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Blood Glucose Prediction Using Stochastic Modeling
in Neonatal Intensive Care

Aaron J. Le Compte∗, Dominic S. Lee, J. Geoffrey Chase, Jessica Lin,
Adrienne Lynn, and Geoffrey M. Shaw

Abstract—Hyperglycemia is a common metabolic problem in
premature, low-birth-weight infants. Blood glucose homeostasis in
this group is often disturbed by immaturity of endogenous regula-
tory systems and the stress of their condition in intensive care. A
dynamic model capturing the fundamental dynamics of the glucose
regulatory system provides a measure of insulin sensitivity (SI ).
Forecasting the most probable future SI can significantly enhance
real-time glucose control by providing a clinically validated/proven
level of confidence on the outcome of an intervention, and thus, in-
creased safety against hypoglycemia. A 2-D kernel model of SI

is fitted to 3567 h of identified, time-varying SI from retrospec-
tive clinical data of 25 neonatal patients with birth gestational age
23 to 28.9 weeks. Conditional probability estimates are used to
determine SI probability intervals. A lag-2 stochastic model and
adjustments of the variance estimator are used to explore the bias-
variance tradeoff in the hour-to-hour variation of SI . The model
captured 62.6% and 93.4% of in-sample SI predictions within
the (25th–75th) and (5th–95th) probability forecast intervals. This
overconservative result is also present on the cross-validation co-
horts and in the lag-2 model. Adjustments to the variance estima-
tor found a reduction to 10%–50% of the original value provided
optimal coverage with 54.7% and 90.9% in the (25th–75th) and
(5th–95th) intervals. A stochastic model of SI provided conserva-
tive forecasts, which can add a layer of safety to real-time control.
Adjusting the variance estimator provides a more accurate, cohort-
specific stochastic model of SI dynamics in the neonate.

Index Terms—Forecasting, human factors, stochastic
approximation.

I. INTRODUCTION

HYPERGLYCEMIA occurs in 40%–80% of very low-
birth-weight infants in the neonatal intensive care unit

(NICU) [3], [4]. Low-birth-weight neonates and preterm
neonates are at the highest risk of developing hyperglycemia
[5], [6], even in patients with no family history of diabetes.
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Hyperglycemic infants are often treated by glucose restric-
tion [11]–[13]. However, prolonged severe glucose restriction
may adversely affect the infant’s nutritional status, and may
also be a reason for poor growth observed in these infants [11].
Avoiding hyperglycemia, while providing adequate nutrition
to promote growth and development, is a major challenge for
healthcare providers in the NICU.

Several mechanisms are thought to contribute to neonatal hy-
perglycemia. Persistent endogenous glucose production (EGP)
during glucose infusions has been demonstrated in several stud-
ies [9], [16]. Hyperglycemia is also common during times of
neonatal stress and increased secretion of counter-regulatory
hormones leads to a prominent rise in endogenously produced
glucose, as well as a reduction in insulin sensitivity (SI ). Nu-
tritional support regimes with high carbohydrate content are
also provided to increase neonate weight, but often compound
the counter-regulatory response [17]. Immaturity of the glucose
transport system and a limited number of insulin-dependent tis-
sues are also thought to be contributing factors [18].

Insulin is an anabolic hormone and promotes growth, while
lowering glucose levels. However, endogenous deficiency or
lack of effect due to high insulin resistance will have a negative
impact on glycaemic levels [11]. Immature insulin processing
in the neonate produces excessive proinsulin, which is approxi-
mately 16× less effective than regular adult insulin, which may
also explain why some poor control is exhibited in this popula-
tion [21]. Preterm infants require higher insulin concentrations
that term infants to maintain euglycemia [21], and a high insulin
concentration compared to adults may be required to promote
peripheral glucose uptake [9]. Besides glucose control, reduced
proteolysis, and thus, preservation of muscle mass has been as-
sociated with insulin therapy in this cohort [7], [8], independent
of glucose infusion [26].

