding the value to the basal glucose concentration.  The glucose 

assays that were taken in the period ten minutes after the glucose bolus are affected by noise and 

were subsequently ignored.  A linear interpolation was then used as an estimate of the glucose 

response to the test stimulus.  The integral formulation of Equation 4.22 was rearranged and 

separated into the coefficients of the known and unknown parameters.  The coefficients of the 

glucose model parameters were evaluated over periods that begin at 2-minute intervals from t=0 

and end at the end of the test.  Thus, a second matrix formulation was defined in terms of SI and 

VG. 

�� U �� 
 �!�!
�<

�=���������#5
� 1�� U ��

�<
�=���#�¢
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 ��= 
 U ��
� 
 �!��<
�=�������������������#

 4.24 

The coefficients of the glucose model were evaluated at periods which begin at 2 minute intervals 

from t=0, and end at the end of the test.  These periods were chosen to maximise the impact of the 

latter stages of the test on the identified insulin sensitivity value (Lotz 2007; Lotz et al. 2010).  A 

matrix formulation was then defined in terms of SI and VG. 

   

WXX
XXX
Y x��=��q  x���=��q x��<��q  x���<��q x�����q Zx���q ¡o��q 

x������q Zx����q ¡o��q  \]]
]]]̂ £����¤ 	
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XYx�=��q x�<��q x����q Zx��q ��q \]

]]
]̂
 4.24a 

Bounds were placed on the value of VG to reduce the effect that incomplete mixing might have on 

the sensitivity term.  The values of VG is limited to within 12 to 25% of the participant’s 

bodyweight, per published data (Lotz 2007; Lotz et al. 2010).  Evaluation of Equation 4.24a 

yielded participant-specific values for SI and VG. 

4.4.3  Study outcomes - Part 1 inter-dose repeatability 

Figure 4.02 and Tables 4.03 and 4.04 show the dose dependence of the insulin sensitivity and 

production parameters identified in the DISST test.  The endogenous insulin production profile 
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was separated into the basal (UB), first (U1) and second (U2) phases of insulin production.  The 

first phase of insulin production was defined as the average pre-hepatic insulin output above the 

basal rate during the period of time 10 minutes after the glucose bolus.  The second phase 

production was defined as the average pre-hepatic insulin production during the 20 minutes after 

the first-phase period.  Note that the values presented Lotz et al. provide cumulative values in 

units of pmol rather than average values in units of mU/min presented here (Lotz et al. 2010). 

The discrepancy between Part 1 participant’s test results were calculated with Equation 4.25.  

   ∆	 :&¥¦&$%§§§§§§§§§§ 
 :('¨$%§§§§§§§§§:('¨$%§§§§§§§§§ 
� 100� 
4.25 

The higher dose tests measured slightly reduced insulin sensitivity than lower dose tests within 

the same individual.  The mean reduction observed in participants who underwent the medium 

and low dose tests was 3.5 % (SD 25.1), while the reduction observed in those of the underwent 

the high and medium tests was 6% (SD 18.3%).  Overall, the lower dose tests observed a 5% 

reduction in identified sensitivity than the high dose tests undertaken by the same participants.  

This outcome is almost certainly a result of the saturation effect of insulin, which becomes less 

efficient at higher concentrations (Docherty et al. 2010; Natali et al. 2000; Prigeon et al. 1996). 

The first phase production of insulin was an average of 68.4% (SD 66.3%) larger during the 

higher dose tests than for the lower dose tests of the same participants.  The increased first phase 

production observed in the low-medium subgroup was 78.1% (SD 71.7%), which was greater 

than the increase observed in the medium-high dose subgroup 54.9% (SD 63.3%).  This result 

implies that although first phase production is proportional on the magnitude of the bolus, the 

amount that can be produced may be a limiting factor for some participants.   
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Subject Dose 
SI 

[10-4L/mU/min] 

∆SI 

[%] 

UB 

[mU/min] 

U1 

[mU/min] 

∆U1 

[%] 

U2 

[mU/min] 

∆U2 

[%] 

4 low 13.39   19.6 22.1   25.1  

 med 16.49 23.1 20.9 25.4 14.8 29.1 15.8 

7 low 19.33   24.9 41.9   23.6  

 med 18.06 -6.6 24.7 78.6 87.5 30.8 30.5 

8 low 18.64   11.4 38.0   10.2  

 med 13.61 -27.0 12.8 83.3 119.1 16.3 60.7 

10 low 43.73   13.7 48.0   13.0  

 low 29.19  15.6 52.0   16.4  

 med 17.40  -52.3 13.5 62.8 25.8 30.8 109.0 

11 low 6.88   36.2 20.2   54.9  

 low 5.75  42.2 18.8   51.6  

 med 6.73  6.5 33.9 22.7 16.2 49.1 -7.9 

15 low 8.28   20.0 40.0   24.1  

 low 8.99  22.1 36.6   30.8  

 med 7.39  -14.4 20.8 64.8 69.4 34.3 25.2 

16 low 3.27   62.7 24.5   101.6  

 low 3.16  57.0 12.3   82.1  

 med 3.17 -1.4  66.2 57.8 213.8 128.8 40.2 

mean   -3.5   78.1  39.1 

SD    25.1   71.7  37.4 

Table 4.03.  Dose dependence of insulin sensitivity and production characteristics of participants 

who underwent DISST tests with the low and medium doses during the DISST pilot investigation.   

         

Second phase insulin production was also a function of test dosing.  The higher dose tests on 

average stimulated a 40.0% (SD 29.5%) greater second phase response.  Unlike the first phase 

response, this result was consistent between low-medium and medium-high subgroups, further 

strengthening the case for a limitation on the first phase capability of test participants. 

Figure 4.02 (upper right) shows that the basal insulin production rate was not dependent on the 

test dose, as expected.  A reduction of 1.3% (SD 14.6%) was measured in the lower dose tests 

compared to the higher dose test of the same participants.  This outcome was expected and serves 

to validate the findings of the first and second phase production profiles identified. 
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Subject Dose 
SI 

[10-4L/mU/min] 

∆SI 

[%] 

UB 

[mU/min] 

U1 

[mU/min] 

∆U1 

[%] 

U2 

[mU/min] 

∆U2 

[%] 

1 med 3.13   70.9 39.3  96.7  

  high 2.69 -14.1 68.9 102.7 161.2 138.1 42.7 

2 med 19.47   8.9 17.5  15.4  

  high 13.43 -31.0 12.0 22.5 28.8 23.9 55.7 

5 med 26.45   14.3 41.1  18.1  

  med 19.97  11.1 34.9   13.5  

 high 25.07  8.0 10.9 56.4 48.5 20.0 26.3 

6 med 14.84   17.0 38.8  30.5  

  high 12.83 -13.6 17.2 55.5 42.9 48.0 57.5 

14 med 11.70   21.1 69.7  31.7  

  med 11.65  25.8 73.9   38.6  

 high 14.12 20.9  19.1 66.7 -7.1 41.8 19.0 

mean    -6.0   54.9  40.2 

SD    18.3   63.3  17.2 

Table 4.04.  Dose dependence of insulin sensitivity and production characteristics of participants 

who underwent DISST tests with the medium and high doses during the DISST pilot 

investigation. 
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Figure 4.02.  The effect of dose changes in the outcomes of the DISST test metrics of insulin 

sensitivity and production.   
 

Part 1 of the pilot investigation sought to evaluate the ability of the model and a-priori identified 

parameters to produce consistent results across varying test doses.  The mean variation in insulin 

sensitivity was very small, although the standard deviation of this variation was relatively large.  

Thus, the model did not produce a biased result based on dose, and the variation observed is a 

function of the variations in the individual participant’s physiology across tests. 

Short-term erratic changes in insulin sensitivity can be affected by a number of factors including 

stress and illness (Greisen et al. 2001; Hollenbeck & Reaven 1987; Van den Berghe et al. 2006; 

Zierler 1999), sleep deprivation (Davidson et al. 1987; Van Cauter et al. 1997), menstrual cycle 

(Trout et al. 2007), time of day (Van Cauter et al. 1997), recent exercise and diet (Borghouts & 

Keizer 2000; Nishida et al. 2004; O'Gorman et al. 2006; Zierler 1999).  It is likely that a 

0 25 50
0

25

50
Insulin sensitivity (SI)

SI from lower-dose test [10
-4

mU/L/min]

S
I  

fr
o
m

 h
ig

h
e
r-

d
o
s
e
 t

e
s
t 

[1
0-4

m
U

/L
/m

in
]

0 50 100
0

50

100

Basal insulin production (UB)

U
B
 from lower-dose test [mU/min]

U
B
 f

ro
m

 h
ig

h
e
r-

d
o
s
e
 t

e
s
t 

[m
U

/m
in

]

0 60 120
0

60

120

First phase insulin production (U
1
)

U
1
 from lower-dose test [mU/min]

U
1
 f

ro
m

 h
ig

h
e
r-

d
o
s
e
 t

e
s
t 

[m
U

/m
in

]

0 75 150
0

75

150

Second phase insulin produciton (U
2
)

U
2
 from lower-dose test [mU/min]

U
2
 f

ro
m

 h
ig

h
e
r-

d
o
s
e
 t

e
s
t 

[m
U

/m
in

]

 

 

low-med

med-high

mean grad.

1:1



Page 61 

culmination of these factors and assay error caused the moderate intra-participant variation 

observed in this pilot trial cohort. 

As expected, first phase insulin production was proportional to dose.  The proportional effect is a 

key aspect to models that have sought to develop the Eaton et al. and Van Cauter et al. based 

models (Eaton et al. 1980; Van Cauter et al. 1992) that the DISST uses.  Such models use two 

parameters that link insulin production to changes in glucose concentration and glucose 

concentration above basal.  However, to accurately fit the measured C-peptide data, such models 

require so-called ‘potentiation-profiles’ (Ferrannini & Mari 2004) that have very limited 

physiological basis and are thus barely clinically irrelevant data-fitting terms.  The utility of 

potentiation profiles is essentially limited to making a model fit the Van Cauter model-based 

results.  Thus, this type of model is not used for the DISST test to provide a cosmetic façade for 

the endogenous insulin production profile. 

4.4.4  Study outcomes - Part 2 intra-dose repeatability 

Part 2 of the pilot investigation of the DISST test measured the variations observed across tests by 

participants when the same dose is used for each test.  Table 4.05 shows the changes in insulin 

sensitivity and production observed in participants of Part 2 of the DISST pilot investigation.  

These results thus quantify the repeatability of the test. 

Intra-participant variation of insulin sensitivity and production was defined as the maximum 

absolute deviation from the mean participant value using Equation 4.26. 

   ∆	 �R�S  ©:S 
 :ª:ª © 4.26 

The mean difference in insulin sensitivity with a consistent dose was 11.3% (SD 9.0%).  Although 

this value is larger than the mean variation measured in Part 1 it must be remembered that Part 1 

measured model bias as a result of differing doses.  The low mean variation was due to the even 

parameter spread in both positive and negative directions caused by the precision of the model.  

The variation in Part 2 was constrained to positive values, and thus was larger.  The intra-

participant standard deviation in insulin sensitivity observed in Part 2 was significantly lower than 

that observed in Part 1 indicating a more accurate and repeatable intra-participant result overall.   
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Both U1 and U2 were more repeatable in Part 2 of the DISST pilot investigation.  This can be 

predominantly attributed the proportional insulin production response to the content of the 

glucose bolus.   

Subject Dose 
SI 

[10-4L/mU/min] 

∆SI 

[%] 

UB 

[mU/min] 

U1 

[mU/min] 

∆U1 

[%] 

U2 

[mU/min] 

∆U2 

[%] 

10 low 43.73   13.7 48.0  13.0  

  low 29.19 19.9 15.6 52.0 4.0 16.4 11.5 

11 low 6.88   36.2 20.2  54.9  

  low  5.75 8.9 42.2 18.8 3.4 51.6 3.1 

15 low 8.28   20.0 40.0  24.1  

  low 8.99 4.1 22.1 36.6 4.5 30.8 12.2 

16 low 3.27   62.7 24.5  101.6  

  low 3.16 1.7 57.0 12.3 33.1 82.1 10.6 

3 med 10.18   34.1 120.8  45.8  

 med 8.59   38.8 142.4  50.0  

  med 7.37 16.8 43.2 131.6  8.2 61.4 17.2 

5 med 26.45   14.3 41.1  18.1  

  med 19.97 14.0 11.1 34.9 8.1 13.5 14.3 

13 med 16.31   35.6 45.4  54.8  

 med 13.51   36.2 54.5  59.3 6.4 

  med 21.20 24.7 34.1 59.4  11.9 53.2  

14 med 11.70   21.1 69.7  31.7  

 med 11.65 0.2 25.7 73.9 2.9 38.6 9.8 

mean   11.3   9.5  10.6 

SD   9.0   10.0  4.4 

Table 4.05.  Intra-dose variability of insulin sensitivity and production values for participants of 

Part 2 of the DISST pilot investigation. 

4.4.5  Overall outcomes of the DISST pilot study 

The DISST is unique amongst the established tests presented in Table 2.02, as it accurately 

quantifies both insulin sensitivity and endogenous insulin production.  Most importantly, it is the 

only test that can accurately and concurrently quantify all of the characteristics of the 

pathogenesis of type 2 diabetes represented in Figure 1.03.   
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Furthermore, the model allows a much less clinically intensive protocol than most of the non-

fasting tests.  The repeatability of the tests is very reasonable given the particularly low clinical 

intensity of the protocol and the ad-hoc nature of the pilot investigation. 

4.5  In-silico investigation of the DISST variability 

An in-silico Monte-Carlo investigation was undertaken to compare the effect of assay error on the 

DISST, EIC and HOMA metrics (Lotz et al. 2008).  In-silico investigations are typically 

computer simulations that model the behaviour of an indicative ‘virtual’ cohort to a test stimulus.   

The Monte Carlo analysis of the DISST test used the clinical data from 148 EIC tests undertaken 

by 74 participants during an dietary and exercise based intervention investigation (McAuley et al. 

2002).  EIC data was used to identify participant-specific values for insulin sensitivity (SI) and 

insulin clearance (nL).  Insulin production is suppressed during the EIC (Argoud et al. 1987; 

Liljenquist et al. 1978), and thus participant specific values could not be identified using EIC 

data.  Thus, first and second phase insulin production values were assumed as functions of body 

surface area for each participant (Lotz et al. 2008).  The basal insulin production rate was derived 

using a function of the basal rate and clearance of insulin.  First pass extraction was randomly 

defined between a range of 50-95%.  Endogenous glucose production (EGP) was assumed to be 

suppressed by between 25% and 75%. 

These test-specific parameter values were used to simulate C-peptide, insulin and glucose 

responses to the DISST test stimulus.  The low-dose, medium-dose and high-dose DISST 

protocols were used with each set of model parameters.  These simulations were ‘sampled’ at the 

time specified by the protocol to present a paired ‘synthetic’ data set for each EIC test undertaken.  

Each simulated data set was then identified 500 times, with each iteration adding new, normally 

distributed assay error to the synthetic DISST data to assess its realistic impact.  The magnitude of 

the assay error used was in accordance with reported assay errors (glucose ~2%, insulin ~3%, C-

peptide ~4%) (Devreese & Leroux-Roels 1993; Roche 2004,2005).  EIC derived insulin 

sensitivity values and HOMA were also identified using the same reported assay errors for 

comparison. 

The coefficient of variation (CV) of the DISST was dependent on the test doses.  The low-dose, 

medium-dose and high-dose tests produced CV values of 6.9%, 4.5% and 3.6%, respectively.  

The EIC CV was 3.3%, while the HOMA CV was over 10%.  These values for EIC and HOMA 

CV are low compared to the clinically derived values presented in Table 2.02.  However, it must 



Page 64 

be considered that the clinically derived values incorporate daily changes in participant 

physiology and thus should potentially, be greater than the variation caused solely by assay error 

as assessed in this in-silico analysis.   

The in-silico analysis produced EIC and DISST results that correlated at R=0.91.  However, when 

equality of units was enforced, the correlation increased to R=0.98.  These values thus represent 

theoretical maximum correlations that might be found in a clinical validation trial assuming assay 

errors is the only variation between tests (i.e.  no daily physiological variation). 
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Chapter 5.  A geometric method for a-

priori model identifiability analyses 

A novel method for the evaluation of model identifiability using integrals instead of derivatives 

was developed during the DISST investigations.  Contrary to established methods, an appraisal of 

the model parameters in the presence of assay error is provided by this novel approach.  The 

method is presented here to explain how model or protocol selection can affect parameter 

identification, and aids the justification of the DISST modelling strategy.  Furthermore, this 

chapter highlights and explains the issues frequently encountered during insulin sensitivity 

identification with established models in comparison to the robust DISST model.  The method has 

been published (Docherty et al. 2011a). 

5.1  Motivation 

Approaches for the analysis of model identifiability typically assume continuous perfect input 

data (Bellman & Åström 1970; Bellu et al. 2007; Pohjanpalo 1978).  However, these methods can 

produce false assurances of identifiability as they rely on idealised assumptions.  The limitation of 

discrete data that is subject to assay error causes parameter trade-off in many cases (Caumo et al. 

1999; Erichsen et al. 2004; Pillonetto et al. 2002; Quon et al. 1994b).  Hence, there is often a 

limitation on the identified metrics clinical value.  Thus, not only should a model be checked for 

identifiability in the classical, ideal a-priori sense, but the susceptibility of a model’s parameters 

to mutual interference should also be tested.  The latter point should be potentially more critical 

for models using clinical data with assay error. 

For example, the Minimal Model of insulin sensitivity (Bergman et al. 1979) has been shown to 

be identifiable using typical methods (Audoly et al. 2001; Audoly et al. 1998; Chin & Chappell).  

However, with discrete data subject to assay error, parameter identification has sometimes failed 

(Erichsen et al. 2004; McDonald et al. 2000; Pillonetto et al. 2002), particularly for insulin 

resistant individuals for whom accuracy is most clinically valuable.  Numerous Bayesian 

techniques have had success in limiting this failure (Cobelli et al. 1999; Denti et al. 2009; 

Pillonetto et al. 2003; Pillonetto et al. 2002), but they tend to force the parameters to diverge 

away from their true least square values, limiting the relevance of the model and exaggerating the 

influence of population trends on the parameter values derived from individual test.  Thus, 

widespread clinical application of these models has been limited by the ambiguity of results. 
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This chapter presents a novel geometric method for identifiability analysis that incorporates 

consideration of assay error.  Furthermore, the method highlights areas for potential 

improvements to protocols and sampling times that would improve practical identifiability.  At 

this stage of development, the method is limited to linear and non-linear first-order models that 

allow a separation of model parameters.  However, this class of model is typical of those found in 

pharmacokinetic (PK) and pharmaco dynamic (PD) modelling and thus cover a wide range of 

models in the field.   

5.2  Proposed method description and study design 

The proposed method was evaluated in-silico using clinically validated models of insulin kinetics 

and a DISST model of insulin mediated and glucose clearance.  The method was evaluated on its 

ability to predict the coefficients of variation of identified parameters in a Monte Carlo analysis.   

The analysis used random assay error to simulate real clinical data, and thus simulate the 

variability in the identified parameter spread expected in a clinical study. 

5.2.1  Proposed method process 

To evaluate identifiability of a model, the integral formulations of the variable parameters’ 

coefficients are evaluated using an estimated response to the test stimulus.  Thus, the method 

cannot be used in complete ignorance of the expected behaviour of the test participant.  In 

particular, the approximate shape of the species concentrations as a result of the test protocol must 

be known.  This is a reasonable assumption in almost all PK/PD studies.  Particularly in well-

understood areas like insulin-glucose metabolic systems. 

The specific steps are illustrated using the general function in Equation 5.01. 

�� 	 N
�, P, x, «, R, D� 5.01 

where: X is a measurable concentration; Y is dependent concentration in a remote compartment; C 

and D are known input vectors or scalars; and a and b are scalar variable model parameters to be 

identified. 

1. Rearrange the governing equation to create a first order differential equation with 
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linearised parameters in terms of a-priori, constant and measurable concentration terms 

�� 	 RN<
�, P, ES� � DN�
�, P, ES� � TS 5.01a 

2. Derive the integral formulation of this governing equation 

� 
 �= 	 R U N<
�, P, ES� � D U N�
�, P, ES� � TS 5.01b 

3. Evaluate the integral of the coefficients of each parameter between 0 and each proposed 

sample time using an assumed participant response to the test stimulus. 

R¬ 	 U N<
S
= �, P, ES�             D­ 	 U N�
S

= �, P, ES� 5.02 

where: i is each measured sample time after the first. 

4. Divide the resulting values by their respective means to normalise the coefficients.  (i.e.  

to ensure the mean parameter coefficient value for both parameters is 1). 

R® 	 R¬/R¬§                      D̄ 	 D­/D­§ 5.03 

5. Subtract one set of coefficients from the other and define the 2-norm of the result (�∆��). 

�∆�� 	 °R® 
 D̄°� 5.04 

6. Any distinction at all between the coefficients would imply identifiability (i.e. if �∆�� ±0).  In reality, the effect of assay error on parameter identification is inversely 

proportional to the magnitude of this distinction, and proportional to the magnitude of any 

assay error (�):  

�R²�RD���e³ 	 ´ ��∆�� 5.05 
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where: ´ is a proportionality factor that incorporates factors such as the relative 

contribution of the parameter to the derivative of the relevant species concentration in the 

governing differential equation, and the absolute magnitude of the noise at the sampled 

times in relation to the relative magnitude of the parameter coefficient. 

Thus, the method cannot accurately predict the coefficient of variation that a rigorous Monte 

Carlo analysis may find.  However, it can predict the change in the coefficient of variation that 

might be observed when changes are made to the test sampling or stimulus protocols. 

5.2.2  The DISST model 

The physiological models for insulin and glucose used by the DISST were used to evaluate the 

proposed a-priori identifiability analysis.  The model is presented in Section 4.3 (Equations 4.15, 

4.16 and 4.22) and is repeated here for ease of reading.   

 �� 	 
��� 
 �� �1 � �B� � �B�{ 
� 
 �� � Q��{ � 
1 
 ��� Qz�{  4.15 

 �� 	 �B�� 
� 
 �� 
 �#�  4.16 

 �� 	 
��
� 
 ��� 
 ��
�� 
 ����� � ���� 4.22 

where: all terms are defined in Section 4.3 

5.2.3  Participants 

Parameter values from two participants of the pilot investigation of the DISST (Lotz et al. 2010) 

were used to generate in-silico simulated data to construct and demonstrate the method proposed 

here.  In-silico data was used in this analysis because it easily allows protocols to be changed to 

illustrate the impact on identifiability.  Equally, varying levels of noise can be added to illustrate 

its impact.  The participant characteristics are summarised in Table 5.01 and represent extremities 

of the range of cases encountered in typical research studies of insulin sensitivity.  One of the 
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participants is a healthy and active normo-glucose tolerant (NGT) individual while the other is a 

sedentary individual with impaired glucose tolerance (IGT) and suspected un-diagnosed type 2 

diabetes. 

Glucose 
tolerance 

Sex 
Ag
e 

BMI 
UN* [mU/min] nL 

[1/min] 

xL 

[1] 
VG 

[L] 

SI 
[10-4L/mU/min] UB U1 U2 

NGT M 22 21.5 15.5 283.9 5.6 0.218 0.797 9.8 20.95 

IGT F 57 33.9 70.9 143.6 92.5 0.064 0.822 13.4 2.24 

Table 5.01.  Anatomical and identified parameter values (using the iterative integral method) of 

two participants of the DISST pilot investigation, Subjects 18 and 1, respectively.  (* in contrast 

to the typical deconvolution approach (Section 4.4.2) UB, U1 and U2 rates were identified by the 

iterative integral method as a 3-step function)  

5.2.4  Simulated test protocol 

The simulated protocol is similar to the DISST test; a 10g glucose bolus was administered at t=7.5 

and a 1U insulin bolus was administered at t=17.5.  The test duration was 60 minutes with a five-

minute sampling frequency.  The UN profile was defined as a step function with three stages 

including basal, first and second phase production rates.  The first phase of insulin production had 

a five-minute duration and began with the glucose bolus.  Simulations of plasma and interstitial 

insulin were completed using Equations 4.01 and 4.02, the parameter estimation equations from 

Van Cauter et al. (Van Cauter et al. 1992), nL and xL values from Table 5.01 and an aI value of 

0.001 L/mU.  Glucose was simulated using Equation 4.22 and the plasma and interstitial insulin 

profiles are obtained by evaluating Equations 4.15 and 4.16.  Parameter identification for the 

cases tested was performed using the iterative integral method described in Section 4.4. 

5.2.5  Analysis 

A series of variable parameter selection and sampling scenarios were analysed using the DISST 

model in Monte Carlo analyses.  The analysis processes are summarised: 

• Clinically measured physiological parameters of the NGT participant presented in Table 

5.01 were used to define simulated responses to the DISST test protocol described in 

Section 4.2.  The IGT participant was included in the analysis from Section 5.2.2. 
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• Samples were obtained from the simulated profiles at the defined times.  Each iteration of 

the Monte Carlo analysis added normally distributed assay error (magnitude of the error is 

defined below).   

• For each analysis, 100 iterations were used with parameter identification performed using 

the iterative integral method.   

• Each scenario measured the mean value of the parameters identified in the Monte Carlo 

simulation normalised by the simulation value from Table 5.01, and the coefficient of 

variation (CV) of each identified parameter. (Thus, perfect convergence is defined as a 

mean of 1 and a CV of 0.)  The CV value is the paramount indicator of parameter trade 

off during identification and thus was compared to the �/�∆�� value defined in Section 

5.2.1.  A large CV value indicates that in the presence of assay error, the identified model 

parameters have encountered trade-off during identification. 

• Finally, values are obtained for ´ to linearise Equation 5.05 for each of the combinations 

of parameters tested. 

5.2.6  Derivative algebra method for determining model identifiability 

5.2.6.1  Structural identifiability of the insulin model 

The traditional and established method of evaluating model identifiability converts the governing 

equations into expressions of a-priori terms, model parameters, and the observed data.  The 

ultimate aim is to prove that each model parameter is a coefficient of a unique function of the 

observed data, a-priori values, the derivatives of observed or a-priori data or combinations of 

terms observed or a-priori terms.  Using the algebraic derivative approach of (Ritt 1950) and 

refined in (Bellu et al. 2007) the identifiability of the model can be confirmed.  The a-priori 

inputs are (Qz , Q�) are considered the most important coefficients, followed by their derivatives 

(Qz� , Q�� ). The observed species (denoted Y, in this case Y=I) is considered the next most 

important, followed by its derivatives (P� , Pµ ). The species of the governing equations follow (�, �) 

and their derivatives (��, �� ) are considered the most deleterious terms. The aim is to have as many 

parameters as functions of UN or UX as possible, and have none of the model parameters in terms 

of  �, �, �� or �� .  This ranking of terms is summarised below: 

�Qz ¶ Q� ¶ Qz� ¶ Q�� ¶ P ¶ P� ¶ Pµ ¶ � ¶ � ¶ �� ¶ �� � 
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Equations 4.15 was rearranged in terms of Y and substituted into Equation 4.16 (to minimise un-

necessary complexity ��́ 	 
1 
 ���/�{)). Equation 4.16a was considered the “Characteristic 

Equation” of the model as all species are either observed or known a-priori inputs. 

P� � ��P � �� P1 � �P � �B�{ 
P 
 �� 
 Q��{ 
 ��́
Qz� 	 0 4.15a 


 �B��{�� P � ¸�# � �B��¹ £P� � ��P � �� P1 � �BP � �B�{ P 
 Q��{ 
 ��́
Qz�¤ … 

        … � Pµ � ��P� � �� »�<k¼�»� � [��½ P� 
 ¾¿��½ 
 ��́cQz� f=0 

4.16a 

if: P 	 �  

Thus, the model terms in the Characteristic Equation had the following coefficients: 

P� : 
�# � �� � �B�{ � �B��� 
4.16a-I P: Á�� � �B�{Â ¸�# � �B��¹ 
 �B��{�� 

4.16a-II 

P1 � �BP�� : �� 
4.16a-III P1 � �BP : ��
�# � �B��� 

4.16a-IV 

Q�� : 
1�{  
4.16a-V Q�: 
1�{ 
�# � �B��� 

4.16a-VI 

Qz� : 
��́ 
4.16a-

VII 
Qz: 
��́
�# � �B��� 4.16a-

VIII 

Using arbitrary values for Qz , Q� , Qz� , Q�� , P and P�  and assuming a non-zero �B value in Equations 

4.16a-I, III-VIII provided a unique solution for each model parameter (nK, nI, nL, nC, VP, VQ, xL). 

Thus, global identifiability was confirmed by the traditional derivative based method for the 

model parameters of the characteristic equation (4.16a). Thus, according the established 

derivative-based method, the parameters of Equations 4.15 and 4.16 are also a-priori identifiable.   

5.2.6.2  Structural identifiability of the glucose model 

The structural identifiability of the glucose model is considerably less complex than the insulin 

kinetic model.  In particular, the characteristic set was defined with a single equation: 

�� � ��
� 
 ��� � ��
�� 
 ����� 
 ���� 4.22a 

Thus the relevant coefficients were defined: 
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�: ��  ��: �� ��: 1/�� ��: ���� 

Simple observation confirmed that pG, SI, GB and VG are globally identifiable using derivative-

based identifiability analysis.   

It is important to note that this is an accepted traditional form of model analysis.  It is ideal in that 

it assumes perfect (zero assay error) continuous measurement.  Hence, these results imply 

globally unique, identifiability of the DISST insulin PK and glucose PD models, but only under 

these clinically un-realistic assumptions. 

5.3  Analysis of the DISST insulin PK models 

5.3.1  Justification of the iterative integral method 

When the sampled 0% assay error, in-silico data from the NGT participant was used in the 

iterative integral method to identify nL, nK, nI/VP(lumped), xL and VP as variable parameters, 

convergence to the simulation values occured as shown in Figure 5.01.  This result confirmed the 

traditional identifiability analysis of Equations 4.16a and 4.15a in Section 5.2.6.  However, when 

1% normally distributed noise was added to the simulated data, parameter values did not converge 

to simulation values.  When the sample noise was increased to 3.5%, which is more indicative of 

the actual magnitude of measurement noise encountered clinically, parameter convergence 

accuracy was significantly compromised.  Hence, despite proven (no noise) structural 

identifiability using well accepted methods, the addition of assay error or noise yielded corrupted 

or potentially unidentifiable results. 
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Figure 5.01.  Mean absolute percentage error between the simulation and identified parameters 

in the presence of 0%, 1% and 3.5% random assay error, with respect to iterations of the 

iterative integral identification approach. 

5.3.2  Hepatic and renal clearance rate identification  

To understand why the addition of noise degraded the quality of identification, the case of 

interference between nK and nL was tested.  In this analysis, all parameters of Equations 4.15 and 

4.16 were set as constants except for only nL and nK, which were identified parameters.  From the 

analyses in Sections 5.2.6 and 5.3.1, parameter value convergence was assured for the noiseless 

case.  However, for the 1% and 3.5% noise cases, parameter interference caused considerable 

parameter divergence in the value of the identified parameters compared to the actual values used 

in-silico.  The Monte Carlo analysis described in Section 5.2.5 was used to evaluate these two 

parameters alone in the presence of assay error or noise, and the results were shown in Table 5.02.   

The matrix equation used by the iterative integral method was in the form: 


�d U �S
= 
 �� U �1 � �B�S

= 	 �S 
 �= � �B�� U 
� 
 ��S
= 
 
1 
 ��� U QzS

= � U Q��{
S

=  5.06 

where: i= 5, 10, 15, … ,60 minutes, matching sampling times. 

Thus, the magnitude of the �∆�� term was identified for this model and sampling protocol as: 
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�∆�� 	 Ã � �S=�8R� Ä� �S= Å 
 � �1 � �B�S=�8R� Ä� �1 � �B�S= ÅÃ
�

	 0.032  

However, Table 5.02 shows that if �B was increased significantly to 0.05 L/mU (50x), an 

arbitrarily chosen value that is not necessarily physiologically representative (Thorsteinsson 

1990), parameter convergence is more stable.  The �∆�� term was re-evaluated with the 

exaggerated �B value.   

�∆�� 	 Ã � �S=�8R� Ä� �S= Å 
 � �1 � �B�S=�8R� Ä� �1 � �B�S= ÅÃ
�

	 0.464  

Thus, the parameters identified with the exaggerated �B term were hypothesised to have 

approximately 15 times smaller variability than those identified with the accepted �B value.  Table 

5.02 shows the effect of the �B distinction on the identified parameter values. 

Noise 0% 1% 3.5% 

Saturation ÆÇ=0.001 ÆÇ=0.05 ÆÇ=0.001 ÆÇ=0.05 ÆÇ=0.001 ÆÇ=0.05 

nK 
1 

(0) 
1 

(0) 
0.952 

(29.7%) 
0.999 
(1.7%) 

0.946 
(83.6%) 

1.004 
(5.9%) 

nL 
1 

(0) 
1 

(0) 
1.035 

(21.4%) 
1.001 
(0.8%) 

1.041 
(59.5%) 

1.000 
(2.8%) 

Table 5.02.  Normalised parameter variation (mean/true value, (CV)) when nK and nL are 

identified parameters. 

Table 5.02 shows the distinction between the effects of noise on identified parameter values when 

the �B term was changed.  Although the 0% noise case indicates that the parameters are uniquely 

identifiable, at 1% noise the variation in the identified values limits their clinical viability.  At 

3.5% noise, which may be expected in a real clinical setting, the parameters are effectively no 

longer uniquely identifiable.  The very large CVs of the identified parameter values illustrate this 

point.   

However, when the �B term was significantly increased, unique identifiability was once again 

possible, even with 3.5% noise.  The mean ratio of variation caused by the disparate �B values 

was approximately 1:20.  This ratio is larger than the ratio predicted by the method (1:15 = 
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0.032:0.464), but still represents a positive outcome in terms of predicting the relative magnitude 

of the change using the value of �∆��.  The reason for this outcome can be viewed graphically by 

the increased contrast between integral formulations of the parameter coefficients.  This contrast 

is shown in Figure 5.02. 

 

Figure 5.02.  Contrasts between the coefficients of hepatic and renal clearance rates with 

disparate saturation values at the defined sample times.   
 

