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Abstract

A majority of patients admitted to the Intensive Care Unit (ICU) require some form
of respiratory support. In the case of Acute Respiratory Distress Syndrome (ARDS),
the patient often requires full intervention from a mechanical ventilator. ARDS is also
associated with mortality rate as high as 70%. Despite many recent studies on venti-
lator treatment of the disease, there are no well established methods to determine the
optimal Positive End Expiratory Pressure (PEEP) or other critical ventilator settings
for individual patients. A model of fundamental lung mechanics is developed based
on capturing the recruitment status of lung units. The main objective of this research
is the simplest possible model that is clinically effective in determining PEEP. The
model was identified for a variety of different ventilator settings using clinical data.
The fitting error was between 0.1% to 4% over the inflation limb and between 0.3%
to 13% over the deflation limb at different PEEP settings. The model produces good
correlation with clinical data, and is clinically applicable due to the minimal number of
patient specific parameters to identify. The ability to use this identified patient specific
model to optimize ventilator management is demonstrated by its ability to predict the
patient specific response of PEEP changes before clinically applying them. Predictions
of recruited lung volume change with change in PEEP have a median absolute error
of 1.87% (IQR:0.93-4.80%; 90% CI:0.16-11.98%) for inflation and a median of 5.76%
(IQR:2.71-10.50%; 90% CI:0.43-17.04%) for deflation, across all data sets and PEEP
values (N = 34 predictions). This minimal model thus provides a clinically useful and
simple platform for continuous patient specific monitoring of lung unit recruitment for
a patient.
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1 Introduction

A significant number of patients admitted to the ICU require mechanical ventilation due to

acute respiratory failure, such as Acute Respiratory Distress Syndrome (ARDS) [1, 2, 3].

The mortality rate of ARDS ranges from around 30% to as high as 70% in some studies [4].

In ARDS, the lung is inflamed and filled with fluid, becoming stiff. Furthermore, some lung

units collapse from the additional weight of the fluid, reducing the amount of functional

lung units. The overall result is a stiffer and volumetrically smaller lung. There are no

specific treatments for such acute respiratory diseases, except to facilitate an environment

for patients to recover on their own [5].

Mechanical ventilation is used to aid recovery by reducing the work of breathing or taking

over this work completely, if necessary. Application of Positive End-Expiratory Pressure

(PEEP) is one of the most important intervention in managing a patient with ARDS [6, 7].

PEEP is used to keep the lung partially inflated at the end of expiration in order to prevent

lung units from collapsing and maintain their recruitment during subsequent breathing cycles

[8, 9].

Each patient and their disease state are unique. Thus, the ventilator management needs

to be individualized. As the patient’s condition changes, the ventilator parameters need to

be updated. Specifically, the level of PEEP needs to be adjusted to optimize recruitment

and gas exchange, and also to facilitate reductions in mechanical ventilator support, as the

patient’s condition improves.

Several studies have been conducted to optimize ventilator management, such as low tidal
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volume and PEEP above lower inflection point of the PV curve. These treatments have been

shown to reduce mortality in some cases [7, 6]. However, there are still no well accepted and

defined general procedures that can effectively optimize individual ventilator settings over

broad cohorts. Hence, clinicians often rely on their own experience and intuition, resulting

in widely variable and inconsistent management of mechanical ventilation [10].

This research develops an objective, model-based method of determining the optimal ven-

tilator PEEP treatment using a model estimated level of lung recruitment. The method is

based on the simulation and identification of a simplified minimal model of the mechanics

of the lung, under a variety of ventilator settings. Some of the mechanics have been exam-

ined in earlier stages of this research [11, 12]. However, there was an excessive number of

parameters in earlier models [11] so that it was not uniquely identifiable. Hence, it was not

easily applicable for clinical use. This paper describes a minimal model utilizing only two

parameters per limb of the breathing curve to track the level of recruitment and its potential

use in clinical situations.

2 Model

A model of fundamental lung mechanics is developed using simplified physiology and the

reported clinical findings. It is based on work by Hickling [13, 14], which models the lung

as a collection of multiple lung units. A unit represents sets of distal airways and attached

alveoli. The lung is divided into several “horizontal” compartments to capture the different

levela of superimposed pressure. The compartment at the bottom experiences higher super-

imposed pressure than the ones above due to the weight of the lung. Figure 1 shows the
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fundamental components of the modelled lung. Any given lung unit has only two possible

states at any given pressure: 1) recruited or 2) not recruited.
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Figure 1: Modelled lung. The lung is modelled as collection of units, evenly divided into
compartment of different superimposed pressure.

