
 1

PREDICTION OF SPATIALLY DISTRIBUTED SEISMIC DEMANDS IN 
SPECIFIC STRUCTURES: GROUND MOTION AND STRUCTURAL 

RESPONSE 

Brendon A Bradley*, Rajesh P Dhakal, Gregory A MacRae, Misko Cubrinovski 

Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, 

Christchurch 8020, New Zealand 

*Corresponding author: Ph +64-3-366 7001 ext 7673; Fax: +64-3-364 2758; 

Email: bab54@student.canterbury.ac.nz 

ABSTRACT 
The efficacy of various ground motion intensity measures (IM’s) in the prediction of 

spatially distributed seismic demands (Engineering Demand Parameters, EDP’s) within a 
structure is investigated.  This has direct implications to building-specific seismic loss 
estimation, where the seismic demand on different components is dependent on the location of 
the component in the structure.  Several common intensity measures are investigated in terms 
of their ability to predict the spatially distributed demands in a 10-storey office building, 
which is measured in terms of maximum interstorey drift ratios and maximum floor 
accelerations.  It is found that the ability of an IM to efficiently predict a specific EDP 
depends on the similarity between the frequency range of the ground motion which controls 
the IM and that of the EDP.  An IM’s predictability has a direct effect on the median response 
demands for ground motions scaled to a specified probability of exceedance from a ground 
motion hazard curve.  All of the IM’s investigated were found to be insufficient with respect 
to at least one of magnitude, source-to-site distance, or epsilon when predicting all peak 
interstorey drifts and peak floor accelerations in a 10-storey RC frame structure.  Careful 
ground motion selection and/or seismic demand modification is therefore required to predict 
such spatially distributed demands without significant bias. 
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INTRODUCTION 

The seismic response of structural systems is complex with ground motion shaking 
causing a response that varies significantly in space and time.  This complex response can 
result in significantly different acceleration and displacement demands at spatially different 
locations in a structure, which will depend on its dynamic characteristics, as well as the 
properties of the ground motion record exciting the structure. 

In emerging performance-based frameworks such as the Pacific Earthquake Engineering 
Research (PEER) Centre performance-based earthquake engineering (PBEE) methodology [1] 
uncertainties in all aspects (from ground motion to loss estimation) of the seismic analysis of 
structures can be explicitly incorporated and propagated to obtain performance measures 
useful for decision making.  In such a probabilistic framework, there are transparent 
advantages in being able to reduce uncertainties in each of the aforementioned aspects, since 
uncertainties inevitably result in an increase in the risk of structural failure and/or economic 
losses for infrequent hazards such as those posed by seismic-induced ground shaking. 
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An area of research in the past decade has been the investigation of ground motion 
intensity measures (IMs) which provide the link between the seismic hazard curve (which 
gives the probability/frequency of exceedance of a specific level of IM) and structural 
response (giving the distribution of the engineering demand parameter, EDP, for a given IM).  
An ‘optimal’ intensity measure must possess efficiency [2], sufficiency [3], predictability [4] 
and scaling robustness [5].  The aspects of efficiency and sufficiency have been studied in 
detail by Cornell and co-workers (e.g. [5-9]) where the seismic response of structures was 
measured simply via the maximum interstorey drift over all floors (which relates well to joint 
rotations in structural elements and therefore the potential for structural collapse).  
Predictability relates to the accuracy in predicting an IM from ground motion prediction 
equations.  With the increased interest in ground motion selection methods (e.g. [10]), scaling 
robustness seeks to determine if the distribution of EDP using scaled ground motions is biased 
compared with that obtained using un-scaled ground motions [11].  Optimal intensity 
measures for total floor accelerations have received less attention than that of peak interstorey 
drifts, with the exception of Taghavi and Miranda [12] who examined the efficiency of four 
different IMs at predicting peak floor accelerations using simple elastic structural models.   

The significant spatial variation in the response of structural systems with several or 
more storeys means that separate consideration must be given to each of these demands when 
rigorously considering the seismic performance of such systems within the PEER framework.  
As such, loss estimation methods used within the PEER PBEE framework typically employ a 
vector of EDPs which account for these spatially varying demands (typically maximum 
interstorey drift ratios and maximum floor accelerations).  Furthermore, ground motion IMs 
which are efficient, sufficient, predictable and robust to scaling for this vector of EDP values 
are required.   

Aslani [13] considered the efficiency and sufficiency of four different IMs for use in 
predicting spatially distributed demands in structures, and this research is intended to extend 
the work of Aslani [13] in the following ways: (1) seismic hazard curves for each of the 
ground motion IMs are developed independently allowing explicit consideration of the 
predictability of the different IMs; (2) consideration is given to efficiency, sufficiency, 
predictability, and scaling robustness of the IMs; (3) ground motion selection based on hazard 
deaggregation is employed; and (4) 50th percentile rotation independent geometric mean 
(GMRotI50) intensity measures are used in both hazard computations and seismic response 
analysis. 

The purpose of this paper is to use common IMs presented in literature, and for a 
specific structure investigate their predictability, efficiency, sufficiency, and scaling 
robustness in predicting peak interstorey drifts and total floor acceleration demands 
throughout the structure.  In a companion paper [14], correction for IM insufficiency, as well 
as the resulting demand hazard, collapse hazard, and loss estimation results based on the 
different IMs is considered. 

STRUCTURE CONSIDERED 

The case study structure used herein is based on the geometry of the ‘Red Book 
building’ [15], a ten storey reinforced concrete (RC) structure, which acts as a design example 
of the New Zealand Concrete Code [16].  The primary lateral load carrying system consists of 
four one-way perimeter moment resisting frames which are 3 bays long.  Vertical loads are 
transferred primarily through interior columns with gravity beams supporting one-way floor 
units.   