Several recent studies have associated hyperglycemia with
increased morbidity and mortality in neonatal cohorts [27]–[29].
Limited trials of glucose control using insulin in neonates have
been reported [7], [11], [34]–[39], and insulin therapy did help to
improve glucose tolerance in these limited trials. Insulin therapy
in preterm neonates is gaining wider acceptance [40], [41], but
still carries the risk of hypoglycemia and possible neurological
complications [3].

Model-based glycaemic control methods using both insulin
and/or nutrition modulation have been employed successfully
in the control of hyperglycemia in adult critical care popula-
tions, as reviewed by Chase et al. [42]. Model-based meth-
ods allow information about the fundamental metabolic state
of the patient, SI in this case, to be inferred from serial blood
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glucose (BG) measurements, and records of nutrition and insulin
administration [2], [43]. Once the current SI of the infant has
been identified, prediction of future SI would allow predictions
of outcome BG concentration for an intended clinical interven-
tion. Changes in the SI parameter reflect variations in patient
condition such as clinical stress [44], [45] and drug therapy [13].
Thus, tracking and forecasting this parameter is important to
provide safe glycaemic control in the highly dynamic preterm
neonate.

Stochastic models provide a means to quantify this proba-
bility of a future SI [46]. Thus, the resulting distribution of
BG concentrations that would result from a given intervention
can be determined [47]. This information can then be used to
guide dosing to avoid low blood sugar concentrations, improve
overall glycaemic control, and identify periods of potential high
glucose variability that may be indicative of emerging clinical
events.

This paper presents the adaptation of a stochastic model for
SI prediction from adult critical care to the unique clinical
and physiological case of the neonate. Several modifications to
the initial kernel density estimation model are used to explore
the relationship between the model and the underlying dataset.
In addition, the stochastic modeling approach is extended to
include more than the prior hour values to determine if improved
prediction can be obtained in this neonatal case.

II. METHODS

A. Patient Cohort

Retrospective data from 25 episodes of insulin therapy treat-
ment in Christchurch Women’s NICU were used in the study.
Ethics approval for the collection and publication of data was
obtained from the Upper South Regional Ethics Committee. The
25 episodes of insulin usage were composed of 21 individual
patients representing 3567 h of patient data. Gestational age at
birth ranged from 23 to 28.9 weeks, and birth weight ranged
from 600 to 1280 g. Inclusion criteria were birth weight less
than 1500 g and a period of treatment with insulin of at least
12 h.

B. System Model

The system model used in this research is based on a clinically
validated glucose regulatory system model for adult intensive
care patients [2], [43]. The model has been modified to better
account for the main physiological differences in neonates based
on available clinical data and kinetic studies. The overall model
is defined as

Ġ = −pGG − SI G
Q

1 + αGQ

+
P (t) + (PENDmbody) − (CNSmbrain)

(VG,frac(t)mbody)
(1)

Q̇ = −kQ + kI (2)

İ = − nI

1 + αI I
+

uex(t)
(VI ,fracmbody)

+ e−(kI u e x (t))IB (3)

TABLE I
CONSTANT MODEL PARAMETER VALUES

where G(t) (in millimols per liter) is the total plasma glucose
and I(t) (in millimols per liter) is the plasma insulin, exoge-
nous insulin input is represented by uex(t) (in milliunits per
minute), and basal endogenous insulin secretion IB [in milli-
units per (liter·minute)], with kI representing the suppression
of basal insulin secretion in the presence of exogenous insulin.
The effect of previously infused insulin being utilized over time
is represented by Q(t) (in milliunits per liter), with k [1/min]
accounting for the effective life of insulin in the system. Body
weight and brain weight are denoted by mbody (in kilograms)
and mbrain (in kilograms), respectively. Patient endogenous glu-
cose clearance and insulin sensitivity are pG [1/min] and SI

[in liters per (milliunits·minutes), respectively. The parameter
VI ,frac (in liters per kilogram) is the insulin distribution vol-
ume per kilogram body weight and n [1/min] is the constant
first-order decay rate for insulin from plasma. Total plasma glu-
cose input is denoted P(t) (in millimols per minute), EGP is
denoted by PEND [in millimols per (kilogram·minutes)] and
VG,frac (in liters per kilogram) represents the glucose distribu-
tion volume per kilogram of body weight. CNS [in millimols per
(kilogram·minutes)] represents noninsulin-mediated glucose
uptake by the central nervous system, as well as the liver, kid-
neys, and red blood cells [48]. Michaelis–Menten functions are
used to model saturation, with αI (in liters per milliunit) used for
the saturation of plasma insulin disappearance, and αG (in liters
per milliunit) for the saturation of insulin-dependent glucose
clearance.