The mechanism of volume change is based on the hypothesis that it is caused predominantly

by recruitment and derecruitment of lung units, especially in ARDS affected lung. Recent

in vivo studies have shown that the recruitment and derecruitment of alveoli occurs even

in healthy lungs and that once a unit is recruited, it does not change its size significantly

[15, 16, 17]. This result suggests that recruitment and derecruitment is the dominant cause

of volume change, rather than isotropic “balloon like”, expansion of alveoli as had been

traditionally thought, which is discussed in [16]. This elastic expansion hypothesis is also

utilized by a variety of other clinical studies [18, 19, 20, 8, 13, 14, 21, 22, 9, 23, 24, 25, 26],

and is in contrast to the in-vivo and clincally observed, more discrete open-closed behaviour

employed here.
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2.1 Threshold Pressure Distribution

A modelled lung unit has 2 possible states at a given pressure: 1) Recruited and 2) Dere-

cruited. The recruitment and derecruitment of the modelled lung units are controlled by the

distribution of Threshold Opening Pressure (TOP) and Threshold Closing Pressure (TCP),

respectively. TOP is the critical pressure at which a previously collapsed unit is recruited

during inspriation. Similarly, TCP is the critical pressure where a previously recruited unit

collapses during expiration.

Threshold pressures are assumed to be normally distributed along pressure, based on work

by Crotti et al. [20] and Pelosi et al. [24]. TOP and TCP distributions can therefore be

modelled by a normal density (Gaussian) function. The shape of each distribution is defined

by two unique variables: standard deviation (SD) and mean. The total number of lung

units in the model are distributed according to these variables within a defined physiological

pressure range as well as across superimposed pressure compartments.

Figure 2 shows an example of TOP and TCP distributions. The TOP is distributed broadly

from minimum to maximum pressure. This distribution simulates the continuous recruitment

of lung units during inspiration. The TCP distribution is significantly narrower compared

the TOP, and concentrated at lower pressure. Physiologically, these distributions represent

a continuous recruitment of lung units over a full range of pressure during inflation and

a more sudden, or faster, derecruitment at lower pressure during deflation. This trend of

consistent recruitment through out inspiration and relatively fixed point of derecruitment

has been evidenced in several clinical studies [27, 28, 29, 21, 23].
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The shapes and the values of the distributions are also unique to the condition of the patient

and the state of disease. These parameters therefore change as the state of disease and the

condition of a given patient evolve. Thus, they can be used as a model based marker to

describe the level of recruitment, and thus oxygenation, in the lung and indicate changes in

patient condition over time.
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Figure 2: An example of threshold pressure distributions. The distribution is based on
normal density function, defined by SD and mean for each distribution. The total number
of lung units are distributed within defined pressure range, according to these variables.
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2.2 Unit Compliance Curve

Once a lung unit is opened, it assumes a volume defined by a unit compliance curve. The

unit compliance is based on a sigmoid curve. An example of a unit compliance curve is

shown in Figure 3. The shape and values of the curve is described by the equation:

V =
a

1 + eb(−P+c)
+ d (1)

where the volume, V, is defined at each pressure increment, P, by a, the height of the curve,

b, the curvature, c, the midpoint, and d, a minimum volume. Equation (1) describes the

volume at every pressure value. However, the model only uses a range of specified pressures.

Venegas et al. [30] used a similar equation to describe the entire PV curve. However,

in this model, the unit compliance curve only represents visco-elastic effects of recruited

alveoli and distal airways. It thus provides the model with slightly more flexibility to match

observed clinical behaviour. Since this model is based on the hypothesis that volume change

is predominantly caused by recruitment and derecruitment, and that the size of alveoli does

not change significantly once recruited, this curve has relatively small effect on the total PV

curve. This concept can be seen in the small volume change over a wide range of pressure in

Figure 3. Thus, the shape and values for the curve can be fixed during the fitting process,

significantly simplifying the analysis and reducing potentially redundant variables.
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Figure 3: An example of an individual unit compliance curve. The curve is based on a
sigmoid function, and defines the volume of a recruited lung unit at a given pressure. The
maximum difference in volume is about 20% in this example.