The difference between the curves Figure 5.02 at the sample times indicated the identifiability of 

the model parameters in this two-parameter case.  Thus, when the saturation term was increased, 

the integral formulations of the parameter coefficients were more distinct and identifiability was 

increased.  Despite the positive findings of the typical, derivative based identifiability analysis, a 

realistic saturation value of 0.001 L/mU caused nK and nL to become uniquely un-identifiable in a 

real clinical setting.  This outcome may be considered an elementary finding that should have 

been inferred with a quick observation of Equation 4.15.  However, it points to a failing of typical 

a-priori identifiability tests that this approach can negate with a quick graphical analysis.   

The findings of this analysis also show that the functional effects of nL and nK on insulin 

concentration in Equation 4.15 are so similar that there would be a negligible effect if the terms 

were combined.  As such, analysis of the DISST model in Chapter 5 will use a combined nL and 

nK term (nT) without the saturation term, which is negligible except at extremely high insulin 

concentrations.  Equation 4.15 was thus redefined: 
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�� 	 
�M� 
 �B�{ 
� 
 �� � 
1 
 ��� Qz�{ � Q��{  5.07 

5.3.3  Plasma insulin distribution volume and insulin clearance identifiability 

The proposed method can also explain why nT and VP are only identifiable in the presence of noise 

with intelligent positioning of samples.  To identify nT and VP the form of the governing matrix 

equation was defined with the variable parameters on the LHS and the known terms on the RHS: 

�{§§§ U 
�B
� 
 ��S
= � QÈ� 
 �M U �S

= 	 �S 
 �= 
 
1 
 ��� U Qz�{
S

=  5.08 

where: �{§§§=1/VP (UN/VP was obtained via C-peptide data and then multiplied by VP, thus, as VP 

was assumed unknown in this case.  However in this case, the UN/VP must be used directly in 

RHS of the equation.) 

As with the nK and nL analysis, the 0% noise case exactly reproduced the simulation values.  

Figure 5.03 shows the coefficients of the two parameters for three different sampling protocols.  

In this case, Protocol 1 used the 5 minutely sampling defined in Section 5.2.4.  However, Protocol 

2 used samples at t=0, 15, 20, and 60, and Protocol 3 used samples at t=0, 5, 45, and 60 minutes.  

Thus, Protocol 1 required 13 samples, while Protocols 2 and 3 only required four samples, which 

was a significant reduction (~70%). 

The �∆�� terms were defined for each of these protocols (Table 5.03) and the distinction of the 

parameter coefficients that yield these values are displayed graphically in Figure 5.03.  The �∆�� 

values indicated that Protocol 3 was comparatively unable to reproduce the simulation values 

because the samples occur at points where the integrals of the parameter coefficients were 

effectively equal.  Contrary to the expected result, which was that parameter identification is best 

with the frequently sampled Protocol 1, the method predicted that the sparsely sampled Protocol 2 

would be more accurate.  Protocol 2 was expected to have better identifiability than Protocol 3 

despite the equal number of samples by merit of the placement of the samples in relation to the 

features of the integral of the parameter coefficients. 
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 �∆�É 

Protocol 1 0.731 

Protocol 2 0.990 

Protocol 3 0.045 

Table 5.03.  The value of the �∆�� term for the sampling protocols defined. 

 

Table 5.04 shows the parameter convergence and variablitiy for the exact same model with the 

three different sampling protocols. 

 

Figure 5.03.  Effect of the sampling times on the observability of the difference between the 

integral of the coefficients of the parameters in Equation 5.08.  The �∆�� value is also shown 

for each sampling case. 
 

Noise 1% 3.5% 

Protocol 1 2 3 1 2 3 

nT 
1 

(0.4%) 
1 

(0.3%) 
0.973 
(0.2%) 

1.003 
(1.2%) 

1.001 
(1.4%) 

0.958 
(4.5%) 

VP 

1.001 
(1.4%) 

0.995 
(1.2%) 

1.231 
(17.5%) 

0.999 
(4.7%) 

0.995 
(5.1%) 

1.190 
(46.3%) 

Table 5.04.  The distinction between the stability of the identified parameters 

It was evident that although Protocols 2 and 3 contain the same number of samples, the resolution 

of the identified parameters was considerably reduced in Protocol 3.  In effect, �{§§§§ was un-

identifiable with Protocol 3.  It bears reiterating that this result occurs because of the lack of 

0 20 40 60
-0.5

0

0.5

1

1.5

2

2.5

||∆||
2
=0.731

 Time [mins]

0 20 40 60
-0.5

0

0.5

1

1.5

2

2.5

||∆||
2
=0.990

 Time [mins]

0 20 40 60
-0.5

0

0.5

1

1.5

2

2.5

||∆||
2
=0.045

 Time [mins]

 

 

n
T
 coeff.

V
P
 coeff.

Samples



Page 78 

distinction in the coefficients of the parameters at the sample times as indicated in Table 5.03 and 

Figure 5.03.   

Thus, the method predicted the poor performance of the third Protocol, while it predicted much 

lower variability for both Protocols 1 and 2.  However, it also suggests that Protocol 2 would 

improve slightly upon Protocol 1, which was not the case as both protocols performed equally in 

terms of parameter identifiability.  It is suspected that the equality of variance is an artefact of the 

normalisation as a function of mean coefficient at the sample value, artificially lowering the 

magnitude of the �∆�� terms in Protocol 1. 

Importantly, these findings highlight the inefficiency and extreme clinical burden and intensity of 

frequent sampling in contrast to well-positioned and infrequent sample timing.  More specifically, 

Protocol 1 used nine more samples (225%) than Protocol 2 with significant added clinical 

intensity and assay cost (225% more!) for absolutely no information gain.  This outcome was 

successfully predicted and easily illustrated by the integral-based identifiability analysis method 

presented here. 

5.4  Analysis of the DISST glucose PD model 

Equation 4.22 was used in the analysis of identifiability of terms frequently used to model the 

PDs of insulin and glucose.  All analyses in this section simulated insulin concentration profiles 

for the plasma and interstitium only once in each Monte Carlo analysis.  Thus for clarity and 

simplicity, it was assumed that insulin is not subject to assay error in Section 5.4.  Furthermore, 

while glucose assay error from a blood gas analyser is approximately 2%, errors of 1% and 3.5% 

were used for consistency with Section 5.3.  As such, the resultant coefficients of variation should 

not be considered fully applicable clinically, but merely as an indication of parameter trade-off 

during identification for a range of clinically valid assay errors.  The Monte Carlo analysis 

method with the NGT participant described in Section 5.2.3 was repeated for the glucose PD 

model.  The IGT participant was used in tandem from Section 5.4.2. 

5.4.1  Insulin sensitivity and distribution volume 

Use of the DISST model typically entails the identification of SI and VG in Equation 4.22 

(Docherty et al. 2009; Lotz et al. 2008; Lotz et al. 2010).  Figure 5.04 and Table 5.05 indicate that 

these parameters are uniquely identifiable in the presence of measurement noise given a 
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surprisingly small number of data points.  Three sampling protocols were used in this analysis.  

Specifically, Protocol 1 used the 5-minute sampling resolution described in Section 5.2.4, while 

Protocols 2 and 3 used equally spaced 10 and 20-minute resolutions, respectively.   

 

Figure 5.04.  Distinction between the integral of the coefficients of the parameters of Equation 

4.22 at different sampling protocols. 

 

Table 5.05 shows that parameter stability is generally very high even in a sparsely sampled data 

set with a relatively high level of noise.  This result was expected due to the relatively large 

difference in the coefficient integrals shown in Figure 5.04 for each of the sampling protocols.  

Thus, like the case of VP and nT, intelligent sample timing was proven to significantly reduce 

clinical burden and study cost with negligible loss of information.  Furthermore, the method 

presented in this chapter successfully predicted and clearly illustrated this outcome. 

Noise 1% 3.5% 

Protocol 1 2 3 1 2 3 

SI 
1.001 
(0.7%) 

1.002 
(0.8%) 

1 
(1.6%) 

1.002 
(2.8%) 

1.002 
(3.3%) 

1.010 
(5.4%) 

VG 
1 

(1.2%) 
1 

(1.4%) 
1.001 
(2.9%) 

0.998 
(4.6%) 

1.001 
(4.9%) 

0.990 
(8.7%) 

Table 5.05.  Glucose PD identified parameter variation. 
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5.4.2  Insulin sensitivity and glucose dependent decay 

Model-based studies of insulin sensitivity frequently identify pG in addition to SI and VG as 

variable parameters when using the Minimal Model (Bergman et al. 1979) or similar.  However, 

numerous identifiability issues arise using the Minimal Model and the non-linear least squares 

identification methods.  It has been reported that these issues can be exacerbated for insulin 

resistant (IR) individuals (Pillonetto et al. 2002; Quon et al. 1994b).  Thus, the second, IGT 

participant defined in Table 5.01 was also analysed. 

Some insight into the parameter trade-off during identification of dynamic test data can be seen in 

Figure 5.05, which contrasts the integral formulations of the parameter coefficients based on 

glucose tolerance status.  The contrasting shape of the integral formulations of the parameter 

coefficients is best observed in the pG coefficient.   

The pG coefficient is the only term in Equation 4.22 that could possibly have a negative 

coefficient.  Thus, the integral of the coefficient can form a convex shape that contrasts well with 

the coefficient of SI, as seen for the NGT participant in Figure 5.05.  However, the negative 

coefficient of pG can only occur when the participant’s glucose concentration goes below the basal 

concentration.  Thus, as only NGT participants achieve such concentration reductions in typical 

dynamic insulin sensitivity tests, the parameter identifiability of IR participants is impaired in 

comparison.   

In particular, Figure 5.05(right) shows minimal difference and a much smaller �∆�� value for this 

IGT individual indicating increasing potential for parameter trade-off in the identification process 

and an increasing potential loss of effective identifiability.  As mentioned, this limitation of the 

Minimal Model has been well reported, but not explained in the literature until now.  

Table 5.06 shows the identified parameter variation when the 60 minute 10-minute sampling 

protocol was used.  It was apparent that the insulin resistant individual’s parameter identifiability 

was much lower than the NGT participant despite the identical PD model, test protocol and 

identification process.  Table 5.06 highlights this result, as well as the increasing loss of 

identifiability as assay error increases.  These outcomes are in accordance to previously observed 

findings and the proposed method’s prediction.   
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Figure 5.05.  The disparity between the integral formulations of the coefficients of SI and pG 

based on glucose tolerance status. 

 

Noise 1% 3.5% 

Participant NGT IR NGT IR 

SI 
1 

(0.8%) 

1.001 

(16.1%) 

0.998 

(3.2%) 

0.876 

(44.9%) 

pG 
1.009 

(32.0%) 

0.959 

(75.6%) 

1.109 

(80.2%) 

1.573 

(124.4%) 

Table 5.06.  Normalised mean values of SI and pG and their coefficients of variation. 

5.4.3  A hypothetical protocol to enable pG identification in dynamic tests 

To forcibly improve identifiability of the parameters describing the IR individual, the clinical 

protocol used in the analysis could be altered based using the proposed method to guide the 

alteration.  After an initial observation of the effect of the insulin bolus on glucose concentration, 

more insulin could be introduced to ensure that the resistant test participants’ glucose 

concentration is maintained at approximately 0.5 mmol/L below the basal concentration.  Such a 

protocol may include an extension of the protocol described in Section 5.2.4 wherein a period of 

slight hypoglycaemia is achieved for each participant with a series of participant-specific insulin 

boluses or infusions administered with feedback control. 
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However, to allow a fair comparison between the variability of the model parameters of the 

proposed protocol and the protocol used in Section 5.4.2 the sampling regimen and test duration 

was maintained.  Thus, the additional insulin was administered as a bolus at t=32.5 minutes to test 

this scenario in-silico.  In a clinical setting, the magnitude of the bolus would be participant-

specific and dependent on the glucose concentration response alone, as glucose can be assayed in 

real time.   

Note that this task would be very difficult and potentially dangerous in a regular clinical setting 

but is useful in this analysis.  In particular, the amount of insulin required would vary between 

participants, and must be estimated in ignorance of endogenous insulin production or clearance.  

This lack of knowledge may cause a high incidence of potentially harmful hypoglycaemia.  

Hence, this protocol is only mooted to illustrate the ability of the method, and in reality, the 

introduction of additional insulin would be applied slowly so that safety could be assured.  Hence, 

although the method proposed here is not necessarily safe enough for clinical application, it is 

illustrative of a new approach of IVGTT protocols, which may increase the identifiability of 

Minimal Model parameters in the IR subgroup. 

For the case of the particularly resistant IGT participant presented here, a 3U bolus at t=32.5 

minutes was required to reduce glucose sufficiently.  The proposed protocol altered the shapes of 

the integral of the parameter coefficients for the IGT individual.  In doing so, it was hypothesised 

that it would increase the distinction between these curves to avoid the similarity seen in Figure 

5.05(right) to ensure identifiability.  The �∆�� value obtained for the IGT participant and the 

updated protocol indicates that the identified parameter variability would be approximately 

halved.  Figure 5.06 and Table 5.07 show the results. 
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Figure 5.06.  Effect of the alteration of the protocol on the parameter coefficients of the insulin 

resistant individual. 
 

Noise 1% 3.5% 

SI 
1.002 
(2.9%) 

0.996 
(7.0%) 

∆SI 
+0.001 

(-13.2%) 

+0.120 

(-37.9%) 

pG 
0.989 

(36.9%) 
0.992 

(96.9%) 

∆pG 

+0.030 

(-38.7%) 

-0.581 

(-27.5%) 

Table 5.07.  Parameter variability and (CV) from the hypothetical protocol.  The bold values are 

indicative of the change afforded by the added insulin bolus.  (∆SI and ∆pG show the change 

between these values and those from the same individual presented in Section 5.4.2) 

 

Although the very large, inhibitive CV values for some of the parameters indicate that the 

particular proposed protocol could not be used clinically, the parameter variability decreased in 

the order predicted by the presented identifiability method.  Furthermore, the hypothetical 

protocol and in-silico analysis presented has confirmed the reasons for the poor parameter 

identification observed in many clinical studies that utilise these two competing model parameters 

(Pillonetto et al. 2002; Quon et al. 1994b).  In addition, it has demonstrated a serious limitation of 

traditional identifiability methods, which provide a false confirmation of identifiability in 

ignorance of probable participant behaviour or protocol design.   
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The distinction of the parameter coefficients of the IGT participant during the modified protocol 

was similar to the distinction of the sensitive participant of the standard protocol.  Thus, the 

identifiability of the parameters is compared across these tests.  Table 5.08 shows that the 

difference in parameter identifiability was minimal. 

Noise 1% 3.5% 

∆SI 
+0.002 
(+2.1%) 

-0.002 
(+4.8%) 

∆pG 
-0.020 

(+4.9%) 
-0.117 

(+16.9%) 

Table 5.08. The difference between the mean values and coefficients of variation of the IR 

participant of the modified protocol and the NGT participant of the standard protocol. 
 

The protocol presented in this section would be virtually impossible to apply clinically in the 60-

minute duration, as it was described here.  However, this analysis was limited by the need for a 

consistent duration and sampling regimen to Section 5.4.2.  More importantly, this analysis shows 

that the method could thus be used to define similar protocols that could yield data that enables 

unique identification of these parameters. 

More practically, if protocols like the one proposed here for IR individuals are pursued, they 

would most likely require two sections in a longer test.  The first section would involve the 

protocol defined in Section 5.2.4, and would be followed immediately by an infusion of insulin 

designed to safely bring the participant’s glucose concentration to 0.5 mmol/L below the basal 

level.  Robust results would be most assured if the participant’s glucose concentration was 

maintained slightly below basal for approximately 30 minutes, and thus, the protocol would most 

likely require about 2 hours.  However, a stable result in terms of both SI and pG would be 

generally assured. 

5.4.4  Removal of redundant points 

The t=40 minute samples in Figure 5.05(left) and t=30 in Figure 5.05(right) show virtually no 

distinction between the coefficients of either profile.  Thus, according to the theory presented, it 

should provide no added benefit to the identification process.  To test this hypothesis, the analysis 

of Section 5.4.2 was repeated with these samples removed.  The identified values and the 

differences between this analysis and that of Section 5.4.2 are given in Table 5.09, while the 

distinctions in the coefficients are shown in shown in Figure 5.07. 
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Figure 5.07.  The coefficient comparison in an alternative sampling protocols which omits 

samples at t=40 and 30 minutes for the NGT and IGT participants, respectively, which 

according to Figure 5.05 have a negligible value due to the small differences.   

 

Noise 1% 3.5% 

Participant NGT IR NGT IR 

SI 
0.999 

(1.0%) 

0.960 

(18.2%) 

1 

(2.9%) 

0.852 

(49.6%) 

∆SI 
-0.001 

(+0.2%) 

-0.041 

(+2.1%) 

+0.002 

(-0.3%) 

-0.024 

(+4.7%) 

pG 
1.019 

(36.0%) 

1.152 

(69.3%) 

1.400 

(76.2%) 

1.231 

(115.6%) 

∆pG 
+0.010 

(+4.0%) 

+0.193 

(-0.3%) 

+0.311 

(-4.0%) 

+0.342 

(-8.8%) 

Table 5.09.  Normalised mean values of identified parameters and their coefficients of variation 

with the omission of assumed negligible data points.  The bold values are most indicative of the 

changes in parameter identifiability.  (∆SI and ∆pG is the change in values between this analysis 

and Section 5.4.2)  

 

The findings of this analysis imply that the omission of the samples that were assumed redundant, 

or of little value, did in fact, have little effect on the outcome of the identification process.  Most 

changes were very small and only those for the particularly un-stable model parameters showed 

any noticeable changes.  Hence, it is clear that this method could be used to define sample times 

and protocols for maximum identifiability and accuracy while minimising clinical burden. 
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5.5  The value of µ 

The value of µ in Equation 5.05 could be used to enable prediction of the probable variability in 

the identified parameters in a Monte Carlo simulation.  Thus, the effects of protocol changes on 

parameter identifiability could be predicted without the need for numerous Monte Carlo 

simulations.  To identify the value of µ, linear relationships between the CV values obtained and 

the �/�∆�� values were defined.  As noiseless identifiability of all models has been shown.  Thus, 

the y-intercept can be assumed zero, and the µ value was identified using Equation 5.09: 

´ 	 1� b x��/�∆�� 5.09 

Figure 5.08 shows the adherence of µ to linear relationships while Table 5.10 shows the value of 

µ for the different identified parameters.   

Analysis    Parameter µ 

Section 5.3.2 
nL 0.560 

nK 0.801 

Section 5.3.3 
nT 0.081 

VP 0.683 

Section 5.4.1 
SI 1.483 

VG 2.408 

Sections 5.4.2 to 
5.4.4 (incl.) 

SI 6.435 

pG 26.00 

Table 5.10.  Values for µ from the various analyses 
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Figure 5.08.  Comparison between CV values and the �/�∆�� term to provide parameter 

specific values for µ. 

 

 

It can be observed that no single value for µ could be applied across all models and that different 

model parameters were considerably more susceptible to the distinction of the parameter 

coefficients.  However, the general adherence to the linear relationships observed in most 

examples implied that the form of Equation 5.05 was accurate for this purpose, with the possible 

exception of SI in Sections 5.4.2 to 5.4.4.   
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5.6  Implications of the geometric identifiability analysis 

The method presented was able to predict and explain the parameter identifiability behaviour 

exhibited in models of insulin kinetics and insulin/glucose dynamics.  This capability is in direct 

contrast to the traditional, well-accepted, derivative-based identifiability analysis (Audoly et al. 

2001; Audoly et al. 1998; Bellu et al. 2007; Chin & Chappell 2010; Pohjanpalo 1978) that can 

only provide a confirmation of an infinitesimal distinction of the model parameters in the 

governing equations.  In addition to the ability to predict parameter identifiability, the method was 

shown to be able to aid sample selection and explain the non-identifiability of the pG term when 

IR participants undertake common dynamic insulin sensitivity tests.  It was also used to derive 

and justify a novel dynamic protocol to make this parameter more identifiable in this subgroup. 

However, the method does have some notable limitations.  In particular, it has only been 

demonstrated here in cases identifying two parameters.  In reality, many models utilise more than 

two parameters to describe physiological kinetics and seek to identify all at once.  It is expected 

that the proposed method will still be capable of predicting the identifiability of such models.  

However, more care must be taken to construct the coefficient integral formulations, as 

combinations of parameters may come into conflict.  This task would require the contrast between 

the most deleterious combination of integral coefficients to be measured.  However, this point was 

not explored in this study, as the goal was to introduce this overall approach, and only a limited 

number of parameters are involved. 

Only cases with lineariable model parameters in terms of measured species were analysed.  In 

reality, some model parameters are intrinsically linked and this method will not work.  An 

example of linked parameters would be insulin sensitivity and insulin effect saturation which 

requires a Michaelis-Menten formulation (Docherty et al. 2010; Lin et al. 2011).  In addition, 

some parameters effect remote, un-measured concentrations or masses and are thus not able to be 

identified with this method.  For example, the nC term in Equation 4.16 could not be evaluated for 

identifiability using this method without the inclusion of measurements of interstitial insulin 

(Sjostrand et al. 1999), which are difficult to clinically obtain, resulting in large errors.  As such, 

this method should not replace the traditional identifiability analysis, but be used in tandem with it 

to produce both theoretical and practical investigations of identifiability.   

Furthermore, the method assumes that an expected range of parameter values is known prior to 

the commencement of the clinical study.  This knowledge is important, as the method requires 

that species simulations are available to define the coefficients of the parameters.  However, in 

most cases, the researcher will be able to obtain an indication of the likely range of parameter 
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values in a cohort from a brief literature search, and likely test outcomes could be cases that can 

be safely evaluated prior to clinical testing. 

There is also an assumption that the model captures all of the dynamics of the system perfectly.  

In reality, no model can provide such accuracy.  In particular, Figures 5.04 to 5.07 show a sample 

taken at t=10 for glucose.  Practically, this sample may be affected heavily by mixing-induced 

error (Caumo et al. 1999; De Gaetano & Arino 2000; Edsberg et al. 1987). Although the method 

presented indicates that this is a valuable sample, if it is used in the glucose pharmacodynamic 

model of Equation 4.22, the resultant parameters will be overly influenced by the un-modelled 

mixing effect (Lotz 2007). 

Although the method has limitations and potential for improvement, it can currently provide 

valuable information at a study design stage, as well as valuable identifiability information not 

available from typical methods.  It can differentiate between the applicability of different dynamic 

tests based on cohorts, and also help to define optimal sample timing and frequency.  In 

particular, it explained the observation of poor Minimal Model parameter convergence in insulin 

resistant participants that has been widely reported without clearly defining the cause.  Thus, 

despite the method’s limitations, it should still be used in the design stage of a study to ensure that 

the resultant clinical data can provide usable results, and time and money is not wasted.   

Finally, the method has highlighted the limitation of discrete binary identifiability analyses as 

providing potentially misleading assurances of model parameter identifiability in real clinical 

applications. Importantly, the method has shown that identifiability is instead a continuous, 

analogous artefact of sample timing and the distinction between parameter coefficients.   

5.7  Future work 

It seems likely that some of limitations of the method could be overcome.   

Initially, the case of three or more parameters could be potentially resolved with matrix algebra.  

The most deleterious combination of coefficients could be identified and used to quantify the 

contribution of µ.  For example, consider three parameters a, b and c.  The coefficient integrals of 

a, b and c (fa, fb and fc, respectively) could be entered into matrix equations (Equations 5.10) to 

find the smallest possible distinction between a combination of parameters using differing 

parameter coefficient contributions (A, B, C).   
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�N� N!� _A/` 	 �NF�  or �N� NF� _Ax` 	 �N!� or �N! N#� _/x` 	 �N�� 
  5.10 

Equation 5.05 could be evaluated with the combination of 5.10 that produces the lowest value of 

Equation 5.11. 

����∆�� 	 ∑ Á�NS NV� £�g¤ 
 �Nd�Â  5.11 

where: ����∆�� is the minimum distinction i, j and k can equal any combination of a, b or c. 

However, this possibility has not been tested yet, and remains to be done.   

Secondly, µ could potentially be defined prior to any Monte Carlo analyses if the nature of the 

samples contribution to the final variation is accurately defined.  To define this value a-priori, the 

expected parameter values of indicative cases must be included in the initial analysis in some 

way.  pG, VG, VP and nK all had a much higher variability than their paired parameters.  This effect 

is likely to be an artefact of their reduced effect on their governing equations.  Furthermore, the 

placement and distribution of error must be evaluated.  Proportionally distributed error was placed 

on the in-silico data in accordance with assay manufacturer recommendations.  However, the 

identification methods aim to minimise the absolute error.  Improvement in predictability may 

also be possible with the refinement of the contribution of different species.  This error was most 

apparent in the analysis of nT and VP. 

Finally, the current form of the method can be used to asses many models, and is not necessarily 

limited to the field of physiology.  Any model that has two parameters in terms of measureable 

species can be evaluated with the current method.  In regards to insulin sensitivity, the method has 

explained the poor resolution of the Minimal Model for insulin resistant participants, and was 

used to simulate a new protocol which improved identifiability.  The protocol was limited by the 

need to allow a fair comparison between tests, and thus could be improved significantly and 

identification of the Minimal Model in all types of participants could be achieved without the 

need for Bayesian techniques.   
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PART THREE: Clinical 
validation and applications 
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Chapter 6.  DISST validation study 

This chapter describes the validation investigation of the DISST that clinically measured the 

equivalence between the DISST and the euglycaemic clamp (EIC) metrics of insulin sensitivity.  

This investigation have been published by McAuley et al. (McAuley et al. 2011). 

6.1  Study design 

Clinical validations of new tests are usually completed by performing the test in a representative 

cohort using both the proposed method and the existing gold-standard method, and comparing the 

results.  Thus, to validate the DISST test’s ability to quantify insulin sensitivity, a clinical study 

measured the equivalence between the DISST values of insulin sensitivity and the values 

produced by the euglycaemic clamp.  The participants also undertook the OGTT, as it is the 

simple diagnostic standard test.  Ethics Approval for this study was granted by the Upper South 

Island Regional Ethics Committee B.   

6.2  Participants 

Fifty subjects were recruited under strict guidelines that ensured the study cohort’s metabolic, 

anatomic and ethnic distribution was representative of the wider New Zealand community.  Each 

participant undertook the DISST, the EIC and OGTT protocols within an 8-day period.  The order 

of the participant’s tests was assigned from a predetermined randomized list based on their order 

of recruitment.  Insulin sensitivity metrics were derived from the DISST, EIC and OGTT data.  

Furthermore, the OGTT was used to determine and diagnose normal glucose tolerance, impaired 

glucose tolerance, or type 2 diabetes based on accepted clinical guidelines (ADA 2006,2010).  

Although sufficient data was obtained from the OGTT to identify a number of surrogate 

sensitivity metrics, only the Matsuda index (Matsuda & DeFronzo 1999) was derived.  Upon the 

morning of their first test each participant was weighed, had their height measured and completed 

a brief questionnaire concerning family history of type 2 diabetes and personal medical history.   

The method proposed by Hauschke (Hauschke et al. 1999) used the CV values of the DISST and 

EIC tests from the Lotz et al. Monte Carlo investigation (Lotz et al. 2008) to define the number of 
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participants required to adequately power the validation study.  Thus, 50 participants were 

required for the validation study to have a power of 0.9. 

The 50 participants were passively recruited from the Christchurch region of New Zealand in 

accordance with the conditions of the approved ethical consent.  Participants were recruited using 

flyers and newspaper advertisements.  Upon expression of interest, potential participants were 

given an information sheet that defined the clinical procedures and risks, and listed the benefits of 

the study.  Participants signed informed consent prior to the commencement of any clinical 

procedure.  Figure 6.01 shows examples of the flyers and advertisements.   

 

Figure 6.01. Newspaper advertisement for participants (L) and a flyer specifically targeting 

obese males (R). 
 

To ensure that the study cohort was representative of the wider population, six subgroups were 

defined that ensured anatomical diversity.  The subgroups were defined: five lean males 

(BMI<25), five lean females, 10 overweight males (BMI>25, <30), 10 overweight females, 10 

obese males (BMI>30) and 10 obese females.  The age range was 18 to 70 years and participants 

were omitted if they had any diagnosed major disease or illness (including known diabetes).  The 

participant characteristics are listed in Table 6.01a-c, covering obese, overweight and lean 

participants respectively.  Cohort characteristics are summarised in Table 6.01d.  In total, the 

validation cohort included 33 New Zealand Europeans, 5 individuals with Maori decent, 2 

Caucasian Australians, 1 Irish and 3 continental Europeans, 2 from the middle east, 1 Caucasian 

and 1 Hawaiian American, and a Korean.   

Are you at 

risk of diabetes?
If you have a family history of diabetes,  lack 
of a healthy diet or exercise, you may be at 

risk of diabetes. 
Early detection is the key to avoiding the 

worst complications of diabetes. 
We are looking for participants for a joint 

research venture, between the Universities of 
Otago and Canterbury, to help us measure the 

risk of developing type 2 diabetes. 
Participants will receive free comprehensive 

metabolic information including a risk 
assessment from the most advanced tests 

available.
If you are interested in taking part in this 

study, please contact: Dr J Berkeley at 
Juliet.Berkeley@otago.ac.nz, 027 211 1803,  

or Endocrine special tests 364 0934
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Participan
t 

Sex 
Age 
[yrs] 

Weight 
[kg] 

BMI 
[kg/m2] 

Fasting 
glucose 
[mmol/L] 

Fasting 
insulin 
[mU/L] 

NGT 

IGT* 

T2D* 

6 F 46 84.3 30.7 4.5 5.9 NGT 

12 F 45 76.5 30.4 5.1 11.0 NGT 

15 F 35 78.3 30.1 4.7 8.6 NGT 

18 F 28 125.3 45.6 4.8 23.2 NGT 

19 F 45 110.4 42.4 4.8* 15.1 T2D 

21 F 46 86.5 34.2 5.4 9.5 NGT 

22 F 37 92.35 32.4 4.8 22.6 NGT 

34 F 37 77.1 32.3 4.4 8.1 NGT 

36 F 42 209.6 64.9 4.5 23.6 NGT 

45 F 50 150.2 55.4 4.7 7.9 NGT 

17 M 56 98.9 32.2 3.9 1.6 NGT 

27 M 43 110.4 36.4 4.5 9.5 NGT 

37 M 30 134.8 39.8 4.0 34.0 NGT 

38 M 36 99.6 33.2 4.6 7.8 NGT 

40 M 67 110.1 38.9 5.2 22.8 NGT 

42 M 65 93.9 30.1 4.8* 7.8 IGT 

44 M 42 101.2 35.3 4.7 22.8 NGT 

47 M 69 112.9 35.1 5.3 12.8 NGT 

48 M 65 115.9 36.4 5.2* 14.5 IGT 

50 M 28 120.3 33.4 4.8 9.6 NGT 

Q1 

10 M 

10 F 

36.5 89.4 32.3 4.5 8.0 17 NGT 
2 IGT 

1 T2D 
Q2 44 105.6 34.7 4.8 10.4 

Q3 53 118.1 39.4 5.0 22.7 

Table 6.01a.  Obese participants of the DISST validation study.  (* according to the 2hr OGTT 

glucose criteria of the ADA) 
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Participant Sex 
Age 
[yrs] 

Weight 
[kg] 

BMI 
[kg/m2] 

Fasting 
glucose 
[mmol/L] 

Fasting 
insulin 
[mU/L] 

NGT 

IGT* 

T2D* 

9 F 60 66.3 25.8 3.7 3.7 NGT 

10 F 54 66.4 26 4.2 5.5 NGT 

24 F 60 65.3 25.1 4.8* 8.0 IGT 

25 F 60 67.0 27.2 3.8 2.2 NGT 

32 F 47 73.8 28.3 4.3 7.2.0 NGT 

35 F 50 92.8 29.9 5.2 10.4 NGT 

39 F 50 66.1 27.5 4.6 5.0 NGT 

43 F 42 83.1 29.3 4.2 9.5.0 NGT 

46 F 20 85.0 29.8 4.3 9.5 NGT 

49 F 43 86.9 28.8 4.9 14.0 NGT 

2 M 27 85.9 28.5 4.5 4.3 NGT 

3 M 31 86.9 26.6 4.8 4.5 NGT 

4 M 33 94.9 28.9 5.3 7.5 NGT 

13 M 50 89.4 25.7 4.6 9.7 NGT 

14 M 36 78.0 26.6 5.1 5.9.0 NGT 

16 M 24 84.1 26.1 4.6 8.8 NGT 

23 M 40 91.5 28 4.1 7.1 NGT 

26 M 22 80.6 26.3 4.4 9.7 NGT 

31 M 23 81.6 27.5 4.3 4.6 NGT 

41 M 47 87.6 27.7 4.3* 17.0 IGT 

Q1 

10 M 

10 F 

29 70.4 26.2 4.2 4.8 
18 NGT 

2 IGT 
Q2 42.5 83.6 27.5 4.5 7.4 

Q3 50 87.3 28.7 4.8 9.6 

Table 6.01b.  Overweight participants of the DISST validation study.  (* according to the 2hr 

OGTT glucose criteria of the ADA) 
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Participant Sex 
Age 
[yrs] 

Weight 
[kg] 

BMI 
[kg/m2] 

Fasting 
glucose 
[mmol/L] 

Fasting 
insulin 
[mU/L] 

NGT 

IGT* 

T2D* 

5 F 34 62.4 21.3 4.2 3.9 NGT 

7 F 45 59.0 22.0 4.8 5.2 NGT 

11 F 29 55.5 19.8 4.6 13.7 NGT 

20 F 25 63.2 22.4 4.4 4.5 NGT 

33 F 27 66.8 24 4.4 2.6 NGT 

1 M 21 62.3 19 3.8 5.3 NGT 

8 M 29 72.0 21.3 4.3 3.6 NGT 

28 M 30 56.9 19.1 4.1 2.9 NGT 

29 M 25 73.2 23.2 4.4 2.3 NGT 

30 M 25 77.0 22.7 3.6 1.4 NGT 

Q1 

5 M 

5 F 

25 59.0 19.8 4.1 2.6 

10 NGT Q2 28 62.8 21.7 4.3 3.8 

Q3 30 72.0 22.7 4.4 5.2 

Table 6.01c.  Lean participants of the DISST validation study cohort.  (* according to the 2hr 

OGTT glucose criteria of the ADA) 

 
 

Participant Sex 
Age 
[yrs] 

Weight 
[kg] 

BMI 
[kg/m2] 

Fasting 
glucose 
[mmol/L] 

Fasting 
insulin 
[mU/L] 

NGT 

IGT* 

T2D* 

Q1 

25 M 
25 F 

29 72.0 25.8 4.3 4.6 45 NGT 

4 IGT 
1 T2D 

Q2 41 84.7 28.7 4.6 8.0 

Q3 50 98.9 33.2 4.8 11.2 

Table 6.01d.  Summary quartiles of the whole validation study cohort.  (* according to the 2hr 

OGTT glucose criteria of the ADA) 
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6.3  Test protocols 

6.3.1  DISST protocol 

Participants reported to the place of testing in the morning after an over-night fast and were seated 

in a relaxed position for the duration of the test.  A cannula was placed the antecubital fossa (large 

vein in the inner elbow).  A three-way tap was connected to the cannula to facilitate the extraction 

of ‘dead-space’ during sampling and enable flushing of boluses.  A fasting blood sample was 

obtained followed by a 10g glucose bolus (50% dextrose, although after Participant 20, 25% 

dextrose was used to avoid the incidence of pain caused by the concentration of the glucose).  

