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SUMMARY 

Expected annual loss (EAL), which can be expressed in dollars, is an effective way of 

communicating the seismic vulnerability of constructed facilities to owners and insurers.  A 

simplified method for estimating EAL without conducting time consuming non-linear dynamic 

analyses is presented.  Relationships between intensity measures and engineering demand 

parameters resulting from a pushover analysis and a modified capacity-spectrum method are 

combined with epistemic and aleatory uncertainties to arrive at a probabilistic demand model.  

Damage measures are established to determine thresholds for damage states from which loss ratios 

can be defined.  Financial implications due to damage can then be quantified in the form of EAL by 

integrating total losses for all likely earthquake scenarios.  This rapid loss estimation method is 

verified through the computationally intensive Incremental Dynamic Analysis, with results 

processed using a distribution-free methodology.  To illustrate the application of the proposed 

method, the seismic vulnerability of two highway bridge piers is compared; one bridge is 

traditionally designed for ductility while the other is based on an emerging damage avoidance 

design (DAD) philosophy.  The DAD pier is found to have a clear advantage over the conventional 

pier; the EAL of the DAD pier is less than 20 percent of its ductile counterpart.  This is shown to be 

primarily due to its inherent damage-free behaviour for small to medium earthquake intensities, 

whose contribution to EAL is significantly more than that of very rare events. 
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INTRODUCTION 

One primary aim of Performance-Based Earthquake Engineering (PBEE) is to predict, with a 

certain level of confidence, the seismic performance of structures at various levels of earthquake 

excitation (seismic demand).  This requires the engineer to understand seismic risk and its inherent 

uncertainty.  As an adjunct to conventional design it is desirable that the engineer be able to 

communicate that risk in a way easily understood by stake-holders such as owners, bankers, and 

insurers.  One primary development in PBEE is the Pacific Earthquake Engineering Research 

(PEER) Centre’s probability framework equation which can be used to arrive at a mean annual 

frequency of a decision variable.  An early application and theory outlining the PEER framework 

equation is given in [1].  For example, this equation can be used to determine the closure probability 

of a building at a specific site.  This is done by: quantifying the rate of exceedance of a level of 

ground shaking; interrelating the level of ground shaking with structural response and the structural 

response with damage; and quantifying the likelihood of facility closure given a certain level of 

damage.  Thus, it is apparent that the triple integral equation can be broken into four subtasks: (i) 

assessment of seismic hazard; (ii) analysis for structural response; (iii) quantification of damage; 

and (iv) estimation of damage consequence in terms of a chosen decision variable.  Implicit in the 

formula is a probabilistic analysis, incorporating both randomness and uncertainty and combining 

this variability in accordance with the total probability theorem.  The manner in which this formula 

is applied, its limitations, and its potential expansion, have been the subject of rigorous research, 

both within and outside PEER.  A good overview of such developments is given in [2]. 

One expansion of the framework formula would be the integration of scenario losses over the 

entire range of occurrence probability, resulting in quantification of seismic risk in terms of an 

Expected Annual Loss (EAL) [3].  The advantage of EAL is that it incorporates a range of seismic 
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scenarios, return rate, and expected damage into a single mean dollar loss.  By using an interest rate, 

the time value of EAL for each year in the remaining life period of a structure can be transformed to 

a net present value of the total losses in the lifetime of the structure. When this net present value of 

the potential loss is added to the initial cost of the construction/retrofit, the resulting sum can be a 

very sound and convincing parameter, based on which rational decisions can be made to select the 

most effective among the available design and/or retrofitting alternatives.  

Although several methods of financial risk assessment have been presented, no method has yet 

been widely adopted.  One detailed method introduced by Porter et al. [4] is Assembly Based 

Vulnerability (ABV).  It is especially good at estimating the overall damage to a building based on 

the damage to its individual components.  The aleatory uncertainty was expressed by fragility 

curves, representing the possible distribution of a variable which normally conforms to a lognormal 

distribution [5, 6].  If aleatory and epistemic uncertainties are considered in each of the subtasks in 

the risk assessment process, the simulation-based calculation can become very time onerous [7].  

Attempts have been made to simplify the computation process.  Cornell et al. [8] used data 

generated from a series of non-linear time-history analysis and proposed a power-law equation for 

the median curve.  If the hazard-recurrence relationship is also expressed in a similar algebraic 

form, it is possible to combine the two equations and come up with a closed form solution that can 

be used to determine the rate of exceeding a demand parameter (i.e. interstory drift) given a period 

of time. 

A primary step within PBEE is defining a relationship between specified demand levels and a 

hazard environment.  This relationship, termed the demand model, has gained a lot of attention in 

the past decade.  Vamvatsikos and Cornell [9] have researched the feasibility of Incremental 

Dynamic Analysis (IDA) as a means of relating these parameters.  An IDA basically consists of 

performing a series of time-history analyses to arrive at a set of demand parameters, obtained by 

scaling a suite of earthquake records to various intensities.  It is similar (though far superior) to a 

static pushover in that it encompasses the entire range of likely behaviour, from pre-yield to 

collapse.  This method has gained considerable acceptance since its inclusion in emerging 
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regulations [10].  Other simplified methods have been proposed by Porter and Beck [11], who by 

assuming that seismic risk is dominated by non-structural damage from moderate events, proposed 

a simple linear elastic analysis to replace the often cumbersome non-linear dynamic analysis.  The 

non-linear dynamic procedure is considerably more time consuming and requires uncommon skills 

for practicing engineers, whereas the linear approach is relatively simple.  Nevertheless, the 

assumptions made in the linear method may not be valid for all structures, specifically those 

designed to behave well in the non-linear range.   