A perimeter frame 2D model was developed using the finite element analysis program 
OpenSees [17].  Due to the symmetry of the structure, it was assumed that the 3D response 
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could be reasonably approximated by separate 2D analyses in each of the two primary frame 
directions.  The effects of foundation flexibility due to soil-foundation interaction were 
considered simply by using elastic rotational springs at the base of the columns [18].  The 
structure was modelled using a lumped mass model and non-linear (beam) elements with the 
appropriate backbone properties determined using fibre-based section modelling, and stiffness 
and strength degradation based on calibration with experimental tests [19].  The structural 
model had a fundamental period of T1 = 1.74 seconds.  Based on a pushover analysis it was 
determined that the ‘yield’ displacement, dy, of the structure was 10 cm (this is used for the 
inelastic spectral displacement IM, Sdi). 

The seismic demand due to ground motion excitation was monitored via peak 
interstorey drift ratios and peak floor accelerations at each floor in the structure (i.e. a total of 
ten drifts and eleven accelerations). 

GROUND MOTION INTENSITY MEASURES AND SEISMIC HAZARD  

In order to investigate the prediction of spatially distributed demands in structures a 
variety of ground motion IMs are selected.  As there have been numerous ground motion IMs 
presented in the literature relating to various different aspects of structural behaviour it is 
necessary to apply some criteria to determine which IMs to investigate in this research.  
Firstly, it was desired to consider several IMs which have been used by other researchers 
when examining structural response from a probabilistic viewpoint.  Secondly, and more 
importantly, all IMs used had to have a ‘robust’ ground motion prediction equation which can 
be used to develop seismic hazard curves using this IM at a variety of sites.  This second point 
is particularly important as many studies have focused on the consideration of somewhat 
complex IMs which may be a combination of several ‘standard’ IMs in an effort to achieve 
better response prediction (i.e. efficiency).  However, without a ground motion prediction 
equation for such an IM, no ground motion hazard curves can be developed, and hence no 
PBEE assessment can be performed using this IM.  The term ‘robust’ has been used in order 
to differentiate between simple ground motion prediction equations based on limited data, and 
comprehensive ground motion prediction equations based on large ground motion databases 
which consider many features known to affect ground motion prediction (e.g. faulting types, 
hanging wall effects, local soil effects) such as those of the next generation attenuation (NGA) 
project [20].   

Based on the above criteria a total of five different ground motion IMs were selected, 
namely: peak ground acceleration (PGA); peak ground velocity (PGV), elastic spectral 
displacement (Sde); inelastic spectral displacement (Sdi); and spectrum intensity (SI).  PGA and 
Sde can be predicted from (elastic) spectral acceleration prediction equations, some of which 
now also include coefficients for computing PGV [20].  Prediction of Sdi, defined as the peak 
displacement of a bilinear single degree-of-freedom oscillator [21], is obtained by combining 
a ground motion prediction equation for Sde with a ground motion prediction for the ratio 
Sdi/Sde [21] (while the empirical equation for Sdi/Sde was determined using one specific ground 
motion prediction equation Tothong and Cornell [21] argue that it can be used with any 
prediction equation for Sde).  Finally, a ground motion prediction equation for SI, defined as 
the integral of the pseudo-spectral velocity from 0.1-2.5 seconds [22], can be computed 
directly from ground motion prediction equations for spectral acceleration [23].  The effect of 
epistemic uncertainties is beyond the scope of this study.  However, it should be noted that as 
all ground motion IM’s have ‘robust’ prediction equations, then the effect of epistemic 
uncertainty is expected to be of a similar magnitude for all the different IMs. 

A simple hypothetical site with a 30-m averaged shear wave velocity of 600 m/s was 
considered as illustrated in Figure 1a, which is a closest distance of 15 km from a 40 km 
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strike-slip fault.  The fault has a Gutenberg-Richter magnitude distribution with α = 3.0 and 
β = 0.8; minimum and maximum magnitudes of 5.0 and 7.5, respectively; and events assumed 
to be Poissonian in time.  Based on this hypothetical scenario and using the Boore and 
Atkinson [24] ground motion prediction equation for PGA, PGV and Sde; the prediction 
equation of Tothong and Cornell [21] for Sdi; and the prediction equation of Bradley et al. [23] 
for SI (with Boore and Atkinson [24] used as the ‘base’ prediction equation for both Sdi and 
SI), the ground motion hazard curves shown in Figures 1b-1d were determined using the 
probability-based formulation for the ground motion hazard [25].  Because of the initial 
period of the structure it is observed that the elastic and in-elastic spectral displacement 
hazards are similar in Figure 1c (i.e. the equal displacement rule).  Note that the 50th 
percentile orientation-independent geometric mean of the two horizontal ground motion 
components, GMRotI50 [26], definition for the ground motion intensity measures has been 
used in computing the hazard curves for all five IMs. 
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Figure 1: Hypothetical site considered and ground motion hazard curves for the five different ground 
motion intensity measures (IMs) considered. 