Table I summarizes the parameters used in this model. For
the simulations in this study, k, n, αI , αG , CNS, IB , VI ,frac , pG ,
and PEND are set to generic population values based on reported
data. Prior clinical and model sensitivity studies with the similar
adult model [2], [49] have shown this choice to be robust. The
glucose compartment (1) in this model was modified from [2]
and [49] to account for available neonatal data [50]. In particu-
lar, the CNS and PEND terms were introduced to take advantage
of available neonatal glucose kinetic studies. The endogenous
glucose clearance term pG was set to 0.003 min−1 based on
parameter sensitivity studies [1], and is considered effectively
constant, similar to the adult case [2]. Insulin-mediated glucose
uptake saturation represented by the parameter αG was set to
zero based on the results of [9] and [51], which showed no sat-
uration in glucose uptake with increasing insulin concentration
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Fig. 1. Cohort percentage BG fit error and model prediction error for several values of EGP (PEND ) and endogenous glucose clearance (pG ). Fit and prediction
quality is very robust to the value of pG and PEND utilized [1].

within typical clinical usage ranges. Fig. 1 shows the model
fit and 1–4 h prediction error for a range of physiological pG

and PEND values over the 3567 h of retrospective patient data.
Model fit and prediction performance metrics were robust to
a range of pG and PEND values. Further parameter sensitivity
analysis found that model performance was robust to variations
of the parameters presented in Table I [1].

The parameter SI is explicitly determined from the data.
The integral-based fitting method of Hann et al. [2] was
employed for identifying SI over time using retrospective
BG concentrations (G), insulin administration (uex(t)), and
nutritional infusion rates (P(t)). The resulting time-varying
SI profile was constrained to a lower bound of 1 × 10−5

L/(mU·min) to prevent nonphysiological negative values for
SI [46], [47].

C. Stochastic Model (Lag-1)

A 2-D kernel density estimation method is used to construct
the stochastic model that describes the hourly transition of SI .
The kernel density method combines probability distribution
functions for each point of data to generate an overall den-
sity function for the dataset. This method has the advantage of
producing a smooth, physiologically likely, continuous func-
tion across the parameter range to provide continuity when in-
terpolating SI forecasts to account for each particular patient
state, and automatically accounts for any possible multimodal-
ity where the density of data may show several distinct peaks
corresponding to patterns of changes in SI . The overall result is
a bivariate probability density function for the potential param-

eter values. The goal of this statistical model is to quantify the
range of SI one hour ahead in time (SI ,n+1) based on available
data (SI ,n , SI ,n−1 , SI ,n−2 , . . ., SI ,0) to guide real-time clini-
cal control. Thus, it is important that the model formulation is
computationally feasible for real-time applications on typical
hardware.

The 2-D kernel density method is chosen for creating the
stochastic model because the distribution of SI ,n+1 varies with
SI ,n , as shown in Fig. 2, and cannot be simply described with
a single standard statistical distribution. Thus, the variations in
SI can be treated as a Markov process. A Markov process has
the property that the conditional probability density function of
future states of the process, given the current state, depends only
upon the current state. Therefore, using the Markov property of
the stochastic behavior of SI , the conditional probability density
of SI ,n+1 taking on a value y can be calculated by knowing
SI ,n = x

p (SI ,n+1 = y|SI ,n = x) =
p (SI ,n+1 = y, SI ,n = x)

p (SI ,n = x)
. (4)