Further samples were taken at 5 and 10 minutes after the glucose bolus.  A 1U insulin bolus 

(actrapid, measured out using an insulin pen) was administered immediately after this sample.  

Further samples were taken 10 and 20 minutes after the insulin bolus.  Due to the occasional 

difficulty in maintaining a free flowing cannula, some blood samples were not taken precisely at 

the time defined by the protocol.  The timing of samples in a dynamic test is critical to the 

accuracy of the resultant metrics.  As such, a timer devise was used to record the actual times of 

samples and boluses.   

A purpose built timer program was installed on a palm-held computer with a purpose-built 

software package installed.  The program displayed a large countdown timer for each scheduled 

sample.  The clinician recorded the actual times (at 1-second resolution) that the samples and 

boluses were performed by pressing a single button.  The software was encoded in visual basic 

studio (.NET). 

6.3.2  EIC protocol 

Participants attended the place of testing in the morning after an over-night fast and were seated in 

a relaxed position for the duration of the test.  Two cannula were placed in the antecubital fossa 

(vein in the inner elbow) and retrogradly (toward fingers) into any vein in the dorsum (back) of 

the hand.  The retrograde direction of the dorsum cannula is designed to gain proximity to 

arterialized blood.  Participants placed their hands into a heated-hand-box (Figure 6.02) that was 

designed to re-circulate warmed air around the back of their hand.  The re-circulated air was 

temperature controlled at 60°C ±1°C although some participants requested a lower temperature of 

50°C.  This heating was intended to mobilize the arterial blood and ensure the samples obtained 
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from the second cannula more representative of the interstitial regions of the body.  The cannula 

in the arm was attached to glucose and insulin feeds.  The glucose infusion was a solution with 

25% dextrose.  A 50 ml syringe was made up of 49 ml of saline, 1 ml of the participants own 

blood and an amount of insulin defined by Equation 6.01.  (The participant’s blood reduced the 

binding of insulin to the syringe wall.) 

 

Figure 6.02.  Heated hand box 

 

��ËÌ���
Ì��eË� 	 8 � /�A 	 860 �  /0
y}� � ~8�}~e
�� 6.01 

Both infusions were applied with rate-controlled pumps.  Initially, a basal fasting blood sample 

was obtained and assayed for glucose, and then frozen and stored for later insulin assay.  If the 

participants fasting glucose was between 4 to 5 mmol/L their target glucose was equal to their 

fasting glucose.  However, if it was outside this range, a value of 4.5 mmol/L was used.   

A priming insulin solution infusion rate of 80mL/hr was started at t=0 minutes.  At t=2 minutes 

this was reduced to 40 mL/hr, and at t=4 minutes it was finally reduced to 20 ml/hr for the 

remainder of the trial.  This infusion rate was designed to increase and maintain the participant’s 

insulin concentration at approximately 100 mU/L in order to suppress the participant’s 

endogenous insulin and glucose production (DeFronzo et al. 1979).  The glucose infusion started 

at t=4 minutes and usually started at an ml/hr rate equal to the participants weight in kilograms.  

Blood samples were taken at 5-minute intervals and assayed at the ‘bedside’ for glucose.  

Feedback control was used to maintain the participants’ blood glucose concentration at the 

predetermined target concentration by varying the glucose infusion rate.   

Temperature 

control unit

Fan to 

circulate air

Heating 

element
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The blood samples taken at t=60, 80, 100, 120 and 140 minutes were spun and frozen for later 

insulin assays.  The maximum test duration was 150 minutes.  All assayed glucose concentrations 

and glucose infusion rates were recorded. 

6.3.3  OGTT protocol 

Participants attended the place of testing on the morning after an overnight fast.  Participants 

remained in a relaxed, seated position for the duration of the test.  A cannula was placed in the 

antecubital fossa (large vein in the inner elbow) to enable blood samples.  A fasting sample was 

taken and was followed closely by the oral consumption of the glucose drink.  The drink 

contained 75 grams of glucose, was lightly carbonated, and had an overall volume of 250 ml.  

Further blood samples were taken at t=30, 60 and 120 minutes after the basal sample.  All 

samples were assayed for glucose at the bedside, spun and frozen for later insulin assays. 

Current medical practice guidelines state that a 120-minute glucose assay greater than 11.1 

mmol/L can be used to diagnose diabetes, while 120-minute values over 7.8 mmol/L imply 

impaired glucose tolerance (ADA 2006,2010).    

6.3.4  Assay techniques 

Glucose assays were analyzed using YSI 2300 stat plus Glucose and L-Lactate analyzer using 

whole blood.  These were converted to plasma glucose, using Equation 6.02.  Samples for insulin 

and C-peptide were separated immediately and frozen.  Measurements of insulin were undertaken 

by the Endolab, Canterbury Health Laboratories using Roche Elecsys® after PEG precipitation of 

immunoglobulins (Roche Diagnostics, Mannheim, Germany).  All C-peptide measurements were 

undertaken by Endolab, Canterbury Health Laboratories using the Roche Elecsys® method.  

Serum cholesterol and triglycerides were measured enzymatically with Roche kits and HDL was 

measured in the supernatant after precipitation of apolipoprotein B containing lipoproteins with 

phosphotungstate/magnesium chloride solution (Assmann et al. 1983).   

��(��)� 	 �¨&'($!(''�¦(�F'�$2.4 Í 109� � ~R8�ReÎE²�e
%� 6.02 
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6.4  Parameter identification methods  

6.4.1   DISST parameter identification 

Glucose, insulin and C-peptide data obtained during the DISST tests were analysed using the 

same methods used to identify the model parameters of the pilot investigation.  Thus, the methods 

described in Section 4.4 are generally relevant to this investigation.  However, due to the 

increased timing resolution and reduced number of samples two changes to the identification 

process were necessary.  The method was adapted to analyse data in terms of seconds, not 

minutes.  Furthermore, there was not sufficient data to produce a unique double exponential 

estimation of the insulin decay.  Thus, a single exponential with an offset, positive steady-state 

condition was used as an approximation.   

The EIC metric of insulin sensitivity is typically presented in units of 10-2mg·kg-1·(mU/L)-1·min-1.  

Thus, the DISST SI metrics were transformed to gain equivalence.  Equation 6.03 was used to 

transform the identified DISST value into EIC units.  The equation converts the DISST SI from 

mmol/L to mg/kg and also plasma to interstitial insulin concentrations. 

where: ���ÐB55M 	 ��ÐB55M  � ��/0 � 18000 � γ 6.03 

Where: VG is the identified glucose distribution volume [L],  BW is the participant bodyweight 

[kg], and γ is the steadystate ratio between plasma and interstitial insulin (0.5) (Barrett et al. 

2009). 

6.4.2  EIC insulin sensitivity identification 

EIC metrics are generally reported as the rate of glucose uptake normalised by bodyweight (M) 

with the plasma insulin concentration reported at a cohort level.  Other studies report the 

normalised rate of glucose uptake divided by the plasma insulin concentration (I) at an individual 

level.  The latter method is considered more accurate.  Further accuracy can be achieved by 

modifying M/I by a space correction (SC) which measures the change in glucose concentration 

during the identification period of the clamp protocol.  

For this validation study, M/I with SC (Equation 6.04 and 6.05) was used with measurements 

from the final 40 minutes of each trial to define ISI.  The mean glucose infusion rate over this 
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period is calculated and divided by the participant’s body weight and plasma insulin assays to 

produce an M/I value.  The EIC insulin sensitivity index (ISI40) is calculated: 

  ���Ò= 	 100 �Ó�BÓ�§§§§ � �xÒ= 	 100 {¿Ó�BÓ�§§§§��Ô � �xÒ= 6.04 

where: �xÒ= 	 ∆�Ò= 1.92.2 6.05 

where: M40 and PX40 are the normalised and average rates of glucose infusion over the final 40 

minutes of the test [mg·kg-1·min-1] and [mg/min], respectively; �Ò=§§§§ is the mean insulin value 

during the final 40 minutes of the test [mU/L]; SC40 is the space correction that accounts for the 

change in glucose during the identification period of the test [10-2*mg·kg-1·(mU/L)-1·min-1] and 

BW is the participants bodyweight [kg]. 

6.4.3  OGTT surrogate sensitivity identification 

Data from the OGTT was used to define the Matsuda and HOMA indices of insulin sensitivity 

(Equations 2.04 and 2.09, respectively) and define the participant’s diabetic status (Tables 6.01a-

d). 

 ���������� 	 10000 �����"� " 2.04 

 ?@:A5B 	 22.5����  2.09 

6.5  Study outcomes 

6.5.1  Comparison across metrics 

Figures 6.03, 6.04 and 6.05 show the correlation, Bland-Altman and ROC curve representations 

of the equivalence between ISIDISST and ISI40, respectively.  The ROC curve was evaluated with a 

cut-off value of 6.94x10-2mg·kg-1·(mU/L)-1·min-1 (10-2mg·kg-1·(pmol/L)-1·min-1) which defines a 

possible threshold of insulin resistance. 
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Figure 6.03.  Correlation between the DISST and EIC insulin sensitivity values (N=50).  (The 

diagonal line is the 1:1 line) 

  

 

Figure 6.04.  Bland Altman plot of the DISST and EIC sensitivity values. 
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Figure 6.05.  ROC curve using a diagnostic cut off value of 6.94x10-2mg·kg-1·(mU/L)-1·min-1 

on the EIC test 

 

The correlation between the DISST and EIC in Figure 6.03 was R=0.82.  This is considered a 

particularly strong correlation for such tests of a clinical nature.  The Bland-Altman plot in Figure 

6.04 showed a median sensitivity shift between metrics of -10.6% (IQR -26.8% to 7.0%).  The 

ROC curve in Figure 6.05 contains a relatively large area (c=0.96), which indicates a particularly 

strong ability of the DISST protocol to predict the same diagnosis of insulin resistance that the 

would predict EIC predicts.  This result is an artefact of the increased equivalence between the 

test metrics values around the arbitrarily chosen cut-off value for the ROC analysis. 

Figures 6.06 and 6.07 and Table 6.02 show the performances of the Matsuda and HOMA metrics 

for insulin sensitivity in comparison to the EIC and DISST test values.  The HOMA and Matsuda 

results were within the ranges reported in the literature (Table 2.02).  In particular, the Matsuda 

results were close to the top of the reported range. 

 EIC 

R (c-ROC) 

Matsuda 
R (c-ROC) 

HOMA 
R (c-ROC) 

DISST 0.82 (0.96) 0.56 (0.93) 0.56 (0.83) 

HOMA 0.60 (0.92) 0.93 (0.99) - 

Matsuda 0.74 (0.95) - - 

Table 6.02.  Pearson correlations and c-ROC values between the sensitivity metrics derived 

during the DISST validation study 
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Figure 6.06.  Comparison between the Matsuda index and EIC sensitivity values 

 

 

Figure 6.07.  Comparison between the HOMA sensitivity index (1/HOMAIR) and the EIC 

insulin sensitivity index. 

6.5.2  Grouped participant results  

The grouped results of the 50 DISST validation cohort participants are presented in Tables 6.03 to 

6.05.  These tables show the ability of each metric to discriminate between groups.  Table 6.03 

looks at insulin sensitivity.  Table 6.04 makes the same comparison using insulin production 

metrics.  Finally, Table 6.05 uses other clinically relevant blood analytes.  The p-values are 

defined with Student’s t-test between the lean and obese subgroups. 
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Insulin sensitivity values from the analysed tests 

  total 

(N=50) 
Lean 

(N=10
) 

Overweight 
(N=20) 

Obese 

(N=20
) 

NGT 

(N=45) 
IGT 

(N=5) 
pLean-

Obese 

SIDISST 

[10-4L·mU-1·min-1] 

Q1 
Q2 
Q3 

4.95 
7.67 
10.25 

6.17 
13.99 
21.67 

6.58 
8.13 
10.17 

3.16 
5.06 
7.83 

5.44 
8.00 
10.78 

2.34 
4.14 
6.27 

<10-3 

ISIEIC 

[10-2mg·kg-1·(mU/L)-1·min-1] 

Q1 
Q2 

Q3 

4.01 
6.19 

9.73 

9.73 
14.02 

15.61 

5.46 
6.40 

9.29 

1.95 
4.17 

6.02 

4.74 
6.34 

10.75 

1.30 
3.61 

5.55 

<10-5 

ISIMatsuda 

[10-4·(mmol/L)-1·(mU/L)-1] 

Q1 

Q2 
Q3 

8.26 

13.50 
24.01 

21.19 

25.06 
30.05 

9.22 

15.08 
24.35 

4.89 

9.01 
12.58 

9.07 

16.33 
24.78 

3.72 

4.35 
14.41 

<10-3 

HOMASI 

[22.5·(mmol/L)-1·(pmol/L)-1] 

Q1 
Q2 

Q3 

0.36 
0.63 

1.06 

1.02 
1.17 

1.49 

0.42 
0.66 

1.02 

0.26 
0.39 

0.55 

0.40 
0.63 

1.10 

0.26 
0.28 

0.64 

0.0014 

Table 6.03.  Quartiles of insulin sensitivity values from the DISST validation cohort. 

 

Table 6.03 shows that all of the sensitivity metrics obtained during the DISST validation study 

adequately discriminated between the lean and obese subgroups as expected.  The low resolution 

of the HOMA metric caused the metric to have the least discriminatory power, while the 

normalisation of the EIC metric by participant bodyweight may have enhanced the p-value. 

The basal and second phase insulin production showed a significant distinction between the lean 

and obese subgroups in Table 6.04.  This could be expected by the overall metabolic trends of the 

subgroups.  In particular, the more sensitive, lean participants would not require as much insulin 

to clear the standardised glucose stimulus used in the DISST test.  The first phase insulin 

production metric did not show significant discriminatory power across subgroups.  The hepatic 

insulin clearance rate also showed a significant distinction between subgroups.  However, the first 

pass extraction was not group dependent.  As expected, the trends showed that insulin production 

and clearance rates tended to cause more insulin to be available for the less sensitive, obese 

individuals.  In contrast, sensitive participants tended to produce less insulin, and clear insulin 

relatively fast.  This inter-dependence of insulin sensitivity, production and clearance rates are a 

key aspect in the development of the DISTq identification process described later in Section 8.2.   
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Insulin production and clearance during the DISST test 

  total 

(N=50) 
Lean 

(N=10) 
Overweight 

(N=20) 
Obese 

(N=20) 
NGT 

(N=45) 
IGT 

(N=5) 
pLean-

Obese 

UB 

[mU/min] 

Q1 

Q2 
Q3 

21.5 

28.8 
41.3 

16.6 

17.3 
19.9 

22.8 

26.9 
30.9 

34.7 

46.8 
55.0 

21.1 

27.6 
36.4 

32.4 

38.2 
50.5 

<10-4 

U1 

[mU] 

Q1 
Q2 
Q3 

580 
775 
1101 

384 
556 
909 

643 
816.7 
1123 

568 
725 
1311 

582 
798 
1110 

477 
655 

981.5 

0.16 

U2 

[mU] 

Q1 
Q2 

Q3 

539 
902 

1310 

350 
458 

700 

591 
790 

1088 

945 
1332 

1911 

483 
868 

1304 

954 
1276 

2039 

<10-4 

UTotal 

[mU] 

Q1 

Q2 
Q3 

1721 

2197 
2864 

1177 

1401 
1874 

1826 

2175 
2618 

2087 

2875 
3516 

1712 

2183 
2819 

1874 

2636 
3810 

<10-3 

nL 

[1/min] 

Q1 
Q2 

Q3 

0.073 
0.104 

0.130 

0.083 
0.135 

0.18 

0.091 
0.114 

0.131 

0.067 
0.086 

0.107 

0.075 
0.108 

0.134 

0.065 
0.086 

0.095 

0.004 

xL 

[1] 

Q1 

Q2 
Q3 

0.624 

0.674 
0.739 

0.685 

0.716 
0.755 

0.624 

0.659 
0.716 

0.621 

0.649 
0.744 

0.623 

0.663 
0.734 

0.626 

0.688 
0.793 

0.31 

Table 6.04.  Insulin production and clearance parameters identified during the DISST validation 

study. 

 

The blood analytes reported in Table 6.05 all also showed the expected trends.  High cholesterol 

and triglycerides concentrations are considered unhealthy (Amato et al. 2010), and were highest 

in the obese subgroup.  HDL cholesterol was lowest in the obese group, and is considered more 

healthy in high concentrations. 
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Blood analytes 

  Total 

(N=50) 
Lean 

(N=10) 
Overweight 

(N=20) 
Obese 

(N=20) 
NGT 

(N=45) 
IGT 

(N=5) 
pLean-

Obese 

HDL-C 

[mmol/L] 

Q1 

Q2 
Q3 

1.0 

1.2 
1.4 

1.2 

1.4 
1.6 

1.1 

1.3 
1.5 

1.0 

1.2 
1.2 

1.1 

1.3 
1.5 

0.9 

1.0 
1.1 

0.019 

Chol 

[mmol/L] 

Q1 
Q2 
Q3 

4.3 
5.1 
5.5 

3.6 
4.0 
4.6 

4.5 
5.2 
5.9 

4.7 
5.1 
5.6 

4.4 
5.0 
5.4 

3.0 
5.5 
5.9 

0.014 

TAG 

[mmol/L] 

Q1 
Q2 

Q3 

0.8 
1.0 

1.4 

0.6 
0.8 

0.9 

0.8 
1.0 

1.5 

1.0 
1.3 

1.6 

0.8 
1.0 

1.4 

1.0 
1.2 

2.7 

0.016 

Table 6.05.  Cholesterol and triglyceride blood analytes from the DISST validation study cohort. 

6.5.3  Individual results 

The benefits of capturing the endogenous insulin production profile are best illustrated via 

individual results.  Thus, nine illustrative cases are presented.  Participants 48, 19, 40, 37 and 36 

had the lowest insulin sensitivity scores of 1.006 to 1.942x10-2mg·kg-1·(pmol/L)-1·min-1 according 

to the EIC.  While the EIC indicates that these are all resistant individuals, no information is given 

as to the nature of the participant’s resistance as the EIC cannot differentiate the β-cell function of 

these individuals.  The DISST test responses of these participants are shown in Figures 6.08-6.12 

in order of EIC sensitivity (1.006 to 1.942, respectively). 

 

Figure 6.08.  DISST test response of Participant 48  
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Figure 6.09.  DISST test response of Participant 19 

 

 

Figure 6.10.  DISST test response of Participant 40  

 

 

Figure 6.11.  DISST test response of Participant 37  
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Figure 6.12.  DISST test response of Participant 36  

 

Figures 6.08-6.12 show how the physiology of the five cases can be contrasted.  While the 

glucose concentrations of Participants 40 and 48 is increased there was no corresponding increase 

in the rate of insulin production and the glucose concentration of these participants did not return 

to basal within the duration of the test.  Participants 19 and 36 exhibited a reasonable increase in 

insulin production with an elevated second phase of production.  The first phase of insulin 

production of Participant 37 was very large and managed to bring the glucose concentration back 

to basal within the duration of the test despite the participant’s significant insulin resistance.  

Thus, these participants had vastly differing physiological conditions and should potentially 

undergo differing interventional measures. 

Four further cases (Participants 28, 46, 3 and 8) are presented in Figures 6.13 to 6.16.  While the 

first two are interesting cases, the second two are indicative of normal and athletic individuals.  

Participant 28 had type 2 diabetes, but underwent a particularly extreme and intensive self-

imposed intervention.  According to the OGTT test taken during the validation study, the 

participant managed to reverse the diagnosis of diabetes.  Participant 46 volunteered to participate 

in the validation study because she was concerned about the effect that a copious consumption of 

highly caffeinated, sugary energy drinks had on her metabolism.  Her self-reported consumption 

was in the order of 5+ per day (approximately 1.5 litres per day).  Participant 3 is representative of 

healthy, but relatively sedentary, individuals who undertake moderate amounts of exercise.  

Participant 8 is representative of individuals who live active lifestyles and regularly exercise 

vigorously. 
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Figure 6.13.  DISST test response of Participant 28 
 

The most noticeable feature of the test response of Participant 28 was the significantly reduced 

insulin production rate.  This result indicates that the damage to the participants β-cell mass was 

not reversed when the diabetic diagnosis was reversed.  The participant’s basal glucose was low 

as a result of their intensive exercise and diet regimen.  However, the exogenous insulin did not 

have a significant effect on the participant’s glucose concentration, indicating moderate insulin 

resistance.  This resistance would not be picked up by a fasting glucose assay and the relatively 

low basal insulin would result in a false “healthy” result from the HOMA.  In contrast to this 

participant’s DISST response, the participant’s glucose consumption rate increased significantly 

during the latter stages of the EIC test, resulting in a relatively high EIC derived insulin sensitivity 

for this individual 7.01x10-2mg·kg-1·(mU/L)-1min-1 (~50th percentile).  Thus, both of the most 

frequently used insulin sensitivity tests completely misinterpreted this participant’s physiological 

condition. 

 

Figure 6.14.  DISST test response of Participant 46 
 

It seems that Participant 46 has a first phase of insulin production that has adapted to cope with 

the frequent ingestion of sugary energy drinks.  The rapid increase in blood glucose due to the 

glucose bolus was detected by the pancreas and the subsequent excessive insulin release was 

almost sufficient to prompt hypoglycaemia in the participant.  Nevertheless, the insulin sensitivity 
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values of this individual were relatively consistent between the DISST and the EIC (7.77 and 

9.16x10-2mg·kg-1·(mU/L)-1·min-1, respectively).   

 

Figure 6.15.  DISST test response of Participant 3. 
 

Participant 3 is indicative of most relatively healthy, yet sedentary, individuals in the western 

world.  The glucose concentration tends to return to basal, while insulin production is moderate.  

This participant is still in the healthy NGT range of Figure 1.03.  They are thus a typical NGT 

result. 

 

Figure 6.16.  DISST test response of Participant 8. 
 

Particularly healthy individuals tend to respond quickly to changes in glucose, and produce a 

relatively large first phase insulin response to the bolus.  Although the abnormal first phase 

production rates of Participants 37 and 46 (~3units) dwarf this response (1.1units), the case 

presented is slightly larger than the upper quartile for the validation cohort.  The added exogenous 

insulin bolus was sufficient to reduce the participant glucose concentration close to 

hypoglycaemic levels.  Hence, this participant displays very high insulin sensitivity.  This 

participant’s measured insulin sensitivity values were 18.2 and 16.7x10-2mg·kg-1·(mU/L) -1·min-1 

by the DISST and EIC, respectively. 
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Overall, insulin sensitivity in conjunction with second and basal insulin production rates are most 

representative of a participant’s position on the pathogenesis of type 2 diabetes.  The two latter 

cases (Participants 8 and 3) clearly show a range for which the gold standard tests work (3, 8) and 

those for which they are not suitably informative (28, 46).  More generally, the DISST’s unique 

delivery of both insulin sensitivity and first and second phase insulin production makes it a much 

more informative test with a greater ability to define a participant’s stage on the pathogenesis of 

type 2 diabetes.  The approximate position of the participant cases presented in this section are 

overlaid on Figure 1.03 and shown in Figure 6.17.  Participant 28 is not included as the 

pathogenesis figure does not account for those that return from the far left.  In terms of insulin 

sensitivity and glucose concentration, Participant 28 would likely be placed close to Participant 

46.  However, their insulin production capability was most similar to Participants 40 and 48. 

 

Figure 6.17.  Approximate positions of the participants on the pathogenesis of type 2 diabetes. 

6.6  Clinical implications of the DISST validation study 

6.6.1  Comparison between the DISST and the EIC 

The primary objective of the validation study was to assess the ability of the DISST test to 

replicate the sensitivity values of the euglycaemic clamp (the gold standard) to enable a low-cost, 

alternative test for clinical studies.  The correlation of R=0.82 was close to the highest reported 

correlation for any of the tests presented in Table 2.02.  Considering the significant reduction in 

Insulin Production
Insulin Sensitivity

Glucose Concentration

NGT IGT T2D

8 3 40, 483746 19, 36
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cost associated with the DISST test this is a very positive result.  Furthermore, the c-ROC values 

between the DISST and the EIC implies a strong equivalence in terms of diagnosis, which is 

perhaps more clinically relevant. 

The in-silico correlation of R=0.92 reported in Lotz et al. (Lotz et al. 2008) measured the effect of 

assay error on correlation and thus presents a ‘best-case’ scenario that perhaps could not be 

expected in a clinical setting.  In a clinical setting, consistency in participant physiology is not 

necessarily assured across tests.  Numerous factors such as stress and illness (Greisen et al. 2001; 

Hollenbeck & Reaven 1987; Van den Berghe et al. 2006; Zierler 1999), sleep deprivation 

(Davidson et al. 1987; Van Cauter et al. 1997), menstrual cycle (Trout et al. 2007), time of day 

(Van Cauter et al. 1997), recent exercise and diet (Borghouts & Keizer 2000; Nishida et al. 2004; 

O'Gorman et al. 2006; Zierler 1999) can have daily effects on insulin sensitivity.  Thus, shifts in 

participant physiology during the up to seven days between tests may have had a negative effect 

on the clinically measured correlation between the DISST and EIC. 

The DISST presents a different type of insulin sensitivity to the EIC.  The EIC seeks to suppress 

endogenous glucose production and measure the rate of glucose uptake to the periphery under 

insulin concentration that are known to reduce in efficiency due to saturation effects (Kolterman 

et al. 1980; Natali et al. 2000).  In contrast, the DISST identification method does not take 

changes in endogenous glucose production into account.  Contrary to many IM-IVGTT protocols, 

the doses used in the DISST protocol are relatively small and physiological in magnitude.  Thus, 

it is assumed that the suppression of hepatic glucose secretion is minimal.  However, any glucose 

production suppression effect that does occur will be incorporated into the DISST sensitivity 

metric.  Thus, the DISST measures a whole body, rather than peripheral sensitivity.  Despite the 

considerable difference between the DISST and the EIC protocols and parameter identification 

methods, the correlation and diagnostic equivalence of the test was very high. 

In contrast to the EIC, the DISST provides a more complete observation of the participant’s 

physiology.  While the EIC was designed to measure peripheral insulin sensitivity alone, the 

DISST measures insulin sensitivity in tandem with insulin production.  Both insulin sensitivity 

and production are critical to pinpoint a participant’s position on the pathogenesis of type 2 

diabetes.   

With reference to Figure 1.03 and the cases discussed in Section 6.5.3, measurements of insulin 

sensitivity alone cannot differentiate accurately between insulin resistant individuals.  In 

particular, the participant simulations presented in Figures 6.08 to 6.12 show very distinctive 

physiology despite relatively similar EIC sensitivity values.  Participants 19, 37 and 36 have all 

retained relatively healthy endogenous insulin production capabilities despite considerable insulin 
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resistance.  This result would imply that these individuals are further left on Figure 1.03 than 

Participants 40 and 48 whose insulin production capability seems to have waned.  Thus, the 

treatment of Participants 19, 37 and 36 could potentially target reversal of the progression to 

diabetes, whereas the treatment of Participants 40 and 48 may aim to ameliorate symptoms caused 

by their metabolic condition, rather than the condition itself.   

It is likely that Participant 28 did not mitigate the cause of diabetes; rather, he just managed to 

reverse the diagnosis and maintain a healthy glucose homeostasis through ongoing intensive 

lifestyle measures.  In particular, it is evident that the participant’s β-cell damage has not been 

reversed, which is clinically critical.  The relatively high EIC score thus masks the participant’s 

very low insulin production capability.  If the participant were to discontinue the self-imposed 

intervention, it is likely that hyperglycaemia would occur. 

The high rate of repeatability across tests is considered the predominant strength of the EIC.  This 

consistency has earned the EIC gold standard status in the field of insulin sensitivity.  The CV of 

the EIC has been reported in the range of 4-6% (DeFronzo et al. 1979; Mari et al. 2001; Monzillo 

& Hamdy 2003), while the DISST pilot investigation and Monte Carlo investigation estimate a 

CV of 7-10% (Lotz et al. 2008; Lotz et al. 2010).  Furthermore, the EIC values for insulin 

sensitivity have been extensively studied and their predictive value for diabetes risk assessment 

has been well-reported (DeFronzo & Ferrannini 1991; Ferrannini 1997; Hanley et al. 2003; 

Zethelius et al. 2004).  Thus, the EIC should remain the favourable test for investigations in 

which the most accurate and repeatable insulin sensitivity values alone are desired regardless of 

cost.  However, when the high cost of the EIC is prohibitive the DISST should be considered as a 

sound lower-cost alternative.   

The comprehensive information provided by the DISST implies that it may be more suitable than 

the EIC for appraisals of participant health.  While the DISST can accurately define a 

participant’s position on the pathogenesis of type 2 diabetes, the EIC can only define the 

participant’s insulin sensitivity.  This value can be used to evaluate a participant’s risk of 

developing diabetes, but cannot accurately differentiate the physiology of insulin resistant 

participants, and thus does not provide complete information to guide therapeutic choices.   

The EIC requires increased setup, running costs and increased clinical intensity.  A heated-hand 

apparatus and two feed pumps are required.  Two clinicians are usually required for the 4 to 5 

hour protocol, and if the feedback rate is not well-controlled euglycaemia is not assured at the end 

of the test, negating the possibility of a result.  In contrast, the DISST requires no heated-hand 

apparatus, one clinician, no feed pumps, and only a 30-45 minute protocol.  The DISST requires 
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complex mathematical identification methods to be set up.  However, once this task has been 

completed, it can be reused numerous times without added cost.   

In terms of participant safety, the two tests are relatively similar.  The 1U insulin bolus used in the 

DISST was sufficient to lower the glucose concentration of six participants below 3 mmol/L 

(including 2 just below 2.5 mmol/L).  In these cases, the test clinician had to continue monitoring 

the participant’s blood glucose content after the test, while administering food or glucose.  

Participants were not allowed to leave the place of testing until their blood glucose levels returned 

to safe levels.  Conversely, if the glucose feed rate is sufficiently underestimated during the EIC, 

the participant’s glucose concentration can drop rapidly.  This behaviour can generally be 

remedied easily with quick adjustments to the glucose infusion.  However, the participant’s 

counter-regulatory responses are often triggered within this period resulting in considerable 

difficultly achieving euglycaemia during the test period.  This occurred in ‘practice trials’ of the 

EIC prior to commencement of the validation study.  Furthermore, if both insulin and glucose 

pumps are switched off simultaneously at the end of the EIC test, the latent insulin build-up in the 

participant will clear the participants remaining glucose and severe hypoglycaemia will occur.   

In summary, ratified use of the DISST will result in an incidence of mild hypoglycaemia in some 

participants that must be monitored and mitigated by the clinician.  Whereas, in-experience or 

careless application of the EIC protocol would almost certainly result in potentially harmful and 

severe hypoglycaemia. 

6.6.2  Potential for the DISST to replace other tests 

HOMA is a particularly inexpensive metric to obtain clinically, as it only requires a single fasting 

blood sample.  The simple, low-cost metric is thus a popular choice if insulin sensitivity is a 

minor consideration of a study, or for risk assessment in a general practice setting.  If a low-

accuracy approximation of insulin sensitivity is all that is required, HOMA is the appropriate 

alternative and the DISST will not replace HOMA for this purpose.  While the DISST is 

comparatively less expensive and intensive than most insulin sensitivity tests, HOMA is still less 

expensive and intensive. 

HbA1c is becoming an increasingly used assay for the appraisal of a participant’s ability to 

maintain safe glycaemic concentrations.  The assay is simple to administer and does not require 

that the participant be fasted.  It has recently been prescribed as a suitable method of diagnosis of 

type 2 diabetes (ADA 2010).  HbA1c is a more suitable method of diagnosing diabetes than the 

DISST, as it directly measures the participant’s exposure to daily glucose.   
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However, HbA1c is not an insulin sensitivity test and thus could not be used to define a 

participant’s risk of developing type 2 diabetes.  Nor can it quantify a participant’s β-cell health.  

Blood glucose is the last species to be affected in the pathogenesis of type 2 diabetes.  Thus, 

diagnosis of hyperglycaemia with the HbA1c assays will only recognise a reversible state in a 

very small period in the pathogenesis of type 2 diabetes and it thus has a very low value as a 

predictor of risk.   

Longitudinal studies of glycaemic health could potentially use either test.  While the DISST could 

measure the participant’s changes in terms of insulin sensitivity and production, HbA1c could 

measure the effect of these changes on a participant’s daily glucose.  While the effects of 

intervention may be better measured with the DISST, the HbA1c assay may be preferable to 

measure the efficacy of insulin sensitizer and secretagogue drugs. 

The DISST will not replace the OGTT for diagnosing type 2 diabetes.  The worst symptoms of 

diabetes occur as a result of hyperglycaemia, which is typically a result of uncontrolled blood 

sugar.  The OGTT measures the ability of the participant to clear a certain amount of glucose 

during a set time, which is indicative of daily glycaemic health.  However, the OGTT cannot 

contrast the physiology of a participant with depleted β-cell function, but relatively high insulin 

sensitivity from a participant with low sensitivity, but normal β-cell function.  Both participants 

may expect the same glycaemic levels during daily life, and the subsequent diabetes symptoms.  

Thus, although their conditions are distinct, their diagnosis should be the same.  As the 

mechanism driving the reduction of glycaemic control is distinctive, the treatment should also be 

distinctive.  The DISST allows an observation of whether the condition of such individuals an 

artefact of insufficient insulin production, or whether their condition is a result of insulin 

resistance.  Thus, tailored treatment is enabled for these individuals due to the extra, clinically 

valuable information yielded by the DISST. 

The DISST is considerably less expensive and intensive than most IVGTT or IM-IVGTT tests.  

The accuracy of the DISST in terms of intra-participant repeatability and EIC equivalence is in 

the upper range of reported values for the IM-IVGTT.  Thus, the findings of this study and that of 

Lotz et al. (Lotz et al. 2010), imply that the DISST could make such dynamic intravenous tests 

obsolete. 