2.3 Model Solution/ Simulation

As pressure changes during a breathing cycle, the model calculates the volume of the lung

using the threshold pressure distributions and unit compliance curve. At each pressure in-
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crement, the model evaluates the number of recruited units in each compartment, using

appropriate superimposed pressures and threshold pressure distributions. The number of

recruited units is then multiplied by the appropriate unit volume according to a unit compli-

ance curve to produce a volume of the compartment. Total lung volume at a specific pressure

is the sum of all the compartment volumes. This solution process is shown schematically

in Figure 4. Given data from clinical PV loops, the process can be readily inverted to find

the threshold pressure distribution parameters. In other words, the model is uniquely and

readily identifiable.
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Figure 4: A schematic of the model solution process. It shows each step of the process for
calculating one compartment volume. The total lung volume of a given pressure is the sum
of all the compartment volumes modelled.
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2.4 Model Parameter Analysis and Minimization

A model developed in earlier stages of this research was validated by fitting it to reported

clinical data [11]. However, that model included four different types of lung units, based

directly on work by Schiller et al. [17], and all different types of unit required unique unit

compliance and threshold pressure distributions using results from the literature. The model

therefore required as many as 42 patient specific parameters to be identified [11]. Most of

those parameters were impractical, if not impossible, to obtain clinically, especially with the

limited time, data, and resources in an intensive care unit (ICU). However, the model in [11]

was much more physiologically representative. Thus, its relationship to the model presented

here is used to define this minimal model’s physiological relevance.

The model of [11] was thus modified to create the model presented here, requiring only 2

parameters per breathing limb to make it clinically applicable. First, reducing the number of

unit types to just one, reduced the number of parameters to 14. Second, using the hypothesis

that most of the volume change is caused by recruitment and derecruitment [e.g. 15, 16, 17],

the unit compliance has a relatively smaller contribution to the overall PV curve shape. As a

result, the unit compliance curve defined in Equation 1 can be fixed at generic values. Finally,

fixing the maximum and minimum threshold pressures to 60 and 0 cmH2O, respectively, to

cover the range of typically used ventilation pressures, the total number of parameters was

reduced to just four:

• TOP distribution mean - Inspiratory limb of breathing curve

• TCP distribution mean - Expiratory limb of breathing curve
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• TOP standard deviation - Inspiratory limb of breathing curve

• TCP standard deviation - Expiratory limb of breathing curve

These parameters are effectively two for the inflation and deflation limbs. Other variables,

such as PEEP, PIP, and tidal volume are assumed known, as they are set by the clinician or

can be obtained directly from ventilator.

Hence, the changes made do not remove any significant physiological representation. What

is lost is the level of physiological detail in the number and the types of ARDS affected and

healthy lung units. However, these values were not uniquely identifiable without as many as

20 unique PV curves, which was not clinically practical.

In their place is now a single unit with the two states of recruited and derecruited. However,

these two states can, at a given pressure, represent the level of ARDS by the level of recruit-

ment. More specifically, as ARDS progresses, there is less recruitment at a given pressure

and PEEP, which is effectively captured by the four (2 each) parameters describing TOP

and TCP.

As a result, the parameter identification is greatly simplified and importantly, is unique,

given a reasonably discretized measured PV curve. The main requirement is a minimum

of 2 complete PV loops to provide enough data to identify the two parameters for the

inflation, TOP distribution, and deflation, TCP distribution, limbs. A second requirement

is that these loops be obtained at clincally different PEEP values. TOP and TOP parameter

identification is readily done by iteratively modifying the threshold pressure distribution
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variables to minimize the sum squared error between the model and clinical data for each

limb of the PV loops.

Since the inflation and deflation limbs are generated by different independent parameters,

each limb can be fitted separately. The PEEP value sets the minimum pressure for the PEEP

to PIP breathing cycle. The standard deviation of the TOP or TCP distribution primarily

controls the slope of the curve and the mean value primarily controls the location along the

pressure axis of the respective curves.

3 Model Validation

The model was validated by fitting to clinical PV data at different PEEP levels reported in

the literature [31]. The study used data from 10 patients each with a different level of lung

injury. Each data set had at least three different PEEP levels with the associated deflation

to the Functional Residual Capacity (FRC) having to be measured by intervention. Using

this measurement, it is then possible to evaluate the End Expiratory Volume (EEV) for a

given PEEP.

For this validation analysis, data at different PEEP settings from the same patient are

fitted by shifting the distribution mean value, while other parameters were fixed. This shift

represents the effect of the dynamic mechanism of lung units at different PEEP values. More

specifically, once a collapsed lung unit is recruited, it does not necessarily collapse again at

the same pressure at which it was recruited. Instead, it stays recruited at a lower pressure

[21]. This effect is especially significant in the ARDS lung because of the reduced number of
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functional lung units and lower compliance of the overall lung. The benefit of recruitment

manoeuvres on ventilated patients is based on this dynamic [32, 33]. The same effect results

from increasing the PEEP, while keeping the tidal volume the same, causing higher Peak

Inspiratory Pressure (PIP).