A generic procedure is needed that will consider non-linear behaviour and a range of 

uncertainty, while retaining a degree of simplicity.  Vamvatsikos and Cornell [12] have established 

that it is possible to relate a static pushover curve to IDA.  This paper will set out to estimate EAL 

using a rapid analysis approach, referred to hereafter as the Rapid IDA-EAL approach. The Rapid 

IDA-EAL method will be verified by a rigorous computational IDA. For this verification analysis, 

in order not to bias the latter through a priori assumptions in the choice of probability density 

functions, a distribution-free analysis method is introduced.  Hereafter, this is referred to as the 

Computational IDA-EAL distribution-free approach. A case study of two different bridge piers will 

illustrate the effectiveness of the approaches for estimating EAL.  

EAL FRAMEWORK 

In order to conduct a financial risk analysis, it is necessary to form relationships between the 

multiple facets of the assessment process.  This can be accomplished by implementing the PEER 

triple integral equation [1]: 

   |)(||)|(||)|(|)|()( imdfimedpdGedpdmdGdmdvGdv a  (1) 

in which fa(●) = the annual rate of exceedance of (●); im = intensity measure (e.g. peak ground 

acceleration, spectral acceleration); edp = engineering demand parameter (e.g. maximum drift 

angle); dm = damage measure (e.g. repairable/irreparable damage, collapse); dv = decision variable 

(e.g. loss ratio, downtime); and G(x|y)=P(x>X|y=Y); the conditional complimentary cumulative 
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distribution function (CCDF).  Absolute value signs are required for each of the terms in Equation 

(1), as some of the derivatives of the CCDF’s may be negative. 

Equation (1) gives the mean annual rate of exceedance of a decision variable dv.  In order to 

compute EAL all losses must be integrated over the entire range of probability [3]: 

)(
0 rr LdPLEAL 


  (2) 

where Lr = loss ratio (the dv in this case) defined as the cost to repair a structure divided by the total 

replacement cost; and P(Lr) = probability of loss ratio exceeding a specified value Lr. 

It is to be noted that rate and probability are numerically similar for small values (ν<0.01) but 

deviate for larger values [13, 14].  Rate can be converted to probability using a temporal 

relationship.  In this work, for simplicity the Poisson model will be used. Hence, the relationships 

between rate and probability and between their derivatives are given by: 

afeP  1  (3) 

)()( imdfeimdP a
fa  (4) 

where P = Probability of exceedance; and fa = rate of exceedance.  If dfa(im) is replaced with dP(im) 

in Equation (1) and the decision variable is replaced with loss ratio, then the result is the probability 

of exceeding a loss ratio, P(Lr).  Hence, EAL can be calculated by substituting Equation (1) (using 

dP(im) ans P(Lr)) into Equation (2) to obtain: 

     |)(||)|(||)|(|)|( imdfeimedpdGedpdmdGdmLGdLEAL a
f

rr
a

 (5) 

Equation (5) provides the basis of the EAL calculations presented in this paper. 

RAPID IDA-EAL METHODOLOGY 

The concept of the proposed Rapid IDA-EAL procedure is relatively straightforward.  It is 

possible to generate the median Intensity Measure (IM) versus Engineering Demand Parameter 

(EDP) relationship from a non-linear static pushover analysis and a modified Capacity Spectrum 

Method (CSM).  The use of the CSM to characterise the IM-EDP relationship, as opposed to IDA 

[9], allows a significant reduction in time demands of the financial assessment.  This occurs as a 

result of the CSM being able to be computed by hand calculator (or simple spreadsheet) within 
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minutes, while conducting IDA for a suite of ground motion records at various intensities, can take 

up to a day or longer (depending on the number of degrees of freedom in the structural model). 

This Rapid IDA-EAL methodology utilizes the customary assumption that variability conforms 

to a lognormal distribution [5, 6, 15, 16], allowing fragility curves to be generated for discrete states 

of damage. The fragility curves are then transformed via the seismic hazard model into hazard-

survival curves for each damage state. Then, financial implications of the different damage states 

are considered together with the corresponding hazard-survival curves to arrive at the EAL. This 

general process is outlined in detail through the following steps. 

Step 1: Conduct Pushover Analysis 

A non-linear static pushover analysis is performed to assess the capacity of the system, as 

illustrated in Figure 1a.  From the pushover curve, it is possible to calculate the secant (equivalent 

elastic) period T in terms of normalized base shear capacity Cc and peak response displacement Δ as 

follows: 

gCWCg

W

K

M
T

cc





  222  (6) 

in which Cc can be expanded as Cc = Fy / W where Fy = base shear force; W = seismic weight; 

M = seismic mass; K = secant stiffness; and g = acceleration of gravity. 