Considering the fitted SI in a 2-D space, as shown in Fig. 2, the
joint probability density function across the x–y (SI ,n –SI ,n+1)
plane is defined by the fitted values shown by the dots, whose
coordinates are xi and yi

p (x, y) =
1
n

n∑

i=1

φ
(
x;xi, σ

2
xi

)

pxi

φ
(
y; yi, σ

2
yi

)

pyi

(5)
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Fig. 2. Variation of fitted SI from hour n to hour n + 1 for 3567 h of fitted
data. The distribution of SI ,n +1 changes based on the value of SI ,n and cannot
be described by a simple statistical distribution.

where

pxi
=

∫ SI , u p p e r

SI , l ow e r

φ
(
x;xi, σ

2
xi

)
dx (6)

pyi
=

∫ SI , u p p e r

SI , l ow e r

φ
(
y; yi, σ

2
yi

)
dy. (7)

Effectively, the joint 2-D probability density function is the
normalized summation of normal probability density functions
φ

(
x;xi, σ

2
xi

)
centered at individual data points.

In (5)–(7), the variance σ at each data point is a function
of the local data density in a centered and orthonormalized
space of x and y. Incorporating (6) and (7) into (5) normalizes
each φ

(
x;xi, σ

2
xi

)
and φ

(
y; yi, σ

2
yi

)
in the positive domain, ef-

fectively putting boundaries along x = SI ,lower , x = SI ,upper ,
y = SI ,lower , and y = SI ,upper lines, and enforcing physiolog-
ical validity in SI values. For the neonatal case, the boundary
values SI ,lower and SI ,upper were set to 1 × 10−5 L/(mU·min)
and 2.8 × 10−3 L/(mU·min), respectively, to define the compu-
tation domain based on the observed distribution of SI found in
fitting the model to the data [52].

The right-hand side denominator of (4) can be calculated by
integrating (5) with respect to y. Hence, (4) can be calculated as

p(SI ,n+1 = y|SI ,n = x)

=
∑n

i=1

(
φ

(
x;xi, σ

2
xi

)/
pxi

) (
φ

(
y; yi, σ

2
yi

)/
pyi

)
∑n

i=1

(
φ

(
x;xi, σ2

xi

)/
pxi

)

=
n∑

i=1

wi (x)
φ

(
y; yi, σ

2
yi

)

pyi

(8)

where

wi (x) =

(
φ

(
x;xi, σ

2
xi

)/
pxi

)
∑n

i=1

(
φ

(
x;xi, σ2

xi

)/
pxi

) . (9)

Thus, knowing SI ,n = x at hour n, the probability of
SI ,n+1 = y at hour n + 1 can be calculated using (8) and (9)
across the x–y plane. Where there is a higher density of data,
more certainty can be drawn on the “true” behavioral pattern.

The model was cross validated by splitting the 25 patient
cohort into five groups, each containing five patients. For each
group, the model was fitted on the remaining 20 patients of
the cohort representing approximately 2800 h of data. Out-of-
sample SI predictions were generated for the five patients of the
unused group and compared to the actual fitted SI from these
five patients.

Based on the in-sample, where the stochastic model is gener-
ated from the entire retrospective dataset and tested on the same
data, and out-of-sample, where different subsets of data are used
for model generation and testing, the kernel density estimator
was modified by multiplying the variance estimators by a con-
stant c (i.e., cσx and cσy ) to explore the model bias-variance
tradeoff for this data. This adjustment to the variance estima-
tor effectively adjusts the kernel bandwidth and the degree of
smoothing over the data.

D. Stochastic Model (Lag-2)

The stochastic model was extended to incorporate lag-2 ef-
fects to investigate any further reliance on SI time-history to pro-
vide justification for more complex Markov-like models. The
lag-2 model produces probability intervals for SI ,n+1 = z at
hour n + 1, given the SI for the previous two hours: SI ,n−1 = x
and SI ,n = y. The derivation of the model is similar to that of
the lag-1 case in that the extension to 3-D data involves the prod-
uct of three univariate probability distributions. Further details
on higher dimensional kernel density smoothing methods are
available in [53]. The resulting conditional probability estima-
tor is defined as shown in (10) at the bottom of the next page,
where

wi (x, y) =

(
φ

(
x;xi, σ

2
xi

)/
pxi

) (
φ

(
y; yi, σ

2
yi

)/
pyi

)
∑n

i=1

(
φ

(
x;xi, σ2

xi

)/
pxi

) (
φ

(
y; yi, σ2

yi

)/
pyi

)

(11)

pzi
=

∫ SI , u p p e r

SI , l ow e r

φ
(
z; zi, σ

2
zi

)
dz. (12)

Greater details of the general modeling approach, theoretical
background, and specific computations are given in [46] and
[47].

