
ORIGINAL ARTICLE

Interaction with large ubiquitous displays using camera-equipped
mobile phones

Seokhee Jeon Æ Jane Hwang Æ Gerard J. Kim Æ
Mark Billinghurst

Received: 20 November 2007 / Accepted: 7 July 2009 / Published online: 1 August 2009

� Springer-Verlag London Limited 2009

Abstract In the ubiquitous computing environment, peo-

ple will interact with everyday objects (or computers

embedded in them) in ways different from the usual and

familiar desktop user interface. One such typical situation is

interacting with applications through large displays such as

televisions, mirror displays, and public kiosks. With these

applications, the use of the usual keyboard and mouse input is

not usually viable (for practical reasons). In this setting, the

mobile phone has emerged as an excellent device for novel

interaction. This article introduces user interaction tech-

niques using a camera-equipped hand-held device such as a

mobile phone or a PDA for large shared displays. In partic-

ular, we consider two specific but typical situations (1)

sharing the display from a distance and (2) interacting with a

touch screen display at a close distance. Using two basic

computer vision techniques, motion flow and marker rec-

ognition, we show how a camera-equipped hand-held device

can effectively be used to replace a mouse and share, select,

and manipulate 2D and 3D objects, and navigate within the

environment presented through the large display.

Keywords Interaction � Motion flow � Marker

recognition � Interaction techniques � Cell/mobile phones �
Large display

1 Introduction

The goal of ubiquitous computing is to make computers

invisible [1]. That is, people will interact with smart

devices or objects in everyday life conveniently and natu-

rally, without recognizing the presence of computers and

without significant cognitive effort. Consequently, non-

traditional and specialized interfaces will be employed for

different ubiquitous computing scenarios. One popular

scenario is interacting with applications through large

displays such as televisions, mirror displays, tabletop dis-

plays, and public kiosks. So far, large displays have been

used mostly for one way communication, but in the future,

they could be made more interactive and sharable among

multiple users. For instance, a ‘‘mirror display in a bath-

room’’ has been depicted many times as one of the prom-

inent ubiquitous computing applications [2, 3]. In this

scenario, a family member looking in the mirror is recog-

nized and presented with user specific information, such as

news, appointments, or to-do lists, and is also able to

interact in some way (e.g. turning the TV channel, selec-

tion of to-do list, etc.). Such applications are shared among

several people, and require only simple selection, manip-

ulation or navigation with minimal, if any, alphanumeric

input. Thus, the usual keyboard and mouse input is neither

appropriate nor necessary for these simple interactions and

also discouraged by the very goal of ubiquitous computing

namely, the ‘‘invisible’’ interface.

There are a number of alternatives to traditional input

devices for interacting with large displays. One obvious

S. Jeon

Department of Computer Science and Engineering,

POSTECH, Pohang, Korea

J. Hwang

Image and Media Research Center,

Korea Institute of Science and Technology, Seoul, Korea

G. J. Kim (&)

College of Information and Communication,

Korea University, Seoul, Korea

e-mail: gjkim@korea.ac.kr

M. Billinghurst

Human Interface Technology Laboratory NZ,

University of Canterbury, Christchurch, New Zealand

123

Pers Ubiquit Comput (2010) 14:83–94

DOI 10.1007/s00779-009-0249-0

candidate is the mobile phone. Recently, mobile phones

have dramatically improved in terms of their computational

power (nearing 1 GHz processing), and are increasingly

equipped with various sensing devices like a camera,

microphone, and even acceleration sensors. They can also

share computational loads with main servers using their

improved communication modules such as Bluetooth,

wireless LAN, infrared communication, and UWB (ultra

wide band technology that supports more than 600 Mbps

wireless bandwidth). In the context of association with

public devices, mobile phones have the added advantage to

provide ‘‘private’’ information and sensory display (e.g.

LCD, sound, vibration).

This article introduces user interaction techniques using

a camera-equipped hand-held device such as a mobile

phone or a PDA for large shared display environments. The

camera is used to implement continuous tracking of the

mobile device, and buttons for discrete inputs/commands.

Using two basic computer vision techniques, the motion

flow and marker recognition, we show how a camera-

equipped hand-held device can be used effectively to

replace a mouse and share, select or manipulate 2D and 3D

objects and navigate within the environment presented

through the large display. In particular, we consider two

different cases, sharing the display from a distance, and

using the mobile device as a second input device for

interacting with a touch screen display.

In the next section, we review other researches that are

related to this work such as interaction using hand-held

devices and vision-based tracking. Then, we present three

scenarios as starting points for interaction design for the

two target usage situations. Based on the task analysis and

requirements, Sects. 4 and 5 describe the specific proposed

interfaces and their implementations. Next, we report and

discuss our experiences in using the proposed interfaces.

Finally, we conclude the article with a summary and plans

for future work.

2 Related work

Possibilities for interaction with smart hand-held devices

(e.g. palmtop computers) were first investigated in 1993 by

Fitzmaurice et al. [4]. In this article, the authors suggested

several methods for display and 3D interaction using

palmtop computers in a virtual reality (VR) application.

Watsen et al. have also used a PDA to interact in the virtual

environment, but this interaction was mostly button or

touch screen based and no PDA tracking was used [5].