GROUND MOTION SELECTION 

It is important to carefully select ground motion records for use in dynamic analysis to 
avoid bias in structural response [27].  Ground motion records should be selected which are 
representative of those which are most likely to occur at the site of interest in the future.  
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Hence, the target is to select a suite of ground motions which has the same distribution of 
ground motion properties as the deaggregation [28, 29] of the seismic hazard at the site.  In 
the remainder of the manuscript particular attention will be given to the spatial distribution of 
seismic demands for ground motions which have exceedance probabilities of 1/475 and 
1/2475 (corresponding to 10% and 2% probabilities of exceedance in 50 years, respectively).  
Table 1 gives the mean moment magnitude (Mw), (Boore-Joyner) source-to-site distance (R), 
and epsilon (ε, defined as the number of standard deviations a specific ground motion 
parameter is above the predicted mean) for the five different IMs obtained by deaggregation 
of the seismic hazard at these exceedance probabilities.  It can be seen that for a given IM, the 
mean Mw, and ε are larger and mean R smaller for the 1/2745 exceedance probability 
compared to the 1/475 exceedance probability.  In addition, for a given exceedance 
probability it is observed that there are quite significant differences between the mean Mw, R 
and ε values for the different IMs, since they are affected by different properties of the ground 
motion.  Mw and R obviously affect the intensity, frequency content and duration of ground 
motion records, and it has also been shown that when spectral ordinates are used as a ground 
motion IM (i.e. PGA and Sde used in this study) that ε has an effect on structural response, as it 
relates to spectral shape [6].  Sdi has been shown to be (relatively) insensitive to ε (when 
predicting the peak interstorey drift over all floors), since Sdi directly accounts for spectral 
shape in the case of period elongation [5].  The effect of ε on PGV and SI has not been 
researched in detail. 

Table 1: Statistics of the ground motion hazard deaggregation and suite of ground motion 
records used. 

 PIM(im) = 1/475 P IM(im) = 1/2475 Ground motion suite 

 IM 
wM  

R    IM 
wM  

R    
wM  

R    

PGA (g) 0.515 6.93 18.8 1.58 0.744 7.01 18.5 2.14 6.49 20.8 1.17 

PGV (cm/s) 44.1 7.16 18.8 1.26 66.2 7.24 18.5 1.88 6.49 20.8 1.58 

Sde (cm) 20.9 7.04 18.9 1.46 33.4 7.10 18.7 2.06 6.49 20.8 1.57 

Sdi (cm) 20.1 7.03 19.0 1.44 31.6 7.10 18.8 2.08 6.49 20.8 1.57 

SI (cm.s/s) 148.3 7.11 18.7 1.34 223.3 7.17 18.3 1.89 6.49 20.8 1.76 

 
As the value of ε depends on the IM and GMPE used and cannot currently be 

determined a priori (using, for example, the PEER NGA ground motion database [30]) then 
using the deaggregation results in Table 1, ground motions were initially selected based on 
wide range of Mw, R, and site 30-m averaged shear-wave velocity (Vs30) (specifically 6.0 < Mw 

< 8.0; 0 < R < 30 km; 300 < Vs30 < 800 m/s) giving a total of 155 ground motions (each with 
two orthogonal horizontal components).  The ε values for the five different ground motion 
parameters were determined and then the allowable ranges of Mw, R, Vs30, and ε were further 
constrained to obtain a set of 25 ground motions (i.e. 50 different horizontal ground motion 
records for use in dynamic analysis) which were based on 6.2 < Mw < 7.7; 10 < R < 28 km; 
300 < Vs30 < 800 m/s; ε (of any IM) > 0.4.  No constraints were placed on the number of 
recordings from a single event.  The adopted ground motion records are presented in Table 2 
and their statistics for the different IMs are summarised in Table 1.  Note that the process for 
selecting ground motion records was conducted in an iterative fashion as it was not possible to 
find a large enough suite of records which match the statistics (mean and standard deviation) 
of the seismic hazard deaggregation exactly.  Therefore a trade-off was required to try and 
match all Mw, R, and ε values relatively well. 
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PREDICTION OF STRUCTURAL RESPONSE: DETERMINISTIC 
HAZARD SCENARIO 