III. RESULTS

Fig. 2 shows the distribution of hourly variation in SI for
the 3567 h of patient data. Approximately 95% of the values
are below 1.5 × 10−3 L/(mU·min). Fig. 3 shows the condi-
tional probability plot for the lag-1 model. Fig. 4 shows the
5th, 25th, 50th, 75th, and 95th percentile probability bounds
computed by integrating Fig. 3, overlaid on the raw data of
Fig. 2. For a given value SI ,n , the 25th–75th percentile predic-
tion bound for SI ,n+1 is found by determining the intersection of
the 25th percentile bound and the 75th percentile bound on Fig. 4
with the line y = SI ,n , shown in Fig. 4 for SI ,n = 1 × 10−3

L/(mU·min). These values can then be sequentially substituted
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Fig. 3. Conditional probability density function for SI ,n +1 knowing SI ,n .
The structure of the plot is largely unimodal in the region SI ,n < 1.5 × 10−3

and SI ,n +1 < 1.5 × 10−3 , corresponding to the region of densest data.

Fig. 4. Hourly SI variation data with probability bounds. The bounds are com-
puted using an equal-tailed method approximation. An example curve showing
the computation of probability bounds for SI ,n = 1 × 10−3 L/(mU·min) is
displayed.

for SI into (1) to produce BG concentration forecasts based on
an equal-tailed calculated 25th–75th percentile range of likely
future SI [47].

Table II shows the in-sample results for the lag-1 model for
n = 3530 predictions. The number of predictions is less than
the total hours of SI due to end effects where the patient data
record was not evenly divisible by 1 h, and because predictions
can only be computed after the second hour of patient data. The

TABLE II
IN-SAMPLE RESULTS FOR STOCHASTIC MODEL PREDICTION WIDTHS

overall median 1-h absolute prediction error comparing pre-
dicted BG based on the 50th percentile of predicted SI to the
interpolated value from retrospective data is 4.3%, correspond-
ing to an average BG error of 0.34 mmol/L. The width of the
(25th–75th) BG probability interval is 0.78 mmol/L. Similarly,
the (5th–95th) BG probability interval width is 2.32 mmol/L.
SI predictions (62.6%) were within the (25th–75th) probability
intervals, corresponding to 59.1% of BG predictions. Similarly,
93.4% of SI predictions were within the (5th–95th) probability
intervals, corresponding to 92.2% of BG predictions. Thus, the
proportion of fitted SI and predicted BG values that fell within
the (25th–75th) and (5th–95th) probability intervals were mea-
surably higher than the expected 50% and 90%.

Table III shows the results of the model out-of-sample cross
validation. The results are generally consistent between groups,
suggesting that the overall model contains sufficient data to ac-
count for the range of dynamics observed in this cohort. Table III
shows that the model consistently overestimates the probability
bounds, with the proportion of SI within the bounds higher than
expected for the specified bandwidth.

The results of Tables II and III suggest that the model predic-
tion coverage for SI is overconservative by approximately 7%–
12% for the (25th–75th) prediction interval. The lag-2 model
was used to investigate whether these effects could be mitigated
by incorporating SI information from two previous hours. A
comparison of the lag-1 and lag-2 models revealed 61.3% of
SI fell within the (25th–75th) for the lag-2 model, similar to
the 62.6% result for the lag-1 case. Similarly, 94.6% of SI fell
within the lag-2 (5th–95th) interval compared to 93.4% for the
lag-1 model. These results suggest that lag-2 effects play no
significant major role in the evolution of SI compared to the
simpler lag-1 case.