Step 2: Establish Median Spectrum-Compatible IDA Curve 

The evaluation of seismic demand at various effective damping levels depends on the portion of 

the spectrum governing response. Figure 1b illustrates the seismic demand spectrum and the regions 

of constant spectral acceleration, spectral velocity, and spectral displacement as limited by Ta, Tv, 

and Td.  For the constant acceleration, velocity and displacement regions, the demand spectrum is 

given by Equations (7)-(9), respectively:  
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where Fa and Fv are factors to adjust spectral acceleration for short and long period structures at 

different soil classes; Ss and S1 are spectral acceleration at short periods and the one second period; 

and Ba, Bv, and Bd are factors based on effective viscous damping for the constant spectral 

acceleration, velocity, and displacement regions, respectively.  Because of the formulation of the 

equations, for a given effective (secant) period of vibration T, the equation applicable in that range 

always yields a lower Cd than the other two equations. Hence, the normalized base shear demand 

can also be calculated as the lesser of Equations (7)-(9). 

Employing the CSM, it is possible to relate the capacity-displacement curve (i.e. pushover 

curve) and the Acceleration-Displacement Response Spectrum (ADRS) curve by combining them 

into a single plot as illustrated in Figure 1c.  The “performance point” of the structure is estimated 

from the intersection of the pushover curve with the damping-reduced ADRS curve.  The CSM, as 

presented in ATC-40 [17], has come under considerable scrutiny due to inconsistent displacement 

predictions [18, 19].  Such errors have proved to be rectified by use of either the inelastic spectra or 

a modified CSM as described by Iwan [20]. 

To further address these issues, this study has adopted modified damping approximations 

proposed by Lin and Chang [21] coupled with the reduction in equivalent viscous damping due to 

the pinched nature of the real hysteresis curves, as introduced by Pekcan et al. [22]. Based on recent 

studies by Lin and Chang [21], confirmed by Lin et al. [23], and modified herein as part of the 

present study, the damping-related reduction factors, Ba, Bv, and Bd can be calculated as a function 

of effective damping, eff  as follows:  

7

2 eff
aB


  (10) 

13

8 eff
dB


  (11) 

The damping factor for the constant spectral velocity range, Bv can be calculated by linear 

interpolation between Ba and Bd based on period or spectral displacement.  Total effective viscous 

damping, eff, can be estimated by using the method proposed by Pekcan et al. [22]: 
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where o = intrinsic damping of an elastic system;  = the efficiency factor defined as the ratio of 

the actual area within a hysteresis loop to that of the idealized bi-linear loop (Figure 1c); αs = post-

yield stiffness to initial stiffness ratio;  = Δmax / Δyield where Δ = displacement at the seismic centre 

of mass of the structure. 

Setting Cc=Cd and substituting Equation (6) into (7), (8), and (9), the one second spectral 

acceleration (FvS1) for a given demand can be found.  Thus for the median-spectrum compatible 

IDA curve shown in Figure 1d, the IM (spectral acceleration) can be found for a given EDP 

(displacement) by the greater (i.e. the inverse of the lesser) of the following three equations: 

cavv CBTSF 1  (13) 
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where generally, Tv, and Td can be taken as 0.4 and 3.0 seconds, respectively. 

The median-spectrum compatible IDA relationship developed using the CSM above is then used 

as an approximation to the true median IDA relationship.  Note that some bias is introduced here, as 

no ground motion records will ever be able to match the spectrum over the full range of periods.  

This procedure is used however because of its simple implementation in practice. 

Step 3: Define Damage States and Limits 

This study adopts the five damage states (DS1 to DS5) defined by Mander and Basoz [15] that 

have been used in HAZUS, as summarised in Table 1.  The damage state limits are also illustrated 

in Figure 1d. 

Step 4: Incorporate Sources of Variation using Assumed Distributions 

Throughout this process approximations are made regarding damping, material strengths, 

modelling simplifications, etc.  These approximations can be grouped into epistemic uncertainty, 

where further investigation may lead to an increase in accuracy, and aleotory uncertainty, which 
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cannot be reduced because of its random nature.  An example of the former would be uncertainty in 

analytical modelling, and the latter would be the inherent record-to-record randomness of 

earthquake ground motions.  As discussed earlier, previous studies [5, 6, 16] have shown that 

aleatory uncertainty approximately conforms to a lognormal distribution.  For convenience, it is 

assumed here that epistemic uncertainties are also lognormally distributed.  This two-parameter 

distribution can be defined with a median ( x~ ) and a standard deviation of the logarithms of the 

data, β, referred to herein as the dispersion factor.  Since a formula relating EDP and IM is 

available, the median values have been established and only the dispersion is left to be determined.  

It is possible to assume a dispersion based on established trends regarding the various uncertainties 

discussed.  To determine the dispersion of all combined uncertainty and randomness, they are 

combined by root-sum-squares method [24] used in FEMA 350 [8,10]: 

222
/ UCDDC    (16) 

where βD = aleatory variation of structural response due to the input motion; βC = aleotory 

uncertainty in structural capacity (e.g. uncertainty in the DS given a certain level of EDP); and  βU = 

epistemic modelling uncertainty (e.g. damping, hysteresis models, fixity conditions, soil-structure 

interaction and material properties).  In this study, recommendations of FEMA 350 [10] have been 

adopted; i.e. βC = 0.2 and βU = 0.25.  Although βD is difficult to quantify, it varies depending on the 

parameter used as the IM and the value of IM itself [16].  Using spectral acceleration at the natural 

period of the structure as the IM (i.e. IM = Sa(T1)) investigations into the variation of input motion 

were conducted by the authors.  It was noted that the variation of βD for different levels of a given 

IM can be approximated by the relationship: 

DBE
DBED IM

IM   (17) 

where βDBE  = dispersion of the structural response due to ground motions with IM scaled to the 

design basis earthquake level, IMDBE.  With the calculated median IM’s (Sa(T1) in this case) and the 

resulting βC/D, fragility curves are plotted as in Figure 1e.  Fragility curves are drawn giving the 

probability of exceeding a damage state for a given value of Sa(T1).  Unlike other vulnerability 
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methods, all uncertainty and randomness are grouped into a single composite dispersion factor, βC/D, 

as also adopted in [8, 10].  This greatly simplifies the subsequent integration. 