Before investigating the efficacy of the five different ground motion IMs in predicting the 
spatially varying structural response for the 1/475 and 1/2475 probability of exceedance 
hazard levels, it is first necessary to test for any bias when comparing the different ground 
motion IMs.  Potential sources of bias could be whether the selected ground motion record 
suite is equally representative for all five different ground motion IMs or whether the different 
ground motion prediction equations used to determine the scale factors (used to scale the 
amplitude of motion only) for each ground motion are consistent.  To investigate the above 
points a deterministic earthquake scenario is considered with a moment magnitude of 
Mw = 7.0 and a source-to-site distance of R = 18 km.  Note that this deterministic scenario is 
intentionally similar to the mean magnitude and distance obtained from deaggregation of the 
seismic hazard in Table 1.  Table 3 gives the median and dispersion (lognormal standard 
deviation) for the ground motion IMs obtained from the ground motion prediction equations 
for the deterministic scenario.  Figures 2a and 2b illustrate the median (specifically, the mean 
of the logarithms which is the median assuming a lognormal distribution) and dispersion for 
the GMRotI50 acceleration response spectra obtained by scaling the ground motion records to 
the median IM for the deterministic scenario.  Since the median response spectra of the 25 
ground motion records scaled based on the five different IMs are very similar, it indicates that 
the selected ground motion suite and the different ground motion prediction equations do not 
introduce any significant bias when comparing the results of the structural analyses to follow.  
Note that this result was to be expected since all of the IMs use (or are derived from) the 
Boore and Atkinson [24] ground motion prediction equation and ground motions were 
selected to match hazard deaggregation.  Figure 2b provides insight into the effect of IM 
scaling on the dispersion in response spectra amplitudes as a function of vibration period.  
Obviously, PGA scales all the ground motions to have the same spectral acceleration at T = 0 
so the dispersion is zero at T = 0, and similarly for Sde at T = T 1.  Also since the inelastic 
spectral displacement for this scenario, Sdi = 6.09 cm, is less than the yield displacement of the 
inelastic single-degree-of-freedom (SDOF), dy = 10 cm, then the dispersion is also zero at 
T = T1 for ground motions scaled to Sdi (i.e. the Sde and Sdi lines in Figure 2b are coincident).  
An increase in response spectra dispersion with period is observed for ground motions scaled 
based on PGA, while in a similar fashion the dispersion increases as T moves away from T1 
for Sde - and Sdi –based scaling.  While scaling based on PGV or SI does not ‘fix’ the 
dispersion to zero at any point of the response spectra it is observed that apart from the small 
period window around T = T 1 (approximately 1.0 < T < 2.5) the dispersion for both PGV and 
SI is lower than when ground motions are scaled to Sde.   
Figures 3a and 3b illustrate the median response (in terms of maximum interstorey drift ratios 
and maximum floor accelerations) of the case study structure based on ground motion scaling 
using the five different IMs.  As expected, the median response, both for interstorey drifts and 
floor accelerations are approximately the same for all five IMs.  The minor exception being 
that ground motions scaled using PGA give slightly larger interstorey drifts and floor 
accelerations over the lower portion of the structure.  This is consistent with the slightly larger 
median response spectra over 1.0 < T < 3.0s using PGA-scaling in Figure 2a.  Figure 3c 
illustrates the dispersion in the maximum interstorey drifts for the deterministic scenario.  It 
can be seen that over the lower half of the structure where the peak responses are primarily 
due to the first mode of vibration, that Sde (and Sdi) are the most efficient in predicting the 
interstorey drifts, while PGA is the worst, and SI is marginally better than PGV as it contains 
spectral velocity information at periods around that of the first mode.  In the upper-half of the 
structure, where the effects of higher vibration modes are more significant it is clearly seen 
that the efficiency of the spectral displacement IMs (Sde and Sdi) reduces and the efficiency of 
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PGA increases.  Figure 3d illustrates the dispersion in the peak floor accelerations for the 
deterministic scenario.  It is apparent that PGA has the best efficiency for all floors, although 
the difference is less pronounced in the upper floors (where the structures dynamic 
characteristics have significantly modified the ground motion input at the base).  On the other 
hand, spectral displacement IMs (Sde and Sdi) are the worst at predicting the maximum floor 
accelerations over all floors.  Note that the dispersion in the ground floor peak acceleration 
when using PGA is not zero as the ground motion IMs are based on GMRotI50 [26] (i.e. the 
geometric mean of the two components), while only a single component is applied in each of 
the structural analyses.  It is necessary to use the GMRotI50 definition for the IMs to be 
consistent with the ground motion hazard curves [31].   

Table 2: Properties of the ground motions adopted 

ID* Earthquake Year Recording station MW R (km) 
Vs30 
(m/s) 

125 Friuli, Italy 1976 Tolmezzo 6.50 14.97 425 

265 Victoria, Mexico 1980 Cerro Prieto 6.33 13.80 660 

339 Coalinga 1983 Parkfield - Fault Zone 15 6.36 28.00 376 

359 Coalinga 1983 Parkfield - Vineyard Cany 1E 6.36 24.83 339 

369 Coalinga 1983 Slack Canyon 6.36 25.98 685 

587 New Zealand 1987 Matahina Dam 6.60 16.09 425 

755 Loma Prieta 1989 Coyote Lake Dam (SW Abut) 6.93 19.97 598 

776 Loma Prieta 1989 Hollister - South & Pine 6.93 27.67 371 

952 Northridge 1994 Beverly Hills - 12520 Mulhol 6.69 12.39 546 

963 Northridge 1994 Castaic - Old Ridge Route 6.69 20.10 450 

995 Northridge 1994 LA - Hollywood Stor FF 6.69 19.73 316 

1003 Northridge 1994 LA - Saturn St 6.69 21.17 309 

1010 Northridge 1994 LA - Wadsworth VA Hospital South 6.69 14.55 414 

1077 Northridge 1994 Santa Monica City Hall 6.69 17.28 336 

1485 Chi-Chi, Taiwan 1999 TCU045 7.62 26.00 705 

2461 Chi-Chi, Taiwan 1999 CHY028 6.20 23.44 543 

2495 Chi-Chi, Taiwan 1999 CHY080 6.20 21.34 553 

2618 Chi-Chi, Taiwan 1999 TCU065 6.20 25.17 306 

2619 Chi-Chi, Taiwan 1999 TCU067 6.20 27.66 434 

2626 Chi-Chi, Taiwan 1999 TCU075 6.20 18.47 573 

2627 Chi-Chi, Taiwan 1999 TCU076 6.20 13.04 615 

2655 Chi-Chi, Taiwan 1999 TCU122 6.20 18.10 475 

2661 Chi-Chi, Taiwan 1999 TCU138 6.20 21.11 653 

3300 Chi-Chi, Taiwan 1999 CHY074 6.30 27.57 553 

3507 Chi-Chi, Taiwan 1999 TCU129 6.30 22.69 664 

*ID as given on the NGA database. http://peer.berkeley.edu/nga/earthquakes.html  
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Table 3: Median and dispersion in the ground motion IMs for the deterministic Mw = 7.0, 
R = 18 km scenario. 

IM Median, exp(μlnIM) Dispersion, σlnIM 

PGA (g) 0.187 0.564 
PGV (cm/s) 15.78 0.560 

Sde (cm) 6.19 0.690 
Sdi (cm) 6.09 0.672 

SI (cm.s/s) 52.4 0.592 
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Figure 2: Response spectra of the ground motion suites scaled based on the different IMs for 
a Mw = 7, R = 18 km scenario 

 
The results of Figures 3c and 3d are consistent with the results obtained by Aslani [13] 

and Taghavi and Miranda [12], and clearly indicate that the ability of various ground motion 
IMs to predict structural response EDPs depends on the similarity of the frequency range of 
the motion which dominates the EDP and that of the IM.  For example, peak accelerations are 
dominated by high frequency content so PGA is the most efficient IM, while displacements 
are dominated by lower frequency content so IMs in the lower frequency region (i.e. Sde and 
Sdi in this case) are more efficient in displacement prediction.  The velocity IMs (PGV and SI) 
being in the ‘medium’ frequency range (i.e. between accelerations and displacements) provide 
‘moderate’ efficiency in predicting both maximum interstorey drifts and maximum floor 
accelerations. 