Kukimoto et al. also developed a similar PDA-based

interaction device for VR, but with a 6DOF tracker

attached to it. Using this they were able to demonstrate 3D

interaction such as 3D drawing with the PDA (moving it

and pressing the button or touch screen) [6]. Mantyla et al.

used an accelerometer for detecting user’s hand gestures

(with Hidden Markov Models) for interaction with hand-

held devices [7]. Accelerometers give better performances

on movement-oriented gestures; however, many gestures

are position sensitive and so are better handled with a

vision-based approach.

There were several previous researchers who tried to use

the camera as an interface for user interactions, especially

for 3D interactions [8, 9]. However, robust user’s motion

tracking is not an easy problem, particularly in uncon-

strained environments and with the limited computational

power of mobile phones [10]. As mobile phones become

more powerful, they are becoming more useful as a plat-

form for computer vision. For example, Wagner et al.

implemented a marker-based augmented reality (AR) sys-

tem using a self-contained hand-held device and applied it

to their textual environment augmentation project [11].

Paelke et al. developed a hand-held AR-based soccer game

which uses a camera for detecting kicking gestures [12].

Hachet et al. used a camera-equipped hand-held device as a

prop for interaction in a virtual environment. In their sys-

tem, the hand-held camera recognized the movement and

poses of a special marker held in the other hand [9, 13].

The user could interact in the virtual environment (seen

through a separate large display in front of him) by

detecting the motion of the marker by the camera. Hansen

et al. used a camera-equipped mobile device to establish

a spatial relationship between a virtual environment and

the physical space to form a mixed reality space [14].

There have already been previous attempts to use

camera-equipped phones for interaction with large display

systems. Such a combination has already been emerged as

a popular system configuration according to Kruppa et al.

[15]. Ballagas et al. used camera-equipped mobile phones

for interacting with the large vertical displays. They used

the optical flow algorithm and software markers for

tracking the mobile device [16]. They also considered the

problem of multi-user collaboration in a large shared dis-

play using mobile phones. Their work was partly based on

a survey they conducted on the use of a mobile phone as a

ubiquitous input device. In the survey, they categorized

interaction methods according to the interaction dimen-

sionality (1D/2D/3D), task (position/orientation/selection),

continuity (continuous, discrete), and directness (direct/

indirect), and noted that more attempts were needed in

applying mobile phones to ‘‘3D’’ interaction. Rohs et al.

too combined mobile phones with the large public display.

Marker-free user motion tracking was achieved using a

similar optical flow algorithm and software markers on the

display [17]. The Spotcode project also focused on the

usages of the mobile phone in the large shared display.

They designed context-related markers for the tracking

84 Pers Ubiquit Comput (2010) 14:83–94

123

[18]. Special devices such as infrared LEDs also have been

used to help detect the position of the hand-held device and

for interaction [19]. Our work builds on these lines of

researches in terms of proposing a new way of interacting

with large displays using camera-equipped phones.

The most popular forms of public or sharable displays

are relatively small (sharable by only two or three) and thus

can be implemented satisfactorily (in terms of interaction

requirements) with touch screens [20, 21]. Note that most

current touch screens can only support one touch at a time,

thus are not appropriate for interaction among many

number of people. For larger scaled systems with more

complex interaction requirements (which is our target

application area), one possible approach is to employ laser

pointers (equipped with buttons) with special ‘‘spot’’

detectors behind the display [22]. For comparison, it would

be certainly possible to install a laser pointer on a mobile

phone to mimic such an approach. However, again it would

be difficult to distinguish between laser spots among

multiple users. Regenbrecht et al. developed a versatile

tabletop interaction system with a sharable display but

required special setups including multiple cameras, table-

top projection, and interaction devices (e.g. a commercial

digital pen) [23]. In contrast to these efforts, in our work

we restricted our system to be as self-contained as possible,

that is, to work without any external installation of physical

sensors or markers. In addition, our goal is to support

multiple users using and sharing a relatively large display.

3 Interaction scenarios and requirements

As a starting point, we present three distinct scenarios for

using the camera phone for interacting with a large display.

The first scenario involves the task of sharing and

exchanging information presented in a distant large display

among multiple participants (See Fig. 1; Scenario 1).

As can be seen in this scenario, large public displays

usually do not employ touch screen systems that would

otherwise allow direct selection and manipulation of

objects. This may be due to cost (having to cover a large

area), technology (e.g. multiple touch not possible), oper-

ational reasons (e.g. required maintenance) or physical

inaccessibility (e.g. not being able to reach top portion of

the display). Note that while a simple virtual mouse might

suffice for this particular scenario, our ultimate purpose is

also to find creative uses for the ‘‘display’’ capabilities of

the hand-held devices (as illustrated in the last part of the

scenario). The scenario demonstrates the needs for the

usual fundamental tasks such as object selection, transla-

tion, rotation, and scaling. In our context, one alternative

solution is to integrate a wireless optical mouse capability

into a mobile phone. This solution is not sufficient because

a 2D mouse (1) is not appropriate for contents that require

3D interaction, (2) requires an operating surface that might

not be available all the time, and (3) may not support

multiple mouse input. Another possibility is the use of the

‘‘virtual desktop’’ mapping the public display to the small

mobile phone display (assuming the mobile phone display

has a touch screen). However, the size and resolution of the

mobile phone display is too small to support effective

collaborative interaction as depicted in the preceding

scenario.