Step 5: Define a Seismic Hazard-Recurrence Relationship 

To arrive at an EAL, it is necessary to define a relationship between an IM and annual frequency 

(fa), which is commonly known as the seismic hazard-recurrence relationship.  It is possible to 

approximate the hazard-recurrence curve by fitting a straight line through two known points in a 

log-log scale: 

k
oa IMkIMf  )()(  (18) 

where ko and k are empirical constants, that may be obtained through linear regression [8].  Using 

the 1 second spectral acceleration (FvS1) as the IM, Figure 1f plots Equation (18) which can also be 

written as follows for a high seismic zone in New Zealand (k = 3): 

3

1
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
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This simple parametric form of the hazard is inaccurate when extrapolated to more frequent 

earthquakes; e.g. when fa > 0.01 (T < 100 years).  In such cases, Equation (19) overestimates the 

hazard. This deficiency can be rectified by disregarding any damage below a certain threshold.  In 

this paper, this threshold is assumed to correspond to 90% probability of not sustaining any damage.  

In other words, this is the intersection of the 90th percentile curve and the line serving as the 

boundary between DS1 (no damage) and DS2 (slight damage). 

Step 6: Calculate EAL  

In order to evaluate the EAL, financial implications of the different damage states must be 

quantified. This is done through a loss ratio (LR), which is the ratio of the repair cost to the total 

replacement cost.  Analytical and/or empirical methods may be used to estimate the loss ratio for a 

given limit state. Alternately, professional cost estimators can be consulted for reliable estimates.  

The accuracy of the LR values will naturally depend on the level of detail used in the 

method/estimate; e.g. if the vulnerability of components are assessed individually and then 

compiled, it will be significantly more accurate than a single global estimate.  In this study, the 
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values of LR for different damage states are assumed to be constant.  Apart from “no damage” (LR 

for DS1 = 0) and “collapse” (LR for DS5 = 1), there is however uncertainty associated with the loss 

ratios for other damage states.  This uncertainty can be further introduced into the composite 

dispersion βC/D, although it is not done so here. 

Hazard-survival curves shown in Figure 1g relate the probability of not exceeding a damage 

state given an annual frequency, and these curves must be integrated and multiplied with the 

corresponding LR’s to estimate EAL.  In other words, EAL is the total volume subtended by the 

hazard-survival curves for different damage states plotted in the horizontal plane and their 

corresponding loss ratios plotted in the vertical axis as shown in Figure 1g.  Using Gaussian 

quadrature principles, a direct expression for the numerical integration of a cumulative probability 

curve conforming to a lognormal distribution covering the total probability range (i.e. between 0 

and 1) is: 

   kkxEAL  77125.075.0~  (20) 

where β = lognormal standard deviation from Equation (16) and  k = hazard recurrence parameter 

defined above.  In Equation (20), the median variable x~  for n damage states is defined as: 

 


n

i
ia LRfx

i
1

~  (21) 

where ΔLRi = LRi – LRi-1 and 
iaf  is the annual frequency corresponding to 50% survival probability 

of the ith
 damage state boundary.  Equation (20) was compared with numerical integration, which 

showed good agreement with results falling within 1% for kβ < 2.  This formula, however, is 

conservative and will lead to a higher EAL since it does not consider the cut-off of damage from 

frequent events.  To account for this, Equation (20) can be modified to truncate the data above the 

90% no-damage confidence threshold: 

   kkxEAL  5.35.32.06.0~  (22) 

Figure 1h illustrates the resulting total loss ratio curve as a function of annual probability.  

Taking a single value from this curve gives a scenario loss, similar to what the PEER triple integral 

equation (i.e. Equation (1)) does; the only difference is that the PEER equation uses rate  whereas 
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the outcome shown in Figure 1h has been obtained by using probability P.  Performing the 

additional integration yields the EAL, illustrated as the area under the curve. 

To calculate EAL based on the proposed Rapid IDA-EAL, the engineer needs to define only two 

sets of parameters: the EDP limits for each damage state, and the associated LR’s.  Once the EAL 

contributions for each damage state have been calculated using Equations (20) and (22), their 

summation will give the total EAL for the assumed dispersion.  Note that all calculations are based 

on median values and can be computed by hand.  The randomness and uncertainty are combined in 

a single parameter  which is introduced in the process only in the final step. This eliminates 

difficult integration steps and simplifies the process to such extent that it can be completed in a 

table. 

VERIFICATION OF RAPID-EAL METHOD 

To verify the accuracy of the Rapid IDA-EAL method, a rigorous computational IDA-EAL 

procedure was developed that does not presume any distributions.  Instead, the IDA data is sorted 

into fractile bands to define the IM-EDP relationship.  The hazard-survival curves generated from 

these computational IDA-EAL curves are then numerically integrated to arrive at EAL.  A detailed 

explanation of this computational approach follows. 