PREDICTION OF STRUCTURAL RESPONSE: PROBABILISTIC 
HAZARD 

The nature of the deterministic scenario presented in the previous section allowed 
Figures 3c and 3d to be viewed solely to investigate the efficiency of the five different IMs (in 
this case for a relatively small level of ground motion shaking).  As mentioned previously 
however, the determination of an optimal IM contains several other criteria, one of which is 
the predictability of the IM.  Predictability relates to the magnitude of the aleatory uncertainty 
in the ground motion prediction equation used to compute the ground motion hazard for a 
specific site.  Predictability is an important property of a ground motion IM since it will affect 
the probability of a specific level of ground motion occurring.  Bommer and Abrahamson [32, 

(b) (a) 
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Figure 3] illustrate that the effect of a large uncertainty in a ground motion prediction equation 
(i.e. poor predictability) is to increase the likelihood of a specific level of ground motion 
intensity occurring, with the increase in likelihood becoming more significant at long return 
periods.  As a direct indication of the predictability of the five different IMs considered here, 
Table 3 indicates the dispersion in the ground motion prediction equations for the 
deterministic scenario considered in the previous section.  As is typical, the standard deviation 
of a response spectral ground motion prediction equation increases with response spectral 
period, as long period motion is more deterministically related to the earthquake source [33, 
p101] than short period motion (i.e. the predictability of Sde and Sdi is worse than PGA), while 
the predictability of PGA, PGV and SI are similar. 
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Figure 3: Median and dispersion in maximum interstorey drift and maximum floor acceleration 
demands for the various IMs for the deterministic scenario 

 

Interstorey drift response 

To illustrate the effects of predictability on the results of structural response analyses the 
ground motion records given in Table 2 were scaled to ground motion intensities which had 
1/475 and 1/2475 exceedance probabilities (using the hazard curves in Figure 1), the values 

(d) (c) 

(b) (a) 
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for which are given in Table 1.  Figure 4 illustrates the median and dispersion in the 
maximum interstorey drifts predicted using the various IMs for the two different exceedance 
probabilities.  Unlike the deterministic scenario where all of the five IMs produced similar 
median demands, it is clear from Figures 4a and 4b that there is a significant difference when 
the ground motions are scaled to the same exceedance probabilities.  For example, scaling 
ground motions to SI gives median values for the maximum interstorey drift between the 2nd 
and 3rd floors of 0.9% and 1.25% at the two different exceedance probabilities compared to 
1.1% and 1.6% using ground motions scaled to Sde (i.e. 22% and 28% differences, 
respectively).  It should be clear that the relative magnitude of the median values of the 
maximum interstorey drifts between the different IMs is closely related to the predictability of 
the different IMs.   
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Figure 4: Median and dispersion in the maximum interstorey drifts for ground motions scaled to the 1/475 
and 1/2475 exceedance probabilities using the various IMs. 

 
Figures 4c and 4d illustrate the dispersion in the maximum interstorey drifts obtained 

using the five different IMs for the 1/475 and 1/2475 exceedance probabilities.  The trends 
regarding efficiency in predicting maximum interstorey drifts are similar to those for the 
deterministic scenario with the key difference being that as the intensity of the ground motion 
increases inelastic response causes changes in the vibration characteristics of the structure.  
These changing vibration characteristics subsequently affect the efficiency in predicting the 

(b) (a) 

(d) (c) 
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EDPs at different locations in the structure.  For example, comparing the dispersion in the 
interstorey drifts at the 1/475 and 1/2475 exceedance probabilities illustrates that increasing 
inelastic behaviour reduces the dispersion in the prediction of the interstorey drifts in the 
lower half of the structure and increases the dispersion in the upper floors.   

Floor acceleration response 

Figures 5a and 5b illustrate the median values of the maximum floor accelerations for 
the various IMs.  Similar to the median values of the interstorey drifts, it is observed that the 
relative magnitude of the maximum floor accelerations is directly related to the predictability 
of the IMs.  A comparison of Figures 3b, 5a and 5b illustrates the change in the spatial 
distribution of the peak floor accelerations as the ground motion intensity increases.  For the 
aforementioned deterministic scenario the largest floor accelerations occur at the top of the 
structure due to the presence of significant higher mode effects.  However as the ground 
motion intensity increases, inelastic behaviour in the lower floors of the structure (which 
causes an elongation in the effective period of the structure) effectively acts as a filter on the 
high frequency components of the ground motion.  The same logic also explains why the 
maximum interstorey drift demands in the upper floors of the structure reduce (relative to the 
maximum interstorey drifts in the lower floors) as the ground motion intensity increases.  
Figures 5c and 5d illustrate the dispersion in the prediction of the maximum floor 
accelerations at the 1/475 and 1/2475 exceedance probabilities.  Similar trends are observed 
compared to the deterministic scenario with PGA being the most efficient IM and spectral 
displacements the worst.  However, due to significant inelastic behaviour at the 1/2475 
exceedance probability, it is seen that the efficiency of PGA in predicting peak accelerations 
on some floors is reduced. 