A comparison of the lag-1 and lag-2 models revealed 61.3%
of SI fell within the (25th–75th) for the lag-2 model, similar

p(SI ,n+1 = z|SI ,n−1 = x, SI ,n = y)

=
∑n

i=1

(
φ

(
x;xi, σ

2
xi

)/
pxi

)(
φ

(
y; yi, σ

2
yi

)/
pyi

)(
φ

(
z; zi, σ

2
zi

)/
pzi

)
∑n

i=1

(
φ

(
x;xi, σ2

xi

)/
pxi

) (
φ

(
y; yi, σ2

yi

)/
pyi

)

=
n∑

i=1

wi (x, y)
φ

(
z; zi, σ

2
zi

)

pzi

(10)
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TABLE III
CROSS-VALIDATION COMPARISON STUDY FOR THE 25 PATIENT COHORT. EACH GROUP CONTAINED FIVE PATIENTS, WITH EACH MODEL GENERATED FROM

APPROXIMATELY 2800 h OF DATA

Fig. 5. Proportion of in-sample predicted SI within the 25%–75% prediction
bounds and number of predictions (=number of data points) grouped by SI

range.

to the 62.6% result for the lag-1case. Similarly, 94.6% of SI

fell within the lag-2 (5th–95th) interval compared to 93.4% for
the lag-1 model. These results suggest that lag-2 effects play no
significant major role in the evolution of SI compared to the
simpler lag-1 case.

Fig. 5 shows the proportion of in-sample predictions within
the 25%–75% probability bound grouped by location along the
SI ,n axis. Also plotted on Fig. 5 is the number of data points
(=number of in-sample predictions) for each group. The 25th–
75th percentile bounds would be expected to contain approxi-
mately 50% of the data. However, Fig. 5 shows that the cover-
age often exceeds this expectation. This coverage discrepancy
is highest where the data density is greatest. This result suggests
that the local data density variance estimators (σx and σy ) are
conservative for this dataset.

The effect of modifying the kernel density estimation param-
eter is shown for several values of c in Table IV. Reductions
of the variance estimators to approximately 10% – 50% (c =
0.1–0.5) of their original value yield coverage widths that con-
tain numbers closer to the approximately expected proportion
of in-sample data values.

Fig. 6 shows probability plots for c = 1.0, c = 0.5, and
c = 0.1. As expected, the probability distribution becomes less

smooth for lower values of c, particularly for higher values of SI ,
where data are less dense due to the modification of the kernel
bandwidth and subsequent degree of smoothing. Additionally,
for lower values of c, the (25th–75th) and (5th–95th) percentile
probability bounds for SI ,n+1 are essentially equal for some
regions of SI ,n due to sparse data, which may contribute to the
increase in coverage proportion for c less than 0.1, and show
that the model is possibly overfitting the data.

Despite the overestimation of the prediction band widths, the
50th percentile of the fitted probability distribution is centered
on the data reasonably well, with 49.1% and 50.9% of in-sample
predictions above and below the 50th percentile limit, respec-
tively. Probability bounds for the (50 − a, 50 + a) percentile
limits can be compared to the ideal prediction coverage. Thus,
for example, for a = 10, the proportion of predictions within
the (40th and 60th) percentile limits of the model distribution
can be compared to the ideal value of (2a)% = 20%.

Fig. 7 shows the extent of the model coverage overestimation
across the range of prediction bounds. Thus, for the c = 1.0
example at 2a = 38%, 50% of the data lies between the 31st
and 69th percentiles of the model, where the expected coverage
is 38%. Similarly, 90% of the data lie between percentiles 8.5
and 92.5, where the expected coverage is a much closer 85%.
The gap between actual and expected ideal bands is widest
for prediction bands of 30%–60% coverage. The c = 0.5 case
produces a line much closer to the 45◦ ideal.

Fig. 8 shows a simulated trial demonstrating the combined
system of deterministic glucose system model described in (1)–
(5) and the lag-1 stochastic model. Specifically, Fig. 8 shows the
stochastic model forecasts for the 5th and 95th percentiles of
future SI . These values are substituted into (1), and the system
of equations are solved over the forecast interval to generate
the spread of future BG based on variability in SI . The spread
of forecasted BG is compared to the measured or interpolated
value from retrospective data to determine model forecast per-
formance, and in control situations, the lower bound of the BG
forecast range is set to a limit of 4 mmol/L.