Incremental Dynamic Analysis  

The basic concept of IDA has been well researched [9] and is not a focus of this study, but 

rather the data processing that follows is.  A brief description of the analysis technique is presented 

here for completeness.  Conducting an IDA consists of running a series of inelastic dynamic time-

history analyses at various levels of excitation, over a suite of earthquake records.  This results in a 

matrix of data from which a probabilistic IM-EDP relationship is derived.  Choosing an appropriate 

IM is an important step, since it can have significant effect on the scatter of data.  Current best 

practice for the first mode dominated structures is to use the 5% damped spectral acceleration at the 

fundamental period of the structure, which has been shown to be relatively ‘efficient’ and 

‘sufficient’ compared to peak ground acceleration [16].  Due to the lack of large earthquakes in 
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New Zealand over the past 100 years, despite its known large seismicity, there are insufficient 

regional ground motion records to use for the IDA.  Therefore a suite of ground motion records, 

previously used by Vamvatsikos and Cornell [25] were adopted, and are presented in Table 2.  

These records, which were all recorded on firm soil, have magnitude and distance ranges of 6.5-6.9 

and 15.1-31.7 km, respectively. 

Sorting and Further Uncertainty Incorporation 

From the resulting IDA data for a given IM (Sa(T1) in this case), all of the EDP points are sorted 

and used to create an empirical CDF [26].  The variability of results from an IDA (using a 

deterministic structural model) comes solely from the randomness in the input motion. However, 

other sources of uncertainty and randomness previously discussed must be considered.  Knowing 

that the data will at least loosely conform to a lognormal distribution, it is possible to incorporate 

this additional uncertainty by modifying the data to incorporate a larger dispersion.  It is noted that 

for consistency, the median of the empirical CDF before and after incorporation of further 

uncertainties should remain unchanged.  Therefore the probability of exceeding a given value, x, 

can be expressed as: 
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where xu = unscaled value of x with group dispersion of βD that arises from demand randomness 

only; xs = rescaled value of x that accounts for all sources of aleotory and epistemic uncertainty, 

βC/D; and Φ(●) is the standard normal CDF.  Hence it can be seen that the terms inside the brackets 

must be equal, and hence re-arranging Equation (23) gives: 
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Note that βD is calculated (neglecting data where structural collapse occurred) at each IM  and 

linearly interpolated wherever needed, unlike in the Rapid IDA-EAL method where it is 

approximated by an empirical relation.  The neglect of structural collapse cases is deemed 

acceptable considering their relatively small contribution (for the modern code-designed structures 

in this case study) toward EAL [27].  The inclusion of further variability illustrated above can cause 
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bias in the scaled values (i.e. the median of the scaled data may not be numerically exactly equal to 

that of the unscaled data).  This bias reduces as the number of data points increases, and for the 

twenty data points for each IM used in this study, the bias was found to be negligible. 

Calculate EAL 

For consistency, all financial loss parameters (DM, LR, and hazard-recurrence) were kept the 

same as with the Rapid IDA-EAL method establisher earlier.  Since particular interest in the Rapid 

IDA-EAL approximations is the demand model, this will be a focus of the verification process.  For 

a given DM, the corresponding value of IM at each probability interval can be found by linear 

interpolation of the data.  Given the hazard-recurrence relationship, this can be expressed by a 

hazard-survival curve.   

EAL can be found by numerically integrating the given set of data points as: 

n
LRfEAL
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
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  (25) 

where n = total number of earthquake records; m = number of damage states; and j corresponds to 

each probability interval, which is calculated assuming that the total probability is uniformly 

distributed between the twenty data points; i.e. the lowest and the highest data correspond to 97.5% 

and 2.5% probability of exceedance with 5% (100% divided by 20 data points) difference between 

successive data points.  The formula in Equation (25) yields the area beneath the total loss curve 

presented in Figure 1h.   

CASE STUDY:  RC BRIDGE PIERS 

To illustrate the effectiveness of the two methods presented, a case study will be conducted to 

compare the performance of two highway bridges with substantially different design attributes; the 

first being a conventional pier designed for ductility (hereafter referred to as the ductile pier), the 

second a rocking pier designed according to the emerging Damage Avoidance Design (DAD) 

philosophy (hereafter referred to as the DAD pier).   
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Prototype Details 

Consider the reinforced concrete bridge pier shown in Figure 2.  The pier is typical of modern 

design, with 40m spans, 10m transverse width, and 7m height.  The seismic weight of the super-

structure is assumed to be 7,000kN and it is located in a high seismic zone, on a firm soil site in 

New Zealand.  Consequently, the Peak Ground Acceleration (PGA) of the Design Basis Earthquake 

(DBE) with 10% probability in 50 years (i.e. return period of 475 years) is 0.4g and that of the 

Maximum Considered Earthquake (MCE) with 2% probability in 50 years (i.e. return period of 

2450 years) is 0.72g.  Two structural design alternatives were considered.  One alternative being a 

conventional ductile pier detailed according to the concrete design standard of New Zealand [28], 

and the other designed according to the principles of DAD.  The latter implements techniques 

developed by Mander and Cheng [29] and the Precast Seismic Structural Systems (PRESSS) 

Program [30] to avoid damage by rocking with post-tensioning tendons to provide stiffness and 

dampers to provide supplemental energy dissipation.  Both piers were designed for the same base 

shear capacity as found from a basic force-based seismic analysis.  As shown in Figure 2, the DAD 

pier is smaller in size and has less longitudinal reinforcement than its ductile counterpart. On the 

other hand, the DAD pier also needs prestressing tendons and the external dampers which are not 

required in the ductile pier. The foundation design of both piers were the same, with the exception 

of the DAD pier requiring a steel plate at the pier-to-pile cap connection to allow rocking to occur 

without significant damage to the surrounding concrete.  An approximate cost estimate indicates 

that the initial costs of these two piers are within 5% of each other.  A detailed explanation of the 

DAD pier along with results of bi-directional physical experimentation can be found elsewhere 

[31].   