The contrary argument is based on the ability of the IVGTT type tests to estimate the participant’s 

glucose dependent glucose clearance (SG - which is synonymous with pG in the DISST model) in 

addition to insulin sensitivity when Bergman’s Minimal Model is used (Bergman et al. 1979).  

This claim is eroded by the frequently reported cases of parameter identification in-stability 

(Caumo et al. 1999; Pillonetto et al. 2002).  The trade-off between SG and SI frequently results in 
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SI=0 test outcomes (Pillonetto et al. 2002; Quon et al. 1994b).  Thus, the results of the test are 

discarded, and the arduous and expensive protocol was wasted.  The utility of the SG term is also 

limited; it has shown mild ability to detect diabetes risk.  However, SI which is always identified 

in tandem is a stronger predictor of risk (Martin et al. 1992).  In theory, SG can moderate SI by 

limiting the effect of changes in the hepatic glucose balance on the measured insulin sensitivity.  

The low glucose dose of the DISST was designed to limit this perturbation and thus ameliorate 

the effects of using a population constant pG value.   

The model identifiability issue is not intrinsic to the IVGTT protocol; rather it is an artefact of the 

modelling strategy itself.  The very high intensity of the frequently sampled IVGTT protocol is in 

an effort to provide sufficient data to differentiate between the comparable effects of the two 

glucose clearance terms.  If other single-parameter models were used the IVGTT data would yield 

much more stable results.  However, the outcomes of the DISST pilot and validation study as well 

as the geometric a-priori model identifiability analysis (Chapter 5) has shown that most IVGTT 

protocols produce much more data than is required to accurately identify single, or distinct 

parameter models and are thus unnecessarily intensive.   

Furthermore, the endogenous insulin production values are almost never reported during IVGTT 

type tests because C-peptide assays are rarely obtained.  Hence, there is no means of 

differentiating participants by their endogenous response to glucose stimulus.  Thus, the DISST is 

a more informative test overall.   

To summarise, the DISST is considerably less expensive than the most accurate tests at the cost of 

a very limited reduction in resolution.  The test protocol is more intensive than the low cost 

alternatives, but provides a significantly improved result.  The DISST offers a better compromise 

of intensity and accuracy than the established intermediary tests.  Furthermore, the DISST 

provides participant-specific β-cell function and thus is unique in its ability to pinpoint a 

participant’s status on the pathogenesis of type 2 diabetes.  Figure 6.18 graphically summarises 

the approximate position of the DISST in relation to the established tests on axis of increasing 

error and intensity.  The x-axis of Figure 6.18 is in terms of participant discomfort, clinical 

intensity, and assay cost, while the y-axis is in terms of correlation to the EIC and intra-participant 

repeatability of variability. 
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Figure 6.18. Visual representation of the position of the DISST test amongst the established 

tests. 

6.6.3  Potential of the DISST and possible future investigation  

In summary, the DISST model and protocol provided consistent participant results during the 

pilot investigation.  The validation study compared the insulin sensitivity values of the DISST 

against those measured by the gold standard of insulin sensitivity testing, the euglycaemic clamp.  

The DISST insulin sensitivity vales are repeatable and have a strong equivalence to the EIC. This 

is despite the very low intensity of the test.  Furthermore, the DISST is informative and unique in 

it’s ability to accurately observe a participants’ position on the pathogenesis of type 2 diabetes.  

Thus, the DISST is currently suitable for a number of applications: 

• Clinical etiological investigations of type 2 diabetes. 

• Evaluation of longitudinal dietary/exercise/medication intervention programmes in a 

clinical setting. 

• For assessing or screening larger populations with a more rigorous metabolic appraisal 

than is often given through fasting measures. 

Further investigation should be undertaken prior to recommendation of the DISST for wider use.  

Potential uses of the DISST requiring further study may include: 
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• It is very likely that the DISST is capable of type 2 diabetes risk assessment.  The EIC 

test has been extensively proven to assess type 2 diabetes risk, and the DISST has been 

proven to be equivalent to the EIC.  However, it remains to be explicitly proven that the 

DISST is an accurate risk assessor.  Either this study must be undertaken clinically at 

significant expense, or data obtained from another study could be made available from 

which DISST results could be inferred through reduction of frequently sampled IM-

IVGTT tests.  Indeed, a study by Martin et al. achieved a positive risk prediction 

capability in a 10-year study using dynamic IVGTT tests with the Minimal Model 

(Martin et al. 1992).  Perhaps mitigating the error introduced by the Minimal Model’s 

parameter interference problem with the DISST model could increase the resolution of 

the risk assessment.   

• The DISST could potentially be used to tailor and track treatment programmes of 

diabetic or pre-diabetic patients over time.  However, a prior study of the efficacy of the 

DISST with respect to other available tests for monitoring treatment response should be 

undertaken.   
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Chapter 7.  DISST and Minimal Model 

comparison 

Chapter 7 compares the DISST model proposed by Lotz et al. (Lotz et al. 2010) to Bergman’s 

Minimal Model (Bergman et al. 1979).  The selection of the DISST model instead of the Minimal 

Model is an ongoing criticism of the DISST test.  Thus, the suitability of the DISST model and 

parameters for modelling short duration dynamic test responses is compared to the suitability of 

the Minimal Model configuration. 

7.1  Motivation 

Bergman’s Minimal Model of insulin/glucose pharmaco-dynamics has been established as the 

accepted model for the identification of insulin sensitivity from dynamic test data (Bergman et al. 

1979; Ferrannini & Mari 1998; Pacini & Mari 2003).  It is widely used in several forms of IVGTT 

tests.   

The DISST test was purposely designed with a single parameter (SI) to model glucose decay, and 

was thus able to use a short duration, infrequently sampled protocol.  Sections 5.5.1 and 5.5.2 

show how this parameter selection favourably affected the parameter identifiability of the DISST 

model in comparison to the Minimal Model in-silico.  However, the prevailing paradigm of 

researchers in the field of insulin sensitivity testing is that Minimal Model parameters should be 

identified from dynamic test data.  Thus, in order to promote the use of the DISST model for 

sparsely sampled tests, the quality of outcomes of the DISST model must exceed the Minimal 

Model outcomes when relevant clinical data is used. 

7.2  Analyses Methods 

Initially, the Minimal Model parameters will be identified using the pilot cohort data and checked 

for repeatability.  Secondly, the Minimal Model will be applied to the DISST data obtained during 

the DISST validation study and the equivalence between Minimal Model and EIC sensitivity 

values will be compared to the DISST equivalence.  Finally, the changes observed by the Minimal 
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Model in an Atkin’s diet intervention study will be compared to the expected outcomes, and the 

sensitivity values obtained from the DISST model. 

7.2.1  Atkin’s diet study design 

The anatomical characteristics of the pilot and validation study cohorts are defined in Sections 

4.5.1 and 6.2, respectively.  Participants of the Atkins diet intervention are defined in Krebs et al. 

(Docherty et al. 2011d; Krebs et al. 2011), but will be listed in brief here.  Inclusion criteria 

required established type 2 diabetes controlled with diet or anti-diabetic drugs.  Exclusion criteria 

included recent weight loss or major illness.  Fourteen participants were recruited.  However, two 

pulled out of the study, the first due to exacerbation of a gallstone, while the second cited personal 

issues.  Table 7.01 lists the characteristics of the Atkin’s investigation cohort. 

Subject 
Age 

 [yrs] 
Weight 

[kg] 
BMI 

[kg/m2] 
HbA1c 

[%] 
GB 

[mmol/L] 

1 46 142.6 43.5 9.7 16.8 

2 56 130.8 40.8 5.5 6.6 

3 52 82.0 34.1 8.8 16.2 

4 55 121.7 41.6 7.0 7.7 

5 35 119.5 46.0 7.5 8.5 

6 56 145.3 45.3 6.9 7.5 

7 38 113.5 46.0 10.7 14.5 

8 45 95.6 37.8 6.0 6.6 

9 49 134.0 43.8 6.8 9.0 

10 41 128.0 43.8 7.2 6.7 

11 54 96.3 39.6 5.9 7.8 

12 44 130.7 40.3 6.2 8.6 

Q1 
Q2 
Q3 

42.5 
47.5 
 54.5   

104.9 
124.9 
132.4    

40.0 
42.6 
44.6 

6.1 
6.9 
7.8 

7.3 
8.2 
10.4 

Table 7.01.  Characteristics of the participants of the Atkins dietary intervention study at week 0 

 

Participants of the Atkin’s diet underwent three dynamic insulin sensitivity tests at weeks 0, 12 

and 24 of the dietary intervention.  The sensitivity test protocol was a derivative of the frequently 

sampled IM-IVGTT designed by Ward et al. (Ward et al. 2001).  A 0.2 g/kg glucose bolus was 

administered at t=0 and was followed by an insulin infusion that was designed to mimic the 
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endogenous insulin production reaction of healthy individuals.  The glucose bolus was 

administered as a one-minute infusion of 50% dextrose.  A two-minute insulin infusion began at 

t=2 minutes at a rate of 3.5 mU·kg-1·min-1. At t=7 minutes insulin infusion was resumed at 0.5 

mU·kg-1·min-1, the rate was reduced to  0.25 mU·kg-1·min-1 at t=17 minutes.  Finally at t=50 

minutes the infusion rate was reduced to 0.1 mU·kg-1·min-1 where it stayed for the remainder of 

the protocol.  Blood samples were obtained at t=-10, -5, -1, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12.5, 15, 20, 

25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 210, 240, 270 and 300 minutes (5 

hours, 10 minutes).  All samples were assayed for insulin and glucose. 

7.2.2  Minimal Model parameter identification 

The Minimal Model parameters were identified using the non-linear least-square Levenberg-

Marquardt method (Marquardt 1963).  Initial parameter estimates of SG=0.01 1/min and SI=0.001 

L·mU-1·min-1 were used consistently here to ensure that the parameter identification method had 

the highest chance of accurate convergence.  All re-simulations of the identified Minimal Model 

were checked to ensure adherence to measured assay values was achieved. 

For the Minimal Model analysis of the DISST test data, the insulin profile was constructed via 

linear interpolation up until the bolus.  The post bolus peak insulin concentration magnitude was 

estimated using the bolus content and volume of distribution obtained during the DISST 

identification.  The post bolus concentration was modelled with a spline.  This approach mitigated 

the error introduced by the sparse sampling on the linear interpolation, and thus is the best 

possible representation of the Minimal Model PKs of insulin from the data available.  This 

method was more accurate than the standard linear interpolation typically employed by the 

Minimal Model (Bergman et al. 1979).  Note that the DISST physiological model mitigated this 

error by fitting a modelled representation of the insulin PKs that includes insulin production 

dynamics, (which the Minimal Model almost never includes) to the measured data.  Both the 

DISST and Minimal Model used linear interpolations of the insulin data obtained in the IM-

IVGTT test used in the Atkins diet study. 
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7.3  Outcomes 

7.3.1  Pilot study intra-participant repeatability 

Table 7.02 presents low and medium dose DISST and Minimal Model insulin sensitivity values 

and their variations of the participants of Part 1 of the pilot investigation.  Tables 7.02 to 7.04 are 

reproductions of Tables 4.03 to 4.05 in Sections 4.4.3 and 4.4.4 using only insulin sensitivity 

values. 

DISST model Minimal Model 

Subject Dose 

SI ∆SI SG ∆SG SI ∆SI 

[10-4L·mU-1·min-1] [%] [10-4/min] [%] [10-4L·mU-1·min-1] [%] 

4 low 13.39 
 

6* 
 

1.38 
 

  med 16.49 23.1 6* - 1.71 24.1 

7 low 19.33 
 

345.5 
 

0.54 
 

  med 18.06 -6.6 6* - 2.36 340.9 

8 low 18.64 
 

328.7 
 

0.58 
 

  med 13.61 -27.0 600* - 0.18 -68.8 

10 low 43.73 
 

6* 
 

2.76 
 

  low 29.19 
 

528.6 
 

1.44 
 

  med 17.4 -52.3 421.4 -20.3 0.45 -78.4 

11 low 6.88 
 

306.5 
 

0.05 
 

  low 5.75 
 

370.7 
 

0.05 
 

  med 6.73 6.5 193.8 -42.7 0.46 804.6 

15 low 8.28 
 

40.4 
 

0.57 
 

  low 8.99 
 

400 
 

0.09 
 

  med 7.39 -14.4 181.7 -17.5 0.25 -24.5 

16 low 3.27 
 

73.6 
 

0.05 
 

  low 3.16 
 

6.01 
 

0.48 
 

  med 3.17 -1.4 38.5 -3.3 0.36 37.3 

mean 
  

-3.5 
 

-21 
 

147.9 

SD 
  

25.1 
 

16.3 
 

322.5 

Table 7.02.  Dose dependence of parameters of the DISST and Minimal Models (* value reached 

bound and is thus not used in analysis). 
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The inter-dose repeatability of the Minimal Model parameters was significantly reduced in 

comparison to the DISST model.  The SG variation was large, but had very little bias.  However, 

the Minimal Model insulin sensitivity bias was significant.  The bias was shifted significantly by a 

few cases.  However, Minimal Model parameter stability was generally very poor across all 

subjects. 

Table 7.03 shows the DISST and Minimal Model parameter values from the pilot cohort 

participants who underwent the medium and high dose tests.   

DISST model Minimal Model 

Subject Dose 

SI ∆SI SG ∆SG SI ∆SI 

[10-4L·mU-1·min-

1] 
[%] [10-4/min] [%] [10-4L·mU-1·min-1] [%] 

2 med 19.47   7.03   0.45   

  high 13.43 -31 6* - 1.19 165.7 

5 med 26.45   51.01   0.36   

  med 19.97   10.38   0.54   

  high 25.07  8 33.9 10.4 0.37 -18.5 

6 med 14.84   6.03   0.3   

  high 12.83 -13.6 93.18 1444.0 0.26 -14.6 

14 med 11.70   215.61   0.33   

  med 11.65   459.14   0.22   

  high 14.12 20.9  182.61 -45.9 0.3 6.3 

mean   -6.0 348.5 26.7 

SD     18.3   730.7   78.3 

 Table 7.03.  Dose dependence of insulin sensitivity and production characteristics of participants 

who underwent DISST tests with the medium and high doses during the DISST pilot 

investigation.   

 

In this case, a single outlier caused the high intra-participant variability in the SG term.  For the 

Minimal Model SI was quite stable for three out of the four participants.  However, overall, the 

DISST test SI parameter was more repeatable. 

Table 7.04 shows the intra-dose repeatability of the model parameters from Part 2 of the DISST 

pilot investigation.  While the DISST SI variability obtained in Part 2 was relatively and 

consistently low, both Minimal Model parameters were considerably more variable.  Closer 

inspection of Table 7.04 shows the parameter trade-off that occurs during the Minimal Model 

identification.  While Subjects 3 and 16 had a higher SG in the former tests, and a higher SI in the 
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latter tests, Subjects 5, 10, 14 and 15 had a high SG in the latter test and a higher SI in the former 

test.  Only Subjects 11 and 16, had relatively stable results and did not exhibit trade-off 

behaviour.  Hence, there was a significant reduction in repeatability performance. 

  DISST Model Minimal Model 

Subjec
t Dose 

SI ∆SI SG ∆SG SI ∆SI 

[10-4L·mU-1·min-1] [%] [10-4/min] [%] [10-4L·mU-1·min-1] [%] 

10 low 43.73   6*   2.76   

  low 29.19 19.9 528.6 - 1.44 31.2 

11 low 6.88   370.7   0.05   

  low 5.75 8.9 306.5 9.5 0.05 4.3 

15 low 8.28   40.4   0.57   

  low 8.99 4.1 400.0 81.7 0.09 72.1 

16 low 3.27   73.6   0.05   

  low 3.16 1.7 6.0 84.9 0.48 81.9 

3 med 10.18   569.7   0.19   

  med 8.59   480.7   0.12   

   med 7.37 16.8 177.8 39.2 0.29 44.2 

5 med 26.45   10.4   0.54   

  med 19.97 14 51.0 66.2 0.23 39.8 

13 med 16.31   401.2   0.2   

  med 13.51   351.2   0.23   

  med 21.2 24.7 506.5 20.7 0.3 21.7 

14 med 11.7   215.6   0.33   

  med 11.65 0.2 459.1 36.1 0.22 19.3 

mean    11.3  48.3  39.3 

SD     9.0   29.6   26.5 

Table 7.04.  Intra-dose variability of the DISST and Minimal Model parameters from Part 2 of the 

DISST pilot cohort. 
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7.3.2  Validation study EIC correlation 

The Minimal Model parameters were identified in the validation cohort DISST data to enable a 

comparison between the Minimal Model metrics and the ISI value from the EIC.  Figures 7.01 

and 7.02 show the equivalence of Minimal Model SI and SG, respectively.  Table 7.05 shows the 

correlation R-values and c-ROC values (using 6.94x10-2mg·kg-1·(mU/L)-1·min-1 as a cut off value) 

of the figures shown. 

 

Figure 7.01.  Correlation and ROC curve for the Minimal Model insulin sensitivity value. 

 

 

Figure 7.02.  Correlation and ROC curve for the Minimal Model glucose dependent clearance 

term. 
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 DISST Minimal Model 

 SI* SG SI 

EIC correlation 0.82  0.08 0.68 

c-ROC 0.96 0.49 0.85 

DISST SI 
correlation 

- 0.05 0.87 

Table 7.05.  Comparative statistics for the EIC equivalence of the parameters of the Minimal 

Model and the DISST test (* DISST values from Section 6.5.1) 

 

The Minimal Model insulin sensitivity value correlated relatively well to the EIC considering the 

very sparse data obtained during the DISST test.  Table 2.02 shows the reported values for IM-

IVGTT to EIC correlations are in the range 0.70 to 0.89.  Thus, the value of 0.68 obtained in this 

analysis was slightly below these reported values.  However, as most IM-IVGTT test protocols 

are much more intensively sampled and have a much greater duration, identification of two 

partially distinct parameters is usually more stable.  Thus, the result obtained was in accordance 

with expected values.  Interestingly, the Minimal Model SI value correlated relatively well with 

the DISST SI value.  This can probably be attributed to the equality of the metric units as well as 

identification data set.   

The glucose dependent glucose clearance term (SG) showed very poor equivalence to the EIC in 

terms of correlation and insulin resistance diagnosis.  There were a significant number of cases of 

SG identification reaching the bounds required for identification stability (18%).   

A key outcome of this analysis was that the DISST model significantly outperformed the Minimal 

Model for the identification of insulin sensitivity with equivalence to the EIC using the relatively 

sparse data from the DISST protocol. The DISST model clearly avoided the parameter 

identification tradeoffs that obscured the Minimal Model parameters. 

7.3.3  Atkins diet study descriptive capability 

The Minimal Model was not designed for the infrequently sampled DISST protocol, as the 

Minimal Model requires relatively high-resolution data sets from clinically intense dynamic 

protocols to maximise identification stability.  Identifying values from the low intensity and short 

duration DISST test may thus unfairly disadvantage the Minimal Model in comparison to the 

DISST model as the data sets were specifically designed for the DISST model.  Thus, to fairly 
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appraise the Minimal Model parameter identification, frequently sampled IM-IVGTT test data 

was identified using both models and associated parameter identification methods.   

The Minimal Model was identified in the data obtained during the arduous 5-hour IM-IVGTT 

protocol described in Section 7.2.1.  The DISST model was not designed for such protocols, and 

as such is not well suited to describe the steady-state condition that is often achieved in the final 

stages of the test.  The DISST model was specifically designed to capture short-term glucose 

decay.  Thus, the DISST model parameters will be identified across the data between t=-10 and 60 

minutes, with the data between t=0 and 10 ignored due to mixing effects.  Note that insulin 

sensitivity is assumed to be constant over a test so using a shorter period is acceptable.   

Table 7.06 shows the physiological changes observed in the Atkins cohort alongside the modelled 

insulin sensitivity changes from the DISST and Minimal Model.  Table 7.07 summarises the 

proportional changes observed in the Atkins investigation and correlates the outcomes.   

Subjec
t 

Weight 
[kg] 

Basal Glucose 
[mmol/L] 

DISST SI70 

[10-4L/mU/min] 

MM SI310 

[10-4L/mU/min] 

W 0  W 12 W 
24 

W 0  W 
12 

W 
24 

W 0  W 
12 

W 
24 

W 0  W 
12 

W 
24 

1 143 133 137 16.9 11.4 11.7 4.61 1.26 1.62 36.8 9.3 3.9 

2 131 121 114 6.7 6.0 5.9 3.77 4.35 5.31 0.0 0.0 0.3 

3 82 78 76 16.3 10.3 10.8 5.65 5.90 6.16 77.7 45.3 28.3 

4 122 112 109 7.7 6.6 6.7 5.46 7.77 11.5 31.5 21.5 3.3 

5 120 106 105 8.5 6.7 7.6 5.78 6.09 5.58 94.2 29.1 0.8 

6 145 141 136 7.5 7.1 6.7 2.30 3.07 3.13 0.0 0.0 0.0 

7 114 110 107 14.4 12.6 10.0 3.46 4.83 6.32 93.8 81.0 16.9 

8 96 88 87 6.6 6.5 6.8 13.6 15.0 12.4 0.2 10.5 0.06 

9 134 119 116 9.1 5.1 6.1 1.61 3.41 4.99 14.1 0.0 0.01 

10 128 127 132 6.6 5.6 9.9 3.59 8.09 2.98 1.8 0.0 8.8 

11 96 86 82 7.2 7.0 6.4 5.72 5.41 10.1 35.1 17.9 0.9 

12 131 124 123 8.6 6.6 7.2 3.44 7.97 5.15 33.3 0.0 0.2 

Table 7.06.  Indicative physiological measurements and DISST and Minimal Model insulin 

sensitivity at weeks 0, 12 and 24. 
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  IQR  Correlation (ρ) 

Q1 Q2 Q3  ∆ DISST SI70 ∆ MM SI310* 

∆ Weight [%] -11.6 -7.8 5.2 -0.16 0.11 

∆ GB [%] -36.2 -14.6 -11.1 -0.30 0.41 

∆DISST SI70 [%] 0.4    29.6 56.9 - -0.53 

∆MM SI310* [%] -196.9 -119.3 -49.0 - - 

Table 7.07.   Comparative statistics of the physiological and sensitivity changes observed in the 

Atkins pilot investigation.  (* Data from the MM SI=0 cases are ignored for the Minimal Model 

analysis.) 

 

Note that while the Minimal Model insulin sensitivity values correlate positively, the changes 

presented by the model are contrary to the behaviour expected.  In particular, as weight and basal 

glucose tended to decrease in the cohort, so does the Minimal Model insulin sensitivity.  The 

expected correlation between sensitivity and weight/basal glucose change should be negative as 

shown by the DISST sensitivity value.  Thus, the Minimal Model measured the opposite trend to 

that expected. 

Compliance to the prescribed intervention was relatively good for the cohort, with the exception 

of Participant 10 who miss-interpreted the high protein diet to allow deep-fried fish and chips.  As 

expected, this participant’s basal glucose, weight and DISST modelled insulin sensitivity all 

worsened.  In contrast, the Minimal Model measured an improvement in insulin sensitivity again 

failing to capture the expected change.  All other participants achieved moderate improvements in 

basal glucose and bodyweight.  With the exception of participants 1, 5 and 8 these participants 

also exhibited an improvement in DISST modelled insulin sensitivity.  The Minimal Model 

insulin sensitivity value was consistently contrary to the expected behaviour. 

7.4  Discussion 

For each of the cases presented, the DISST modelled insulin sensitivity values produced more 

stable and reasonable results.  The DISST tests conducted during the DISST pilot and validation 

studies provided insufficient data to allow a distinction between the SG and SI Minimal Model 

terms.  The novel a-priori identifiability method described in Chapter 5 predicted this outcome.  

The DISST test protocol used during the validation study was considerably sparser than typically 

used with the Minimal Model and bordered on non-identifiability.  The SG term in particular was 

not stable.  Any small degree of un-modelled mixing or assay error manifest in the data set thus 
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has an amplified affect on the model parameters in the absence of further data that may reduce the 

error.  Hence, the outcomes of the validation set were worse than that of the pilot set, which had a 

higher resolution. 

In contrast, the single parameter of the DISST model was consistently stable during identification.  

The resulting DISST insulin sensitivity values were highly correlated to the EIC insulin 

sensitivity values, which are the gold standard in this field.  Ultimately, these outcomes show that 

a low-duration and intensity protocol and a simple glucose PD model are sufficient to capture 

virtually the same insulin sensitivity information obtained during the EIC. 

The insulin sensitivity test used in the Atkin’s study should have provided data that is more 

suitable for the Minimal Method.  However, the cohort participants were predominantly insulin 

resistant, for whom the Minimal Model has significant issues (Section 5.4.2).  The reason for the 

identifiability failure of this cohort may be distinct from the reason that most IM-IVGTT studies 

fail.  The protocol maintained an insulin infusion for the duration of the test.  This allowed some 

of the participant’s blood glucose concentrations to go below basal for a significant portion of the 

latter stages of the test.  The SG term of the Minimal Model always drives the simulated glucose 

concentration towards basal glucose and only the insulin action term (X) term is able to drive and 

maintain glucose below basal.  Thus, simulated insulin action, synonymous in these models with 

interstitial insulin multiplied by sensitivity, must be kept elevated and consistent by manipulating 

the model parameters.  Hence, in many cases, the clearance rate of ‘interstitial-sensitive’ insulin 

(p2) reduced during identification until it became negligible resulting in high insulin sensitivity 

values regardless of the p3 value.   

Obviously, most Atkins cohort participants did not have the EGP response to below basal glucose 

concentrations that would be expected from healthy participants that is modelled by the SG term.  

In fact, it may be that some of these participants had a non-basal glucose set point for endogenous 

glycaemic control, but lacked the endogenous capability to achieve this concentration.  Thus, the 

exogenous insulin may have allowed a return to safe set point.  However, this point is merely 

conjecture in the absence of more complete data, such as C-peptide assays. 

The DISST sensitivity values showed that much of the important information could be obtained 

from the insulin sensitivity test of the Atkin’s study from the initial decay of glucose with respect 

to interstitial insulin concentration.  Changes in the DISST insulin sensitivity value obtained 

during this period were generally synonymous with the physiological changes observed in the 

participants.  Note that in data not shown here, the sensitivity values identified by the Minimal 

Model over the same period were not stable and were worse overall than those shown in Table 

7.06.) 
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The Minimal Model is not necessarily obsolete in light of the DISST model and these analyses.  

Numerous studies have found very accurate equivalence between the Minimal Model and the EIC 

when more suitable and more intensive protocols are used with general cohorts (Table 2.02).  

Furthermore, the Minimal Model has been extensively investigated since its inception over 30 

years ago.  Thus, researchers know precisely what might be expected from it.  More recently, 

Bayesian techniques and the addition of a second compartment to the glucose pharmaco-kinetic 

model have mitigated some of the identifiability issues of the Minimal Model (Caumo et al. 1999; 

Cobelli et al. 1998; Denti et al. 2009; Pillonetto et al. 2003; Pillonetto et al. 2002).  However, 

there seems to be very sparse additional value available from the increased intensity of the 

protocols required.  This makes use of a 2-parameter model particularly inefficient for clinical or 

screening use.   

The SG term models behaviour that is variable between test participants (Del Prato et al. 1997) 

and represents a real and occasionally observable physiological phenomenon.  Effectively, it 

defines the hepatic glucose balance as a function of blood glucose concentration.  This balance 

seems to be impaired in diabetic individuals (Del Prato et al. 1997).  However, the metric is not 

generally used to identify diabetic individuals due to it’s poor resolution.  Martin et al. showed 

that SG had some limited potential for diabetes risk assessment, yet this potential was superseded 

by the insulin sensitivity values that were identified in tandem (Martin et al. 1992).  Conjecture 

may imply that the SG values identified in this cohort incorporated glucose dynamics that might 

have been attributable to SI given the well documented cases of parameter trade-off (Caumo et al. 

1996; Cobelli et al. 1999; Pillonetto et al. 2002; Quon et al. 1994b), and fixing SG may actually 

increase the resolution of SI for the purpose of diabetes risk assessment.  If very significant 

glucose assay improvements occur, identification of SG in tandem with insulin sensitivity might 

become sufficiently stable during identification to provide additional valuable information from 

moderately intense protocols.  However, the current test protocols and assay techniques limit the 

identifiability of SG and its utility is generally limited to the modulation of SI.   

7.5  Conclusions 

In conclusion, this chapter was not intended to argue against the use of the Minimal Model for the 

identification of clinically relevant parameters from dynamic tests.  Rather, it was intended to 

show that the model has limitations amongst dynamic test protocols.  This chapter strongly 

proved that the Minimal Model is not capable of providing two distinct sensitivity metrics from 

low-intensity, short duration dynamic tests.  A lack of data is available for the distinction of two 

Minimal Model parameters that model glucose decay.  Furthermore, it failed to capture the 
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behaviour of insulin resistant individuals of an interventional study.  Although this outcome was 

partially due to the nature of the test, a suitable model should be capable of describing the 

behaviour exhibited by any cohort or protocol configuration (assuming sufficient test stimulus).  

In contrast, the simplicity of the DISST model parameters enabled successful replication of the 

EIC insulin sensitivity values, was relatively repeatable and adequately described the behaviour of 

the Atkins intervention cohort.   

Criticism of the DISST test is often directed towards the choice of model and the low intensity of 

the protocol.  However, the ultimate appraisal of the DISST test must be made in context of the 

actual performance, and pre-conceptions should not influence or override the observed outcomes 

that indicate a successful model and protocol.   
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Chapter 8.  The quick DIST (DISTq) 

The DISTq concept presented in this chapter was published in the open medical informatics 

journal (Docherty et al. 2009) and justification of the method assumptions was presented in 

computer methods and programs in biomedicine (Docherty et al. 2011c).  A validation paper is 

forthcoming.  However, a comprehensive description of the relevant clinical and parameter 

identification methods, study outcomes, and potential uses is presented in this chapter.  The 

overall goal of DISTq was to provide a real-time (result at the bedside) test based on the DISST 

8.1  Motivation 

The quick DIST (DISTq) is a development of the fully-sampled DISST described in Chapters 4 

and 6.  DISTq occupies a distinct region from the DISST on the cost/accuracy spectrum with 

significant cost reduction, but only a slightly reduced accuracy.   

The primary objective of the development of the DISTq was to eliminate the need for costly and 

time-consuming insulin and C-peptide assays (a 2 to 3 day turnaround is typical for these assays).  

Hence, it can deliver a result immediately after the test by making insulin sensitivity identifiable 

using only information available at the time of testing.  Thus, only glucose assays and anatomical 

data from the fully-sampled DISST remain available for use.   

With the elimination of the need for insulin and C-peptide assays, real-time insulin sensitivity 

identification can be done at the bedside and therapy or intervention can be tailored for the 

patient, but at a cost of losing participant-specific identification of endogenous insulin secretion.  

This approach and real-time result is unique amongst the established insulin sensitivity tests, as 

each of them requires assays that are generally not available in real-time and still do not deliver 

endogenous insulin production metrics. 
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8.2  DISTq process 

8.2.1  Clinical protocol  

The clinical protocol of the DISTq is identical to that of the fully-sampled DISST that is fully 

described in Section 4.2.  However, no insulin or C-peptide assays are required, and thus the 

spinning and freezing of blood samples is not necessary.  The DISTq protocol is described in 

brief: 

• Participants attend the place of testing in the morning after an overnight fast. 

• A single cannula is placed in the ante-cubital fossa (vein in inner elbow) 

• Blood samples are drawn and assayed for glucose at t=0, 5, 10, 15, 20, 25, 30, 40 and 50 

minutes 

• A glucose bolus is administered immediately prior to the t=5 minute sample (Dosage: 5g 

low, 10g medium, 20g high) 

• An insulin bolus is administered immediately prior to the t=15 minute sample (Dosage: 

0.5U low, 1U medium, 2U high) 

Hence, the DISTq is a subset of the DISST noting a missing ‘S’ that stood for insulin secretion. 

8.2.2  A-posteriori parameter estimation  

Accurate insulin sensitivity tests require accurate insulin concentration measurements for insulin 

sensitivity estimation.  Furthermore, all dynamic tests, such as the IVGTT, DISST and DISTq, 

require accurate time-variant insulin concentration profiles to be provided.  However, real-time 

identification prohibits insulin and C-peptide assays, as they are not typically available from most 

labs within less than 2 to 3 days.  Thus, other methods were used to estimate this critical species 

profile. 

Many passive physiological rates can be estimated as function of measureable anatomical data 

(Van Cauter et al. 1992).  However, the estimation of the insulin concentration profile was 

inhibited by the lack of a-priori relationships between real-time measurable attributes and the 

kinetic parameters that define insulin clearance and the production of insulin.  For example, basal 

insulin could not be accurately inferred from a measurement of BMI, BSA, age, sex or 

combination of these measurements.  Neither could insulin clearance, basal, first or second phases 
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of insulin production.  However, some relationships were evident between these kinetic or 

production rates and insulin sensitivity. 

To generate mathematical expressions for these relationships all available fully-sampled data 

from the DISST pilot study, a dietary intervention study (TeMorenga et al. 2010), and validation 

study was evaluated using the iterative integral method with a slightly modified DISST model.  In 

particular: 

• All data time measurements were shifted so that all glucose boluses consistently occurred 

at t=5 minutes.  This was done to co-ordinate the occurrence of the first phase of insulin 

production across all data sets.   

• Insulin production profiles were obtained using the deconvolution process defined in 

Section 4.4.2.   

• First pass hepatic extraction of insulin was fixed at a population average of 70% (Cobelli 

& Pacini 1988; Ferrannini & Cobelli 1987; Meier et al. 2005; Toffolo et al. 2006) and nT 

was identified by the iterative integral method.  (nT is the combined plasma insulin 

clearance effect: nK+nL with αI =0) 

• Insulin sensitivity and glucose distribution volume were identified using the iterative 

integral method described Section 3.2. 

Population-level relationships between insulin sensitivity and the isolated parameters were then 

obtained using the identified participant-specific parameter values.  Visual inspection of the 

relationships indicated that power relationships were appropriate.  Linear regression of the log-log 

relationships of the population results was used to generate the coefficients of the power equation.  