IV. DISCUSSION

The lag-1 stochastic model presented in this paper has also
been employed on a cohort of adult intensive care patients [46],
[47]. The results of Lin et al. also show that the model produces
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TABLE IV
COMPARISON OF PROBABILITY BOUNDS FOR MODIFICATIONS OF KERNEL DENSITY ESTIMATOR (σ ′

x = cσx AND σ ′
y = cσy )

Fig. 6. Probability-bound determination using local variance estimator modified by a constant c. The lower values of c produce a less smooth probability
distribution with greater variance at higher SI . The individual points represent raw SI data. The solid lines represent the 5%, 25%, 50%, 75%, and 95% probability
bounds.

Fig. 7. Comparison of in-sample predicted SI within arbitrary probability
bounds (2a) against ideal proportion of predictions within bounds (45◦ line) for
c = 1.0 and c = 0.5, where interquartile range is the 2a = 50% case.

conservative probability bounds. However, their result of 54.0%
within the (25th–75th) percentile bound is far closer to the ideal
50%. Hence, there appear to be unique and significant differ-
ences in the variation of model-based SI between adults and
neonates. Additionally, the model-based SI parameter used in
this study is also model-specific, and thus, may also account for
different physiological effects in neonates compared to adults.

The kernel density estimator method employed in this
stochastic model produces a smooth, physiologically likely dis-
tribution, and a conservative model. This conservatism can pro-
vide a layer of safety as wider probability bounds would be
more likely to capture dynamics and changes not observed in
the cohort used to fit the model. However, wider coverage bands
may also impact on glycemic control performance, as using a
conservatively wide probability band to avoid potential hypo-
glycemia may needlessly force a controller to maintain a mildly
hyperglycemic state. The overall BG width of the (5th–95th)
percentile probability band for c = 1.0 was 2.32 mmol/L, which
would likely have a significant impact on performance for a
controller targeting a typical 4–7 mmol/L target range.

A tradeoff between model bias and variance is thus required.
The cross validation showed consistent results, suggesting that
the cohort dataset is large enough to satisfy the assumption that
the model contains enough data points to reasonably reflect the
vast majority of target patients presented in the Christchurch
Women’s Hospital NICU. Modifying the local data density
variance estimator showed that less variance (c < 1.0) resulted
in distributions that more accurately reflected the observed data
prediction coverage. The ideal value of the adjustment parame-
ter c was found to be in the range of 0.1–0.5. However, Fig. 6
shows that the probability bounds of the distribution for rel-
atively small c are not smooth, suggesting that this particular
distribution is overmodeling the data, where a smoother varia-
tion is physiologically more likely. The method shown in Fig. 7
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Fig. 8. Simulated trial using model-based control with stochastic model forecasts. The top panel shows blood glucose concentration under simulated control
(solid line) compared to retrospective control (dashed line). The middle panel shows model-fitted SI . The bottom panel shows administration of insulin during
simulated control (solid line) compared to retrospective data (dashed line). The shaded areas in the top and middle panels show the 5th–95th percentile of forecasted
BG and SI .

provides a means to produce smooth probability bounds with a
customizable tradeoff between glycaemic control performance
and hypoglycemic protection. Overall, c = 0.5 appeared to pro-
vide the most suitable tradeoff between model bias and variance
for this cohort.

The results in Fig. 5 suggest that the overestimation of the
probability bounds does not occur in regions of sparse data,
but rather in regions of dense data. The extension of the model
to incorporate lag-2 effects in (10)–(12) had a minimal effect
on this dataset. Thus, the local data density variance estimator
may be a source of the overestimation. The variance estimator
employed here is aligned with the cardinal axes—the major
and minor axis of the ellipse that forms from the contours of
each individual distribution in (8) is aligned in the x and y
directions. A further modification may incorporate a rotation of
the distribution-–such that the variance in each distribution is
described by three parameters (σx , σy , and θ) [54] to represent
scaling in the x and y directions and rotation, respectively.