It is interesting to observe in Figures 4 and 5 that there is little difference between the 
predictive capacity of Sdi and Sde for the structure considered.  Comparison with the results of 
Tothong and Luco [5, Table 2] however illustrates that Sdi provides little improvement over 
using Sde for structures with fundamental period above 1.5 seconds.  Also as careful ground 
motion selection has been used with respect to ε, then the results presented here for Sde are 
equivalent to somewhere between Sde and Sde&ε presented in Tothong and Luco [5, Table 2].  
In such cases an intensity measure, IM1I&2E, which combines information of the inelastic first 
mode response and elastic higher modes can give better approximations of drift demands [5].    
However, as IM1I&2E combines different mode contributions in terms of spectral 
displacements, then those spectral displacements due to higher modes are relatively small and 
it is not likely that IM1I&2E will be efficient in predicting floor acceleration demands.  IM1I&2E 
was not considered here as an IM since current ground motion prediction equations for 
IM1I&2E require the use of a first-order Taylor-series expansion (which is known to be 
inaccurate for the large uncertainty in ground motion prediction equations), and the ‘equal 
displacement’ assumption [34]. 
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Figure 5: Median and dispersion in the maximum floor accelerations for ground motions scaled to the 1/475 
and 1/2475 exceedance probabilities using the various IMs. 

 
Figures 4a, 4b, 5a and 5b have illustrated that for a given exceedance probability, a 

significant reduction in the median response (specifically for this structure), both interstorey 
drifts and floor accelerations, can be obtained by using a predictable intensity measure such as 
PGA, PGV, and SI.  This has a direct implication for current code-based applications for time-
history analysis which require that the average response be used for design if seven or more 
ground motion records are used [34].  Note that design codes state that the ‘average’ of the 
structural responses from the different ground motions should be used, where it is assumed 
that ‘average’ refers to the arithmetic mean of the responses (and not the mean of the 
logarithms of the responses used here to get the ‘median’).  Since for a lognormal distribution 
the ratio of the mean to the median is )2/exp( 2

ln X , where Xln  is the dispersion, then it was 
found that PGA, PGV and SI give lower ‘mean’ responses than spectral displacements, Sde and 
Sdi. 

Conditional distribution of seismic demand given intensity measure 

In order to proceed from seismic response analysis results and compute demand hazard 

(a) 

(c) 

(b) 
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and loss estimation it is necessary to know the conditional distribution of the demand (EDP) 
given ground motion intensity (IM), i.e. f(EDP|IM).  Due to the numerous permutations of the 
21 different EDPs, five IMs and two different hazard levels considered, no attempt is made 
here to rigorously illustrate the observed distribution although it is pertinent to discuss such a 
topic.  Reference is given to the numerous studies which have found that interstorey drifts 
[e.g., 2, 35] and floor accelerations [e.g., 35] are lognormally distributed.  Note that Taghavi 
and Miranda [12] argue that peak floor accelerations are normally distributed, however their 
comparisons between empirical and analytic distributions were for ground motion IMs with 
dispersions which were less than 0.3 (in which case the normal and lognormal distributions 
are similar).  Although not explicitly illustrated here, it was found that the conditional demand 
distribution, f(EDP|IM) was satisfactorily estimated using the lognormal distribution based on 
the Kolmogorov-Smirnov goodness-of-fit test [36] at a 5% significance level (i.e. α=0.05) for 
all of the EDP|IM permutations (which as shown in Figures 3-5 included dispersions from 
0.25-0.75). 

SUFFICIENCY OF INTENSITY MEASURES 

The previous two sections have focused on the efficiency and predictability of an IM for 
estimating the spatially distributed demands in structures.  The remaining property of an 
optimal IM is sufficiency; scaling robustness [5] can be thought of as sufficiency with respect 
to scale factor.  Sufficiency (in this context) relates to the conditional independence of the 
distribution of EDP given IM on other parameters such as earthquake magnitude (Mw), 
source-to-site distance (R), and epsilon (ε). IM sufficiency is important since the distribution, 
 IMEDPf |  is obtained from the results of a finite number of seismic response analyses.  

Thus if the distribution  IMEDPf |  is dependent on the Mw, R and ε values of the ground 
motions used, then the distribution will be biased if the distribution of Mw, R and ε of the 
ground motion records used in the seismic response analysis is not the same as that of the 
ground motions which will occur at the site in the future.  Thus, mathematically speaking, 
sufficiency requires that    ,,,|| RMIMEDPfIMEDPf w , where the ‘approximately 

equals’ sign is intended to mean ‘practically equal to’. In order to test for sufficiency linear 
regression is typically performed between some property of the ground motion records (i.e. 
Mw, R, ε) and the observed EDPs from the seismic response analysis [3].  Thus the coefficient 
b from the linear regression line   bxaEDPE ln  (where x is one of Mw, R, ε) indicates the 
dependence of the observed EDP values on the parameter x.  Since the linear regression is 
based on a finite number of observations it is necessary to use statistical tests to determine the 
significance of the coefficient b.  As an underlying assumption of linear regression is that the 
observations, lnEDP, are normally distributed, and since there are a finite number of 
observations, it follows that the coefficient, b has a student-t distribution and the F-test can be 
used to determine the statistical significance of b [36].  The F-test gives a ‘p-value’ which is 
the probability of the coefficient b having a value at least as large as that observed, given that 
its underlying true value is zero.  Typically p-values less than 0.05 are used to indicate a 
statistically significant value.  For example, Figure 6a illustrates the sufficiency of PGV with 
respect to source-to-site distance, R, for the peak interstorey drift between the 2nd and 3rd 
floors, while Figure 6b illustrates the sufficiency of Sde with respect to epsilon for the peak 2nd 
floor acceleration (both for the 1/475 exceedance probability).  Figure 6a indicates that based 
on the finite observations the positive correlation between lnEDP and R is statistically 
insignificant (p-value = 0.12 > 0.05), while the negative correlation between lnEDP and ε in 
Figure 6b is statistically significant (p-value = 2.4x10-6 << 0.05).  Because of the numerous 
permutations for the five different IMs over the 21 different EDPs monitored in the case study 
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structure, discussion in the remainder of the section is given with respect to p-values directly. 
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Figure 6: Sufficiency of: (a) peak ground velocity (PGV) with respect to source-to-site distance 
in predicting the peak interstorey drift ratio between the 2nd and 3rd floors; and (b) spectral 
displacement (Sde) with respect epsilon in predicting the 2nd floor peak acceleration. 