Equation 8.01 shows how the linear regression of the loge-loge relationships is used to define the 

relationships. 

 ln
�� 	 A ln
��� � / 8.01 

 � 	 8�
���G  or   � 	 D
���G 8.01a 

where: V is the parameter of interest, SI is the participant insulin sensitivity [10-4L·mU-1·min-1], A 

and B define the log-log slope, and D 	 8� 
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8.2.2.1  Cohort details 

DISST test data from three cohorts was available to develop the parameter estimation equations: 

the pilot investigation (18 Subjects, 46 tests), the DISST validation study (50 subjects, 50 tests), 

and a dietary intervention study (74 subjects, 218 tests).  Participant details and study outcomes of 

the pilot and validation studies are presented in Section 4.4 and Chapter 6 respectively.  The 

intervention study sought to investigate the effect of increasing the dietary composition of protein 

in females who are at risk of developing type 2 diabetes  (TeMorenga et al. 2010).  Inclusion 

criteria required either a BMI greater than 25 or a BMI greater than 23 with family history or 

ethnic disposition toward type 2 diabetes.  Full details of the intervention study cohort and 

outcomes are presented in TeMorenga et al. The intervention cohort is summarised in Table 8.01. 

Status 

NGT/IFG/T2
D 

BMI 

Q1 Q2 Q3 
Sex 

M/F 
Age 

Q1 Q2 Q3 
HOMA-IR 

Q1 Q2 Q3 
DISST-SI† 

Q1 Q2 Q3 

63/11*/0 
27.6 
32.4 

36.3 

0/74 
34.8 
43 

50.3 

1.37 
2.15 

3.11 

5.79 
7.83 

10.9 

Table 8.01.  Participant characteristics and insulin sensitivity results from the intervention study 

(TeMorenga et al. 2010).  HOMA-IR is calculated: IR=GBIB/22.5.  DISST-SI is identified with the 

iterative integral method and the full data set.  (* Only one participant was diagnosed with IFG in 

all three tests, two were diagnosed in two of the three tests and eight had IFG once.  † DISST-SI 

units 10-4L·mU-1·min-1) 

 

8.2.2.2  Relationship between insulin sensitivity and basal insulin 

Basal insulin was related to insulin sensitivity using an exponential function.  Figure 8.01 and 

Equation 8.02-PIVC show the relationship defined between insulin sensitivity and basal insulin 

for this cohort.  The -C qualifier of Equation 8.02-C denotes that the equation constants were 

defined using the combined results of the three available cohorts.  Equally, -P, -I and –V stand 

for: pilot study, intervention study and validation study, respectively.   
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Figure 8.01. The log-log and normal plots of SI and basal insulin using all available data points 

and the derived population relationship (-). 

 

 
Figure 8.02. Variation in the basal insulin estimation equation between the various cohorts. 

  

Equation 8.02 shows the mathematical distinction when the equation coefficients are evaluated 

using the pilot (8.02-P), intervention (8.02-I), validation (8.02-V) and the combined (8.02-C) 

cohorts.   
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 �! 	  37.4 · ��9=.>Ö< 8.02-P 

 �! 	  47.9 · ��9=.I<< 8.02-I 

 �! 	  26.4 · ��9=.;�> 8.02-V 

 �! 	  49.4 · ��9=.I>= 8.02-C 

This relationship is broadly justified by the acceptance of the HOMA metric as a low-cost 

surrogate for more accurate insulin sensitivity tests (Ferrannini & Mari 1998; McAuley et al. 

2007; Pacini & Mari 2003).  While the HOMA metric uses the multiplication of basal insulin and 

glucose to estimate SI, this relationship inverts the relationship to define basal insulin from insulin 

sensitivity.  The relative consistency of basal glucose concentrations across a population prior to 

the later stages of insulin resistance in the pathogenesis of type 2 diabetes suggests that the basal 

insulin concentrations in a population can be inferred from insulin sensitivity measurements.  

Insufficient data is currently available to define the applicability of this estimation in individuals 

with excessively elevated basal glucose concentrations. 

8.2.2.3  Relationship between insulin sensitivity and hepatic clearance of insulin  

The relationships between insulin clearance and insulin sensitivity are shown in Figure 8.02 and 

Equation 8.03. 

Figure 8.03.  The log-log and normal plots of SI and hepatic clearance using all available data 

points and the derived population relationship (-). 
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It can be observed that insulin clearance had a tendency to increase with increasing insulin 

sensitivity.  This is anecdotally reasonable, as an insulin sensitive individual may require greater 

clearance to avoid hypoglycaemic incidents, whereas a resistant individual would benefit from 

using all available insulin to clear glucose.  However, there is a lack of direct observations of this 

behaviour in the literature.  A study by Meier et al. (Meier et al. 2007) showed a greater disparity 

between C-peptide and insulin concentrations in insulin sensitive individuals.  As the liver only 

clears insulin and kidney clearance of both hormones is assumed equivalent, it can be reasonable 

to conclude that hepatic clearance was greater in the sensitive group in the Meier et al. study. 

The hepatic clearance metric exhibits distinct behaviour between the cohorts tested.  While the 

pilot and validation data showed relatively similar relationships, the intervention study showed a 

reduced hepatic clearance at equivalent insulin sensitivity.  This is likely to be an artefact of the 

selection criteria of the individual studies.  While the pilot and validation cohorts sought diverse 

anatomical characteristics, the intervention study of TeMorenga et al. required that all participants 

exhibit risk factors for the development of type 2 diabetes.  Thus, there may be etiological reason 

for the distinction.  Figure 8.04 shows how the intervention cohort lies somewhat below the pilot 

and validation-derived lines that are relatively similar.   

 

Figure 8.04.  Overlaid plasma insulin clearance estimation equations from the various 

derivation cohorts 
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 �M 	  0.0982 · ��=.�;I 8.03-P 

�M 	  0.0672 · ��=.��> 8.03-I 

�M 	  0.0809 · ��=.��× 8.03-V 

�M 	  0.0697 · ��=.�Ò� 8.03-C 

8.2.2.4  Relationships between insulin sensitivity and insulin production 

Relationships between insulin sensitivity and insulin production at each minute were defined 

using the methods associated with Equations 8.01 and 8.01a.  For clarity, three such production 

rates are isolated as indicative cases and presented in Figure 8.05 and Equations 8.04 to 8.06.  

These cases include the relationships between insulin sensitivity and basal (UB), first phase (U1) 

and second phase (U2) of insulin production.  Figure 8.05 shows the combined cohort 

relationships between insulin sensitivity and basal, first and second phases of insulin production. 

 

Figure 8.05.  Individual plots of insulin production at basal, first phase and second phase of 

production as functions of insulin sensitivity. 

 

A visual inspection of UB and U2 in Figure 8.05 show that power equations are appropriate for 

these relationships.  A strong relationship between U1 and insulin sensitivity does not exist with 

significant variation in U1 across all SI values.  However, as no a-posteriori (link to insulin 

sensitivity) or a-priori estimation method accurately predicts U1, the power relationship to SI will 

be used to maintain consistency with the remainder of the insulin production profile.  The 

relatively small exponential values in Equation 8.05 show a lack of distinction between the first 

phase responses of sensitive and resistant individuals. 

Figures 8.06 to 8.08 show how the various cohorts affected the three indicative endogenous 

insulin production estimation equations.  While the basal (UB) and second phase (U2) equations 
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yield remarkably similar insulin production rates for equivalent sensitivity values, the more 

sporadic nature of the first phase insulin production reduces the equivalence across cohorts.   

Basal insulin production 

 Q� 	  87.1 · ��9=.×Ö> 8.04-P 

Q� 	  84.0 · ��9=.Ò>= 8.04-I 

Q� 	  68.9 · ��9=.Ò�× 8.04-V 

Q� 	  85.7 · ��9=.×<> 8.04-C 

First phase insulin production 

 Q< 	  140.9 · ��9=.=×Ò 8.05-P 

Q< 	  174.3 · ��9=.=×= 8.05-I 

Q< 	  220.2 · ��9=.=×; 8.05-V 

Q< 	  136.7 · ��9=.��� 8.05-C 

Second phase insulin production 

 Q� 	  160.9 · ��9=.;�Ò 8.06-P 

Q� 	  180.9 · ��9=.;=× 8.06-I 

Q� 	  132.5 · ��9=.ÒIÖ 8.06-V 

Q� 	  174.0 · ��9=.;=Ò 8.06-C 

 

 

Figure 8.06.  Overlaid basal insulin production estimation equations from the various 

derivation cohorts 
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estimates a participant’s endogenous insulin production using a series of equations that define a 

profile with 1-minute resolution.  Thus, 60 UN to SI equations were derived using the available 

participants’ 60 minute fully-sampled UN results.  Figure 8.07 shows how the 60 equations were 

aligned to create a surface that defines 60-minute insulin production profiles as a function of 

insulin sensitivity, for all participants.  To predict an insulin production response to the test 

stimulus, the DISTq identification method takes a ‘slice’ of the surface map of Figure 8.07 along 

the relevant insulin sensitivity value. 

 

Figure 8.07.  A series of insulin production profiles as a function of insulin sensitivity. 
 

Links between insulin sensitivity and insulin production have been made in the literature 

(Ferrannini & Mari 2004; Mari 1998; Pacini & Mari 2003), while others have found explicitly 

similar relationships to those presented here (Cobelli et al. 2007).  Furthermore, it is reasonable to 

assume that insulin resistant individuals who require more insulin for glucose homeostasis would 

attempt to produce more.  However, the proposed relationship does not take into account the lack 

of production capability seen in those with long-term exposure to diabetes.  These individuals 

suffer β-cell damage often because of long-term insulin resistance and become unable to produce 

sufficient insulin, as illustrated by some points on Figure 8.05.  Thus at the lower range of insulin 

sensitivity, insulin production rates would be expected to ‘trumpet out’ covering a range of 

particularly high, and low rates.  This feature can also be observed in Figure 8.05.    

This ‘trumpeting’ effect may provide potential for significant improvement of the estimation 

processes.  If duration of diabetes was known by the researcher either a third dimension could be 

added to the estimation graphs that could predict the extent of β-cell dysfunction, or a second 
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surface could be developed in which β-cell function profiles were provided as a function of the 

duration of diabetes rather than insulin sensitivity.  However, duration of diabetes was not 

reported for any DISST participants and this possibility cannot be evaluated at this stage. 

8.2.2.5  Alterations to published methods 

To gain equivalence across all cohorts and analyses, consistent methods and processes are used 

for all studies.  The DISTq method has been developed to maximize clinical applicability and 

mathematical identifiability of both insulin sensitivity and the population based equations 

themselves.   

Preliminary presentations of the DISTq method (Docherty et al. 2009; Docherty et al. 2011c) used 

different expressions to link insulin sensitivity to the unknown parameters.  In particular, 

endogenous insulin production profiles were generated from three indicative production rates (Ub, 

U1, and U2), while nL was used as a model parameter instead of nT.  Furthermore, arduous iterative 

least squares methods were used to identify the constants of Equation 8.01 for the various 

parameters.  These least squares methods exaggerated the impact of sensitive individuals, and 

thus, limited the applicability of the relationships to resistant individuals who arguably occupy the 

region of maximum desired accuracy.   

Initial DISTq methods (Docherty et al. 2009) used three indicative insulin production rates to 

construct an insulin production profile.  However, this method was ad-hoc, heuristic and required 

un-necessary assumptions.  Using linear regression of the log-log relationships allowed equations 

of UN at minute-wise resolution to be produced.   

The total extraction of insulin (nT) rate was used instead of nL due to the number of nL=0 cases 

presented by the intervention study.  The occurrence of nL=0 during the intervention study implied 

an overestimation of renal insulin clearance, it is almost certain that these participants had 

(unidentifiable) hepatic clearance of insulin.  nT is the sum of nL and nK assuming no saturation of 

hepatic clearance.  The analysis of Section 5.3.2 showed that the nL and nK parameters have very 

little mathematical distinction at insulin concentrations frequently encountered during the DISST 

test.  Thus, insulin sensitivity was linked to whole body insulin clearance from the plasma in this 

study.  Furthermore, a power relationship was used instead of the log relationship used in 

(Docherty et al. 2009) and the linear relationship used in (Docherty et al. 2011c). 

Thus, although changes have been made to the DISTq process, they are minor and their effect on 

clinical outcomes is negligible.  Further changes could potentially be made to the parameter 

estimation process to maximise accuracy.  In particular, there is not necessarily a necessity to use 
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linearisable relationships between insulin sensitivity and the metrics of interest.  If sufficient 

fully-sampled DISST results become available, smooth, but non-linear, relationships between 

insulin sensitivity and the un-observable parameters could be defined. 

8.2.3  DISTq insulin sensitivity identification method 

The DISTq method for predicted the participant’s insulinaemic response to the test stimulus a-

posteriori.  Thus, the method is dependent on SI and requires an iterative method to identify SI 

(Docherty et al. 2009).  The steps were as follows: 

1. A population average SI value was defined (10x10-4L·mU-1·min-1 was used, although 

convergence was confirmed using a range of possible SI starting values (Docherty et al. 

2009)). 

2. The SI value was used in Equations 8.02, 8.03 and the 60 equations that define the surface 

in Figure 8.07 to obtain a basal insulin value, hepatic clearance rate, and an endogenous 

insulin production profile with 1-minute resolution. 

3. The endogenous insulin production profile was used with the basal insulin, clearance rate 

and known test stimulus properties to simulate the insulin concentration response of the 

participant using the Equations 4.15 and 4.16. 

4. The interstitial insulin profile defined in Step 3 was used with the measured glucose data 

in the iterative integral method (Section 3.4) (Docherty et al. 2011b; Docherty et al. 2009) 

to identify SI and VG. 

5. Iterate over Steps 2 to 4 updating the insulin response estimate with the most recently 

evaluated SI from Step 4.  Continue iterations until SI converges.  Typically, eight 

iterations achieves convergence in the order of 0.1%. 

A second DISTq protocol was investigated as part of an investigation of variations to the DISST 

sampling protocol, which is presented in full in Chapter 9.  This second protocol required only the 

basal and t=35 minutes glucose sample to identify insulin sensitivity.  This method is called 

DISTq30 because of the possibility of shifting the basal glucose sample to immediately before the 

t=5-minute glucose bolus, thus a 30-minute protocol would be enabled.  However, this protocol 

removes the ability to identify VG as a variable parameter.  Hence, VG was estimated a-priori 

using a proportion of the participants lean body mass (LBM), as calculated by Hume (Hume 

1966).  The coefficient was defined using linear regression of the relationship between the LBM 

and VG and produces the relationship: 
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 �� 	  0.29Ø/: 8.07 

Thus, DISTq30 involves considerably less clinical intensity than the DISTq.  The SI identification 

process were the same as Steps 1 to 5, with the exception that Step 4 does not include an 

identification of VG.   

8.3  Investigation outcomes 

Primarily, the DISTq must prove an ability to replicate the identified insulin sensitivity values 

obtained by the fully-sampled DISST.  Secondly, a demonstration of the applicability of the 

parameter estimation equations in an isolated cohort must be investigated.  Finally, the DISTq 

must be compared to the gold standard of insulin sensitivity testing the euglycaemic clamp (EIC). 

8.3.1  DISTq comparison to the fully-sampled DISST 

To evaluate the insulin sensitivity identification capability of the DISTq and DISTq30 method, 

the ability of the method to replicate the values of the fully-sampled method was tested.  The 

fully-sampled DISST sensitivity values were identified using the iterative integral method 

described in Section 3.4 and Docherty et al. (Docherty et al. 2009).  Equivalence was assessed 

using Pearson’s correlation in tandem with the mean gradient.  While the correlation measured the 

linear dimensionless equivalence, the gradient measures the possible bias or proportional shift that 

could be introduced by un-representative population-based parameter estimation equations.  The 

gradient (Grad) is defined as the ratio of 2-norms (Equation 8.08).   

 �²RT 	 °��ÐB5M�
�=�°����ÐB55M��  
8.08 

If Grad>1 DISTq has, on average, overestimated the insulin sensitivity of a cohort. 

Table 8.02 shows the correlations between the DISST, DISTq and DISTq30 when the intra-cohort 

population-based parameter equations were used.  Hence, in this case, the pilot results were 

derived using parameter estimation equations derived with the pilot data.  Similarly, for the other 

cohorts, the estimation equations were derived from their own fully-sampled data. 
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 DISST-DISTq 

R (Grad) 
DISST-DISTq30 

R (Grad) 
DISTq-DISTq30 

R (Grad) 

Pilot Cohort 0.83 (1.00) 0.75 (0.96) 0.89 (0.97) 

Intervention Cohort 0.86 (1.05) 0.76 (1.13) 0.92 (1.07) 

Validation Cohort 0.84 (1.07) 0.86 (1.18) 0.99 (1.10) 

Combined Cohort 0.82 (1.04) 0.72 (1.09) 0.91 (1.04) 

 Table 8.02.  Correlations and gradients of the DISST and DISTq derived insulin sensitivity 

values.  

  

The correlations and gradients observed in Table 8.02 were consistent with those observed in 

previous analyses (Docherty et al. 2009; Docherty et al. 2011c).  The DISTq method correlated 

relatively well with the fully-sampled DISST (R=0.82).  Thus, these results validate the form of 

the population-based relationships and the identification method.  Furthermore, the gradients are 

all close to one, showing the magnitude of the estimated parameters was appropriate.   

The full DISTq protocol that uses all available glucose assays generally showed a superior 

accuracy and precision in terms of repetition of the fully-sampled DISST results than the 

DISTq30.  This result was expected because the lack of glucose measurements taken during the 

DISTq30 limits the definition of the glucose concentration gradient.  The LBM-based VG 

estimation generated a reasonable estimate, as evidenced by the relatively high accuracy and 

precision between DISTq and DISTq30.  However, the ability for both the fully-sampled DISST 

and the DISTq to measure the same glucose decay gradient maximises their equivalence.   

The predominant finding of this analysis is that insulin sensitivity can be observed relatively 

accurately during dynamic insulin sensitivity tests using only glucose data.  This outcome is a 

significant development in the field of insulin sensitivity testing, as the prevailing assumption is 

that insulin assays are critical to the identification of insulin sensitivity.  Hence, a wide range of 

previously impossible clinical and research opportunities and applications are enabled. 

In effect, DISTq succeeds where other glucose-only tests fail because the concentration of insulin 

can be simulated with relatively high accuracy.  With the exception of very few individuals, the 

1U insulin bolus overwhelms the endogenous insulin appearance (predominantly due to the ~70% 

first pass hepatic extraction of insulin).  Thus, when the dispersion of this insulin is modelled with 

the pharmaco-kinetic parameters defined by Van Cauter et al. (Van Cauter et al. 1992), relatively 

accurate interstitial insulin concentrations can be defined.   

The identified DISTq values are most sensitive to errors in the insulin clearance parameter (nT or 

nL).  This value moderates the insulin bolus, which is the predominant insulin signal.  Errors in 
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insulin production or basal insulin have an effect on the resultant insulin sensitivity values.  

However, this effect is mitigated by the dependence of the method on the insulin clearance term.  

This is why the relatively inaccurate first phase estimation equation (Figure 8.05(middle)) does 

not have a more deleterious effect on the resultant sensitivity values.  If the protocol did not 

include the insulin bolus, the identification method’s sensitivity to the first-phase production 

estimation would increase significantly.  As the first phase prediction is relatively erroneous, this 

would inhibit the accuracy of the method, and the protocol could not yield clinically useful 

metrics. 

8.3.2  DISTq in an isolated cohort 

If DISTq were used in a clinical study, no cohort specific population-based parameter estimation 

equations would be available.  The population derived parameter equations must be provided 

from a previous fully-sampled DISST investigation.  Thus, the applicability of the parameter 

estimation equations must be evaluated in isolated cohorts.  The population based equations 

derived using the pilot cohort were thus used to evaluate the equivalence between the fully-

sampled DISST, DISTq and DISTq30 in the intervention, validation and combined cohorts.  

Subsequently, the intervention, validation and combined cohort derived equations were used in 

isolated cohorts.  Tables 8.03 to 8.06 show the outcomes of these analyses 

Pilot cohort derived parameter equations 

 DISST-DISTq 

R (Grad) 
DISST-DISTq30 

R (Grad) 
DISTq-DISTq30 

R (Grad) 

Intervention Cohort 0.86 (1.38) 0.77 (1.48) 0.92 (1.08) 

Validation Cohort 0.84 (1.15) 0.86 (1.28) 0.99 (1.11) 

 Table 8.03.  Correlations and gradients of the DISST and DISTq derived insulin sensitivity 

values when the pilot cohort-derived equations are used. 

 

The pilot derived equations maintained a relatively high correlation between the fully-sampled 

DISST and the DISTq.  The validation cohort correlation increased marginally.  However, the 

DISTq overestimated the insulin sensitivity values in both the intervention and validation cohorts.  

The gradient values show that DISTq and DISTq30 both overestimated the  intervention cohort’s 

insulin sensitivity.  This difference was due the disparity between the intervention behaviour and 

the pilot derived assumptions.  Figures 8.02 and 8.06 show that the basal insulin and insulin 

production rates were reduced in the pilot study.  Furthermore, the hepatic clearance was lowest 
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for the intervention study.  Thus, the participant insulin concentration was frequently 

underestimated by the DISTq method for the intervention cohort when the pilot derived equations 

were used.  Consequently, insulin sensitivity was overestimated.  The disparity had a similar, but 

somewhat attenuated, effect on the outcomes of the validation cohort. 

Intervention cohort derived parameter equations 

 DISST-DISTq 

R (Grad) 
DISST-DISTq30 

R (Grad) 
DISTq-DISTq30 

R (Grad) 

Pilot Cohort 0.82 (0.78) 0.74 (0.72) 0.88 (0.92) 

Validation Cohort 0.84 (0.99) 0.86 (0.96) 0.99 (1.07) 

 Table 8.04.  Correlations and gradients of the DISST and DISTq derived insulin sensitivity 

values when the intervention cohort-derived equations are used. 
 

Given the overestimating effect that the pilot derived equations had on the intervention cohort’s 

DISTq insulin sensitivity values, it is intuitive that the intervention derived parameter estimation 

equations would underestimate the pilot cohort sensitivity values.  The intervention cohort-

derived equation would tend to cause an overestimation of the insulin concentration for the 

participants of the pilot cohort.  Hence, these results are expected.  Note that the correlations 

remain high, indicating a robustness of the DISTq method. 

Validation cohort derived parameter equations 

 DISST-DISTq 

R (Grad) 
DISST-DISTq30 

R (Grad) 
DISTq-DISTq30 

R (Grad) 

Pilot Cohort 0.83 (0.96) 0.74 (0.87) 0.88 (0.90) 

Intervention Cohort 0.85 (1.30) 0.76 (1.35) 0.92 (1.04) 

 Table 8.05.  Correlations and gradients of the DISST and DISTq derived insulin sensitivity 

values when the validation cohort-derived equations are used. 
 

The insulin concentration levels in the validation cohort were between the pilot and intervention 

cohort levels on average.  Thus, the validation cohort equations reduced the magnitude of the 

DISTq SI estimates of the pilot cohort and over-estimated those of the intervention study.  Hence, 

this cohort represents a middle ground cohort.   
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Combined cohort derived parameter equations  

Table 8.06 shows the effect of the combined cohort’s parameter estimation equations on it’s 

constituent cohorts DISTq insulin sensitivity values. 

 DISST-DISTq 

R (Grad) 
DISST-DISTq30 

R (Grad) 
DISTq-DISTq30 

R (Grad) 

Pilot Cohort 0.82 (0.86) 0.74 (0.80) 0.88 (0.93) 

Intervention Cohort 0.86 (1.15) 0.76 (1.24) 0.92 (1.08) 

Validation Cohort 0.84 (0.98) 0.86 (1.07) 0.99 (1.09) 

 Table 8.06.  Correlations and gradients of the DISST and DISTq derived insulin sensitivity 

values when the combined cohort-derived equations are used.   
 

Overall, the findings of the isolated derivation study showed that the correlation between the 

fully-sampled DISST and the DISTq was relatively well maintained when isolated estimation 

equations were used.  Tables 8.03 to 8.06 show that equations from an isolated cohort had limited 

adverse effects on the correlation between the fully-sampled DISST and DISTq/DISTq30 insulin 

sensitivity values.  However, the divergence from a regression gradient of 1.0 indicates that 

equivalence in terms of magnitude deteriorated.  There was very little effect on the correlations or 

gradients between DISTq and DISTq30 when isolated derivation equations are used. 

The effect of an isolated equation set was greatest on the intervention study.  The intervention 

study cohort recruitment policy targeted participants with anatomical and/or inherited disposition 

towards diabetes (TeMorenga et al. 2010).  Thus, the cohort exhibited systematic differing 

characteristics from the pilot or validation cohorts.  This difference was most marked in the 

plasma insulin clearance rate (nT) that was lower with respect to insulin sensitivity than the 

equivalent clearance values of the pilot or validation cohorts.  Hence, it was a systematic bias 

based on the participant selection criteria for that specific investigation. 

The insulin clearance term (nT) had a significant effect on the identified insulin sensitivity value 

as the insulin clearance parameter has the greatest impact on the concentration of interstitial 

insulin.  The average rate of first phase insulin production is approximately, 700 mU.  

Approximately 70% of this amount is cleared in the first hepatic pass extraction.  Thus, 

approximately 200 mU of endogenous insulin enters circulation due to the first phase insulin 

release.  This has significantly less effect than the 1000 mU of exogenous insulin that is 

administered IV (and thus is not affected by first pass hepatic extraction).  As the insulin 

clearance parameter moderates the effect of the exogenous bolus, the primary contributor to the 

measured signal, the identification of insulin sensitivity is most sensitive to this metric.   
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Thus, the distinction in the behaviour of insulin clearance with respect to insulin sensitivity 

exhibited between the intervention cohort and the pilot and validation cohorts prompted a 

proportional shift in the DISTq identified insulin sensitivity values.  The pilot cohort also seemed 

more susceptible to this insulin clearance distinction than the validation study. 

The final outcome of this analysis implied that the linearity of the DISTq identified insulin 

sensitivity values is particularly robust when an isolated cohort is used to derive the parameter 

estimation equations.  However, equivalence in terms of the magnitude of the identified values 

was reduced by the effect of the disparate insulin concentrations of the various cohorts.  Thus, 

there is potential for the development of the parameter estimation processes by incorporating a-

priori physiological, or epidemiological data into the parameter estimation functions that are 

currently functions of insulin sensitivity alone.  For example, if a participant could satisfy the 

recruitment criteria of the intervention study, the intervention cohort-derived estimation equations 

should be used.  Otherwise, either the pilot or the validation equations would be more appropriate.   

8.3.3  DISTq verses the euglycaemic clamp 

Only the validation cohort participants undertook both the DISST and euglycaemic clamp.  Thus, 

the data obtained during the validation investigation was sufficient to obtain a comparison 

between the DISTq and the gold standard EIC.  The study design, recruitment policies, test 

protocols and results were presented in Chapter 6 and will not be repeated here.   

Population based parameter equations from the pilot cohort (not the validation cohort) were used 

in this analysis.  This cohort was most representative of the anatomical range expected in the 

validation cohort and was also isolated and independent of the validation cohort.  It is important 

to use an isolated cohort as the use of the DISTq in a clinical setting would not allow the patient 

specific identification of these parameters.  Equation 6.03 was used convert the DISTq insulin 

sensitivity value to mimic the units of the euglycaemic clamp sensitivity index.  Both DISTq and 

DISTq30 metrics were identified. 

Figures 8.08, 8.09 and 8.10 show the correlations, Bland-Altman plots and receiver operator 

curves (ROC) for the EIC and DISTq/DISTq30 derived sensitivity values.  The correlation 

between DISTq and the EIC was marginally less than that of DISTq30 (R=0.76 compared to 

R=0.77).  The gradients between the sensitivity values of the two tests were 1.04 and 1.10 for the 

DISTq and DISTq30, respectively.  However, a single outlier (Participant 46, discussed in Section 

6.5.3), had a significant negative effect on these values and could be removed.  The outlier is 

particularly visible in Figure 8.08 (Right) at approximately EIC=9, DISTq=22.  This participant 



Page 152 

drank copious amounts of sugary drink, and thus had an unprecedented physiological insulin 

secretion response relative to any assumed profile.  Removal of this participant’s data changed the 

DISTq and DISTq30 correlations to R=0.77 and R=0.80 respectively and the gradients to R=1.01, 

and R=1.05 respectively.   

 

Figure 8.08.  Comparison of SI values between the DISTq and EIC (left) and the DISTq30 and 

EIC(right).  (1:1 line (-), mean gradient (- -)).  

 
 

 

Figure 8.09.  Bland-Altman plots showing the median, and inter-quartile range of the 

sensitivity value discrepancy between the test outcomes. 

 

The median discrepancy for DISTq was +0.7% confirming the mean gradient shown in Figure 

8.08(left).  The inter-quartile range of the proportional difference was -15.9% to 43.6%.  The 
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DISTq 30 had a similar low median error 4.1% that confirmed the mean gradient from Figure 

8.08(right).  The inter-quartile range was -24.1% to 35.4%.  Thus, both methods performed 

similarly.  Figure 8.10 presents the ROC curve for the DISTq and DISTq30 versus the EIC.  The 

area under the ROC curves for were c-ROC=0.89 and 0.91 for the DISTq and DISTq30, 

respectively.  Hence, both perform equally relative to the EIC. 

 

Figure 8.10.  ROC curves of the DISTq metrics and the EIC using an arbitrarily selected cut-

off threshold of 6.94x10-2mg·kg-1·(mU·L-1)-1·min-1. 

 

8.3.4  Tracking clinical intervention 

Insulin sensitivity tests are often used in clinical application to measure the effect of interventions 

or drugs.  The effect of a high protein diet was measured using the DISST in 74 participants 

(TeMorenga et al. 2010).  Thus, the data was available to investigate whether the DISTq methods 

can also be used to quantify the sensitivity shift.   

Participants of the intervention study underwent DISST tests on weeks 0, 4 and 10.  Insulin 

sensitivity values were identified for each test using the fully-sampled DISST and the DISTq and 

DISTq30 methods.  Insulin sensitivity was converted to the EIC units to minimise the effect of VG 

variation of the identified SI value.  The change due to the intervention was defined as difference 

between the final and initial sensitivity values divided by the mean identified value (Equation 

8.09). 
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Figure 8.11 shows the correlation of the percentage insulin sensitivity changes as measured by the 

fully-sampled DISST and the DISTq and DISTq30 methods.  The insulin sensitivity change 

observed by the DISTq correlated to the fully-sampled DISST at R=0.81, while the DISTq30 

correlated to the fully-sampled DISST at R=0.72.  Figure 8.12 shows the Bland-Altman plots of 

the fully-sampled to DISTq measured changes. 

 

Figure 8.11.  Correlations between the proportional change in insulin sensitivity measured by 

the fully-sampled DISST and the DISTq (left) and DISTq30 (right). 
 

 

Figure 8.12.  Bland-Altman plots of the proportional change measured by the DISST and the 

DISTq (left) and DISTq30 (right) methods. 
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The median discrepancy between the SI changes measured by DISTq and the fully sampled 

DISST was 4.4% and the interquartile range was -9.4% to 16.1%.  The DISTq30 results showed a 

greater variation from the fully-sampled DISST measured changes (median=2.99%, IQR=-14% to 

22%). 

 

Figure 8.13.  ROC curves of the fully-sampled DISST and the DISTq (left) and DISTq30 

(right) using a diagnosis value of 0%. 
 

Figure 8.13 shows the ROC curves for this analysis.  The area under the ROC curves defined 

using a diagnostic cut off value of 0% showed a relatively high diagnostic equivalence between 

the insulin sensitivity identification methods.  DISTq and the fully-sampled DISST provided a c-

ROC=0.94 while DISTq30 and the DISST provided c-ROC=0.90. 

8.4  Outcomes of the DISTq evaluation 

DISTq and DISTq30 exhibited sufficient equivalence to the EIC to be considered a suitable 

surrogate.  The ROC curves showed a strong diagnostic equivalence between DISTq and EIC.  

This equivalence was confirmed by the mean gradients and median differences between the two 

tests.   

Other insulin sensitivity metrics that use only glucose assays (i.e. 2hr glucose, FPG) generally 

result in low-resolution metrics (Table 2.02).  This poor outcome is predominantly due to the un-

measured participant insulin concentration during the tests.  However, DISTq is capable of higher 
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than expected accuracy as the protocol introduces a known amount of insulin to the body.  

Equally, it has the iterative ability to estimate an endogenous insulin profile.   

Experience across broad cohorts has allowed the development of a method to accurately quantify 

how this known quantity of insulin is dispersed to the active, interstitial regions of the body and 

how insulin clearance and production can be roughly approximated with a function of insulin 

sensitivity.  Furthermore, the protocol avoids issues associated with extended basal periods or 

hyper-physiological doses that obscure the efficiency of insulin with saturation effects.  Thus, 

glucose and anatomical data alone can provide sufficient information to generate a very accurate 

insulin sensitivity value.   

DISTq30 showed a marginally improved equivalence to the EIC than the more intense DISTq.  

However, the DISTq tended to correlate better to the fully-sampled DISST than DISTq30.  This 

behaviour is a result of the greater similarity between the DISTq and DISST and the similarity 

between the DISTq30 and the EIC.  Both the DISTq and DISST used all available glucose data, 

and identified VG as a parameter.  Thus, both metrics were an accurate reflection of the measured 

gradient of glucose disposal.  DISTq30 estimated VG and thus the glucose decay gradient was not 

explicitly observed.  However, the VG estimate of the DISTq30 was equivalent to the EIC 

methodology, which effectively estimates VG by normalising the glucose clearance rate by the 

participant’s body weight.  Hence, the commonality of parameter identification has enhanced the 

equivalence of the sensitivity values across these two specific tests.   

DISTq was most sensitive to errors in the insulin clearance parameter.  Early attempts to mitigate 

this error included the application a second iterative cycle, which varied the nT value to maximise 

glucose simulation fit to data.  This extension achieved an increase in correlation from R=0.86 to 

0.91 in the pilot cohort (Docherty et al. 2009).  However, this method failed to improve the 

correlation of the intervention cohort, increased the complexity of the already complex 

identification method and required a frequently sampled protocol.  Thus, the validation study 

protocol did not produce data that could use the nT refinement cycle.  Hence, the additional nT 

refinement cycle was abandoned in subsequent investigations.   