This behaviour results in a shift in threshold pressure distributions in the model. Therefore,

as PEEP is increased, the center of the TOP distribution shifts to lower pressure, indicating

that more units are kept recruited during the breathing cycle. Hence, they begin to recruit,

and keep recruited, lung units that were collapsed at lower PEEP settings. Again, this

physiological dynamic has been observed in several clinical studies [e.g. 32, 8, 22, 9, 33].

Similarly, the TCP distribution mean shifts to higher pressure indicating unit instability at

relatively higher pressures compared to TCP at lower PEEP settings. The higher PEEP

recruits more units in regions with higher superimposed pressure and injured units. These

newly recruited units are inherently unstable, and thus, are likely to be de-recruited at

relatively higher pressure. Hence, the higher PEEP increases the recruitment of previously

collapsed units at a given pressure, increasing the number of functional units. However,

those units are unstable and collapse at relatively higher pressure.

The amount of the shift in both distributions is dependent on the individual patients’ con-

dition and state of disease. More specifically, PEEP is modified to increase recruitment and

optimize oxygenation. Therefore, tracking the number of recruited units at a given pressure

and PEEP over time is a measure of recruitment that effectively tracks the state of ARDS

or lung disease using the level of recruitment. Thus, it can be used as a key parameter to

describe the characteristics of a patient specific lung, track the level of recruitment, and
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quantitatively determine the impact of therapy.

The method for fitting the data is based on simulating the entire inspiratory capacity of the

lung. For a given recruitment status of the lung, Figure 5 shows an example of a typical PV

curve as obtained from either standard Volume Controlled Ventilation (VCV) or Pressure

Controlled Ventilation (PCV) [31]. Also shown is the tidal volume, PEEP and PIP.
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Figure 5: An example of the model fit. The plot shows the modelled inflation, modelled
deflation and the data for inflation and deflation. The model fits the entire lung capacity.

The lower dotted curve represents the inflation curve which is dependent on the type of venti-

lation used. The upper dashed curve represents the quasi-static PV curve which is ventilator

independent and represents the steady state volume obtainable for each pressure increment
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from 0 to 60 cmH2O. Again, note that the figure is only valid for a specific recruitment status

of the lung. In practice, the alveoli recruitment dynamics can change if different settings of

PEEP are used for sufficiently long periods. The result of this physiological effect would be

a change in the curves of Figure 5, and a shift in the means of the corresponding TOP and

TCP distributions.

The upper dashed curve also represents the limiting behaviour of the deflation part of the

PV relationship for the given recruitment status, and in principle could be obtained experi-

mentally by a sequence of pressure holds from 0 to 60 cmH2O.

For the example in Figure 5 the limiting behaviour is constrained by the given PEEP value.

In other words, during the passive expiratory phase of VCV, the pressure drops very quickly

and stays close to PEEP, so that the volume must eventually settle onto the quasi-static PV

curve. The last part of this deflation curve is therefore effectively equivalent to a pressure

hold at PEEP.

Another way of describing the upper expiratory dashed curve is that it is the asymptotic

behaviour of the deflation curve from PIP to PEEP. Similarly, the lower dotted line represents

the asymptotic behaviour of the inflation period.

Hence, at the start of inflation and end of deflation there is a transient period where the PV

curve is seeking to settle on the global asymptotic curves shown in Figure 5 . This period does

represent real lung mechanics but does not significantly reflect the volume responsiveness

described by EEV and PIP, which are the most important variables, clinically. The transient

behaviour is also evident in the PV data of Figure 6, where the sparse point distributions

indicate this rapid transition, resulting in a reduced amount of sampled data.

16



0

0.5

1

1.5

0 10 20 30 40

Pressure [cmH O]2

V
o

u
m

L
]

l
e

[

Transition Area

Figure 6: PV Loop showing the transient behaviour during inflation and deflation.

Figures 5 and 6 thus motivate a fitting procedure that uses the last approximately 60% of

the inflation curve and the densely sampled 70% (by volume) of the deflation curve. These

numbers were chosen experimentally and are essentially arbitrary, but cannot be too large

otherwise the less sampled, transient periods would induce an error. Alternatively, they

cannot be too small or the lack of data would cause unidentifiablity in the model.

Figures 7 and 8 show the model fit for two clinical PV data sets from [31]. The dotted line

shows the clinical data and the solid line shows the model fit across the densely sampled

non-transition region. The model was fitted to all the PV loops shown. However, only two

model fits per data set are shown here for clarity.