Sufficiency with respect to magnitude and source-to-site distance 

Several of the ground motion IMs used here have been investigated (regarding Mw and 
R sufficiency) previously for the peak interstorey drift and floor accelerations over all floors 
and are briefly reviewed here.  Aslani [13] showed that for a seven-storey non-ductile frame 
structure Sde is sufficient with respect to Mw and R when used for predicting the maximum 
interstorey drift on the ground floor and the maximum floor acceleration at the roof level.  
Aslani [13] however notes that the sufficiency of Sde with respect to Mw will decrease as the 
influence of higher modes increases.  This was illustrated by Luco and Cornell [7] who found 
Sde to be sufficient with respect to Mw for a 9-storey structure, but insufficient for a 20-storey 
structure.  Aslani [13] illustrated that an IM equivalent to PGA was insufficient with respect to 
Mw for predicting maximum interstorey drifts, but is sufficient with respect to R.  PGA was 
also found to be sufficient with respect to Mw and R for predicting maximum floor 
accelerations.  Luco and Cornell [7] illustrate that Sdi is sufficient with respect to both Mw and 
R when used for predicting peak interstorey drift ratio over all floors. 

The majority of the above trends found by previous research were also observed for the 
seismic response analysis of the case study structure presented in this manuscript.  Figure 7 
illustrates the sufficiency of the five different IMs with respect to Mw and R when predicting 
peak interstorey drifts and peak floor accelerations.  Similar to the variation in efficiency of 
the different IMs over the height of the structure, there is also variation in sufficiency of the 
IMs for different EDPs.  For example, Sdi is found to be less sufficient with respect to Mw and 
R in the upper floors of the structure, where higher mode effects are more prominent (as Sdi 
cNum>159</RecNum><recor period-lengthening effects). Both Sde and Sdi were found to be 
sufficient for predicting peak floor accelerations in the structure (having p-values less than 
0.05 with respect to R in Figure 7d), which is controlled by higher mode vibrations.  PGA is 
sufficient for both Mw, and R at predicting peak floor accelerations but less sufficient at 
predicting peak interstorey drifts in the central half (i.e. storeys 2-7) of the structure which is 
dominated by the first-mode response.  The velocity-based IMs (PGV and SI) are generally 
found to be sufficient with respect to Mw and R for predicting peak interstorey drifts, and 
relatively sufficient at predicting peak floor accelerations (sufficient with respect to Mw, but 

(a) (b) 
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marginally insufficient with respect to R).  Thus it appears to be a clear trend that the better 
the efficiency of an IM at predicting a specific EDP, the better its sufficiency with respect to 
Mw and R. 

To explain the relationship between efficiency and sufficiency described above assume 
that EDP is a deterministic function of multiple explanatory variables;  ΘfEDP  .  
Uncertainty in the EDP for a given IM occurs because the IM does not account for all of the 
explanatory variables which influence EDP.  Now if a particular IM correlates strongly with a 
large majority of the explanatory variables, Θ , then given IM the uncertainty in EDP will be 
relatively small (i.e. IM will be efficient at predicting EDP).  Because of the strong correlation 
of IM and many of the explanatory variables, then the response conditioned on IM will 
already implicitly account for many of the other explanatory variables and hence EDP 
conditioned on IM will be (practically speaking) independent (i.e. sufficient) with respect to 
these explanatory variables. 
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Figure 7: Sufficiency of the various IMs with respect to magnitude and distance when predicting peak 
interstorey drifts and peak floor accelerations 

Sufficiency with respect to ‘epsilon’ 

As previously noted, the parameter epsilon (ε) is defined as the number of standard 
deviations a specific ground motion parameter is above the mean predicted by a ground 

Figure 6a 

(c) 

(a) (b) 
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motion prediction equation.  Epsilon is one of three parameters which can be obtained from 
seismic hazard deaggregation (the other two being Mw and R).  In particular, because of the 
partial-correlated nature of spectral acceleration ordinates at different periods, Baker and 
Cornell [6] have shown that when ground motion records are scaled to a common Sa(T) value 
(this includes Sde and PGA of the IMs examined here), ε can be used as a proxy for spectral 
shape, and therefore the extent to which higher-modes and period elongation will affect the 
seismic response for a given ground motion.  Tothong and Luco [5] illustrate why Sdi accounts 
for spectral shape at periods longer than that which the ground motions are scaled to (but not 
for spectral shape at higher mode periods).  While Baker and Cornell [6] and Tothong and 
Luco [5] focus on the effect of epsilon when investigating peak interstorey drift ratios, the 
same logic can be directly applied to its effect on peak floor accelerations. 