Rapid IDA-EAL Method 

Comparative results for each step of the Rapid IDA-EAL procedure are presented in Figure ; 

and a summary of the calculations is shown in Table 3.  A non-linear pushover curve was obtained 

for both systems as presented in Figure 3a.  The damping-related factors in and  were taken as 
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0.05 and 0.4, respectively, for the ductile pier.  This was calculated expecting the hysteresis 

behaviour of the pier to follow a modified Takeda hysteresis loop with unloading and reloading 

behaviour modelled by α = β = 0.3.  For the DAD pier  was taken as 0.125.  Since little data exists 

on this new system,  was based on experimental results [31].  

Maximum drift at the seismic centre of mass is considered to be an effective EDP for bridge 

piers because it is a good indicator of both global damage (toppling) and local damage (plastic 

hinging).  Median IDA curves correlating the spectral acceleration (IM) and maximum drift (EDP) 

for the two piers are shown in Figure 3b.  Limit states were assigned as prescribed in Table 1 using 

the previously discussed HAZUS guidelines.  For the ductile pier, limits between DS1-2 and DS4-5 

were established at the first yield of the longitudinal reinforcement and at the beginning of severe 

strength degradation resulting in toppling, respectively.  Limit states DS2-3 and DS3-4 were found 

based on observed damage during physical testing [32].  The selection of these limits was based on 

the failure mechanisms described in Table 1.  The two boundaries between the three damage states 

assigned to the DAD pier were established at the first yield of the post-tensioning tendons and at the 

onset of toppling failure, respectively.  Based on the results of computational IDA analysis, the 

lognormal standard deviation at the design basis earthquake βDBE was taken as 0.2 and 0.15 for the 

ductile and DAD piers, respectively.  In the case of the DAD pier, responses outside the 10th and 

90th percentile values were neglected in calculating βDBE as the large variations in these extreme 

ranges significantly inflate the calculated value of β.  The resulting hazard-survival curves are given 

in Figure 3c. 

Computational IDA-EAL  

To perform the computational IDA, a non-linear structural model was developed.  The pier was 

idealized as a single-degree-of-freedom system; i.e. a lumped mass centreline column with 

rotational springs at its base.  The hysteresis properties of the springs were calibrated based on 

experimental results presented by Solberg [31].  The ductile pier was modelled using the Takeda 

hysteresis loop combined with strength degradation after ductility of 8.  The DAD pier was 
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modelled using two springs, one representing the bi-linear elastic behaviour inherent in post-

tensioned rocking systems and the other elasto-plastic spring representing energy dissipation.  

Ruaumoko2D [33], an inelastic dynamic time-history analysis program, was used to conduct the 

analysis. The Rayleigh elastic damping was taken as 5% of the critical.  Soil-structure interaction 

was not considered (i.e. firm soil site was assumed), nor were torsion and slab interaction effects. 

As presented in Table 2, the same 20 records used by Vamvatsikos and Cornell [25] were 

adopted for this study.  These records range in magnitude between 6.5 and 6.9, have moderate epi-

central distance, and recorded on firm soil.  Current best practice suggests representing IM by the 

5% damped spectral acceleration at the natural elastic period of the structure, Sa(T1,5%).  The 

natural period for both piers was approximately Tn = 1.0 second, thus Sa(T1=1sec,5%) was taken as 

IM.  The twenty records were scaled between 0.1g and 2.0g with an increment of 0.1g, resulting in 

400 separate analyses.  The resulting plots are given in the first two rows of Figure 4 showing: (a) 

raw IDA data, and (b) sorted EDP data for each IM and accounting for variation. 

Financial Loss 

The assigned LR’s are based on recommendations by HAZUS [15] presented in Table 1.  These 

values were found from statistical analysis of actual repair cost data from the Loma Prieta and 

Northridge earthquakes.  Since no damage is expected in the DAD pier, the LR’s are either zero or 

one, except for the intermediate damage state DS2.  Since DS2 implies minor yielding (not failure) 

of the post-tensioning tendons, the repair costs would be comparatively low to restore the structure 

to working order by tightening the tendons.  Based on the cost of inspection coupled with the cost 

of checking and adjusting prestressing levels, LR2 is assigned a value of 0.01.  

With this data the seismic hazard-recurrence relationship is generated and hazard-survival 

curves are plotted in Figure 3c for the Rapid IDA-EAL method and in Figure 4c for the 

computational IDA-EAL method.  The final EAL, calculated using the proposed Rapid IDA-EAL 

method was found to be $1,040 and $190 per $1Million of asset value for the ductile and DAD 

piers, respectively.  Using the computational IDA-EAL method, the resulting EAL for the ductile 
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and DAD pier was found to be $980 and $140 per $1M asset value, respectively.  This is calculated 

from the area under the curves given in Figure 3d and Figure 4d for the rapid and computational 

IDA-EAL methods, respectively. 