The identification and fitting error was calculated using the percentage difference between
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Figure 7: Data Set 1. Dotted line shows the clinical data and solid line shows the model
fitted to the clinical data [31]. Model fits for PEEP = 5 and 12 cmH2O are shown, with
PEEP = 7 cmH2O not fitted.

the model and the data in the inflation and deflation limb for each PV loop data set. These

results are shown in Table 1. Overall, the loops in Figure 7 show little significant deviation

and a good match to the measured data. Similar results are observed in Figure 8. Table 1

shows these results are relatively tight.

PEEP [cmH2O]
5 7 10

Data Set 1 Inflation 1.71% 0.48 % 0.34 %
Deflation 12.33 % 4.25 % 0.92%

5 7 10
Data Set 2 Inflation 1.74 % 0.53 % 0.59 %

Deflation 3.99 % 2.59 % 2.36%
5 7 10 12

Data Set 3 Inflation 3.03% 0.79 % 0.58 % 0.63%
Deflation 10.02 % 7.49 % 5.57% 3.09%

Continued on Next Page. . .
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PEEP [cmH2O]
5 7 10 12

Data Set 4 Inflation 3.47% 1.24 % 1.03 % 0.48%
Deflation 9.83 % 2.48 % 1.12% 0.75%

5 7 10 12
Data Set 5 Inflation 1.86% 0.58% 0.40 % 0.33%

Deflation 7.09 % 2.87 % 0.53% 0.24%
5 7 12

Data Set 6 Inflation 2.50% 1.16% 0.85 %
Deflation 5.15 % 1.86 % 1.02%

10 12 15
Data Set 7 Inflation 0.78% 0.47% 1.01 %

Deflation 1.19 % 0.78 % 0.82%
5 7 10 12

Data Set 8 Inflation 2.59% 0.54% 0.05 % 0.54%
Deflation 9.39 % 4.04 % 2.19% 1.07%

5 7 10
Data Set 9 Inflation 1.62% 1.24% 0.62 %

Deflation 10.59% 5.34 % 2.48%
5 10 15

Data Set 10 Inflation 2.30% 3.60% 0.93 %
Deflation 8.05% 5.17% 1.57%

Table 1: Summary of model errors

4 Clinical Application: Model Prediction

The main objective of this research is to develop the simplest possible model that is also

clinically useful in selecting a proper PEEP value. One approach is to provide an objective

method of determining optimal ventilator settings or PEEP for an individual patient. An-
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Figure 8: Data Set 2. Dotted line shows the clinical data and solid line shows the model
fitted to the clinical data [31]. The model is fit for PEEP = 5 and 10 cmH2O, as shown,
with the intermediate PEEP = 7 cmH2O not fitted.

other is to provide constant monitoring for a patient’s level of lung recruitment, and thus

the level of ARDS and the impact of therapy as patient condition evolves.

The overall average pressure point error for Data Set 1 was 14.3 ml (1.40%) and 60.35 ml

(6.36 %), for inflation and deflation respectively. For Data Set 5, the average absolute error

was 15.3 ml (1.89 %) and 40.5 ml(6.36 %), for inflation and deflation respectively. Table 2

summarises the prediction errors for these 2 data sets for each predicted PEEP value.

PEEP[cmH2O]
5 7 10

Data Set 1 Inflation Error[mls] 16.13 9.98 16.83
Error[%] 2.23 0.89 1.10

Deflation Error[mls] 49.26 67.16 64.65
Error[%] 7.58 6.71 4.78

Continued on Next Page. . .
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PEEP [cmH2O]
5 7 10

Data Set 2 Inflation Error[mls] 14.02 10.99 24.87
Error[%] 2.09 1.33 2.60

Deflation Error[mls] 82.18 54.24 133.59
Error[%] 11.69 6.80 13.92

5 7 10 12
Data Set 3 Inflation Error[mls] 15.86 10.18 16.38 18.91

Error[%] 2.35 1.48 1.97 1.75
Deflation Error[mls] 15.61 88.64 15.74 42.08

Error[%] 3.04 14.91 2.61 4.90
5 7 10 12

Data Set 4 Inflation Error[mls] 38.17 41.10 29.81 14.38
Error[%] 8.21 7.41 4.02 1.56

Deflation Error[mls] 48.50 72.87 32.76 5.41
Error[%] 13.44 16.97 4.64 0.73

5 7 10 12
Data Set 5 Inflation Error[mls] 31.87 35.09 21.82 10.63

Error[%] 2.52 2.33 1.11 0.48
Deflation Error[mls] 35.60 112.82 13.33 9.06

Error[%] 3.32 8.89 0.72 0.40
5 7 12

Data Set 6 Inflation Error[mls] 134.87 107.40 268.82
Error[%] 19.00 10.37 16.34

Deflation Error[mls] 70.30 53.75 153.21
Error[%] 11.22 4.92 9.26

10 12 15
Data Set 7 Inflation Error[mls] 97.25 48.48 101.40

Error[%] 7.17 2.82 5.10
Deflation Error[mls] 137.55 75.43 183.81

Error[%] 11.20 4.95 10.64
5 7 10 12

Data Set 8 Inflation Error[mls] 19.79 10.69 8.05 8.15
Error[%] 2.89 0.88 0.58 0.47