The tendency for the intervention study to have a lower than expected clearance rate at equivalent 

insulin sensitivity values indicates that slight accuracy gains may be possible by using tailored 

parameter estimation equations.  Thus, if a participant had a genetic disposition towards type 2 

diabetes, equations derived from a cohort with a similar background might improve the 

individual’s identified insulin sensitivity result.  However, an investigation of this possibility 

would require significant investment as sufficient participants would be required to investigate a 

number of targeted cohorts.   
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The outlier mentioned in the validation cohort (Participant 46 in Section 6.5.3) showed that the 

method could produce incorrect results in isolated cases of unusual physiology.  The outlier had a 

particularly abnormal physiology that the DISTq method was unable to predict.  The participant 

consistently drank 5+ sugary energy drinks per day and as such, had a very large first phase of 

insulin production.  Thus, the participant’s glucose decayed particularly fast, and the DISTq 

method predicted a smaller insulin production response (Equations 8.04-8.06).  Unfortunately, the 

iterative nature of the DISTq identification method amplified the error.  The second and 

subsequent iterations produced smaller insulin responses and thus greater insulin sensitivity.  

However, this effect could have been ameliorated by the application of the knowledge of the 

participant’s abnormal physiology.  It was known prior to testing that the participant would likely 

have an increased first phase of insulin production because of her abnormal daily glucose intake.  

This knowledge could have been incorporated into the parameter estimation equations and the 

participant’s results would come more into line, given an appropriate, validated adjustment.   

The fully-sampled DISST identification method had access to the C-peptide assays from this 

participant, and thus was able to accurately quantify the participant’s insulin production response.  

This participant’s sensitivity values did not produce a significant adverse affect on the correlation 

between the fully-sampled DISST and the EIC.  The participant produced almost 3 units of insulin 

during the first phase of production, which was four times greater than the observed median 

production of 0.7 units.  Although the DISST was capable of capturing this anomaly, the DISTq 

could not because of the fundamental assumptions it must make.    

8.4.1  Comparison between the DISTq and established metrics 

The DISTq performance compares favourably to many surrogate insulin sensitivity tests that are 

currently proposed.  Table 2.02 shows that OGTT metrics have exhibited correlation values to the 

EIC between R=0.51 and R=0.81 (Breda et al. 2002; Dalla Man et al. 2005a; Gutt et al. 2000; 

Lorenzo et al. 2010; Malita et al. 2010; Piché et al. 2007; Pigeon et al. 2009; Soonthornpun et al. 

2003).  The DISTq30 equalled the upper limit of this range, while DISTq was very close.  

Furthermore, the gradient between the DISTq metrics and the EIC was very close to 1.0 implying 

a very strong diagnostic equivalence between the tests.   

DISTq and DISTq30 are significantly less intense tests than the OGTT.  The DISTq and OGTT 

require the same number of skin punctures.  However, the oral consumption of the OGTT drink 

can be difficult, with incidences of vomiting.  The amount lost must be estimated and made up 

again, thus introducing significant potential for error.  Furthermore, the OGTT requires a 2 hour 
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protocol and requires insulin assays when identifying insulin sensitivity.  Thus, it is not real-time 

capable.  In contrast, the sampling protocol of the DISTq is more intense than the OGTT with 10 

minute as compared to 30-minute sampling frequency.   

Table 2.02 shows the range of correlations that the IVGGT and IM-IVGTT have achieved against 

the EIC (R=0.44-0.89) (Bergman et al. 1987; Donner et al. 1985; Erichsen et al. 2004; Ferrannini 

& Mari 1998; Ferrari et al. 1991; Foley et al. 1985; Galvin et al. 1992; Mari & Valerio 1997; 

Rostami-Hodjegan et al. 1998; Saad et al. 1997; Scheen et al. 1994).  The DISTq to EIC 

correlations found in this investigation are comparable to the upper extent of this range and 

exceed most studies.  This result is very significant considering the very large disparity in the 

clinical intensity of the IVGTT and the DISTq protocols.  Many IVGTT protocols require up to 3 

hours of frequent sampling.  Furthermore, insulin assays are required and the results are not 

available in real-time.  The added intensity of the IVGTT thus offers sparse, if any, benefit over 

the DISTq, particularly when parameter identification failure can be a concern for the IVGTT. 

There are a number of potential reasons for the poorer than expected result obtained from the 

IVGTT protocol.  The frequent sampling should lead to a rich data set from which stable and 

accurate parameter values are obtained.  However, this result is not the case.  Most notably, 

identification of glucose dependant uptake and insulin sensitivity often encounters parameter 

trade-off and identifiability issues (Caumo et al. 1999; Pillonetto et al. 2002; Quon et al. 1994b).  

The reason for this trade-off has been presented in Section 5.5.2.   

Furthermore, the prolonged IVGTT protocol exaggerates the effect of basal periods on the 

identified parameters.  In contrast, the DISST protocol incorporates a very brief basal period as 

the measurement of the insulin effect on glucose at physiologically relevant doses is critical to the 

assessment of a relevant metric.  IVGTT and IM-IVGTT protocols frequently use hyper-

physiological doses, and thus significant saturation effects can affect the parameter values 

(Docherty et al. 2010; Kolterman et al. 1980; Natali et al. 2000; Prigeon et al. 1996; Rizza et al. 

1981).  Thus, the IM-IVGTT performance can improve through use of Bayesian methods (Cobelli 

et al. 1999; Erichsen et al. 2004; Pillonetto et al. 2003; Pillonetto et al. 2002) or by fixing the 

glucose dependant term such as the DISST (the pG term), or by shortening the protocol and 

reducing the bolus doses.  However, each of these solutions has their own caveats and trade-offs. 

The DISTq methods require more intense protocols than HOMA, which requires a single fasting 

blood sample.  Table 2.02 shows that the HOMA has a wide range of reported correlations to the 

EIC (R=0.22 to 0.93) (Bonora et al. 2000; Katsuki et al. 2001; Katsuki et al. 2002; Lotz et al. 

2008; Mari et al. 2001; Mather et al. 2001; Matthews et al. 1985; Pacini & Mari 2003; Piché et al. 

2007; Wallace et al. 2004).  Thus, the DISTq exceeds the HOMA in terms of the EIC  
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equivalence defined in most studies.  The low intensity of HOMA in the form it is generally 

administered means that despite the improved performance of the DISTq metrics, HOMA is still 

the best choice, low cost, low accuracy metric.  However, if a researcher desires a higher 

resolution, more dependable test the DISTq is a suitable alternative. 

In summary, Figure 8.14 defines the approximate position of the DISTq amongst the established 

insulin sensitivity tests, including also the DISST. 

 

Figure 8.14.  The relative position of the DISTq in comparison to other tests for the 

identification of insulin sensitivity. 

 

8.4.2  Potential clinical uses for the DISTq 

The comparatively strong equivalence between the DISTq and the gold standard of insulin 

sensitivity testing (the EIC) indicates that the DISTq may be used a suitable surrogate in a number 

of situations.  In particular, outpatients of a general practice setting could have a test performed in 

the duration of a single consult.  Furthermore, the result would be available within the duration of 

that consultation.  The current method of estimating sensitivity in a general practice is a single 

fasting blood test for glucose.  However, fasting tests are only an indicator for whether the 

endogenous insulin response is sufficient to maintain glucose homeostasis.  Thus, it only really 

measures when β-cell damage has already occurred and diabetes is either a current condition or 
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very imminent (Figure 1.03).  The DISTq offers a true insulin sensitivity based risk assessment 

for a cost and protocol that can be easily met by health providers.   

The low cost attributes of the DISTq may enable widespread screening for type 2 diabetes.  Table 

2.02 shows the costs and benefits of currently available tests, these tests all have associated costs 

or inaccuracies that preclude the use of insulin sensitivity tests in widespread or even targeted 

screening.  The DISTq has a unique low-cost and relatively high accuracy amongst insulin 

sensitivity tests and thus may be suitable.  However, precisely how accurate and how low-cost a 

test is required for such programmes is an unknown factor.   

The low cost and intensity of the DISTq protocol could also enable a greater number of 

participants to be recruited in clinical intervention studies with limited budgets.  However, the 

expected shift in insulin sensitivity must be sufficient to overcome the comparatively large 

coefficient of variation of the DISTq sensitivity metric (Docherty et al. 2009).  The insulin 

sensitivity shift measured by DISTq in the intervention study showed the expected level of 

equivalence with the fully-sampled DISST (Section 8.3.4) given the correlation between the 

sensitivity values alone (Section 8.3.1).   

8.5  Future work 

There are a number of potential developments of the DISTq identification method that could be 

investigated.  These changes fall under three main categories. 

1. Refining the population based parameter estimation equations. 

2. Alterations to the modelling and parameter identification strategies. 

3. Tailoring the clinical protocol to maximise accuracy or minimise clinical cost and 

intensity. 

As mentioned in Section 8.3.2 the population based parameter equations could be re-evaluated at 

a cohort level.  Thus, the some of the variation observed in the relationships between insulin 

sensitivity and the unknown parameters could be constrained somewhat by the application of a-

priori epidemiological or etiological data.  The observation of the reduced insulin clearance rates 

in the participants of the intervention study imply that alternative equation sets can be appropriate 

to maintain equivalence in insulin sensitivity magnitude across tests.  The application of targeted 

cohort equations is likely to have a limited effect on the correlations of DISTq insulin sensitivity 

and the sensitivity derived by fully-sampled tests.  However, the gradient is likely to improve.  

Thus, clinical diagnosis equivalence and surrogate EIC performance would improve.   
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Furthermore, relationships across the a-posteriori identified parameters could potentially be 

obtained.  For example, basal insulin concentration is a physiological function of basal insulin 

production and insulin clearance.  Initial ad-hoc application of the estimation of basal insulin as 

function of production and clearance had a mild negative effect on the correlation of the DISTq 

identified sensitivity values and fully-sampled values.  However, it is likely that Bayesian 

techniques, or similar, could provide a more accurate or realistic combination of parameter 

estimates. 

In addition, the current DISTq method assumes a first pass extraction of insulin value of 70%, 

which is an average of the values found in the fully-sampled tests and is justified in the literature 

(Cobelli & Pacini 1988; Ferrannini & Cobelli 1987; Meier et al. 2005; Toffolo et al. 2006).  This 

effect is physiologically equivalent to the hepatic clearance of insulin and thus could be linked as 

a single parameter in the model.  However, the current representation of first pass extraction in the 

DISST physiological model (Section 4.3.2) would have to be altered to become a function of the 

plasma insulin concentration. 

Thus, Equation 4.15 would be re-defined as Equation 8.10 

  �� 	 
��� 
 �B�{ 
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where: xH is the combined hepatic extraction rate [dimensionless], and hP is the proportion of 

plasma that flows through portal vein in a minute.  This latter parameter could be approximated as 

1/4 of the plasma volume per minute or a population constant. 

The xL and nL parameters are infrequently combined, as they are in Equation 8.10.  It is likely that 

they are separated mathematically by the increased effect saturation of the first pass extraction 

parameter (Toffolo et al. 2006).  Thus, a saturation parameter is appropriate in the expression and 

has been included in Equation 8.11. 
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where: IP50 is the rate that insulin passes through the portal vein at half the maximal hepatic 

insulin clearance and xH is a combined hepatic clearance parameter. 
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The saturation parameter IP50 would serve to reduce the extraction of the first phase insulin in 

comparison to the other phases of insulin production.  The term is justified by experimental 

observation, (Thorsteinsson 1990; Thorsteinsson et al. 1985), and the physical observation of a 

limited availability of insulin binding sites in the liver. 

The model presented in Equation 8.10 contains a single parameter to define insulin pharmaco-

kinetics.  Thus, some of the un-modelled variation caused by the fixed xL term in the DISTq 

process could potentially be mitigated.  Further accuracy could perhaps be obtained by defining 

the population characteristics of the IP50 parameter. 

The intensity of the clinical protocol used in the DISTq could potentially be increased to 

maximise resolution, or reduced to minimise cost.  Increased sampling frequency would reduce 

the effect of assay error on the derived metric.  However, this is likely to have a minimal effect on 

the correlations or other DISTq performance metrics.  Furthermore, an extended protocol with 

added glucose and insulin boluses would ameliorate the effect of incomplete glucose mixing, 

increasing the resolution of VG and subsequently SI.  The period between the glucose and insulin 

boluses of the DISST protocol could be expanded with the second insulin bolus altered to 

combine glucose and insulin.  This would potentially allow an observation of first phase insulin 

production response.  This possibility is explored in Chapter 10.   

DISTq30 requires a very low-intensity protocol.  However, there is still potential to reduce the 

intensity further.  The time between the glucose and insulin assays is required by the fully-

sampled DISST to allow an observation of the first phase of insulin production.  However, DISTq 

methods cannot observe this response, and as such, this period is somewhat redundant.  Thus, the 

boluses could be combined as a single bolus, with the final sample at 20 minutes.  This change 

would reduce the clinical intensity of the test.  An in-silico investigation of this protocol is 

presented in Chapter 10. 

Error in the plasma insulin clearance rate is the primary contributor to variance in the identified 

DISTq sensitivity value.  The clearance rate is the predominant factor in the determination of the 

concentration of insulin in the participant during the DISST protocol.  Thus, achieving greater 

accuracy in the estimation of this parameter during identification would yield the greatest 

potential for increased accuracy.  If a low cost, real-time assay is available for a species that can 

be applied intravenously and is cleared at a rate that is indicative of the specific participant rate of 

insulin clearance; this species could be administered with the insulin bolus to provide a more 

accurate estimation of insulin sensitivity.   
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The basal glucose assay could potentially be removed and replaced with an estimate that is 

defined using the population-based functions of SI presented for the other unknown metrics.  This 

would have a very minimal impact on the intensity of the test as a skin puncture is still required to 

administer the boluses and thus, it is very unlikely that this intensity reduction is necessary or 

viable.   

Finally, the DISTq can be used in a hierarchy of insulin sensitivity tests, wherein increased 

resolution is possible through the re-assaying of frozen samples.  This potential is explored 

thoroughly the following chapter. 
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Chapter 9.  A hierarchy of insulin 

sensitivity tests 

9.1  Motivation 

Numerous investigations have found that insulin sensitivity (SI) is an important metabolic marker 

(Hanley et al. 2005; McLaughlin et al. 2007; Santaguida et al. 2005; Zimmet et al. 1999) and type 

2 diabetes risk evaluator (DeFronzo & Ferrannini 1991; Ferrannini 1997; Harris et al. 2003; 

Martin et al. 1992).  Generally, SI tests have either intense high-cost protocols that enable high-

resolution identification of SI, or lower intensity protocols that provide lower accuracy and cost 

(Ferrannini & Mari 1998; Pacini & Mari 2003).  Section 4.4 and Chapter 6 showed that the fully-

sampled DISST is a relatively high accuracy, yet low-cost insulin sensitivity test.  Chapter 8 

showed that the DISTq and DISTq30 values retained much of this accuracy with a lower clinical 

cost than the DISST.  Due to the dynamic nature of the DISST protocol, variations of the protocol 

could be investigated and the space between the DISST and DISTq30 on Figure 8.14 could 

potentially be filled with more tests that offer various different compromises of cost and accuracy. 

Investigation of the test variations could measure the effect of sample and assay selection on 

parameter accuracy.  If properly designed, such intermediate tests would offer the opportunity to 

store or freeze samples to be assayed later for insulin and/or C-peptide.  Hence, if necessary, a 

low-cost, lower resolution test could be readily upgraded, for a higher resolution test.  This 

chapter presents and evaluates a spectrum of tests between the fully-sampled DISST and the 

DISTq30.  The overall outcome is an array of DISST-based test protocols and identification 

methods that could potentially provide a near continuous hierarchy of compromises between cost 

and accuracy.   
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9.2  Study design 

9.2.1  Participants 

The DISST protocol used in the dietary intervention study (TeMorenga et al. 2010) used 

relatively frequent sampling with consistent timing.  This data was used in this investigation of 

the hierarchy of DISST tests, as it offered the greatest number of potential sampling variations.  

Eighty-two female participants from the Otago region of New Zealand took part in a longitudinal 

intervention investigation.  All participants had characteristics associated with an increased risk of 

developing type 2 diabetes (T2DM) (BMI, family history and/or ethnicity).  In total, 74 subjects 

provided data from 218 full DISST tests that were performed at 0, 4 and 10 weeks of a 

macronutrient intervention.  Participant characteristics are summarised in Table 8.01 

9.2.2  DISST test protocol 

The DISST protocol is defined in Section 4.2, but is repeated in brief:   

• Participants attended the place of testing in the morning after an overnight fast.  Age, 

weight and height were recorded and signed informed consent was obtained prior to the 

first test.  Weight was recorded prior to each subsequent test.   

• A cannula was placed in the antecubital fossa (a large vein in the inner elbow) for 

sampling blood and delivering boluses.  Blood was sampled at t=0, 10, 15, 20, 25, 30, 35, 

40, and 50 minutes.   

• Boluses of 10g glucose (50% dextrose) and 1U insulin (ActrapidTM) were administered 

immediately after the t=10 and 20 minute samples, respectively.   

• Blood samples were assayed for glucose immediately, then spun and frozen for later 

insulin and C-peptide assays.   

9.2.3  Design strategy of the various proposed protocols 

Eight variations of the standard DISST sampling and assay protocol were evaluated by their 

ability to re-identify the SI value identified by the fully-sampled DISST.  Each variation had 

differing advantages in terms of sample and cost reduction, with resulting different test 
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resolutions.  These eight alternatives do not exhaust the possibilities for variation of the DISST 

sampling protocol.  However, these eight variations were assumed distinctive enough to provide 

varied outcomes and illustrate the potential of test variations to provide a range of test capabilities 

within a DISST/DISTq framework.  The 5 test protocols that utilise aspects of the DISTq 

identification methods (Docherty et al. 2009) disable the identification of patient-specific xL, nL 

and UN values.  Tables 9.01 and 9.02 summarise the proposed variations. 

9.2.3.1  Fully-sampled DISST 

The fully-sampled DISST protocol was designed at the University of Canterbury and is detailed in 

Lotz et al. (Lotz 2007; Lotz et al. 2008).  The DISST identification method used C-peptide, 

insulin and glucose assays from every available sample time.  The protocol for this test was 

presented in Section 4.2. 

9.2.3.2  Short 

The Short protocol was designed to capture all major dynamics of the three species with reduced 

test time and samples.  The validation study of the DISST effectively used this protocol (Chapter 

6). 

9.2.3.3  DISST-E/SI 

DISST-E/SI enabled accurate identification of insulin sensitivity and endogenous insulin 

production, while minimising sample assay cost.  There are three significant metrics from a 

typical UN profile, the basal production rate (UB), the first-phase secretion (U1), and the second-

phase production (U2).  Only three assays are needed to uniquely identify these rates. 

9.2.3.4  Sparse 

The Sparse protocol significantly limits the number of assays, minimising clinical intensity.  Only 

three samples were taken, which can be used to define the three major UN metrics and SI.  The 

second sample is taken 5 minutes after the glucose bolus, and the glucose concentration at this 

point is affected by mixing and is not used (Edsberg et al. 1987; Lotz 2007).  Instead, the glucose 

bolus magnitude and population estimates of glucose distribution volume were used to define the 

concentration increase caused by the glucose bolus. 
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9.2.3.5  DIST-SI  

The DIST-SI protocol identified only SI without any participant-specific UN metrics.  Thus, no C-

peptide, measurements were taken.  The DISTq population-based parameter estimations 

(Docherty et al. 2009) were used to define the UN profile instead.  Protocols that do not assay C-

peptide cannot provide participant specific UN values, and so DISST is reduced to DIST in this 

nomenclature. 

9.2.3.6  DIST-SI-2 

The DIST-SI-2 further reduced assays and clinical intensity by taking less samples and 

performing less assays than the DIST-SI protocol.  The period of greatest importance to SI 

identification is the later part of the test protocol.  Thus, only two samples, taken at the end of the 

test, were assayed for insulin, while the full glucose response is observed with four glucose 

assays.   

9.2.3.7  DISTq-FS 

The DISTq-FS utilised all of the available glucose samples to define SI in an iterative process.  

DISTq-FS has been shown to replicate fully-sampled DISST SI values (Docherty et al. 2009; 

Docherty et al. 2011c).  These outcomes, which are also presented in Chapter 8, are repeated here 

to allow a complete comparison.   

9.2.3.8  DISTq-S 

This protocol mirrors the Short DIST and used only four glucose samples to define an SI value.  

The second glucose sample (at t=15) is not used by the identification method.  However, taking 

this sample allowed for later analysis of the other species to obtain metrics for first-phase insulin 

production or to increase resolution of the result in a possible hierarchy of tests. 

9.2.3.9  DISTq30 

The DISTq30 aims to identify SI from very sparse data.  Only two glucose samples were taken.  

The outcomes of this analysis were also presented in Chapter 8.   

The sample times of the alternative DISST protocols are defined in Table 9.01.  Table 9.02 shows 

the test duration, sample costs and whether the test results are available real-time. 
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 Sample times Assays 

0 10 15 20 25 30 35 40 50 G I C 

Fully-
sampled 

GIC GIC GIC GIC GIC GIC GIC GIC GIC 9 9 9 

Short - GIC GIC GIC - GIC - GIC - 5 5 5 

DISST-
E/SI 

- GIC GIC GI G GIC GI GI - 6 6 3 

Sparse - GIC GIC - - - GIC - - 3 3 3 

DIST-SI - GI I GI G GI GI GI - 6 6 0 

DIST-SI-2 - G - G - GI - GI - 4 2 0 

DISTq-FS G G G G G G G G G 9 0 0 

DISTq-S - G G G - G - G - 5 0 0 

DISTq-30 - G - - - - - G - 2 0 0 

HOMA - GI - - - - - - - 1 1 0 

Table 9.01.  DISST sampling schedules for the estimation of SI.  G, I and C represent glucose, 

insulin and C-peptide assays.  Bold-italics show a sample ignored by the specific test’s parameter 

identification method but which may allow identification methods from other DISST protocols. 
  

 Samples 
Protocol 
duration 

Relative 

sample cost 
Real-time UN 

Fully-sampled 9 50 $562 N Y 

Short 5 30 $312 N Y 

DISST-E/SI 7 30 $270 N Y 

Sparse 3 30 $187 N Y 

DIST-SI 7 30 $165 N N 

DIST-SI-2 4 30 $60 N N 

DISTq-FS 9 50 $22 Y N 

DISTq-S 5 30 $12 Y N 

DISTq-30 2 30 $5 Y N 

HOMA 1 2 $27 N N 

Table 9.02.  Duration, relative assay cost and potential outcomes of the various protocols.  Sample 

costs are estimated in NZD$ (glucose-$2.50, insulin-$25 and C-peptide-$35).  The final columns 

show which protocols allow real-time analysis and participant-specific UN profiles. 
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9.2.4  Test hierarchy 

The sampling schedule of the various protocols could allow more, or less, assays from the 

samples taken during a particular test to enable differing analyses.  For example, the sampling 

protocol of the DIST-SI yields seven blood samples.  Assaying only 2-4 of them would enable a 

DISTq-30 or DISTq-S analysis.  However, if greater resolution were required to obtain an 

accurate diagnosis, stored samples could be re-assayed (later) for insulin and/or C-peptide, as well 

as glucose where not done previously, to obtain a DIST-SI or Short DISST result including UN 

metrics. 

This approach increases storage costs, but minimises cost for participants who can be diagnosed 

with a lower resolution test.  Additionally, only one clinically invasive procedure is required for 

each participant, as the hierarchy is enabled by the storing of already taken samples.  Table 9.03 

shows all potential sample schedules and subsequent possible assay and identification methods for 

each sampling protocol defined, and is read across for left to right. 
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Fully-
sampled 

  Y Y Y Y Y Y Y Y 

Short N  N N N Y N Y Y 

DIST-E/SI N Y  Y N Y N Y Y 

Sparse N N N  N N N N N 

DIST-SI N Y Y Y  Y N Y Y 

DIST-SI-2 N N N N N  N Y Y 

DISTq-FS Y Y Y Y Y Y  Y Y 

DISTq-S N Y N N N Y N  Y 

DISTq-30 N N N N N N N N  

Table 9.03.  Potential for different assay regimes to allow analyses with identification methods 

from other protocols. 
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9.2.5  Identification methods of the proposed protocols 

The UN profiles for the various protocols were either defined using deconvolution (DC) or the 

population-based estimates of the DISTq method (EDISTq).  The deconvolution method was 

developed by Eaton et al. (Eaton et al. 1980) and validated by Van Cauter et al. (Van Cauter et al. 

1992).  It has previously been used with the DISST (Lotz 2007; Lotz et al. 2008; McAuley et al. 

2007) (Section 3.3.1).  The DISTq methods and the population based estimates have been 

published previously (Docherty et al. 2009; Docherty et al. 2011c) and presented in Section 8.2.3.  

DISST-E/SI was an exception to the presented method.  The final blood sample of the DISST-

E/SI was not assayed for C-peptide, and the UN rate was assumed constant after the final C-

peptide value. 

Insulin concentrations in the plasma and interstitium were either defined using the iterative 

integral method (IIM) (Docherty et al. 2009; Hann et al. 2005b) presented in Section 4.4 or the 

DISTq methods presented in Section 8.2.3.  Note that the DIST-SI-2 used the DISTq parameter 

estimation for basal insulin (Ib), and IIM to identify nL with a fixed xL (70%). 

Table 9.04 summarises the identification methods used by each sampling protocol. 

 UN Insulin Glucose 

Fully-
sampled 

DC IIM IIM 

Short DC IIM IIM 

DISST-E/SI DC* IIM IIM 

Sparse DC IIM IIM* 

DIST-SI EDISTq IIM IIM 

DIST-SI-2 EDISTq IIM-EDISTq* IIM 

DISTq-FS EDISTq EDISTq IIM 

DISTq-S EDISTq EDISTq IIM 

DISTq-30 EDISTq EDISTq IIM* 

Table 9.04.  Identification methods for the various protocols.  (DC – deconvolution, IIM - 

iterative integral method, EDISTq – DISTq population based estimation equations) * indicates that 

the identification method must be adjusted to account for sparse sampling. 
 

DISTq parameter estimation equations for Ib, nL, UB, U1 and U2 were generated by finding smooth 

mathematical relationships between the parameters and SI.  Details of this process are in 

(Docherty et al. 2009) and the parameter estimation Equations 8.02-8.06.   
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Protocols that required DISTq parameter estimations for nL, had xL fixed at an average population 

value of 70% (Cobelli et al. 1998; Meier et al. 2005; Toffolo et al. 2006).  Glucose related 

parameters were identified with the iterative integral method.  The Sparse and DISTq-30 

protocols did not have sufficient glucose data to identify the volume of glucose distribution (VG).  

In these cases, VG was estimated as a proportion (29%) of the lean body mass as calculated by 

Hume (Hume 1966).   

9.2.6  Analysis 

The SI, UB, U1 and U2 values from the protocols were compared to the same values obtained from 

the fully-sampled DISST protocol using Pearson’s correlation coefficients and the gradients of the 

regression lines.  The gradients allow a comparison of the proportional shift or bias of identified 

metrics.  Insulin sensitivity was identified in units of L·mU-1·min-1.  Thus, a reduction in 

correlation from the findings of Chapter 8 was expected.  Equation 9.01 was used to force the 

regression line through the origin to obtain a true proportional ratio (G) between fully-sampled 

values (VFS) and the values identified by the alternative protocols (VAlt): 

 � 	 ��G(�����Ü5��  9.01 

The hepatic clearance parameters (nL, xL) have limited clinical diagnostic use and are thus not 

presented. 

HOMA is also compared to the fully-sampled DISST, as it is an established, simple fasting metric 

that is most typically used in current screening applications. 

9.3  Investigation outcomes 

Table 9.05 summarises the performance of all the proposed protocols with respect to their ability 

to replicate the SI and UN values identified using the fully-sampled DISST.   

The sparser DIST-SI-2 method showed the greatest ability to replicate the SI metrics of the fully-

sampled DISST by a small margin.  It was closely followed by DIST-SI, the Short protocol, 

DISST-E/SI and the Sparse protocol.  DISTq methods showed an expected, slightly lesser ability 
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to replicate SI.  However, DISTq results were in line with previous findings (Docherty et al. 

2009) and still represent a sound result.   

DISTq-S and DISTq-30 correlated highly to DISTq-FS: R=0.94 and R=0.89 respectively.  When 

considering the vast reduction in samples between the DISTq-FS and DISTq30, the correlation 

value of R=0.89 indicates strong stability and robustness. 

 SI 

R(G) 
UB 

R(G) 
U1 

R(G) 
U2 

R(G) 

Fully- sampled 
1 

(1) 
1 

(1) 
1 

(1) 
1 

(1) 

Short 
0.90 

(1.17) 
1 

(1) 
1 

(1) 
0.89 

(0.99) 

DISST-E/SI 
0.90 

(1.10) 
1 

(1) 
1 

(1) 
0.72 

(1.12) 

Sparse 
0.89 

(1.03) 
1 

(1) 
1 

(1) 
0.88 

(0.95) 

DIST-SI 
0.91 

(1.10) 
0.62 

(0.94) 
0.07 

(0.80) 
0.75 

(0.90) 

DIST-SI-2 
0.92 

(1.07) 
0.68 

(0.97) 
0.09 

(0.81) 
0.74 

(0.99) 

DISTq-FS 
0.83 

(1.10) 
0.56 

(0.94) 
-0.07 
(0.80) 

0.70 
(0.90) 

DISTq-S 
0.77 

(1.27) 
0.53 

(0.92) 
-0.14 
(0.80) 

0.69 
(0.89) 

DISTq-30 
0.71 

(1.24) 
0.53 

(0.98) 
-0.14 
(0.80) 

0.71 
(1.04) 

HOMA 
-0.35 

(-) 
- - - 

Table 9.05.  Ability of protocols to replicate SI and UN values from the fully-sampled DISST 

 

Protocols that sampled basal and first-phase C-peptide showed absolute equivalence of UB and U1 

to the fully-sampled DISST, as expected.  Reducing the number of C-peptide samples had a 

greater effect on U2.  The DISTq population estimates were strongest for U2, weaker for UB, and 

poor for U1, (although the gradient of 0.8 implies that the general magnitude of the U1 predictions 

were accurate).  However, it is important to recall that DISTq was not designed or intended for 

estimation of UN metrics. 

HOMA showed a relative inability to replicate the insulin sensitivity metrics of the fully-sampled 

DISST.  Again, this outcome matches the great deal of literature summarised in Table 2.02. 
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9.4  Potential of the various individual protocols. 

Relatively high correlations (R~0.9) between protocols that assayed insulin and the fully-sampled 

DISST test show that the limited sampling protocols could be used as surrogates for the fully-

sampled test without significantly diminishing test resolution.  In particular, the insulin sensitivity 

values identified using only three samples during the Sparse protocol correlated relatively well to 

the fully-sampled test (R=0.89) and the protocol also captured all major dynamics of the UN 

profile.  This is despite the protocol requiring half the time and one third of the assay cost.  This 

result is not entirely surprising considering the a-priori analysis in Section 5.4.1 confirmed a 

particular robustness of the DISST glucose PD model. 

DISTq results also showed a strong ability to replicate the SI value identified by more intense and 

costly fully-sampled methods.  The DISTq-FS method performed in accordance with the 

previously published findings.  DISTq-S and DISTq-30 also correlated relatively well to the fully-

sampled DISST, particularly compared to the well-accepted HOMA.  These results suggest that 

they could also be used as surrogate SI tests when there is a reduced resolution requirement, such 

as in preliminary T2DM or metabolic risk screening.   

The methods that utilised the DISTq identification equations were designed to identify SI alone.  

Thus, UN was only adequately assessed by tests that assayed C-peptide.  UN defines β-cell 

function, which is of particular importance to insulin resistant individuals, as it indicates the 

progression rather than the risk of T2DM (Figure 1.03).  UN tends to increase during the 

progression toward the diabetic state and then begins to decrease as β-cell function diminishes.  

These changes have been referred to as Starling’s curve of the pancreas (Clark et al. 2001; 

Gastaldelli et al. 2004).  Metrics of UN in isolation cannot define which side of the curve an 

individual is on and must therefore be coupled with SI to allow a useful observation of a 

participant’s state on the pathogenesis of type 2 diabetes.    

9.5  DISST-based tests as a hierarchy 

9.5.1  Motivation 

Due to the common protocol, the spectrum of tests could be used in a hierarchal approach.  For 

example, a lower-cost DISST derivative could be used in a metabolic risk screening programme.  

When a participant’s result is close to a diagnostic threshold, stored blood samples could be 
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assayed for insulin and/or C-peptide.  These added assays would cost more, but would enable 

identification from either the Sparse or Short protocol to find new, higher resolution SI and UN, 

per Table 9.03.  The added cost would only be needed for ‘borderline’ results.  Hence, only a 

small proportion of the test cohort would potentially require higher cost assays.  Importantly, no 

further clinical procedure must be undertaken on these borderline individuals. 

9.5.2  A potential DISST-based hierarchy 

To assess the validity of the DISST-based hierarchy approach, the DISST data from participants 

of the intervention study were used.  Recruitment criteria of the intervention study was such that a 

relatively insulin resistant cohort was obtained (TeMorenga et al. 2010) (Table 8.01).  Thus, the 

cohort is representative of the type of population that would be target by diabetes risk screening 

programmes. 

This analysis used the short-DISST (DISST-S) protocol as the true diagnosis of insulin resistance 

value to be replicated by the hierarchal system.  Diagnosis of insulin resistance used a cut-off SI 

value of 8.35×10-4L·mU-1·min-1 (50th percentile of the cohort’s DISST-S SI value).  This protocol 

produced blood samples that could be assayed differently to allow analysis with the DIST-SI2, 

DISTq-S or DISTq30 identification methods.  Thus, a three stage hierarchy was used.  

In the first stage, the glucose data was analysed using the DISTq30. In the second stage, all of the 

tests that produced an SI value close to the diagnosis threshold were reanalysed using the DIST-

SI2 method. Clinically this required two additional glucose assays and two insulin assays.  The 

region of re-analysis was between 6 and 12×10-4L·mU-1·min-1 and contained 78/217 (35.9%) of 

tests.  The use of the DIST-SI-2 identification method around the diagnosis threshold allowed a 

targeted improvement in resolution around the diagnostic cut-off value.  In a third step, tests that 

produced SI values between 7 and 10×10-4L·mU-1·min-1 were re-assayed to allow a DISST-S 

analysis.  This would require an additional three insulin assays and five C-peptide assays. To 

enable a fair comparison, the y-axis DISST-S values incorporate 7% normally distributed noise to 

mimic the intra-test variation expected during the DISST test (Lotz et al. 2008).  In this final 

stage, 139 (64.0%) of the cohorts tests were analysed with the low-cost DISTq30 method, 42 

(19.4%) with the moderate cost DIST-SI2 and 36 (16.6%) with the comparatively higher-cost 

DISST-S. 