The second scenario involves a more intimate use of the

display from a close distance using a touch screen and cell

phone input (See Fig. 2; Scenario 2).

Scenario 2

Jack and Jill are preparing a joint report. Jack pulls up couple of files
on the tabletop display and tries to show one to Jill. He chooses the
document with his finger on the touch screen and drags it toward
Jill who is sitting at a different side of the table, and at the same
time rotates his cell phone, with the other hand, to rotate the
document toward Jill. Jill finds the document to be too small for her
viewing pleasure and enlarges the scale by selecting an anchor
point on the document, dragging upward to make space, and
gestures her cell phone, with the other hand, side ways to enlarge
the document all at the same time. By a touch of a button, the cell
phone is turned into a magnifying glass allowing Jill to examine the
fine details of the figure in the document (2D Interaction). Jill has a
3D model of a product from her company in her mobile phone. She
wants to discuss with Jack about the product. She copies the 3D
model file to the tabletop display. She would like to show to Jack a
closer look of the bottom part of the model. She rotates the model
and zooms into the model using her mobile phone (3D Interaction).

Scenario 2 illustrates the need for two-handed simulta-

neous interaction for object rotation. Without the two-

handed input, the object rotation must be carried out as a

sequence of operations. Touch screen systems usually do

Scenario 1

The marketing team is gathered in the presentation room, discussing
the market strategy for the next phase and job assignments. Each
member of the team points their mobile phone toward the display
and uploads his or her idea of what their jobs are. Each person
moves one’s mobile phone to post their ideas without cluttering the
overall display. Bill, the manager, tries to sort through the
information, prioritizes and makes an ordered list of assignments.
He does this by pointing his mobile phone at the screen and
selecting the member’s posts, moving and dragging them here and
there, and even deleting some of the unnecessary ideas. Using his
mobile phone as the interaction device, he creates copies of several
arrows and moves, elongates and rotates them between the
assignments to draw a big flow diagram of assignments. When
everything was agreed, Bill presses a button on his phone to save
the document. Gerry selects the modified version of his posts and
copies that back into his mobile phone and confirms it through the
phone (private) display.

Pers Ubiquit Comput (2010) 14:83–94 85

123

not allow simultaneous two-handed input. Thus, one

solution is to use a smart tangible prop, like a sensor-

equipped mobile phone, as an embodied interface.

The final scenario illustrates the novel integration of

motion gesture-based interface with the private display (see

Scenario 3). The metaphoric motion gesture-based inter-

face enabled by the sensors/camera on the mobile phone

can enhance the overall experience of the game play (or

other location-based contents) [24]. Note that while we

expect a complex system command structure (e.g. through

a hierarchical menu system) will not be necessary by the

nature of highly specialized ubiquitous computing appli-

cations, if necessary, it can be implemented by a combi-

nation of the sensor enabled continuous tracking and button

commands.

Scenario 3

Andrew and Ellen like to play a multi-player racing game on their
Bluetooth connected mobile phones. They like it even better when
they can seamlessly connect it to their large screen television at
home. The large screen TV shows the whole racing track with
positions of each player (with other friends or family members
cheering on) and incoming obstacles and gift points, while the
mobile phone displays show first person views of the on-going
racing game. Moreover, instead of button presses, they ‘‘rotate’’
their phones to change direction (like a car handle) and ‘‘push and
pull’’ the phones to control acceleration.

4 Proposed camera-equipped phone interfaces for large

displays

To summarize the interaction requirements, a ubiquitous

computing application with a sizable display will be driven

mainly by object selection and manipulation through two

subtasks: continuous positioning and making discrete

commands. Although not highlighted in the three usage

scenarios, navigation or search (e.g. going to the next

channel or simple menu/content browsing) is also an

important task that can be realized by the same subtask(s)

and also by interpreting user motion. In this section, we

describe a specific mobile phone-based interface imple-

mentation for interacting with 2D/3D environments

through a large sharable display: (1) as a 2D/3D ‘‘fly’’

mouse, (2) as an embodied agent, and (3) as a medium for

motion gesture. In all cases, continuous tracking is neces-

sary, and this is implemented using two basic computer

vision techniques, motion flow, and marker recognition

(See Section 5).

The interactive large display system for which the pro-

posed camera phone interaction is to be applied is shown in

Fig. 3. The Nokia 6630 mobile phone with the Symbian

Series 60 (Second edition FP2) as its operating system [25]

is used. To implement the marker-based approaches, we

have used the ARToolkit [26] for the Symbian OS. All

optical flow calculation and marker tracking algorithm (See

Sect. 5) were carried out within the hand-held device (i.e.

not on the server side). The communication between the

device and large display system (server) was made by a

Bluetooth connection. For example, the motion vectors of

the tracking features computed with the hand-held device

were sent to the server. Likewise, marker transformation

matrices were sent to the server when the marker-based

approaches were used. The large display system uses

(when operated from a close distance) the NextWindow

Fig. 1 A scenario for using camera phones in a shared environment

with a distant display

Fig. 2 A scenario for using camera phones in a tabletop display

environment with a touch screen

86 Pers Ubiquit Comput (2010) 14:83–94

123

(2100 series touch frame) [27], a touch screen that allows

one finger touch input at a time.