Figure 8a illustrates the sufficiency of the five IMs with respect to ε, when predicting 
peak interstorey drifts.  Since when ground motion records are scaled to PGA, ε (being an 
indicator of spectral shape) will directly relate to the magnitude of the response spectra at 
longer periods, then PGA is insufficient with respect to ε for predicting interstorey drifts 
(which are mostly dominated by first mode vibration).  Similarly, Sde and Sdi are insufficient 
with respect to ε in predicting peak floor accelerations and peak interstorey drifts in upper 
floors which are dominated by higher mode vibration.  PGV and SI are found to be sufficient 
to ε for predicting peak interstorey drifts, but insufficient for peak floor accelerations, as 
illustrated in Figure 8b. 
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Figure 8: Sufficiency of the various IMs with respect to epsilon, ε  

Sufficiency with respect to scale factor (SF) 

The use of linear scaling (i.e. scaling amplitude without modifying frequency content or 
duration) ground motion records to a specific IM level has been scrutinized for introducing 
bias compared with some ‘true’ response that would be obtained using un-scaled ground 
motions. Luco and Bazzurro [11] have illustrated that when using Sde as an IM, scale factors 
that are significantly different from 1.0 can introduce significant bias in seismic response 
analysis.  Baker [37] has shown however that careful ground motion selection (similar to what 
is used here) can significantly reduce such bias.  Figure 9 illustrates the sufficiency of the five 
IMs with respect to SF for predicting peak interstorey drifts and peak floor accelerations.  It 
can be seen that despite PGA for peak interstorey drifts, and PGV for peak floor accelerations, 
there is little dependence of the IMs on SF.  As mentioned above this is likely the result of 
ground motion selection based on deaggregation of the seismic hazard.  Also, because of the 

Figure 6b 
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ground motion selection employed here, the scale factors required to scale the ground motions 
are not significantly large, with means of 2.1 and 3.2 (averaged over all five IMs) and ranges 
of 0.6-5.7 and 0.81-9.1 for the 1/475 and 1/2475 exceedance probabilities, respectively. 
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Figure 9: Sufficiency of the various IMs with respect to scale factor, SF 

Sufficiency with respect to site shear wave velocity, Vs30. 

With contemporary ground motion prediction equations [e.g., 20] giving soil site 
classification in terms of a 30-m averaged shear wave velocity, Vs30, as opposed to a 
qualitative alphabet-based classification, it is possible to investigate the sufficiency of the 
various IMs with respect to Vs30.  Figure 10 illustrates the sufficiency of the IMs investigated 
with respect to Vs30 for both peak interstorey drifts and peak floor accelerations.  In general all 
IMs are sufficient with respect to Vs30.  It is also worth noting that the considered range 
Vs30 = 300 – 800 m/s represents relatively stiff soils.  Further studies are needed to investigate 
the sufficiency with respect to Vs30 for soft soil deposits (Vs30<300 m/s) and significant 
nonlinearity in the soil response 
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‘Correcting’ seismic demand distributions 

The aforementioned results have clearly illustrated that no single IM is sufficient with 
respect to Mw, R, ε, for all drift and floor acceleration demands in the case study structure.  
Therefore bias will be introduced in the computed response when the (Mw, R, ε) distribution of 
the ground motion suite is different than that of the hazard deaggregation when predicting 
EDPs using an insufficient IM.  It was also noted that it may be difficult to obtain a desired 
number of ground motion records which match the hazard deaggregation.  In such cases, 
Bradley et al. [23] show that it is possible to regress on the results of the seismic response 
analyses to ‘correct’ the resulting distribution of EDP to reflect the Mw, R, ε distribution from 
hazard deaggregation. 

An alternative option is to avoid the “IM approach” and simply develop a prediction 
equation for the vector of EDPs directly as a function of ground motion parameters (e.g. 
magnitude, distance) (e.g. [38]).  While this approach will not suffer from some of the 
problems of the IM approach discussed in this manuscript it should be made clear that the 
development of such a prediction equation for a vector of EDPs is complex, requiring 
significantly more seismic response analyses, complex regression analyses, expertise in strong 
ground motion modelling and access to ground motion metadata and earthquake fault 
databases.  The IM approach bypasses these difficulties by separating seismic hazard analysis 
and seismic response analysis.  Both approaches have their respective pros and cons and will 
thus be useful in different situations. 

CONCLUSIONS 

Prediction of the seismic response of multi-degree-of-freedom structures is a complex 
task due to the spatially distributed seismic demands which are sensitive to different 
frequency contents of the imposed ground motion.  This manuscript investigated the efficacy 
of five different ground motion intensity measures (IMs): peak ground acceleration, PGA; 
peak ground velocity, PGV; elastic and inelastic spectral displacement, Sde, Sdi; and spectrum 
intensity, SI, for which robust ground motion prediction equations are available.  The concepts 
of predictability, efficiency, and sufficiency were investigated for each of the IMs when 
applied to the seismic response analysis of a 10-storey RC frame structure.  It was illustrated 
that the efficiency (uncertainty in seismic response prediction) of an IM can be qualitatively 
determined based on the frequency range of the ground motion which controls the IM to that 
which controls the EDP being monitored.  The predictability (uncertainty in ground motion 
prediction) of an IM was clearly shown to be an important factor in reducing the median 
response demand for ground motions scaled to an IM with a given probability of exceedance.  
Ground motion IMs which are predictable (namely PGA, PGV and SI), result in lower median 
seismic demands when ground motions are scaled to a specific probability of exceedance 
using a seismic hazard curve.  The sufficiency of the IM (the dependence of the seismic 
response on parameters such as Mw, R, and ε) was found to be closely related to the efficiency 
of the IM (the more efficient the IM, the higher the sufficiency), and it was observed that all 
IMs were insufficient with respect to at least one of Mw, R, or ε when predicting both peak 
interstorey drifts and peak floor accelerations.  As a result of the insufficiency of an IM, 
careful ground motion selection (compatible with the hazard deaggregation) and/or 
appropriate response modification is therefore needed to reduce bias and dispersion. 
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