Deflation Error[mls] 47.49 54.15 19.91 18.86
Error[%] 7.35 5.43 1.78 1.43

5 7 10
Data Set 9 Inflation Error[mls] 15.29 16.39 14.69

Error[%] 1.69 1.29 0.84
Deflation Error[mls] 17.00 111.24 101.43

Error[%] 2.23 10.48 7.06
Continued on Next Page. . .
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PEEP [cmH2O]
5 10 15

Data Set 10 Inflation Error[mls] 16.43 26.79 19.13
Error[%] 4.51 4.24 1.83

Deflation Error[mls] 43.58 40.81 38.80
Error[%] 9.65 7.79 4.09

Table 2: Summary of PV prediction errors for all data

sets

Table 3 summarises the overall prediction for all 10 data sets. This table shows the maximum

and average percentage absolute error for inflation and deflation at each predicted PEEP

level. The interquartile range of errors are shown to provide the range of errors.

Inflation Deflation
PEEP [cmH2O] Avg IQR 90% CI Max Avg IQR 90% CI Max
5 5.04 1.07 - 7.39 0.14 - 18.02 27.54 8.19 2.81 - 12.42 0.88 - 20.84 27.98
7 3.15 0.93 - 4.15 0.20 - 9.84 19.20 9.42 5.57 - 12.53 2.86 - 22.37 26.87
10 2.89 0.91 - 4.16 0.30 - 8.73 13.55 6.44 1.42 - 9.72 0.27 - 16.11 22.08
12 3.32 0.69 - 2.69 0.03 - 19.53 22.85 3.84 0.89 - 5.57 0.03 - 9.44 14.16
15 3.62 1.99 - 5.10 1.10 - 5.82 6.25 7.67 5.03 - 11.03 1.49 - 11.67 11.68

Table 3: Summary of PV prediction percentage errors for all data sets. The errors are listed
according to predicted PEEP levels

The data that the model requires for both uses can be directly obtained from the ventilator

during normal operation and clinical adjustment. All the analysis can be done at bedside

and be immediately applied. Furthermore, it does not require additional equipment or tests.

Thus, additional cost and risk to the patient are avoided.
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The ventilator setting optimization procedure is done in 3 steps: 1) parameter identification,

2) simulation of a change in PEEP, and 3) analysis. The model was validated by using

clinical data from Bersten [31]. The clinical data in this study were recorded at different

PEEP settings for each patient and each measurement included an EEV measurement. The

data was sampled for 60 seconds at 100 Hz for each PEEP level PV loop using volume

controlled ventilation. The data also included a deflation to FRC and the last 15 to 20

seconds were used for the FRC measurement.

Because the model can identify lung mechanics over an entire pressure range, it can be

used to predict the lung mechanics at different ventilator settings. Thus, the model allows

the clinicians to see the result before it is actually applied to the patient, and decide on

whether to apply the changes. The model also allows predictions about multiple results to

be made quickly. Quick turnaround eliminates the need for clinical trial and error procedures.

Hence, optimum PEEP and ventilator settings can be obtained via simulation if the model

predictions are accurate.

Therefore, for patients with data at 3 PEEP settings, 2 PEEP settings are used to fit the

model and the mean shift trend. For example, Figure 9 shows the parameter identification

for two measured clinical PV loops. The plot shows the clinical PV loops with the fitted

model results and the respective threshold distributions. The fitted model is then tested to

predict the results of the remaining PV loop. If 4 PEEP settings are available, then the

model is fitted with 3 loops. Any combination can be used to test the remaining unused

PEEP value and PV curve.

Specifically, if 2 PV loops are obtained at higher PEEP values, then the model can predict
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Figure 9: Data fitting for parameter identification. The essential parameters are identified
by fitting the model to the clinical data. Each loop results in unique threshold pressure
distributions defining level of recruitment for that PEEP. Respective threshold pressure
distributions show the mean of TOP has moved left with higher PEEP setting and the TCP
mean has moved right.

a PV loop for a lower PEEP. Prediction of a lower PEEP is useful in the clinical setting

as it means that alveolar collapse can be avoided as a result of PEEP reduction. Similarly,

predicting higher PEEP level responses allows evaluation of the clinical impact in recruitment

of changing PEEP.