4.1 Interacting from distance (without a touch screen)

4.1.1 Motion flow-based approach for 2D interaction

The motion flow-based approach uses a cursor which indi-

cates the position of user’s interest. The basic sequence of a

selection is identical to our normal use of a 2D cursor. We

see a cursor, locate it over the object and select the object

right beneath it (using a button). One benefit of this method

is that it is not necessary to find out the absolute position of

the interaction device because a cursor always indicates the

absolute position of the user’s interest. Thus, the tracking

module only needs to find the relative movement of the

interaction device using motion flow-based relative track-

ing. After selecting an object, we can move the object to a

different location by dragging the cursor. The movement of

the cursor is obtained from the relative movement vectors of

the optical flow [28, 29]. The implementation of the relative

motion tracking is described in Section 5.

A usual 2D rotation requires a specification of the

rotational axis and continuous tracking for specifying the

amount and direction of the rotation. Once an object is

selected, the proposed cursor-based rotation assumes a

rotational axis (2D point on the object), and maps the

amount and direction of rotation (See Fig. 4).

4.1.2 Marker-object approach for 2D/3D interaction

Although the cursor-based interaction (enabled by the

motion flow) is quite intuitive to use, it has several short-

comings. The most serious one is that we always have to

move a cursor to the appropriate position before selecting

the object. This redundant manipulation would be a major

performance hurdle if the task was time critical.

In this approach, a marker is assigned to each object.

Through marker tracking, we can select an object by just

putting the object on the centre of the camera view and

pressing selection button on the phone. As soon as we press

the button, each object is overlaid by a virtual marker

(previously hidden) and by identifying/tracking the marker,

the object can be selected. After the object selection, the

overlaid markers disappear except for the selected object’s

marker. Since we know the position of selected object’s

marker in the camera view projection plane, forcing that

marker’s position to the centre of the camera viewing plane

is easily accomplished. As a result, the selected object

moves with the centre of the camera viewing direction. The

user merely needs to point the phone cam toward the new

position (in moderate speed, See Sect. 5). For rotation, as

the marker tracking module computes the relative location

and orientation of the marker relative to the camera, we can

use this information to rotate the object and align it with

the viewing camera. Therefore, when the camera phone is

rotated, the object in the display will rotate accordingly

(around an assumed z-axis point). The proposed interaction

sequences are shown in Fig. 5. The data exchange between

the phone and the server can be accomplished via short

distance communication, e.g., by Bluetooth or infra-red

(mostly available on today’s cell phones).

4.1.3 Marker-cursor approach (2D/3D interaction)

In applications such as drawing and writing, a reasonably

fine control of a small 2D/3D cursor becomes a major

requirement. As seen in Fig. 6, the marker-cursor approach

Fig. 3 The overview of the

interactive large display system:

a multiple users interacting with

a distant display using cell

phones and b with a close touch

screen display. Tracking data is

conveyed wirelessly to the

server which manages the

application/display

Pers Ubiquit Comput (2010) 14:83–94 87

123

enables continuous and fine control of the cursor in the large

screen environment. Once the camera of the hand-held

device detects the marker-cursor displayed on the large

screen, we can calculate the 6-DOF information of the

hand-held device in the environment. The performance of

the marker motion is in general much more robust than

using the motion flow approach (See Sect. 5). The inter-

section point of an orthogonal ray from the hand-held

camera and the large screen becomes the position of the

marker-cursor. While the camera sees any parts of the

screen, the cursor moves to the intersection points of the ray

from the camera and screen and this makes continuous

and fine movements of the cursor. As shown in the right

parts of Fig. 6, the fine control of the cursor such as writing

letters becomes feasible with the suggested marker-cursor

approach. The 6-DOF motion information of the hand-held

Fig. 4 The upper illustrations

show how to select (left),
translate, and rotate an object

(right) using a motion flow-

based tracking with a camera-

equipped mobile phone. The

lower pictures show the actual

implementation results

Fig. 5 The left illustrations

show an interaction sequence

(for 2D rotation) of the marker-

object-based approach. The

right pictures show the actual

implementation

88 Pers Ubiquit Comput (2010) 14:83–94

123

device is computable relative to the marker, so it is also

possible to extend this approach to the 3D applications.

4.2 Interacting in proximity to touch screen (mobile

phone as an embodied ‘‘auxiliary’’ agent)

As illustrated in the scenario, when the display is to be used

in close proximity to the user, a touch screen is probably

the most natural and best interaction device. Here, we

propose an approach for object rotation using the mobile

phone for a two handed simultaneous interaction. Note that

most touch screen systems usually do not allow simulta-

neous two-handed input. Without the two-handed input, the

object rotation must be carried out in sequence. The pro-

posed solution can carry out object selection and transla-

tion through the touch screen interface, while mapping the

mobile phone’s (manipulated by the other hand) rotation to

the target object’s rotation. The mobile phone’s rotation is

tracked using the motion flow technique so that the user

does not have to aim at any special tracking markers. A

scaling operation can be carried out in similar manner. This

is an example of the mobile phone being embodied as the

target interaction object.