Figure 9.01 shows how Stages 2 and 3 improve the resolution of the hierarchy around the 

diagnosis threshold.  Table 9.06 summarises the assay costs, clinical burden and diagnosis 

accuracy of the stages of the hierarchical analysis.  The final row of Table 9.06 shows the 
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maximum theoretical resolution of dynamic tests of this nature by comparing the diagnostic 

equivalence of the identified short-DISST values with the short-DISST values that had an added 

normally distributed noise (CV=7%).  While the c-ROC values remain high and relatively similar, 

the sensitivity and specificity of the hierarchical system improved considerably via the addition 

stages. 

The sensitivity and specificity of the hierarchy of DISST tests reacted very well to the re-assayed 

samples and began to approach the values of the short-DISST versus short-DISST analysis, the 

theoretical maximum for this type of test.  The c-ROC value improved by a relatively small 

amount with the added resolution tests.  The mean Stage 3 test assay cost of the DISST-based 

hierarchy ($71) was very low in comparison to the fully-sampled short DISST test ($312) with 

scarcely diminished sensitivity, specificity, or c-ROC values.  Note also that this particular 

example had a high re-analysis rate than could be expected form a general cohort as the 

intervention cohort was purposefully selected for type 2 diabetes risk.  This influenced the 

cohort’s tendency toward insulin resistance. If the analysis was repeated in a more general cohort, 

the re-assay rate would be reduced and diagnosis accuracy would be improved. 
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Figure 9.01. Three stages of the DISST-based hierarchal approach to diagnosing insulin 

resistance. (SI in units of 10-4L·mU-1·min-1) 
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 Tests 

Average 
Clinical 

Time 

Average 
Test 

Assay 
Cost 

Sensitivity Specificity c-ROC 

D
IS

T
q

 

D
IS

T
-

S
I2

 

D
IS

S
T

-S
 

DISTq vs 
DISST-S 

217 0 0 0.6 hrs $12 0.87 0.81 0.94 

DISTq,SI2 
vs DISST-S 

139 78 0 0.6 hrs $29 0.93 0.84 0.96 

DISTq,SI2,-
S vs DISST-

S 
139 42 36 0.6 hrs $71 0.95 0.91 0.97 

DISST-S vs 
DISST-S 

0 0 217 0.6 hrs $312 0.96 0.95 0.99 

Table 9.06.  Summary of the stages of the DISST-based hierarchical system of insulin sensitivity 

tests.  Test costs obtained from Table 9.02. 

9.5.3  A potential hierarchy using established tests 

To use the established tests in a hierarchy would be more difficult.  In particular, none of the 

established tests use protocols with multiple potential assay schedules and identification methods.  

The most likely system that could be used to diagnose high-resolution insulin resistance in clinical 

practice may initially use fasting glucose, then HOMA followed by the EIC.   

The clinical data obtained during the EIC of the DISST validation was used to analysis these 

established tests in a hierarchy.  Initially, participants were screened using fasting glucose.  

However, fasting glucose can only identify a very small proportion of a general population with 

very high fasting glucose due to insufficient insulin secretion or SI.  Figure 9.02(top) shows that 

none of the DISST validation cohort had a fasting plasma glucose concentration above the ADA 

threshold for the diagnosis of diabetes or impaired fasting glucose (7.8mmol/L) (ADA 2006).  If a 

larger cohort were used, a certain proportion would be diagnosed with the FPG assay.  However, 

this proportion would remain very small, necessitating higher cost and effort for most 

participants. 

In a second stage, the fasting blood sample was re-assayed for insulin. This would enable a 

HOMA value.  Very high or low HOMA values could potentially diagnose insulin resistance or 

sensitivity in part of the population. However, to achieve a sensitivity and specificity in the 

established hierarchical system similar to the DISST hierarchy, only 22 participants of the 

validation study (44%) could be diagnosed with the HOMA (Ten true positive and true negative, 



Page 178 

and one false positive and one false negative).  These values were obtained when participants that 

produced HOMA results between 0.347 and 1.11 are re-tested with the EIC.   

Thus, 28 subjects (56%) must be called back to undergo the EIC, which is a second clinical 

protocol.  This is the third stage of the hierarchal approach to insulin resistance screening using 

established SI tests.  Note that the EIC versus EIC case was completed using 5% normally 

distributed noise added to the y-axis EIC values in accordance with reported EIC CV values 

(Table 2.02). 

Figure 9.02 shows the failure of FPG to diagnose insulin resistance in any of the cohort, and the 

improvement of diagnosis achieved when the clamp is used.  Table 9.07 summarises the assay 

cost, clinical burden and diagnosis accuracy of the FPG/HOMA/EIC hierarchical system for 

insulin resistance diagnosis in a general population.  The low resolution of the HOMA across 

most regions of insulin sensitivity meant that a significant proportion of the cohort must be 

reassessed using the EIC test to gain strong diagnostic performance.  The EIC is a very consistent 

insulin sensitivity test, and thus, provides high resolution for the participants that are re-assessed.  

However, the clinical burden of the test increases the cost of the test considerably over the cost of 

the DISST-based hierarchy.   

 Tests 
Mean 

Clinician 
Time 

Mean 
Test 

Assay 
Cost 

Sensitivity Specificity c-ROC 

F
P

G
 

H
O

M
A

 

E
IC

 

FPG vs EIC 50 0 0 0.25hrs $2.5 - - 0.83 

HOMA vs 
EIC 

0 50 0 0.25hrs $27 0.84 0.84 0.89 

HOMA,EIC 
vs EIC 

0 22 28 2.9hrs $131* 0.94 0.92 0.96 

EIC vs EIC 0 0 50 5hrs $185 0.97 0.95 0.99 

Table 9.07.  Outcomes of the FPG/HOMA/EIC hierarchical system.  (* the EIC assay cost was 

estimated using 24 glucose assays at $2.5 each and 5 insulin assays at 25$ each.  HOMA with EIC 

backup requires two tests, thus there were 22 tests at $27 and 28 at $27+$185.) 

 



Page 179 

 

Figure 9.02. Three stages of the FPG-HOMA-EIC hierarchal approach for diagnosing insulin 

resistance. (HOMA scaled in Stage 3) 
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9.5.4  Comparison between the DISST and established test hierarchy 

The thresholds used in the FPG/HOM/EIC hierarchy were defined to achieve a similar outcome in 

terms of sensitivity and specificity to the DISST hierarchy and allow the comparison to be in 

terms of clinical cost.  The DISST hierarchy required a Stage 3 mean test assay cost of $71, in 

comparison, the FPG/HOMA/EIC Stage 3 mean assay cost was $131.  The mean required 

clinician time required by the Stage 3 FPG/HOMA/EIC hierarchy was 2.9 hours in comparison to 

the 0.6 hours required by the DISST hierarchy.  Furthermore, the DISST hierarchy did not require 

any call-backs.  In contrast, 56% of the participants of the FPG/HOMA/EIC hierarchy must be 

called back after the HOMA as real-time analysis of the insulin assay is not possible.  This 

necessitated significant added burden and effort for both the clinician and participant.  There 

would thus be an issue of compliance for getting participants to return for the clinically intense 

EIC test.  The DISST hierarchy does not require any call-backs, as the data obtained during the 

first test can be re-assayed to enable upgraded insulin sensitivity identification methods. 

The DISST hierarchy was investigated using the intervention cohort that was targeted toward 

insulin resistant participants (TeMorenga et al. 2010).  The FPG/HOMA/EIC hierarchy was 

investigated using the validation cohort that was representative of a general cohort.  Thus, the 

spread of insulin sensitivity values in the validation study was greater than that exhibited in the 

intervention study.  This difference meant that there was a greater concentration of values around 

the diagnosis region for the DISST hierarchy case, presenting a very conservative comparison and 

thus, slightly increasing the required proportion of higher cost tests required.  If the intervention 

cohort was more homogenous, this would have reduced the proportion in the re-assay range and 

reduce the overall cost of the DISST-based hierarchy system. 

The DISST hierarchy required more complex identification methods.  However once these are 

established, there are no ongoing costs.  The longitudinal outcomes of the DISST in terms of 

diabetes diagnosis have not been established, as they have with the EIC.  Thus, the clinical 

outcomes provided by the FPG/HOMA/EIC hierarchy would currently have a greater value to 

clinicians.  However, once the DISST has been validated in a longitudinal study, the value of the 

outcomes would be comparable, and the DISST hierarchy would be preferable by merit of its 

reduced clinical intensity. 

9.5.5  Summary of DISST hierarchy 

The utility of the DISST protocol means that a number of assay regimens and identification 

methods can be used on data from the same clinical trial.  Thus, differing levels of accuracy can 
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be obtained to achieve a higher resolution about a certain diagnosis threshold without increasing 

clinical intensity.  Furthermore, the overall clinical intensity is potentially much lower.   

The DISST hierarchy described uses three tests that were defined during the initial investigation 

of the spectrum of DISST tests.  The resolution and cost effectiveness of the hierarchy of DISST 

tests could perhaps be optimised using different combinations of tests or assay regimens were 

investigated.  However, the analysis presented, while conservative, clearly show capability and 

potential. 
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Chapter 10.  Alternative protocols for 

DISTq 

This chapter presents two further in-silico analyses of variations of the DISST protocol.  The first 

may enable a further reduction in the DISTq30 intensity, while the second could potentially 

enable the concurrent identification of insulin sensitivity and first phase production. 

10.1  Motivation 

The DISTq method currently uses the standard DISST protocol described in Section 4.2.  This 

approach allowed the DISTq identification method to be evaluated with the data obtained during 

the DISST pilot, intervention and validation studies.  However, the DISST protocol was designed 

to work with insulin and C-peptide the assays to produce metrics for a whole body evaluation of 

glycaemic health including clinically important insulin secretion metrics.  Hence, the clinical 

protocol that produced optimal results for the fully-sampled DISST may not necessarily produce 

the optimal results for the DISTq. 

Section 10.2 presents a combined bolus protocol and its effect on the DISTq identification of 

insulin sensitivity.  Section 10.3 presents the observability of endogenous insulin production in a 

more arduous protocol and the effect of combining the glucose and insulin boluses in a simple 

two sample tests such as DISTq30.  No clinical data is available from these hypothetical 

protocols, and as such, the investigation of the potential of these tests will be carried out entirely 

in-silico.  

10.2  Combined bolus (DISTq20C) 

The combined bolus protocol recognises the lack of benefit in the period between the glucose and 

insulin boluses in the two-sample DISTq30 protocol.  As such, the boluses are combined and the 

final sample can be shifted from 30 minutes to 20 minutes.  Hence, it offers a further significant 

reduction in clinical intensity, especially if considering giving the test via two, instead of three 

venous punctures.  This 20-minute-combined method is referred to as DISTq20C. 
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10.2.1  Protocol 

The protocol followed the general format of the fully-sampled DISST protocol (Section 4.2).  The 

differences are listed: 

• Only two blood samples were taken at t=0 and t=20 minutes 

• Samples were only assayed for glucose. 

• A combined bolus is administered immediately after the t=0 sample is taken.  The bolus 

consisted of 10g glucose and 1U insulin. 

10.2.2  Sensitivity identification and in-silico study design 

10.2.2.1  Relevance of DISTq population-based parameter equations 

The identification method used is identical to the method of DISTq30 (Section 8.2.3).  However, 

clinical trials of the DISTq20C protocol have not been undertaken.  Thus, no C-peptide data is 

available to provide any endogenous insulin production profiles for this particular protocol and 

the response behaviour must be assumed for this in-silico analysis.  Basal insulin concentration 

and production rate will not be affected by the altered behaviour, and it is very unlikely that the 

clearance rate of insulin will be changed.  Furthermore, the glucose and insulin concentrations 

expected in the later stages of this test are similar to those observed in the fully-sampled DISST.  

Thus, the second phase of insulin production rates observed in the fully-sampled tests could be 

assumed relevant to this protocol.  However, the combined bolus may affect the first phase of 

insulin production.   

The first phase insulin secretion is triggered by an increase of blood glucose concentration (Del 

Prato et al. 2002).  This change is sensed in the body by sensory cells typically in blood vessel 

walls in the periphery, and around the gastric system (Cherrington 1999).  The trigger for this 

reaction will occur in the proposed protocol with the same effectiveness as the standard DISST 

protocol.  However, the release of insulin is suppressed by an increased insulin concentration 

(Argoud et al. 1987).  This phenomenon had only a very mild effect on the second phase insulin 

production of the pilot DISST participants (Lotz et al. 2010).  In particular, only 23 of the 313 

(7.3%) DISST tests undertaken during the pilot, intervention and validation studies produced 

second phase insulin production rates less than the respective basal rates.  Thus, for the purpose of 

this analysis, the first phase of insulin secretion was assumed to be un-affected by the insulin 
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content of the bolus.  Sensitivity investigations or fully-sampled clinical studies must be 

undertaken to test the accuracy of this assumption. 

10.2.2.2  Monte-Carlo test design 

The 313 data sets from the pilot, intervention and validation DISST tests are used in the iterative 

integral method (Section 4.4) to identify time variant UN profiles and the xL, nT, SI and VG 

parameters.  This data is then used with the relevant a-priori parameters to simulate participant-

specific ‘virtual’ test responses to the DISTq20C and DISTq30.  Both protocols yield two glucose 

samples: the basal and final samples.  These values represent noise-less data. 

The Monte-Carlo analysis identified insulin sensitivity from each dataset (DISTq20C and 

DISTq30) 200 times.  Each simulation incorporated normally distributed noise (CV 2%) to the 

noiseless data.  DISTq30 and DISTq20C were identified using the same magnitudes of normally 

distributed noise during each iteration.  The insulin sensitivity values were identified using the 

process defined in Section 9.2.5 and the combined population based parameter equations 8.02-C 

to 8.06-C.  The DISTq30 parameter identification method was applied with virtually no change to 

the DISTq20C data.     

10.2.3  Study outcomes 

Table 10.01 shows that DISTq30 and DISTq20C produced similar results when equivalent noise 

was added to the respective in-silico data.  Interestingly, each participant had a relatively strict 

adherence to a particular proportional shift.  The median bias was 1.02, while the 5th and 95th 

percentile bias’ were 0.86, and 1.21, respectively.  Thus, the removal of the redundant period in 

the test must have affected all participants differently.  Figure 10.01 shows that these shifts were 

not a function of insulin sensitivity.  Had this been the case, the shifts could be attributed to the 

differing relative effect of pG and SI on glucose decay.   

However, the lack of insulin sensitivity dependence of these shifts means that the changes must be 

attributable to disparity between the participant’s true and simulated insulin concentrations.  The 

median shift between tests for each participant correlated to their actual parameter values of UB, 

U1, U2, IB and nT at R=-0.09, R=-0.25, R=-0.17, R=-0.17, and R=0.01 respectively.  From the 

signs of the respective correlations, it can be concluded that an error that results in an increased 

estimated insulin concentration will have a slightly greater exaggerating effect on sensitivity 

metrics identified by the DISTq30 method. 
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DISTq30 (in-silico) 

R, (Grad) 

DISTq20C (in-

silico) 

R, (Grad) 

DISST (clinical) 0.80, (0.87) 0.82, (0.87) 

DISTq30 (clinical) 0.95, (0.80) 0.94, (0.80) 

DISTq30 (in-silico) - 0.99, (0.99) 

Table 10.01.  Correlations and gradients between the insulin sensitivity values obtained by in-

silico analyses and clinical DISST-based tests. 

 

 

Figure 10.01.  Insulin sensitivity values from the pilot, (blue) intervention (green) and 

validation (red) identified from the single combined bolus DISTq20C and two-bolus DISTq30 

protocols. 

 

The insulin sensitivity values obtained by the DISTq20C correlated to the fully-sampled DISST 

insulin sensitivity value, which was the parent value of the in-silico analysis, at R=0.82.  In 

comparison, DISTq30 correlated to the parent value at R=0.80.  Figure 10.02 shows the 

correlation between the fully-sampled DISST SI values and the values produced by the 

DISTq20C and DISTq30.  The correlation figures contain vertical lines as each test produces one 

clinical value and 200 in-silico values. 
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Figure 10.02.  Correlation between the fully-sampled DISST and the in-silico derived 

sensitivity values of the DISTq30 and DISTq20C tests.  (pilot – blue; intervention – green; and 

validation - red) 

 

The DISTq20C and DISTq30 sensitivity values obtained in the in-silico analysis correlated 

relatively well to the DISTq30 values obtained clinically (R=0.94 and 0.95, respectively).  Figure 

10.03 shows these correlations. 

 

Figure 10.03.  Correlations between the DISTq20C, DISTq30 and the DISTq30 values 

obtained clinically.  (pilot – blue; intervention – green; and validation - red) 
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10.2.4  Clinical implications 

The outcomes of this analysis indicate that the insulin sensitivity values of the DISTq20C 

protocol were synonymous with the values obtained by the DISTq30.  Thus, by extension, it 

implies that the clinical observations of the DISTq30 equivalence to the fully-sampled DISST and 

gold standard EIC insulin sensitivity values could be assumed for the DISTq20C protocol.  

However, the high consistency could be a result of the in-silico study design, which may 

potentially be unrepresentative of the true disparity that can only be confirmed with a clinical 

study.   

In particular, the study assumed that the first phase of insulin production (U1) would remain 

consistent with the combined bolus.  In reality, U1 may be reduced partially by the insulin 

suppression of insulin production (Argoud et al. 1987).  Whether insulin production is 

consistently suppressed by a certain proportion or suppressed by a random amount across or 

within test participants is a point of conjecture in the absence of clinical data.  Thus, prior to 

further development or validation of DISTq20C, clinical investigations of the first phase of 

insulin production should be made.  This testing can be as simple as obtaining C-peptide samples 

at t=0 and 5 minutes of the proposed protocol in a cohort that will enable the production of a SI-

U1 relationship similar to those presented in Section 8.2.2.4. 

Errors introduced by the first phase insulin sensitivity had a mild effect on the insulin sensitivity 

value.  As discussed in the final paragraph of Section 8.3.1, the first phase production errors were 

mitigated by the comparatively large insulin bolus.  Thus, even if significant intra-participant 

daily variation in U1 is observed (the worst case scenario) the identified insulin sensitivity values 

would remain relatively unaffected. 

The basal state characteristics will remain unchanged by the new protocol.  Equally, the second 

phase of insulin production occurs under similar glucose and insulin concentrations to the 

DISTq30 protocol.  Thus, the assumptions used in the analysis should be fundamentally valid. 

If the protocol is successfully validated against the EIC, insulin sensitivity information could be 

obtained at a very low cost and intensity, and results would be available in real-time.  In 

particular, it requires only one skin puncture for samples and injection.  Hence, the test could 

potentially be given in a doctor’s office or test centre.  Thus, the test could be used for the similar 

purposes as the DISTq and DISTq30.  In particular, the test could be used as a low cost alternative 

to HOMA in clinical studies, wherein insulin sensitivity is a secondary consideration.  The test 

could also be used in a general practice setting for a more advanced and informative risk 

assessment than the fasting glucose assay that is generally used currently. 
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10.2.5  Future work for the DISTq20C 

The next step for the DISTq20C is a clinical investigation of the effect of the combined bolus on 

the first phase of insulin production.  This step is critical for the modification of the population-

based parameter estimation equations to be determined that enable a precise first phase insulin 

production rate.  Failing to fulfil this requirement will result in a proportional shift in sensitivity 

values predicted by the DISTq20C method if the DISST protocol reactions are unrepresentative.  

Following this step, a clinical validation study should be conducted measuring the equivalence 

between DISTq20C and the fully-sampled DISST or the EIC (or both). 

Finally, if a clinical validation study produces favourable outcomes, the possibility of upgrading 

the test with additional assays could be investigated.  The final outcome would be a hierarchy of 

tests similar to that of the standard DISST protocol presented in Chapter 9.  This hierarchy could 

further enable a high-resolution diabetes risk screening programme comparable to that discussed 

in Section 9.5.2 with a slightly lower overall cost. 

10.3  SI and U1 from glucose data (DISTqE) 

10.3.1  Motivation 

Figure 1.03 shows how endogenous insulin production (UN) can be used in conjunction with SI 

values to evaluate a participants position on pathogenesis of type 2 diabetes.  UN usually increases 

during the initial progression to type 2 diabetes followed by a decrease as the disease state 

worsens.  This transition has been referred to as ‘Starling’s curve of the pancreas’ (Clark et al. 

2001; Gastaldelli et al. 2004).   

This section aims to evaluate whether a surrogate of the action of the first phase of insulin 

production can be observed in glucose assays alone, and thus allow real-time, inexpensive 

identification.  The DISTq parameter estimation processes outlined in Section 8.2 were used in 

conjunction with a modified DISST protocol and updated identification method.  The protocol 

and method will be denoted DISTqE, representing DISTq endogenous. 
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10.3.2  Proposed DISTqE clinical test protocol 

The DISTqE protocol aimed to allow an observation of the exogenous insulin mediated glucose 

disposal and compare it to an equivalent endogenous insulin mediated glucose disposal. Thus, 

blood samples were taken at t=0, 5, 10, 15, 25, 30, 35, 40 and 50 minutes with a 15g intravenous 

glucose bolus administered at t=5 minutes and an 8g/1U combined intravenous glucose and 

insulin bolus immediately after the t=25 minute sample.  A second similar protocol was also 

analysed.  This protocol was identical to that proposed with the exception that the 8g glucose 

content of the second bolus was not used and it’s only distinction from the standard DISST 

protocol is the extended period between boluses. 

Figure 10.01 shows the distinction of the integrals of the parameter coefficients for the two 

protocols at the proposed sample times using the identifiability analysis presented in Chapter 5.  

Note that the model identifiability method of Chapter 5 was not refined for the 3-parameter case 

and Figure 10.01 should only serve as indicative of the distinction of the model parameters, and 

subsequent expected parameter identifiability. 

 

Figure 10.01.  Parameter distinction of the two DISTqE protocols. 
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10.3.3  Sensitivity identification and in-silico study design 

10.3.3.1  In-silico data generation 

Data from the 313 fully-sampled DISST tests of the pilot, intervention and validation cohorts 

were identified using the DISST model and the iterative integral method to yield participant-

specific parameters of UN, xL nT, SI and VG.  These values were used with the a-priori identified 

values (nI, VP etc.) to simulate 313 matched responses to the protocols described in Section 10.3.2.  

First phase insulin production is proportional to the content of the glucose bolus.  Thus, the first 

phase of insulin production was increased by 50%.  Otherwise, UN and the other parameters were 

assumed to be unchanged by the new protocol.  The simulated glucose profiles were ‘sampled’ at 

the times defined in Section 10.3.2 to represent a noiseless dataset. 

10.3.3.2  Identification of SI and U1 

An identification method similar to the method in the previously presented DISTq method was 

used (Docherty et al. 2009).  However, the key difference is how the first phase of insulin was 

treated.  Steps 1 to 4 define the modified identification method used here. 

1.   A population average insulin sensitivity value was used with the DISTq population 

based parameter estimation equations to get values for IB, nT, and UN.  The first 

phase period was replaced in the UN profile by zeros (Q��Ý ).  A binary profile was 

used to define the active period of the first phase of insulin secretion (Q<Ý).  Thus a 

reconstituted UN can be defined with Equation 10.03.  

Q��Ý 	 ÞQz
0 ß 5���������<Í;� , 0à�<Í×� , Qz
11 ß 50�����������<ÍÒ=� á  10.01 

Q<Ý 	 Þ 0à�<Í;� , 1à�<Í×� , 0à�<ÍÒ=�á 10.02 

Qz 	 Q��Ý � Q< · Q<Ý1 
 ��  10.03 

2. The plasma and interstitial insulin concentrations were simulated using Q��Ý  and Q<Ý 

profiles (Equation 10.04).  Figure 10.02 shows how QB2 and U1*Q1 combine to 

generate the total interstitial insulin concentration. 
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Figure 10.02.  The composite QT(t) profile from the 15g protocol contrasting the contributing 

profiles from a participant with a comparatively large first-phase response. 

3.   The insulin-glucose dynamic represented from Equation 4.22 was re-arranged to 

incorporate the separated interstitial insulin concentration: 

�M 	 ��� � Q<�< 

�� 	 
��
� 
 ��� 
 ��
�
��� � Q<�<� 
 ����� � ���� 

10.05 

  where: U1 is the post-hepatic magnitude of the first phase of insulin production and 

is the multiplier of the first phase insulin binary vector (Q<Ý) in Equation 10.03. 
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A non-linear least squares Levenberg-Marquardt algorithm was used to define the 

SI, U1 and VG values which minimise the error between the simulated glucose 

concentration and the measured data. 

 4.   Steps 1 to 3 were repeated five times using updated SI values to estimate nT, IB, UB, 

and U2.  After five iterations, convergence of SI, Vg and U1 was generally in the 

order of <0.1%.   

10.3.3.3  Monte Carlo analysis design 

The simulated noiseless data from each participant was used 200 times, generating a total study 

cohort of 62600 virtual trials that were slightly inclined toward insulin resistant or at-risk females 

due to the cohorts of the studies used.  During the Monte-Carlo simulation, 2% normally 

distributed noise was added to the noiseless ‘sampled’ data set at each iteration to model clinically 

obtained data.  The correlation between the identified insulin sensitivity and first phase 

endogenous production rates were correlated to the true values and the gradients were defined 

using Equation 10.06.   

�²RT 	 °��ÐB5M�â°����ÐB55M��  
10.06 

Finally, the identification process was carried out on each data set once with 0% assay error to 

ascertain the best possible performance. 

10.3.4  Results of in-silico investigation 

Table 10.02 summarises the distribution of the in-silico derived parameter values for SI and U1 for 

the single and double dose DISTqE protocols.  Note that the noiseless case does not converge to 

the fully-sampled DISST values, as the DISTq process is used to generate the participant’s insulin 

concentration response, excluding the first phase insulin production.  Thus, results similar to those 

obtained in Chapter 8 for DISTq were expected. 
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Protocol Simulated 
assay error 

SI variation  
R, (Grad) 

U1 variation 

R, (Grad) 

Double G.  Bolus  2% 0.78, (1) 0.44, (1.44) 

Single G.  Bolus 2% 0.78, (1.02)    0.43, (1.33)     

Double G.  Bolus  0% 0.81, (1.02) 0.51, (1.19)   

Single G.  Bolus 0% 0.75, (1.02)  0.58, (1.20)  

Table 10.02.  The coefficients of variation of the identified parameters of the in-silico analysis. 

 

Figure 10.04 shows how the DISTqE protocols tested replicated the insulin sensitivity values of 

the fully-sampled DISST, while Figure 10.05 shows the similarity between the sensitivity values 

obtained by the two protocols when equivalent assay error was used.  Each clinical trial was 

matched by 200 in-silico results, thus the lines in the figures are vertical. 

 

Figure 10.04.  Comparison between the double (left) and single (right) bolus DISTqE insulin 

sensitivity and the clinically measured parent insulin sensitivity values.  (blue – pilot; green – 

intervention; and red - validation) 
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Figure 10.05.  Correlation between the single and double DISTqE insulin sensitivity values.  

(blue - pilot, green - intervention and red - validation) 

 

Figure 10.06 shows the similarity between the first phase insulin production rates defined by the 

two proposed DISTqE protocols.   

 

Figure 10.06.  Comparison between the double (left) and single (right) bolus DISTqE first 

phase endogenous insulin production and the clinically measured parent first phase insulin 

production values.  (blue – pilot; green – intervention; and red - validation) 

 

Figure 10.07 shows the correlation between the first phase production rates identified from the 

two DISTqE protocols.   
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Figure 10.07.  Correlation between the single and double DISTqE insulin sensitivity values.  

(blue – pilot; green – intervention; and red - validation) 

 

The square shapes that occurred around 1200-1600 mU/min were due to the identified U1 rates 

reaching the bounds of allowed values during identification.  A consistent bound was placed at 

300 mU·L-1·min-1 for all participants.  However, when this value was normalised by the 

participant’s plasma distribution volume, the thresholds become varied and participant-specific.  

Note how an identical noise can make the identified first phase rate from one protocol reach the 

bound, while the rate identified from the alternative protocol can be at a minimum.  This 

behaviour shows that the first phase insulin production metric is particularly sensitive to assay 

error.  Figure 10.08 clearly shows the parameters traded-off during identification. 

 

Figure 10.08.  Insulin sensitivity and endogenous first phase of insulin production parameters 

identified from the double (left) and single (right) DISTqE protocols for the pilot (blue), 

intervention (green) and validation (red) cohorts.  (Truncated) 
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10.3.5  Discussion 

Unfortunately, the strength of the first-phase insulin production signal was obscured by the 

simulated noise.  Despite the low CV of the added noise, the derived U1 values were too varied to 

allow promotion of the protocol for the estimation of real-time and low cost β-cell production 

estimates in tandem with insulin sensitivity.  The appearance of the first phase response in the 

interstitial insulin profile that is essential to the identification of U1 was delayed and began to 

trade-off with SI in the same manner as SG appeared to in Section 5.4.3 and Chapter 7.  This 

occurrence can be confirmed with Figure 10.08, which shows that simulated assay error could 

shift the identified values to a significant extent by propagating the trade-off between SI and U1. 

The addition of the glucose content to the second cohort did not seem to increase identifiability, 

as might have been expected.  The expected outcome was that the double bolus protocol would 

allow the measurement of the insulin sensitivity from the glucose decay of the second bolus.  The 

decay of the initial glucose bolus could then be compared to the decay of the second bolus to 

allow identification of the first phase insulin production rate.  Although the integral-based a-priori 

identifiability analysis has not been refined for this 3 parameter case, Figure 10.01 implies that the 

double glucose bolus protocol would not produce better results than the single bolus protocol.  

Table 10.02 and Figures 10.04 to 10.07 confirm that there is little distinction between the 

outcomes of the two protocols. 

Furthermore, this analysis was carried out under idealised conditions.  In reality, the glucose 

content of the second bolus may induce a second ‘first’ phase of endogenous insulin production.  

This effect could be variable across participants, and thus would be difficult to predict without 

direct measurement.  Hence, significantly less accurate outcomes would be expected if the 

protocol were attempted clinically.  In terms of cost effectiveness, the desired outcomes of the 

DISTqE protocol would be best served with the DISTq20C protocol with a C-peptide assay 

obtained at t=5 minutes.   

10.4  Conclusions 

The first phase of insulin production was barely observable in glucose data when realistic levels 

of assay error are simulated.  Furthermore, by assuming no first phase response to the second 

glucose bolus, the analysis was inclined toward outcomes that are more favourable.  As such, 

developments of the identification method or protocol must show positive outcomes in-silico prior 

to attempting clinical pilot trials of the protocol.   
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Potential improvements may include: 

• Addition of a third passive species to the bolus that can be assayed in real-time to allow a 

more accurate estimation of the glucose distribution volume (VG). 

• 1:1 median ratios could be assured for this test is if the DISTq parameter estimation 

processes are tuned toward this protocol. 

• The non-linear least-squares parameter identification method may have converged to 

local minima in many cases, particularly when the bounds were reached.  Application of 

the iterative integral method could perhaps mitigate this issue. 

The extent to which these developments must improve the outcomes seen here implies that the 

possibility of concurrently identification of insulin sensitivity and first phase production with 

observations of glucose responses to dynamic tests is unlikely.  This analysis perhaps shows the 

possible limits concerning glucose-only analysis of dynamic metabolic test responses.   
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Chapter 11.  Observing insulin sensitizer 

and secretagogue drug kinetics in-silico 

The contents of this chapter describe potential protocols and identification methods based on the 

overall DISST concept and model to enable a relatively low intensity evaluation of the kinetic 

behaviour of insulin sensitizer and secretagogue drugs in-silico.  These drugs are typically tested 

using 8-24 hour long tests based on the highly intensive euglycaemic clamp.  Hence, a new, less 

intensive, but equally accurate approach would be beneficial. 

11.1  Insulin sensitizer observation 

Insulin sensitizer drugs are used to prevent the incidence of hyperglycaemia and maintain glucose 

homeostasis for individuals with type 2 diabetes mellitus.  Although there are a reasonable 

quantity of studies investigating the long term effects of such drugs (Chan & Abrahamson 2003; 

D'Alessio et al. 1995; Juhl et al. 2001; Lund et al. 2008; Reynolds et al. 2002), there are a limited 

number of studies investigating the single dose kinetics of the drugs (Chung et al. 2002; Cox et al. 

2000; Gerard et al. 1984; Pentikäinen et al. 1979).  Typically, the dynamics of these drugs are 

measured by the companies that produce them using arduous steady-state EIC tests that last the 

duration of the drug’s efficacy.  These steady-state tests require five or ten minute sampling 

frequency to enable feedback control for euglycaemia.  This approach is thus very costly, time 

consuming and clinically intensive for both the clinicians, and the test subject. 

This study investigates a series of sparsely sampled dynamic tests based on the DISST model, 

methods and approach as a possible alternative for this clinically intense approach.  It is 

hypothesised that a series of DISST-based tests could enable an observation of the change in 

effect of these drugs over time.  To test this hypothesis, an in-silico Monte Carlo analysis is 

completed that simulates the expected level of clinical assay error and measures the ability of the 

novel identification methods to reproduce values of a theoretical sensitizer drug’s pharmaco-

kinetics (PK) and pharmaco-dynamics (PD).    
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11.1.1  Virtual participant 

The parameters used to construct the virtual participant of this study were obtained from a 

participant of the DISST pilot study (Lotz 2007; Lotz et al. 2010).  This particular participant was 

very insulin resistant with suspected undiagnosed type 2 diabetes mellitus.  The participant had a 

significant insulin production rate, but a relative inability to effectively clear glucose.  Thus, she 

could be the type of person who might gain an advantage from insulin sensitizer treatment, and is 

likely to represent the physiology of patients already on insulin sensitizer treatment. 

Some key anatomical and PK/PD parameters for this participant are summarised in Table 11.01.  

For this analysis, saturation of hepatic insulin clearance was assumed negligible.  Thus, aI was set 

to zero and nL and nK are combined to a single parameter of insulin clearance from plasma (nT). 

Table 11.01.  Key parameters of the participant used to generate the virtual participant used in this 

study. 

11.1.2  Model equations 

This study used the DISST physiological model defined in Equations 4.01, 4.02, 5.07, (with the nT 

parameter), 4.16 and 4.22 described in Section 4.3. 

If it is assumed the drug is administered orally or subcutaneously, it would be reasonable to 

propose a very simple two-compartment model for the PKs of the theoretical insulin sensitizer 

drug.  It is assumed for the purpose of this preliminary, proof-of-concept investigation, that the 

transport between compartments will be concentration-based and the drug will not re-enter the 

remote compartment from the active compartment.  Figure 11.01 and Equations 11.01 to 11.03 

define the model used in this study and the effect of the drug on insulin sensitivity. 