Verification 

The computational IDA-EAL procedure presented above seems to provide good correlation with 

the Rapid IDA-EAL method.  For both piers, EAL calculated from the two methods differed only 

by $50 per $1M asset value. Figure 5a compares the median (50th percentile) IDA responses from 

the two methods for the two piers.  Both curves agree quite well, especially at lower intensity levels.  

At higher intensity levels the variation in data increases somewhat; which can mainly be attributed 

to two reasons.  First, as IM is scaled at the structure’s fundamental elastic period, and the natural 

period elongates with the onset of inelastic behaviour, variations in response will increase due to an 

increased dispersion [7]  Secondly, as the target displacement increases, the Rapid IDA-EAL 

method is more susceptible to error from hysteresis damping approximations.  The fragility, hazard-

survival, and total loss curves obtained from the two methods are compared in Figure 5b, 5c, and 

5d, respectively.  Although slight differences between the two are evident, the data tends to match 

better at higher annual frequencies.  Note that this portion of the curve (i.e. higher frequency range) 

largely governs the final EAL value, whereas low frequency events do not have a large influence on 

the final outcome.   

DISCUSSION 

The Rapid IDA-EAL Method 

A primary aim of this study was to develop a practical method to rapidly estimate financial 

seismic risk.  The proposed Rapid IDA-EAL method has shown to be a very powerful, yet simple, 

procedure for seismic risk assessment.  By means of pushover analysis and a modified CSM, a 

median EDP-IM relationship can be established.  Using a constant lognormal standard deviation, 

structural fragility can be found for defined damage states.  All sources of variability and 

uncertainty can be combined and related to the annual frequency in the form of hazard-survival 
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curves which can be integrated and multiplied with the corresponding loss ratios to arrive at EAL.  

The proposed method was verified using the computational IDA-EAL method with no assumed 

distribution.  Results showed good correlation between the two approaches.  Although further 

research may help to make the proposed procedures more robust, the methodologies, even in their 

present form, are a substantial improvement over current simplified methods. The Rapid IDA-EAL 

method will enable engineers to take into account the long-term financial implications in addition to 

the construction cost. Consequently, it will help the stake holders to make informed decisions when 

choosing the final design for new buildings and a seismic retrofit option for existing buildings.  The 

Rapid IDA-EAL methodology has been verified using a rigorous methodology for a SDOF model 

for a bridge.  The applicability of the Rapid IDA-EAL methodology for Multi-Degree of Freedom 

(MDOF) systems was not investigated, and further research is needed in this regard. 

Ductile Design versus DAD 

The resulting EAL for the ductile and DAD piers were of stark contrast, even though both piers 

had similar design basis.  The ductile pier’s vulnerability was dominated by minor damage 

occurring at relatively low drifts and moderate ground shaking levels.  The DAD pier, on the other 

hand, was dominated by the ultimate failure condition, resulting in an annual risk of only 16% of 

that of the ductile system.  Such an improvement of performance is attributed to the rocking 

concept, which is relatively new in earthquake engineering.  Findings from this study suggest that 

current design practice, although adequate in protecting loss to life and limb, is deficient in 

protecting the structure from minor yet costly damage arising from frequent events.  Improvement 

in this area, possibly through further development of DAD, is a necessary next step for PBEE.  The 

findings of this and further studies related to DAD systems may be the evidence needed for DAD to 

become feasible in a highly competitive construction industry.   

Not considered in this study is the significant additional risk associated with non-structural 

damage, downtime, and loss of life.  Bridges are especially vital for the flow of goods and people; 

closure of key transportation arteries can have severe economic consequences.  Bridges designed 
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according to DAD will incur little to no residual displacement, allowing full operation even after 

large earthquakes.  Non-structural damage will need to be considered in buildings, where it is likely 

to contribute significantly to global loss.  Studies in these areas are in their infancy, and further 

work regarding such risk is necessary to fully address the viability of DAD.  

CONCLUSIONS 

Based on the findings of this research, the following conclusions can be drawn: 

1. A Rapid IDA-EAL method has been established to assess seismic financial risk.  A non-

linear static pushover curve was combined with the acceleration-displacement response 

spectrum using the capacity spectrum method to generate the median-spectrum compatible 

IDA curve to approximate the true median IDA curve. The median EDP value was related to 

damage states and loss ratios through damage and loss models, respectively. Thus generated 

loss hazard curve was integrated using a simplified equation that takes into account the 

median loss value and the combined dispersion factor to calculate EAL.  Although loss 

ratios for different damage states are assumed to be crisp in the application shown, the 

proposed rapid IDA-EAL methodology can easily incorporate uncertainties in the assumed 

damage and loss models by combining them in the final dispersion factor used in the EAL 

equation. 

2. An alternative method has been used for processing the results of IDA.  This study has 

advanced the use of a distribution-free approach whereby IDA data is used without any pre-

conceived probability distribution function. Other sources of uncertainty and randomness 

were combined into the analysis in an approximate sense. 

3. Both the distribution-free rapid IDA-EAL method and the conventional computational IDA 

based method were compared through a practical application to reinforced concrete bridges.  