Constrained (since not all 6 degrees of freedom can be

robustly tracked using the current motion flow technique)

3D object manipulation can be carried out similarly as

well. A touch screen is basically a 2D device such as a

mouse or a joystick, and previous researches have shown

the shortcomings of such 2D-based devices for 3D inter-

action [30, 31]. The use of typical 3D VR devices such as

special trackers is also prohibitive (e.g. cost, availability)

for the mass-driven ubiquitous computing environment.

Figure 7 illustrates the interaction process, and Fig. 8

shows the actual implementations. In this case, the object

pivoted by the finger touch is rotated or scaled according to

the rotated camera phone.

4.3 Motion-based gesture interaction

Finally, the raw-tracked motion data (either by motion flow

or marker recognition) can further be interpreted for simple

abstracted motion gestures. The recent success of the

Nintendo WII console [32] and its gesture-based game

interface, shows the potential for gesture input to improve

the user experience. Figure 9 shows a simple example of

imitating a car handle by detecting a rotation pattern in the

roll direction, and an acceleration pedal by detecting the

forward/backward push. Complex motion gesture recog-

nition is starting to become feasible with the increased

CPU power of today’s new mobile phones.

5 Relative motion tracking and its performance

5.1 Implementation on the hand-held device

The relative tracking process is divided into two stages: (1)

extracting features from two consecutive image frames and

establishing correspondences (which gives us the 2D image

motion flow) and (2) estimating the motion parameter

changes of the camera (i.e. the interaction device). For

the motion flow and feature tracking, we have used the

Fig. 6 The left illustration
shows how to locate and

manipulate a cursor in the

marker-cursor approach. The

picture in the right shows the

use of marker-cursor in a

writing application

Fig. 7 Object rotation and

scaling using the mobile phone

and one finger touch. The task is

accomplished efficiently in a

simultaneous manner for both

3D (left) and 2D (right) objects

Pers Ubiquit Comput (2010) 14:83–94 89

123

pyramidal Lucas–Kanade optical flow algorithm [28]. This

algorithm first applies corner detection for finding feature

points and then uses image pyramids for tracking those

feature points. Due to the limited of computational power of

our mobile phone, we adjusted and varied the load by the

desired frame rate, image resolution of the camera, and the

number of feature points by trial and error. As a result, we

have used 10 feature points with the camera image resolution

of 160 by 120 and obtained about 6–7 frame/s tracking rate.

With motion flow on the image alone, it is not possible

to decide if translational movements along the x-axis in the

image resulted from translational movement of the camera

or by rotation of the camera around the y-axis and similarly

between translation along y-axis or rotation around x-axis

(See Fig. 10 for the local coordinate system on the hand-

held device and the screen). Thus the problem is simply

solved by using separate interaction modes (i.e. one for

translation and another for rotation). In each respective

mode, velocities are measured from the motion flow and

integrated to compute the relative amount of changes in

translation or rotation. Due to the relatively low sampling

rate (6–7 frames per second), linear interpolation was

employed on the server side for smooth cursor movement

on the display.

Recognizing the z-axis rotation (roll) from motion flow

is, however, somewhat difficult because the rotation always

Fig. 8 Snapshots from actual

implementations of two-handed

interactions using the mobile

phone and touch screen. Top
row: 2D object rotation, Middle
row: 2D scaling, Bottom row:

3D object rotation

Fig. 9 Motion gesture

recognition for the car driving

metaphor. Roll rotation for

direction handling and forward/

backward movement for

accelerator pedal control. An

implementation is done using an

UMPC (for simple gestures, a

mobile phone implementation is

possible, too)

90 Pers Ubiquit Comput (2010) 14:83–94

123

usually entails translation and only the z-axis rotation

factor must be extracted from the complex feature vectors.

Our simple z-axis rotation estimation algorithm is as fol-

lows (See Fig. 11). First, since we know the locations

of the feature points, we can compute the quadrants they

belong to in the image plane. Then we calculate four means

of the movement vectors in each quadrant (big blue arrows

in Fig. 11). Then, we compare the means of the first

quadrant to that of the third, and the second to the fourth. If

these differences are higher than some threshold, we rec-

ognize it as a rotation in the z-axis, and map its magnitude

to the amount of rotation.

In contrast to the motion flow-based algorithm that only

provides 3 degrees of freedom tracking (x, y translation and

roll rotation) for 2D interaction, the marker-based approach

uses the ARToolKit [26] that offers a full 6 degrees of

freedom tracking (x, y, z translation and roll, pitch, yaw

rotation).