The model was able to predict the missing mean shift and PV curve for the PEEP level with

relatively small errors. The error metric chosen is average relative percentage error, computed

over the densely sampled portions of the PV loops used in the identification process. This
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approach avoids the transient period, as discussed earlier in Figures 5 and 6

Figure 10 illustrates the fitted mean shift and actual mean for PEEP of 5 cm20 in Data Set

1 as predicted, having fitted for data for PEEP = 7 and 12 cmH20. The predicted value

is marked with an asterisk (*). Figure 11 shows the resulting PV curve prediction, where

the dashed lines are the original clinical data for the predicted PV loop. Because the model

was not fit in the highly dynamic transition area, the prediction was also made only for the

steady portion of the curve, as illustrated by the dots in the figure.

Figures 12 and 13 illustrates the same prediction result for PEEP levels for 7 and 12 cmH20

for Data Set 1, respectively. All results show minimum errors that are clinically insignificant.

Finally, note that the linear mean shift trend lines in Figures 10 to 13 are all effectively

identical with minimal difference.

Figures 14 to 17 illustrate the same results for all PEEP level predictions in the larger Data

Set 5. In contrast to Data Set 1, the slope of these patient specific mean shift values is lower,

indicating a patient thats much less responsive to changes in PEEP. More specifically, this

patient experiences far less of an increase in recruited lung volume for a given increase in

PEEP, indicating less clinical effect in modifying therapy. Similar to the results for Data Set

1, all the predicted PV curves show clinically insignificant levels of error in their predictions

based on mean shift.

The results of this model show that as PEEP increases, the TOP distribution mean decreases,

while the TCP distribution mean increases. These shifts indicate the change in recruitment

and derecruitment characteristics of lung units as PEEP is altered [8, 22, 9].
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Figure 10: A fitted mean shift for prediction result for Data Set 1. PEEP = 7 cmH20 and
PEEP = 12 cmH20 were used to predict PV data at PEEP = 5 cmH20. The linear lines for
mean shift (dashed lines) are identified from the 2 given data sets (solid dots). The * shows
the mean being predicted. Red and blue lines are for the TCP and TOP distribution mean,
respectively.

The model requires a minimum of two PV loops at different PEEP settings to obtain all the

required parameters. However, more data will increase the accuracy of the parameters and

resulting simulation, particularly in presence of noise. The values of PEEP used do not need

to be predetermined or specified, but should be within a safe range determined by medical

staff for that specific patient and be reasonably different. Once a best fit is achieved, the

model records those parameter values for prediction and simulation.
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Figure 11: A prediction result for PEEP = 5 cmH2O of Dataset 51. The PV data was
predicted by fitting 2 known PEEP levels (solid lines). The green and blue dots show the
predicted data and dashed lines show original lines.

The model can simulate the lung for any combination of PEEP and tidal volume, including

the extreme values that may not be safe to test on an actual patient. Since the model is

based on a reduced number of parameters and simplified mechanics, the simulation can be

done in matter of seconds. This produces real-time feedback and a condition specific result.

The volume shifts between different means are captured by the shifting distribution means.

In general, the TOP mean decreased as PEEP increased, and the TCP mean increased as

PEEP increased. Physiologically, this indicates the varying nature of TOP an TCP under

27



0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pressure [cm H20]

V
ol

um
e 

[L
]

0 5 10 15 20
0

5

10

15

20

25

30

Pressure [cm H20]

T
O

P
 &

 T
C

P
 M

ea
n 

V
al

ue

Figure 12: A prediction result for PEEP = 7 cmH2O of Dataset 1.
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Figure 13: A prediction result for PEEP = 12 cmH2O of Dataset 1.

this therapy. Once a previously collapsed unit is recruited, it is easier to re-recruit a second

time.

Once the unit is initally recruited, the unit can be re-recruited in subsequent cycles at the

same PEEP at a lower pressure , essentially decreasing its unit TOP value it had at a lower

PEEP. Thus, the overall result is volume increase over the breathing cycle and at a given

pressure.
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Figure 14: A prediction result for PEEP = 5 cmH2O of Dataset 5.
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Figure 15: A prediction result for PEEP = 7 cmH2O of Dataset 5.

Since the model identifies essential parameters representing lung recruitment, it can be used

to track patient recruitment and oxygenation, while the patient is on the ventilator. Thus,

when the patient’s condition improves or worsens, these parameters change accordingly. By

tracking the changes in parameter values over time, the pulmonary condition of the patient

can also be tracked. This approach can be used to aid clinical decisions and evaluate the

effect of treatment.
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Figure 16: A prediction result for PEEP = 10 cmH2O of Dataset 5.
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Figure 17: A prediction result for PEEP = 12 cmH2O of Dataset 5.