Sex Age 
BMI 
[kg.m-2] 

UN [mU/min] 
Insulin 

clearance VG 

[L] 

SI 

[10-4L/mU/min] 
UB U1 U2 

nT 

[1/min] 

xL  

[1] 

F 57 33.9 70.9 143.6 92.5 0.064 0.822 13.4 2.24 
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Figure 11.01.  Two compartment representation of the PKs of a theoretical sensitizer drug 
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where: S Is the latent drug effect in a remote compartment [1]; P is the effect of the drug in the 

active compartment [1]; D is the total potential proportional effect of the drug bolus on SI [1]; Dk1 

is the passive, irreversible, transport rate from the remote to active compartments [1/min], Dk2 is 

the passive, irreversible drug clearance rate from the active compartment [1/min]; SIB is the basal 

(drug-free) insulin sensitivity [10-4L·mU-1·min-1] and SI(t) is the time-variant insulin sensitivity 

value [10-4L·mU-1·min-1]. 

11.1.3  Proposed protocol 

The effect of a theoretical insulin sensitizer drug during a series of DISST tests will be simulated 

in a virtual participant over 760 minutes.  This protocol duration is typical of the longer EIC tests 

used for this purpose.  The PKs of the theoretical drug used in this study are based on those of 

Metformin (Pentikäinen et al. 1979) a widely used insulin sensitizer drug.  Seven DISST tests 

were begun at two hourly intervals with blood samples taken at t=0, 10 25 and 40 minutes in each 

test.  Thus, the total length of the virtual trial was 760 minutes (12 hours, 40 minutes), and the 

total number of samples was 28.  Each of the seven DISST tests requires a 10g glucose bolus and 

1U insulin bolus (intravenous) immediately after the t=0 and 10 minute samples respectively.  

D(t)

Dk1

Dk2
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compartment

P
Active 

compartment
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The sensitizer drug is administered at t=150 minutes, toward the end of the second test.  Hence, 

the first two tests serve as a baseline so each subject is their own control.  All samples are assayed 

for insulin, C-peptide and glucose.  The DISST-based protocol is contrasted the steady state 

method graphically in Figure 11.02. 

 

 

Figure 11.02.  Comparison between the EIC and DISST sampling protocols for observing the 

PKs of insulin sensitizing and secretagogue drugs.  Each mark signifies a sample to be taken.  

The DISST requires 28 samples, while the EIC requires 77.   

11.1.4  Parameter identification 

This analysis defined UN, nT, xL, SIB, VG, D, Dk1 and Dk2 as variable parameters to be identified.  

All other parameters were assumed known as a-priori functions of measurable body weight, 

height age and sex (Lotz 2007; Van Cauter et al. 1992).  UN, nT, xL, SIB and VG were identified 

using previously presented methods: UN is identified using a typical deconvolution approach (Van 

Cauter et al. 1992), nT, xL, SIB and VG were identified using the iterative integral method 

(Docherty et al. 2009; Hann et al. 2005b), SIB and VG were identified using only data from the 

first 120 minutes of the proposed protocol and were then held constant.   

To identify the PK/PD of the sensitizer drugs, a comprehensive model of the glucose PDs must be 

generated.  Combining Equations 4.22 and 11.03 provides: 
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where the impact of the insulin sensitizer (P(t)) is defined using Equation 11.05, the analytical 

solution of Equations 11.01 and 11.02: 
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The model parameters in Equations 11.04 and 11.05 are not separable in terms of the glucose 

data.  As such, the iterative integral method was not possible.  To enable identification of SIB, VG, 

D, Dk1 and Dk2, Equation 11.04 must be rearranged to yield an approximation of the P(t) profile 

from an estimation of the glucose profile from the measured data.  Equation 11.04 was rearranged 

for P(t): 

 �
e� 	 
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e��
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 1 11.06 

With the exception of G(t) all parameters of Equation 11.06 were known or had been identified.  

G(t) was then approximated with the highest possible accuracy following the drug administration.  

Steps 1-4 outline this process and the various G(t) profiles are shown in Figure 11.03. 

1. A preliminary simulation of G(t) (G(t)prelim) was obtained for the full duration of all tests.  

Initially, this task was undertaken using the values for SIB and VG identified with the 

iterative integral method and the baseline data from the first 150 minutes of the test.  

Subsequent iterations used VG and the time variant SI(t). 

2. A linear interpolation between the measured data points (G(t)interp) was defined. 

3. A linear interpolation between the values of G(t)prelim at the sample times (G(t)preint) was 

also defined. 

4. The difference between G(t)interp and G(t)preint could be attributable to the effect of the 

sensitizer and thus Equation 11.07 was used as an approximation of G(t): 

 G(t)=G(t)prelim+G(t)interp-G(t)preint 11.07 
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Figure 11.03.  How G(t) is calculated from the measured data and the estimated G(t)prelim 

profile. 

With an approximation of G(t), P(t) can be found from Equation 11.06.  This P(t) profile is then 

used with Equation 11.05 in a non-linear least square Levenberg-Marquardt parameter 

identification method to find the values of Dk1, Dk2 and D that minimise the function in Equation 

11.08. 

error=ä�
e� 
 «y<89Ðdp� � 
8Ðdp�89Ðdo��= � 8Ðdo�«
e��= �ä� 11.08 

Once the PK/PD values of Equation 11.08 had converged sufficiently, P(t) was re-evaluated using 

Equation 11.05.  Figure 11.04 shows the form of the simulation, and the P(t) profiles derived via 

Equation 11.06 and identified. 

 

Figure 11.04.  Deconvolved and simulation values of P(t).  The vertical lines show the 

discontinuities caused by the glucose boluses. 
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G(t) was re-simulated once P(t) was defined.  Steps 1 to 4 and the Levenberg-Marquardt 

parameter identification process were iterated.  In total, five iterations were used, by which time, 

parameter convergence for all parameters was on the order of 1%.  The basal period was not re-

identified. 

11.1.5  Statistical evaluation 

A Monte Carlo analysis was used to assess the ability of the identification method and proposed 

protocol to detect and quantify the PKs of the theoretical sensitizer drug.  C-peptide, insulin and 

glucose concentration profiles were simulated using Equations 4.01, 4.02, 5.07, 4.16 and 11.04 

with the protocol defined in Section 11.1.3.   

The participant parameter values used in the simulation are shown in Table 11.01.  The theoretical 

drug kinetics were based on those of Metformin (Pentikäinen et al. 1979): drug absorption (Dk1) 

was defined as 0.005/min, representing an absorption half-life of ~140 minutes.  Similarly, drug 

clearance (Dk2) was defined as 0.0015/min, representing a clearance half-life of ~460 minutes.  

Finally, the proportional effect on SI (D) was defined as 0.5, meaning a 50% increase in insulin 

sensitivity could be expected if the full amount of the drug dose was in the active compartment.  

The three C-peptide, insulin and glucose profiles were ‘sampled’ at the prescribed times and these 

concentrations represented a noiseless data-set.   

The Monte-Carlo simulation identified the eight parameters mentioned at the start of Section 

11.1.4 1000 times using the identification method described.  Each iteration had normally 

distributed random noise added to the noiseless glucose, insulin and C-peptide data sets generated 

using clinically measured values.  The magnitude of the added noise was in accordance with 

realistic clinical assay error (glucose: CV=2%, insulin: CV=3%, and C-peptide: CV=4% to a 

maximum of three standard deviations).   

The median and coefficient of variation of the identified parameters of Equations 11.01 and 11.02 

are presented.  Furthermore, the median and inter-quartile range (IQR) of the SI(t) residuals will 

be compared to the noiseless simulation of Equation 11.04 to assess the ability of the method to 

track the PDs of the drug. 
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11.1.6  Study Results 

Table 11.02 summarises the variation in the identified parameters in Equations 11.01 and 11.02 

that define the drug PK/PDs.  Figure 11.05 shows the range of time-varying sensitivity profiles 

identified by the method described in Section 11.1.4.  Table 11.03 summarises the residuals of the 

time varying insulin sensitivity profiles shown in Figure 11.05.   

 True 
Value 

Identified value 

Mean (CV) Median (IQR) 

SI  [10-4L/mU/min] 2.24 2.25 (7.9%) 2.24 (2.11-2.36) 

VG  [L] 13.4 13.4 (4.5%) 13.3 (13.0-13.7) 

D  [1] 0.5 0.498 (0.9%) 0.500 (0.498-0.500) 

Dk1  [10-3/min] 5 10.3 (116.3%) 6.0 (4.8-8.6) 

Dk2  [10-3/min] 1.5 1.3 (41.4%) 1.3 (1.0-1.7) 

Table 11.02.  The effect of noise on parameter identification.  

 

It can be seen that the median profile was approximately equal to the true value for the duration of 

the test.  The identification method generally seemed to slightly overestimate the drug absorption 

rate (Dk1).  However, the 100th percentile simulation (Figure 11.05) shows that some outliers 

drastically overestimate this absorption rate.  These values must contribute to the higher than 

expected mean and CV for Dk1 reported in Table 11.02.  In particular, the median and IQR of Dk1 

indicates that the values typically identified were well within expected ranges.  Similar results and 

variances occur for Dk2 as well. 

Period 
Simulation residual 

Median (IQR)  

Basal Period 0.004 (-0.122, 0.158) 

`2.5-6 hours 0.091 (-0.037, 0.224) 

6-12 hours 0.048 (-0.079, 0.183) 

Overall 0.047 (-0.093, 0.1842) 

Table 11.03.  Residuals of the SI(t) profiles [10-4L·mU-1·min-1]. 
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Figure 11.05.  A comparison between the identified insulin sensitivity profiles and the ‘true’ 

time variant value of insulin sensitivity for this in-silico analysis. 

11.1.7  Applicability of the DISST for tracing insulin sensitizer drugs 

The simulated PKs of the composite, idealised sensitizer drug were relatively observable in the 

multiple DISST test data using the proposed protocol and identification methods.  The variation in 

SI (7.9%) was slightly larger than previous a Monte Carlo study (Section 4.5) and (Lotz et al. 

2008).  This outcome was an artefact of the reduced sampling rate compared to the test protocol 

used in that study.  Hence, the increased variation was somewhat expected and, to an extent, 

validated the other outcomes of this analysis.   

The proportional drug effect (D) measurement was particularly stable to noise (CV of 0.9%).  

However, the drug absorption (Dk1) and decay rate (Dk2) parameters were considerably more 

susceptible to noise (116.3% and 41.4%, respectively).  This considerable variation in the rate 

parameters was largely due to outliers, as the median and IQR were relatively accurate.  Equally, 

it did not have a significant effect on the ability of the protocol and identification method to trace 

the kinetic and dynamic behaviours of the theoretical drug (Table 11.03). 

The variation in the basal insulin sensitivity was comparable to the variation in SI(t).  This result 

implies that parameter trade off occurs.  Hence, although the methods presented might not be 

ideal for the identification of all parameters concurrently, they may be appropriate for predicting 

the overall activity of the drug over time.  Importantly, this overall activity measure is the key 
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outcome of such tests, as the PKs can usually be directly measured with further species assays if 

desired.   

In particular, the findings of this study imply that a clinical pilot investigation of sensitizer 

kinetics could be undertaken with this DISST-based approach.  The existing option for the 

identification of sensitizer drugs PD/PKs is a continuous steady state test, such as the euglycaemic 

clamp.  This test raises the participant’s insulin concentration with a continuous insulin infusion, 

and euglycaemia is maintained with variable rate of glucose infusion.  This variable rate is 

defined by using feedback control of frequently sampled glucose samples.  A specific drug dose 

will be administered at approximately 2.5-3 hours when the glucose infusion is generally stable.  

This approach allows a more accurate estimation of the time-varying increase of the insulin 

sensitivity profile.  However, it comes at the cost of significantly increased clinical burden and 

cost.  Table 11.04 summarizes and compares the attributes of the multiple DISST approach to the 

existing option for tracing the kinetics and dynamics of insulin sensitizer drugs. 

 DISST protocol EIC protocol 

Blood samples  28 77-154 

Sample cost ($NZ) ~800-1600* ~250-300 

Down-time 
80 minutes every 

two hours None 

Validation Sparse Extensive 

Physiological relevance 
Within normal 

range 
Hyper- 

physiological 

 Hypoglycaemic risk Very minimal Very minimal 

Table 11.04.  The costs and benefits of two possible methods for observing the kinetics and 

dynamics of insulin sensitizer drugs.  (* the C-peptide assays could potentially be omitted to save 

approximately 50% of the assay cost with very limited effect on outcomes.) 
 

The overall identification method used in this analysis was comprised of two separate types of 

identification method.  Initially, the iterative integral method was used to identify the insulin 

kinetic parameters, and then the SI and VG from the test period prior to drug administration.  

Following this step, non-linear least squares was used to identify the PK’s of the sensitizer drug.   

The iterative integral method could not identify all five parameters of Equations 11.04 and 11.05 

as they are not separable in terms of measureable assays.  Furthermore, when the five parameter 
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case was directly applied, the Levenberg-Marquardt non-linear lest squares method was either 

unstable, or unable to converge.  As such, the iterative integral method was used to identify SI and 

VG during the pre-drug-dose baseline period, and a change in insulin sensitivity profile is then 

generated by the drug that allowed a non-linear least-squares identification of the three drug PK 

and PD parameters.   

This strategy enabled relatively fast, very stable parameter identification.  The 1000 simulation 

Monte Carlo analysis required approximately 3 hours of simulation time.  Equally importantly, 

the 0th and 100th percentile shown in Figure 11.05 show that none of the randomly generated data 

sets prompted significant failure of the identification process. 

The identification process and the identified values could be further stabilised if one or more of 

the parameters of Equation 11.05 could be fixed.  For example, the rate of drug absorption (Dk1) 

may be known, but not the maximal effect (D) or decay rate (Dk2).  In this case, the non-linear 

least square step would only have two parameters and identification trade-off would become 

negligible.  Similarly, the decay rate could be predetermined or bounded in separate prior tests. 

There were some limitations in this investigation.  In particular, the model was contrived for a 

theoretical drug based on published data and contains simplified PK’s that may not fully represent 

the true PK/PD’s of actual sensitizer drugs.  Such omitted effects may include: 

• Irreversible transport between the remote and active compartments may not be 

necessarily representative of the kinetics of drugs administered subcutaneously.  If the 

drug is administered orally, diffusion across the gut membrane is irreversible, and the 

model assumption is valid in this case. 

• The drug may be designed with the intension that it lie dormant, stored in fat cells for 

delayed dispersion.  This may be modelled with an added passive third compartment with 

two way, condition-dependent transport. 

• Glucose production suppression is not modelled as a time-variant or dependent variable 

parameter in this investigation 

• A combined secretagogue effect will be observable with the C-peptide measurement 

during the trial. 

• If the drug delays the absorption of food- such as GLP1 enhancers, the effect will not be 

captured by this type of test, nor the steady state methods.  This will not affect dynamic 

fasting tests, but will be an important attribute of the drug that is not quantified. 

• It is likely that the drug’s effect on insulin sensitivity may be saturable, i.e.  doubling the 

drug content may only increase sensitivity by 50-70%. 
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• The drug may require molecular changes that take time to occur.  This is not modelled as 

such, but will be observable ‘lumped-in’ with the rate of absorption parameter. 

All of these factors can be incorporated into the model and thus, do not invalidate the findings of 

this analysis.  However, the model appears to be close to the limit of identification in the presence 

of noise.  Hence, any further addition would probably require known kinetic behaviours and rates, 

which are likely to be available from prior tests. 

The proposed multiple DISST protocol offers a comparatively low-intensity option for the 

identification of the kinetics and dynamics of insulin sensitizer drugs.  The time-varying insulin 

sensitivity profiles identified in this in-silico analysis were quite accurate.  However, the 

parameters that defined the profiles showed that identification trade-off was occurring.  Thus, 

although the proposed protocol will enable the identification of the effect of the drug overall, 

uncertainty exists in the identified drug absorption and decay rate values. 

The findings of this study indicate that a pilot trial of this protocol and the identification methods 

discussed would enable the observation and quantification of insulin sensitizer drugs.  However, 

the next step for this type of test would be a clinical analysis of a particular drug, instead of the in-

silico analysis presented here. 

11.2  Observing insulin secretagogue kinetics 

An in-silico study was also undertaken to measure the observability of insulin secretagogues.  

However, the observability of insulin secretagogues was very poor using dynamic tests.  In 

particular, the first and second phase responses to the glucose bolus must be identified 

individually.  In doing so, parameter identification interference was encountered.  However, the 

results are presented here for contrast and completeness.   

11.2.1  Study design 

The series of seven DISST tests undertaken at 2-hourly intervals from Section 11.1.1.3 was 

repeated in the virtual participant described in Section 11.1.1.1.  The sensitizer model described 

by Equations 11.01 and 11.02 in Section 11.1.1.2 was used to define the kinetics of the 

secretagogue drug.  Glibenclamide kinetic parameters were used as a reference for this model.  
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Gerard et al. defined absorption and decay half-lives of 45 and 135 minutes, respectively (Gerard 

et al. 1984).  This translates to kinetic parameters of Dk1=15 and Dk2=5 [10-3/min]. 

It was assumed for this in-silico analysis that the full dose of the secretagogue would increase the 

first phase of production by 40% (D1) while the second phase would be amplified by 70% (D2).  

However, the time-variant increase would be dependent on the concentration of the secretagogue 

in the accessible compartment. 

The C-peptide response of the virtual participant, defined in Table 11.01, was simulated using the 

endogenous insulin production responses to the DISST test.  The UN rates defined the block-wise 

profile shown in Figure 11.06.  A five-minute first phase period was followed by a 35-minute 

second phase period.  This period was followed by a linear reduction back to the basal rate over 

40 minutes, where it remained until the next DISST test.  The secretagogue concentration was 

assumed to have a proportional effect on the first and second production rates above basal 

(Equation 11.09).  Thus, the UB rate remained constant throughout the protocol, but the first and 

second phases are amplified by the insulin secretagogues. 

Q
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where D(1|2) is the maximal effect that the drug dose could have on the first or second insulin 

production period. 

 

Figure 11.06.  Indicative shape of the simulated insulin production profile. 
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The insulin production profile was then used to simulate the plasma and interstitial C-peptide 

concentrations (C(t) and Y(t)).  A noiseless data set was obtained by sampling the synthetic data at 

the times defined in Section 11.1.3 for use as the input in a Monte Carlo simulation.  During the 

Monte Carlo simulation, normally distributed noise was added to the noiseless set in accordance 

with reported C-peptide assay error (4%) at each iteration.  In total, 100 noisy data sets were 

generated from which the model parameters were identified.   

11.2.2  Parameter identification 

Steps 1-3 were repeated for each run of the Monte-Carlo analysis to obtain values for the model 

parameters. 

1. The data between t=0 and t=120 was used with the iterative integral method to identify 

the first and second phase insulin production responses of the first DISST protocol.  Thus 

the pre-bolus sample of the 2nd DISST test was also used.   

2. The subsequent production responses to the following DISST protocols were also 

identified in isolation.  (The first sample of the following test is used as a data point.)  

Thus, seven first phase and seven second phase values were obtained.   

3. These values were used in a Levenberg-Marquardt non-linear least squares identification 

method to obtain values for Dk1, Dk2, D1 and D2 that minimise the error in Equation 

11.09. 

The outcomes of each Monte Carlo run were recorded and the parameter accuracy and variability 

is reported. 

11.2.3  Investigation results 

The 4% noise simulation produced consistently failed results.  Thus, 0.4% noise was used to 

observe the level of assay accuracy required to achieve clinically useful results and test the 

identifiability of the parameters.  The analysis defined in Section 11.2.1 was repeated for the 

reduced assay error.  Table 11.05 shows the spread of the values obtained by the identification 

method using both the clinically realistic 4% noise and the hypothetical 0.4% noise case. 



Page 215 

Although the parameter identification was relatively inaccurate, even for the 0.4% noise case, the 

re-simulations of the time-variant first and second phase production rates adhered to the initial 

simulation.  Figure 11.06 shows the deciles of the re-simulated profiles in comparison to the 

initial simulated drug effect profile, while Table 11.06 quantifies the residuals of the re-simulated 

profiles. 

 

Parameter 
True 
Value 

Identified value 

0% 0.4% noise 4% noise 

 Mean 
(CV) 

Median  

(IQR) 

Mean  

(CV) 

Median  

(IQR) 

Dk1 

 [10-3/min] 
15 14.9 

 15.6  
(28.0%) 

15.1 

(12.0, 18.0) 

71.2 

(169.6%) 

14.6 

(7.3, 68.0) 

Dk2  

[10-3/min] 
5 5.2 

 5.3  
(22.9%) 

5.1 

(4.4, 6.2) 

13.9 

(462.4%) 

4.8 

(2.0, 8.5) 

D1  

[1] 
0.4 0.41 

0.41  
(21.1%) 

0.42 

(0.36, 0.48) 

0.61 

(94.9%) 

0.49 

(0.01, 1.01) 

D2 

[1] 
0.7 0.69 

0.70 

(16.7%) 

0.69 

(0.61, 0.79) 

0.87 

(68.8%) 

0.82 

(0.40, 1.28) 

U1 

[mU/min] 
233.6 227.9 

227.9 

(0.991%) 

227.8 

(226.5, 229.2) 

227.5 

(9.0%) 

227.2 

(213.6, 241.2) 

U2 

[mU/min] 
150.7 152.2 

152.3 

(0.940%) 

152.2 

(151.9, 152.  7) 

152.1 

(4.0%) 

 152.3 

(148.0, 156.2) 

Table 11.05.  Identified kinetic and effect parameters of the secretagogue model. 
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Figure 11.07.  Re-simulations of the time variant secretagogue amplification of the first (left) 

and second phases (right) of insulin production while 4% (top) and 0.4% (bottom) assay error 

is applied. 

 

Period Phase 

Simulation residual 

0.4% noise 4% noise 

Median (IQR)*  Median (IQR)*  

Basal 
Period 

U1 -5.86 (-7.11, -4.41) -6.40 ( -20.00, 7.62) 

U2 1.55 (1.16, 1.97) 1.59 (-2.67, 5.55) 

2.5-6 hours 
U1 -6.66 (-8.13, -5.18) -5.52 (-17.09, 7.75) 

U2 1.60 (1.09, 2.10) 0.97 (-3.16, 5.54) 

6-12 hours 
U1 -6.41 (-7.45, -5.31) -1.25 (-11.79, 9.49) 

U2 1.48 (1.12, 1.87) 2.89 (-0.08, 5.97) 

Overall 
U1 -6.32 ( -7.55, -5.08) -2.90 (-14.67, 8.99) 

U2 1.52 (1.12, 1.94) 2.33 (-1.33, 5.91) 

Table 11.06.  Residuals between the simulation and identified P(t) values. 
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11.2.4  Implication of the results 

Concurrent identification of time variant profiles for first and second phase insulin production 

rates seemed to be limited by parameter trade off.  When 4% assay error was simulated in the 

virtual data, the coefficients of variation in the kinetic parameters was between 65%-500%.  Thus, 

useful parameter values could not be obtained using the protocol and identification method tested 

here.   

Furthermore, when the 0.4% noise was added to the idealised data, which represents a 90% 

reduction in the assay error that would otherwise be expected in a clinical setting, the parameter 

coefficients of variation were still about 20%.  This smaller parameter variation is perhaps the 

lower limit of resolution that may be clinically usable.  However, the assay error required to 

obtain this result is unrealistic.  Thus, for the method to be usable to trace both first and second 

phase insulin production, improvements in assay technique must enable a 10x increase in 

accuracy, which is highly unlikely in the foreseeable future. 

The median re-simulations were relatively well in accordance with the true simulation values.  

Thus, the median simulations converged to relatively accurate values and thus the method was 

validated to a small degree.  However, the wide inter-quartile range and the apparent trade-off 

between first and second phases of insulin production imply that the model and DISST approach 

may not be particularly suited to this particular application. 

To improve resolution, the number of parameters should be reduced.  Either some known drug 

kinetic information must be provided, or either first or second phase secretion must be set as a 

constant or dependent parameter.  However, in making this change, much of the information that 

is being sought, must be provided, seriously limiting the potential utility of method presented.  

The only realistic choice of reducing unknowns would typically be more knowledge of the drug 

kinetics, which can be readily tested independently prior to such PK/PD tests. 

The hyperglycaemic EIC is unable to distinguish the first and second phases of insulin 

production.  The results obtained are most representative of the second phase of insulin secretion.  

However, the EIC protocol is quite stable with relatively high resolution outcomes, from a high 

intensity test.  The performance of the presented dynamic test protocol is not sufficient to displace 

the hyperglycaemic EIC for tracing secretagogue drugs.   
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PART FIVE: Conclusions 
and future work 
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Chapter 12.  Conclusions 

12.1  Clinical applications 

This thesis expanded upon the DISST test that was created during the doctoral investigation of Dr 

Thomas Lotz (Lotz 2007).  The DISST test was developed to provide diabetes risk assessments 

through the quantification of insulin sensitivity and insulin production metrics.  Although both of 

these metrics are required to observe an individual’s position on the pathogenesis of type 2 

diabetes, they are not provided in tandem by the established insulin sensitivity tests.  The 

validation investigation presented in Chapter 6 confirmed that the DISST occupies a favourable 

position on axes of accuracy and economy in comparison to established insulin sensitivity tests.  

Accordingly, the DISST has sufficient merit to be considered as a suitable method of insulin 

sensitivity testing, and makes the more much arduous, yet less accurate, IVGTT obsolete. 

The Minimal Model of the insulin/glucose PDs is generally regarded as intrinsic to the 

identification of any dynamic insulin sensitivity test data.  However, the investigation presented in 

Chapter 7 showed that the Minimal Model fails to accurately quantify insulin sensitivity using 

DISST data.  In contrast, the DISST model captured the behaviour measured by other tests and 

means.  This outcome did not necessarily invalidate the Minimal Model, which has been 

extensively validated.  However, it does unequivocally show that the DISST model is more suited 

to the identification of parameters for the low intensity and duration DISST protocol and can 

produce more reasonable results in insulin resistant cohorts.  Equally, it provides further clinically 

important metrics for metabolic health appraisal and management, with greater test robustness. 

Chapter 8 contained the most significant, novel discovery presented in this thesis: the quick DIST 

(DISTq).  DISTq showed that contrary to established paradigms in the field, accurate insulin 

sensitivity identification can be possible in real-time.  The real-time aspect means that insulin and 

C-peptide assays cannot be used during parameter identification.  Thus, the participant’s insulin 

concentration must be estimated.  Previous attempts to do this with OGTT data failed and thus, it 

is generally assumed that the participant’s insulin concentration must be accurately measured in 

order for accurate quantification of insulin sensitivity.  The DISTq identification method 

overcomes this limitation with the application of a novel, purpose-designed, a-posteriori iterative 

process that exploited the relationships between insulin parameters and insulin sensitivity. 
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The outcomes of the DISTq investigation show that it can replicate the fully-sampled DISST with 

a relatively high accuracy (R=0.82 to 0.86) and, perhaps more importantly, that it can replicate the 

gold standard EIC insulin sensitivity values (R=0.77).  In correlating to the EIC at R=0.77 the 

DISTq achieves a greater performance than most established insulin sensitivity tests, even those 

that assay insulin.  It trails only the fully-sampled DISST and some isolated IM-IVGTT outcomes, 

while exceeding the correlation obtained by the majority of investigations.  The ITT outcomes 

also exceeded the DISTq.  However, the ITT protocol has been abandoned due to excessive 

participant risk.  Furthermore, the DISTq30 was proposed, which correlated to the EIC at R=0.80, 

and thus offers a slight improvement upon the DISTq.  Hence, it further exceeds the performance 

of most established tests. 

These outcomes are significant and should prompt an evaluation of whether much more 

widespread diabetes risk screening programmes can be undertaken.  Such programmes have not 

been pursued in the past, in part, due to the inhibitive economic and clinical burden of protocols 

that produce values that are sufficiently accurate.  With the DISTq, insulin sensitivity values can 

be obtained for $10 and 30 minutes with a resolution that would previously cost more than $750 

and 3 hours.  It remains to be investigated whether this development is sufficient to instigate risk 

screening programmes. 

The DISST, DISTq and DISTq30 do not necessarily represent the optimum tests possible from 

the DISST format.  Rather, they exist upon a spectrum of possible tests that use the basic DISST 

protocol and specific assays to obtain differing compromises of accuracy, information and 

economy.  This spectrum was investigated in Chapter 9.  A hierarchical test design was developed 

using the tests defined in the spectrum analysis.  In essence, the hierarchy system showed that 

very high resolution could be obtained for a very low cost by exploiting the equivalent protocol of 

the tests on the DISST spectrum.  If a participant’s low-cost test value was within a range close to 

the diagnosis threshold, a higher resolution value could be obtained by re-assaying some, or all, of 

the samples obtained during the original test for insulin or C-peptide.  Assuming sufficient 

numbers can be identified using the original low-cost test, a very high resolution can be obtained 

for a very minimal average per-participant cost. 

Chapter 10 explored two variants of the DISST protocol that were tailored for the DISTq 

identification method.  The DISST protocol was designed to obtain insulin sensitivity in tandem 

with insulin production though assaying of C-peptide, insulin and glucose.  Thus, the period 

between the glucose and insulin boluses could be assumed to provide no advantage to the DISTq 

identification.  An in-silico investigation showed that this assumption is valid and that the 

DISTq30 protocol could perhaps be reduced to 20 minutes with a combined bolus.  This approach 
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would enable extremely low-cost insulin sensitivity values that could perhaps be obtained during 

a consultation in a general practice setting. 

The second alternative DISTq protocol investigated in-silico aimed to show whether the first 

phase of insulin production (U1) was observable as a surrogate of its action in glucose data when 

the glucose bolus was increased and the following bolus was delayed.  Unfortunately, the first 

phase manifestation on the interstitial insulin profile that is required for identification of U1 

interfered with the glucose bolus coefficient, and the observability was severely limited.  Thus, 

pilot investigations of this protocol are not recommended without further advances.  This study 

may define some limits as to how widely such glucose-only tests might be effective. 

Chapter 11 showed how a DISST framework or approach could replace the existing EIC protocols 

for the tracking of insulin sensitizer and secretagogue drugs.  Parameter trade-off during 

identification of the secretagogue drug effects limited the applicability of dynamic tests for this 

purpose.  However, the proposed multiple DISST protocol and identification method was able to 

quantify and track the effect of insulin sensitizers relatively well.   

12.2  Mathematical developments 

The iterative integral method was developed and applied for the first time to identify parameters 

of the DISST model.  Chapter 4 presented this method, as well as a method that uses positive 

derivative feedback control on the iterative process to accelerate the convergence to the least-

squares parameter values.  The method is particularly fast for non-linear cases and is robust to 

initial estimates and assay error. 

An integral-based a-priori model identifiability analysis method was developed and presented in 

Chapter 5.  This method was developed after the frustrating false positive outcomes from the 

existing algebraic derivative-based model identifiability analyses that do not recognise or account 

for assay placement or error.  The method successfully captured the true nature of identifiability, 

which is analogous in the presence of assay error.  Furthermore, it predicted parameter trade-off 

during identification in a number of cases including the famous Minimal Model trade-off that is 

exacerbated in insulin resistant participants.  This trade-off had been extensively reported without 

explanation until this development. 
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Chapter 13.  Future work 

To achieve full and un-equivocal acceptance of the DISST methodology, investigations similar to 

the DISST pilot and validation studies must be undertaken by an isolated research group.  

Furthermore, the test or model must be investigated directly for the primary purpose it was 

designed: type 2 diabetes risk assessment.  As such, participants of the DISST must be recalled 10 

to 15 years after their initial test and undergo a 2hr-OGTT for a diagnosis of diabetes.  This will 

directly and explicitly validate the DISST for type 2 diabetes risk assessment as opposed to the 

implied validation of EIC equivalence. 

Identifiability of the Minimal Model in insulin resistant cohorts has been an on-going issue for the 

Minimal Model.  A protocol was proposed in Section 5.4.3 that increased the distinction in 

interfering parameters’ coefficients and thus identifiability.  However, the protocol was limited to 

allow a fair comparison to the DISST protocol parameter identifiability and was thus not the best 

possible protocol for this purpose.  A protocol could be developed and tested in-silico to show 

precisely what is required for the Minimal Model to become identifiable in an insulin resistant 

cohort. 

DISTq was validated in tandem with the fully-sampled DISST and exhibited very positive 

outcomes.  However, further refinement of the population-based parameter estimation equations 

or model may increase the accuracy or precision of the derived metrics.  In particular, the 

estimated values could be modified by a participant’s family history of diabetes/metabolic 

disease, anatomical makeup, abnormal physiology or exposure to diabetes.  An immediately 

recognisable example is type 1 diabetic individuals for whom the parameter estimation equations 

for UN are not representative.   

In terms of application, the real-time and low-cost attributes of DISTq, DISTq30 and perhaps 

DISTq20C, if clinically validated, enable a myriad of previously impossible applications of 

insulin sensitivity.  The efficacy of the test for the following uses must be investigated: 

• Diabetes risk assessment during a general practice consult 

• Tailored insulin therapy for newly diagnosed IDDM individuals 

• Daily testing for insulin sensitivity high dependency units (HDU) to track recovery or 

identify sepsis. 

• Low-cost surrogate for insulin sensitivity in clinical intervention or metabolic tracking 

trials 

• Screening for diabetes risk (possibly with the hierarchical system) 
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The in-silico analysis of DISTq20C used some assumptions that must be clinically validated.  The 

outcomes of the in-silico analysis were very positive.  However, if the analysis assumptions prove 

to be incorrect, the actual clinical correlation to the EIC may be marginally less than the 

correlation implied by the in-silico analysis.   

The DISTqE analysis showed that the parameter values identified are not sufficiently accurate to 

pursue clinical pilots at this stage.  However, the identifiability of the DISTqE protocol could 

perhaps be improved if a third species could be added to the initial bolus that could be assayed in 

real time to enable the identification of VG.  This would mitigate the identifiability issues and 

greatly increase the observability of U1.  However, this remains to be investigated in-silico. 

The integral-based a-priori identifiability analysis method was able to describe, predict and 

finally quantify the parameter trade-off exhibited in a number of cases related to insulin 

sensitivity.  However, the method currently cannot predict the coefficient of variation prior to 

analysis, merely the shift in variation due to changes in the protocol or participant.  It is very 

likely that with further investigation of the matrix algebra that drives the method, the coefficient 

of variation could be identified prior to any simulation.  Furthermore, the method could be 

adapted to appraise models with three or more parameters, in contrast to the current method that 

can only appraise two-parameter models.  The method could perhaps be used in a wide variety of 

models not limited to physiology. 
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