5.2 Tracking performance

The utility and usability of the proposed methods depend

highly on the tracking performance. We have measured the

accuracy of the motion flow-based tracking, comparing it

that of an accurate ultrasonic 3D tracker. Figure 12a shows

the motion flow-based tracking performance for translation

along the x-axis on the display enacted by horizontal

rotation (i.e. rotation around the y-axis, yaw). A 40 inch

large display was used with the phone interaction at a

nominal (at which the full screen is visible through the

camera) distance (*1.5 m) of from the screen. The camera

phone was rotated around the y-axis at seven different

angular velocities. For each angular velocity, 200 samples

of ideal (from the ultrasonic 3D tracker) and actual (from

our method) cursor movement data were collected. After

the collection, the ideal cursor position was compared with

the actual position by using the average pixel difference.

As depicted in the figure, the tracking error stayed below

around 3 pixels up to the motion speed of about 30�/s, and

increases sharply beyond this point. The average velocity

of the hand rotation was measured at about 60�/s, at which

the average pixel error was found to be about 20 pixels.

This figure translates to about 1 cm for 1,280 9 1,024

resolution display, and from a distance of 1.5 m, provides

reasonable performance. Note that based on this perfor-

mance, objects (e.g. icons, menu items) to be manipulated

can be sized appropriately as well. A similar measurement

was taken for z-axis rotation and a similar trend is obtained,

but with somewhat lower amounts of error, as shown in

Fig. 12b. This is due to the rarer occurrences of feature

disappearance during z-axis rotation than during horizontal

Fig. 10 The local coordinate

system on the hand-held device.

The z-axis is assumed to be

perpendicular to the display

surface

Fig. 11 Finding the rotation factor. The big arrow in each quadrant’s

centre is the mean of the small elongated arrows. The algorithm

compares means of the quadrant 1 and 3, and 2 and 4 to determine an

existence of a rotation

Pers Ubiquit Comput (2010) 14:83–94 91

123

rotation (also see Sect. 6). The large standard deviation,

however, indicate lower tracking reliability for horizontal

rotation. The average z-axis rotation velocity was measured

at about 40�/s at which the angular error was found to be

about 8 degrees, also a much more prohibitive performance

figure. For instance, rotating a 5 cm object would cause

about 12.5 cm rotational error.

The tracking performance of the ARToolkit for marker-

based tracking was also measured. The tracking accuracy

and marker recognition performance of the ARToolkit

marker tracker is affected primarily by relative size of the

marker on the camera screen (i.e. once the marker is rec-

ognized the tracking performance is less affected). Abawi

et al. conducted an extensive experiment of the tracking

accuracy of the ARToolkit [33]. According to their work,

ARToolkit exhibited about 5–7 cm of tracking error from

the distance of 70 cm with a 55 mm marker. This is not

sufficient yet for supporting effective manipulation of rel-

atively small objects (e.g. \10 cm objects from 1.5 m

distance). Our experience showed that for objects twice as

large (or more) than the marker, a reasonable level of

interaction efficiency was informally observed.

The relative size is determined by the distance between

the marker and the phone, and the size of marker under a

fixed camera resolution (160 9 120). Fig. 13 shows the

maximum allowable distance at which a marker of three

sizes is reliable detected. The three different sizes of

marker were set at 64 9 64 pixels (*35 9 35 mm),

128 9 128 pixels (70 9 70 mm) and 200 9 200 pixels

(109 9 109 mm) displayed on a 40 inch display screen

(having 1.83 pixels/mm), respectively. The maximum

distances reported in the graph may vary with different

lighting condition and type of the display device, but the

figures still can serve as a guideline for determining the

appropriate software marker size given a display size and

interaction range. Also note that the marker size should

also be set in consideration to the objects they control or

manipulate so that the marker does not seriously occlude

the objects.

6 Interaction performance and usability

As can be seen from the general results, the current

implementation is still far short of supporting recognition

of ‘‘fast’’ movements. The camera itself only produces

about 10–15 frames of data per second, and the motion

flow algorithm about 6–7 frames of tracked data per sec-

ond. Thus the gesture recognition or tracking performance

depends highly on the speed of the gesture/motion. For

example, if the mobile phone is rotated faster than 60�/s,

one-third of the area of the frame (and corresponding

feature candidates) disappears from last frame (the field of

view of the camera is about 35�). A related problem is the

accuracy. Fine continuous motion control (e.g. at the level

of few millimeters or degrees) is not currently possible.

While the high level interaction model should normally

be independent of any underlying implementation, in this

case, the limitations in each tracking technique affects

interaction performance. The tracking accuracy is some-

what improved with the use of markers, however, the

Fig. 12 Pixel errors in

horizontal translation (x-axis)

and z-axis rotation (roll) at

different motion speeds

Fig. 13 Maximum distances at which a marker of a given size is

reliably recognized

92 Pers Ubiquit Comput (2010) 14:83–94

123

marker-object and marker-cursor-based approaches can

cause occlusion of the target interaction object. This

problem can be alleviated in part by showing the marker

only when needed for a very short time interval (as is in

marker-object based approach) and by reducing the size of

the marker as small as possible (in marker-cursor based

approach).

Another problem is that detecting z-axis rotation (yaw)

becomes problematic because users tend to rotate the

phone around their wrists (instead of around the center of

the phone). This produces discrepancies in the intended

motion (e.g. rotate) and resulting interaction. Rotating

around the wrist can cause feature point disappearance as

well. However, it is only a matter of time that such hard-

ware (and system software performance) constraints will

disappear. Once the system resources become sufficient to

support relatively fast gestures also, the proposed interac-

tion should prove to be truly effective.