The Rapid IDA-EAL assessment approach showed good agreement with the full 

computational IDA-EAL approach.  Results were well within the same magnitude and 

varied on average by 15%.   
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4. Through the use of the proposed financial risk methods, the seismic vulnerability of two 

bridge piers with very different detailing but comparable initial cost was examined.  One 

pier, designed to avoid all forms of damage except from toppling, was shown to have an 

EAL approximately 80% less than a conventional ductile pier. 
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TABLES AND FIGURES 
Table 1: Damage states index as defined by Hazus [15] and the loss ratios and range  

 Damage State 
Failure Mechanism 
for RC bridge piers 

Repair Required Outage 
Ductile  

LR 
DAD  LR 

DS1 None Pre-Yield None No 0 0 

DS2 Minor / Slight Post-Yield / Spalling 
Inspect, Adjust, 

Patch 
< 3 days 

0.03 
0.01-0.03 

0.01 
0-0.03 

DS3 Moderate 
Post-Spalling, Bar 

Buckling 
Repair 

Components 
< 3 weeks 

0.08 
0.02-0.15 

- 

DS4 
Major / 

Extensive 
Degrading of 

Strength 
Rebuild 

Components 
< 3 months 

0.25 
0.10-0.40 

- 

DS5 
Complete / 
Collapse 

Collapse Rebuild Structure > 3 months 
1 

0.30-1.00 
1 

0.30-1.00 
 

Table 2:  Earthquake records adopted for IDA 

No Event Year Station 
 

M
*2 

R
*3 

(
km) 

P
GA 

(g
) 

1 
Loma Prieta 1989 Agnews State Hospital 9

0 
6

.9 
2

8.2 
0.

159 

2 
Imperial Valley 1979 Plaster City 1

35 
6

.5 
3

1.7 
0.

057 

3 
Loma Prieta 1989 Hollister Diff. Array 2

55 
6

.9 
2

5.8 
0.

279 

4 
Loma Prieta 1989 Anderson Dam 2

70 
6

.9 
2

1.4 
0.

244 

5 
Loma Prieta 1989 Coyote Lake Dam 2

85 
6

.5 
2

2.3 
0.

179 

6 
Imperial Valley 1979 Cucapah 8

5 
6

.9 
2

3.6 
0.

309 

7 
Loma Prieta 1989 Sunnyvale Colton Ave 2

70 
6

.9 
2

8.8 
0.

207 

8 
Imperial Valley 1979 El Centro Array #13 1

40 
6

.5 
2

1.9 
0.

117 

9 
Imperial Valley 1979 Westmoreland Fire Sta. 9

0 
6

.5 
1

5.1 
0.

074 

10 
Loma Prieta 1989 Hollister South & Pine 0 6

.9 
2

8.8 
0.

371 

11 
Loma Prieta 1989 Sunnyvale Colton Ave 3

60 
6

.9 
2

8.8 
0.

209 

12 
Superstition Hills 1987 Wildlife Liquefaction Array 9

0 
6

.7 
2

4.4 
0.

180 

13 
Imperial Valley 1979 Chihuahua 2

82 
6

.5 
2

8.7 
0.

254 

14 
Imperial Valley 1979 El Centro Array #13 2

30 
6

.5 
2

1.9 
0.

139 

15 
Imperial Valley 1979 Westmoreland Fire Sta. 1

80 
6

.5 
1

5.1 
0.

110 

16 
Loma Prieta 1989 WAHO 0 6

.9 
1

6.9 
0.

370 

17 
Superstition Hills 1987 Wildlife Liquefaction Array 3

60 
6

.7 
2

4.4 
0.

200 

18 
Imperial Valley 1979 Plaster City 4

5 
6

.5 
3

1.7 
0.

042 

19 
Loma Prieta 1989 Hollister Diff. Array 1

65 
6

.9 
2

5.8 
0.

269 

20 
Loma Prieta 1989 WAHO 9

0 
6

.9 
1

6.9 
0.

638 
1 Component, 2 Moment Magnitudes, 3 Closest Distances to Fault Rupture, and Source: PEER Strong Motion 
Database, http://peer.berkeley.edu/smcat/ 

 
Table 3:  Summary of the Rapid IDA-EAL method 

Damage 
State 

θ (EDP) 
User 

Defined 

IM 
f(θ) 

Eq. (13)-(15) 

fa 

f(IM) 
Eq. (19) 

LR 
User 

Defined 

ΔLR 
LRi - LRi-1 

x~  
f(LR, fa) 
Eq. (21) 

EAL $/million 
f ( x~ , β) 

Eq. 
(20)or(22)* 
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Ductile Monolithic Pier      
DS1    0    

 0.6% 0.2048433 0.015707  0.03 0.00046615 653*

DS2    0.03    
 2.2% 0.627227 0.0005453  0.05 2.4124E-05 51 

DS3    0.08    
 3.6% 0.8583003 0.0002126  0.17 3.6531E-05 85 

DS4    0.25    
 4.9% 1.0387603 0.0001199  0.75 0.00010133 252 

DS5    1    
      Total EAL = $1040
        

DAD Pier       
DS1    0    

 3.0% 0.570959 0.000723  0.01 6.8719E-06 10*

DS2    0.01    
 10.0% 1.160943 8.58E-05  0.99 8.4630E-05 180 

DS5    1    
      Total EAL = $190
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Figure 1:  Step for conducting a Rapid IDA-EAL risk assessment. 
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Figure 2:  Prototype bridge and design details of the DAD and ductile piers. 
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Figure 3:  Rapid IDA-EAL case study of two RC bridge pier design alternatives.   
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Figure 4:  Results from computational IDA-EAL analysis 
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Figure 5:  Comparison of Rapid IDA-EAL (solid lines) and the distribution-free method (symbols).             
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