Clinically, the absence of lag-2 effects is interesting. It says
that variation is hour-to-hour in these neonates and effectively
random over that period with no buildup. A second clini-
cal outcome or interpretation is that major changes in the
neonate’s condition are not likely over a longer period and
are, thus, more acute. The lack of significant lag-2 effects ap-
pears to indicate that significant changes in SI , and thus, infant
condition may occur largely within 1-h windows. A detailed
prospective study, possibly utilizing continuous glucose moni-
toring, may provide more data to further clarify this preliminary
result.

The cohort data represents 3567 h of fitted SI data over 25
patients. BG measurement density for these patients was typi-
cally 2–4 per hour. Thus, there may be some effect introduced
by interpolating between BG measurements to fit SI . How-
ever, a lag-1 model produced by only taking values of the SI

parameter one hour before and one hour after each BG measure-
ment still yielded 64.0% of predicted SI within the 25th–75th
percentiles, overshooting the 50% expected value. This result
suggests that the BG interpolation is not playing a significant
role in this dataset. Higher BG measurement density may re-
veal more dynamics that could be used to refine the BG system
model, and subsequently, the stochastic model. However, such
greater measurement density is ethically difficult in the very
low-blood-volume NICU population [3].

The nonparametric formulation of the kernel density model
automatically accounts for multimodality, which may reveal
patterns in large changes in SI . Clinically, such a sudden or
large change could be due to a sudden worsening of condition.
Thus, the multimodal model may provide some measure of
estimating the risk of sudden significant change (for the worse),
particularly at higher SI , which might offer some significant
clinical benefit.

Overall, this stochastic method provides predictions based on
a cohort-wide dataset. The prediction bounds for less dynamic
patients would typically be more conservative than necessary
to account for more dynamic patients that make up the patient
population. Thus, the probability bounds are optimized in a
cohort sense, but not necessarily on a per-patient basis. Statisti-
cal methods, such as autoregressive integrated moving average

Authorized licensed use limited to: University of Canterbury. Downloaded on March 03,2010 at 16:34:25 EST from IEEE Xplore.  Restrictions apply. 



LE COMPTE et al.: BLOOD GLUCOSE PREDICTION USING STOCHASTIC MODELING IN NEONATAL INTENSIVE CARE 517

(ARIMA) modeling, may provide enhanced prediction perfor-
mance by customizing the model to the individual patient in real
time. However, such models require substantial individualized
patient data (e.g., 12–48 h) that may not be available at the
commencement of real-time glycaemic control for a given
infant. Real-time continuous glucose monitors have been used
in neonatal cohorts [55] and may provide additional data for
more accurate parameter fitting and forecasting; however,
readings on current devices exhibit wide confidence bands,
and lower sensitivity and specificity at low BG [55]. Thus,
the cohort-wide model presented here could be employed to
provide prediction bounds until a suitable amount of data are
generated to employ a reliable patient-specific model. Semi-
Markov methods may also be employed in SI forecasting,
and can provide an avenue to assess the effect of variable BG
measurement and control intervention timings to test robustness
to real-world uncertainties and delays.

V. CONCLUSION

Lag-1 and lag-2 stochastic models are developed to provide
SI predictions based on a set of identified, time-varying SI

data for a neonatal intensive care cohort. The model provides
prediction estimators with greater, more conservative, coverage
than expected from the probability bounds. Incorporating lag-2
effects did not improve the coverage proportion, and greater cov-
erage overestimation in regions of higher data density pointed
to the variance estimator based on local data density as a likely
source of overestimation. Modifying the data density estimator
by introducing a constant scaling factor showed that appropri-
ate coverage was obtained at approximately 10%–50% of the
original value. However, the probability bounds were no longer
smooth or as physiologically realistic for very low values near
10%. A value of c = 0.5 provided the best tradeoff of bias and
variance. Smooth probability bounds containing an appropriate
proportion of prediction coverage can be obtained by choosing
probability bounds to obtain the desired prediction and gly-
caemic control performance.

Finally, the model and approach has also provided useful
clinical insight. The model skew in distribution at higher SI ,n

values to account for sudden, larger negative changes in SI that
appears to match clinical reality and provides insight, for at least
this cohort, into the risk or likelihood of such changes.
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