The scenario and task analysis have shown that for

sharing distant display, the most spatial interactions only

require degrees of freedom of less than two (e.g. translation

(2D), rotation (1D), scaling (1D)). The objects shared on

display are preferably all visible without mutual occlu-

sions. Thus, 3D interactions in full 6 degrees of freedom

are not normally necessary. When using the large display

in a more intimate way, at closer distances and with less

people to share, 3D interactions may be necessary. Our

proposal is to use the mobile phone in combination with

other means such as the touch screen, reducing the

demands on the mobile phone, again, to provide many

degrees of tracking freedom. Still, as already mentioned,

the tracking accuracy and reliability must be improved to

widen the types of possible tasks and user satisfaction.

In a related work, authors of this article have discov-

ered that despite limited amounts of the feedback (e.g.

small display size, limited sound, low resolution graphics,

etc.), hand-held devices can still exhibit reasonable

interaction efficiency through careful interaction design,

e.g. by adopting motion or proprioception-based inter-

faces for physical/spatial tasks and button based for dis-

crete/logical tasks [34]. The target application platform

considered in this work is different, i.e. here, the hand-

held device is used mainly for interaction with a separate

large display, while, in the study cited above, the device

contains the display itself. However, we believe that the

same principle applies in the interaction situations con-

sidered here, and previous researches have demonstrated

so through formal usability studies [30, 31], which need

not be repeated. Our focus is in finding novel interaction

methods using a ubiquitous interaction device such as a

mobile phone with a less than perfect tracking capability,

and whether the principles can hold in the presence of

such a limitation.

7 Conclusion

In this article, we have proposed and implemented various

ways to interact with a large shared display system using a

camera-equipped camera phone in a ubiquitous computing

environment setting. Our motivation starts with the fact

that mobile phones with cameras have now become a very

common platform in our lives and can act as an ideal

medium for various interactions in the ubiquitous com-

puting environment. Three main interaction styles (simple

mouse-like continuous tracking in 3D space, embodied

agent, and gesture driven) were proposed with two imple-

mentations of camera based tracking (e.g. movement flow

and marker recognition). Such devices and interaction can

further be enhanced with multimodal displays and addi-

tional sensing. This work is only the first step to our

research in using a multi-purpose handheld device such as

a mobile phone as an interaction device. In the future, we

plan to evaluate these techniques using rigorous user

studies, comparing them to other possible large screen

interaction methods. We will also explore other alternative

computer vision-based input methods using mobile phones.

Acknowledgments The Lucas–Kanade feature tracker for Symbian

OS was kindly provided by ACID (Australian CRC for Interaction

Design) for our implementation results. This research is financially

supported by the Ministry of Knowledge Economy (MKE) and Korea

Institute for Advancement in Technology (KIAT) through the

Workforce Development Program in Strategic Technology.

References

1. Norman DA (1998) The invisible computer. MIT Press, Cambridge

2. Wisneski C, Ishii H, Dahley A, Gorbet M, Brave S, Ullmer B,

Yarin P (1998) Ambient displays: turning architectural space into

an interface between people and digital information. In: Pro-

ceedings of the first international workshop on cooperative

buildings (CoBuild ‘98), pp 22–32

3. Lashina T (2004) Intelligent bathroom. In: European Symposium

on Ambient Intelligence, Eindhoven, Netherlands

4. Fitzmaurice GW, Zhai S, Chignell MH (1993) Virtual reality for

palmtop computers. ACM Trans Info Syst 11(3):197–218

5. Watsen K, Darken RP, Capps M (1999) A handheld computer as

an interaction device to a virtual environment. In: Proceedings of

the third immersive projection technology workshop

6. Kukimoto N, Furusho Y, Nonaka J, Koyamada K, Kanazawa M

(2003) Pda-based visualization control and annotation interface

for virtual environment. In: Proceeding of 3rd IASTED interna-

tional conference visualization, image and image processing

7. Mantyla V-M, Mantyjarvi J, Seppanen T, Tuulari E (2000) Hand

gesture recognition of a mobile device user. In: Proceedings of

the IEEE international conference on multi-media and expo,

pp 281–284

8. Bayon V, Griffiths G (2003) Co-located interaction in virtual

environments via de-coupled interfaces. In: Proceedings of HCI

international, pp 1391–1395

9. Hachet M, Pouderoux J, Guitton P (2005) A camera-based

interface for interaction with mobile handheld computers. In:

Pers Ubiquit Comput (2010) 14:83–94 93

123

Proceedings of the symposium on interactive 3D graphics and

games, pp 65-72

10. Lourakis M, Argyros A (2005) Efficient, causal camera tracking

in unprepared environments. Comput Vis Image Underst

99(2):259–290

11. Wagner D, Schmalstieg D (2003) First steps towards handheld

augmented reality. In: Proceedings of the 7th international con-

ference on wearable computers, p 127

12. Paelke V, Reimann C, Stichling D (2004) Foot-based mobile

interaction with games. In: ACM SIGCHI international confer-

ence on advances in computer entertainment technology (ACE),

pp 321–324

13. Hachet M, Kitamura Y (2005) 3D interaction with and from

handheld computers. In: Proceedings of the IEEE VR 2005

workshop: new directions in 3D user interfaces, pp 11–14

14. Hansen TR, Eriksson E, Lykke-Olesen A (2005) Mixed interac-

tion space: Designing for camera based interaction with mobile

devices. In: Proceedings of ACM CHI 2005 conference on human

factors in computing systems, pp 1933–1936

15. Kruppa M, Krüger A (2003) Concepts for a combined use of

personal digital assistants and large remote displays. In: Pro-

ceedings of simulation und visualisierung, SCS Publishing House

e.V, San Diego, pp 349–362

16. Ballagas R, Rohs M, Sheridan JG (2005) Sweep and point &

shoot: phonecam-based interactions for large public displays. In:

Conference on human factors in computing systems, pp 1200–1203

17. Rohs M, Zweifel P (2005) A conceptual framework for camera

phone-based interaction techniques (PERVASIVE 2005). Lect

Notes Comp Sci 3468:171–189

18. Madhavapeddy A, Scott D, Sharp R, Upton E, The Spotcode

project website. http://www.cl.cam.ac.uk/Research/SRG/netos/

uid/spotcode.html

19. Miyahara K, Inoue H, Tsunesada Y, Sugimoto M (2005) Intuitive

manipulation techniques for projected displays of mobile devices. In:

Conference on human factors in computing systems, pp 1657–1660

20. Wu M, Balakrishnan R (2003) Multi-finger and whole hand

gestural interaction techniques for multi-user tabletop displays.

In: Proceedings of the ACM UIST, pp 193–202

21. Shen C, Vernier F, Forlines C, Ringel M (2004) DiamondSpin: an

extensible toolkit for around the table interaction. In: Conference

on human factors in computing systems, pp. 167–174

22. Cavens D, Vogt F, Fels S, Meitner M (2002) Interacting with the

big screen: pointers to ponder. In: Conference on human factors

in computing systems, pp 678–679

23. Regenbrecht H, Haller M, Hauber J, Billinghurst M (2006) Carpeno:

interfacing remote collaborative virtual environments with table-top

interaction. Virtual Real Syst Dev Appl 10(2):95–107

24. Maringelli F, Mccarthy J, Slater M, Steed A (1998) The influence

of body movement on subjective presence in virtual environ-

ments. Hum Factors 40(3):469–477

25. Nokia 6630 symbian OS phone. Avaiable at http://www.symbian.

com/phones/nokia_6630.html

26. Kato H, Billinghurst M (1999) Marker tracking and HMD cali-

bration for a video-based augmented reality conferencing system.

In: Proceedings of the 2nd international workshop on augmented

reality, pp 85–94

27. NextWindow 2100 series touch frame. Available at http://www.

nextwindow.com/products/2100

28. Bouguet JY (2003) Pyramidal implementation of the Lucas

Kanade feature tracker description of the algorithm Intel Cor-

poration, Intel Corporation, Microprocessor Research Labs

29. Shi J, Tomasi C (1994) Good features to track. In: Proceedings of

IEEE conference on computer vision and pattern recognition,

pp 593–600

30. Chen M, Mountford SJ, Sellen A (1988) A study in interactive 3D

rotation using 2D control devices. In: Proceedings of SIG-

GRAPH’88, pp 121–129

31. Jacob I, Oliver J (1995) Evaluation of techniques for specifying

3D rotations with 2D input device. In: Proceedings of human

computer interaction, pp 63–76

32. Nintendo Wii. Available at http://wii.nintendo.com

33. Abawi D, Bienwald J, Dorner R (2004) Accuracy in optical

tracking with fiducial markers: An accuracy function for AR-

ToolKit. In: Proceedings of IEEE and ACM international sym-

posium on mixed and augmented reality, pp 260–261

34. Yim S, Hwang J, Choi S, Kim GJ (2007) Image browsing in

mobile device using user motion tracking. In: Proceedings of the

international symposium on ubiquitous virtual reality

94 Pers Ubiquit Comput (2010) 14:83–94

123

http://www.cl.cam.ac.uk/Research/SRG/netos/uid/spotcode.html
http://www.cl.cam.ac.uk/Research/SRG/netos/uid/spotcode.html
http://www.symbian.com/phones/nokia_6630.html
http://www.symbian.com/phones/nokia_6630.html
http://www.nextwindow.com/products/2100
http://www.nextwindow.com/products/2100
http://wii.nintendo.com

	Interaction with large ubiquitous displays using camera-equipped mobile phones
	Abstract
	Introduction
	Related work
	Interaction scenarios and requirements
	Proposed camera-equipped phone interfaces for large displays
	Interacting from distance (without a touch screen)
	Motion flow-based approach for 2D interaction
	Marker-object approach for 2D/3D interaction
	Marker-cursor approach (2D/3D interaction)

	Interacting in proximity to touch screen (mobile phone as an embodied ‘‘auxiliary” agent)
	Motion-based gesture interaction

	Relative motion tracking and its performance
	Implementation on the hand-held device
	Tracking performance

	Interaction performance and usability
	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