5 Model and Study Limitations

Currently, the fitting method requires data with deflation to FRC. This data is not typically

obtained during current protocols for ventilator treatment. However, this measurement can

be obtained by deflating the lung to atmospheric pressure. Once the airway is opened to

atmospheric pressure, the lung assumes FRC rapidly, and the entire measuring process can
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be completed in a matter of seconds [31]. This value might have to be obtained one per

every 1 - 2 days.

This process requires intervention from the ICU staff and interruption of the patient’s breath-

ing pattern, both of which may be clinically unavailable or undesirable. Furthermore, a

typical ventilator is only designed to record data on tidal ventilation, so that recording the

deflation to FRC would require either a specialised ventilator or a separate data acquisition

system. In this cases proposed, clinical model validation will employ external sensor systems.

Similarly, the mean shift trend and prediction of PV loops are primarily based on the relative

change of the PV loops with respect to the first PV loop. In other words, for PV predictive

purposes, the initial volume or FRC is essentially arbitrary and could be set to 0. All

that is required is the ∆FRC after each PEEP intervention. This ∆ FRC can be easily

obtained by a pressure hold at each required increasing PEEP. For example, the change in

volume occurring from increasing PEEP from 0 to 5 cmH2O in a pressure hold maneuver

is precisely ∆ FRC. This process could even be integrated into the ventilator to measure ∆

FRC automatically [34].

The mechanics of the lung at the missing PEEP values are readily predicted by linearly fitting

the mean shift to identify the impact of this change. It also allows the simplest method for

predicting the mean at a new PEEP level. However, some of the means are not perfectly

fitted by the linear fit as best illustrated in Figure 13, where the dots are not exactly on

the predictive linear line for this relatively extreme PEEP setting. This inaccuracy causes

the relatively larger error of the predicted PV curve. Importantly, this error is still within

clinical expectations.
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The prediction method utilises just a single parameter TOP (meanshift) to predict between

different PEEP settings. Thus, it is simple and easy to use, and can predict an important

patient specific response to the change in primary therapy of PEEP. However, it limits other

ventilator settings. Since the model parameters were identified using PV loops, only the

mechanisms that produced the PV loops are captured. Thus, this prediction method cannot

be used to predict changes due to drastically different ventilator settings, such as ventilator

mode, flow pattern, maximum inspiratory flow, etc.

However, it should be possible to predict the effect of different tidal volumes, since the EEV

is only correlated to PEEP, as long as the flow rates do not change drastically. This impact

of flow rates is distinct due to the use of easily available proximal data [35, 36], and the

airway resistance changes when flow rates change drastically. This limitation also implies

that when the ventilator setting is changed drastically, the model needs to be refit and

re-identified using 2 or more PV loops at these new ventilation setting.

That all said, such drastic changes are not typically part of standard ventilator therapy,

which focuses more on gradual evolution of settings [37]. In addition, more detailed models

could potentially manage such changes, but at a cost of much greater data requirements to

create clinically useful patient specific models. Hence, it might be best noted that the model

is limited to evolutionary prediction and changes typical of critical care.

This model has the ability to fit and follow the trend of any data including those from a

ventilator. Thus, it can reproduce the shape and values of the particular data. For example,

if the model was used to identify the parameters for ventilator data, then the model can

predict the ventilator data at different settings. Similarly, if carina measurements like those
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of Karason et al [35] are used, then the model can be used to predict the PV curve at the

carina for different settings. Thus, the model can be very generally applied to any data set

or type that may be available.

It may also be possible to use this model to assess the true lung mechanics, if the ET tube

and proximal airway resistances were better known or estimated empirically at the bedside.

This approach would require a smarter, more automated ventilator and/or excessive clinical

time. However, such smarter ventilators are being developed [34], and may appear in future.

The patient specific mean shift parameter identified by this model is a direct result of

analysing raw proximal PV data, which includes dynamic and resistive effects. Therefore,

the parameter identified may not directly represent the true lung mechanism. However, be-

cause the model is based on the fundamental mechanics, the slope of the mean shift and its

clinical relevance can be readily related to the true lung mechanics. One such method to

show this relation is to use the estimated carina measurement, which require measurements

of the air flow rates and fluid dynamics based estimates of intubation tube resistance, and

integrate this aspect in the model.

The model has been validated with limited clinical data from the literature. It therefore

requires clinical further validation using more extensive clinical data. The identification

methods also need to be validated using additional clinical data. Such data would also

enable more direct study of clinical application and patient outcomes.

Finally, more features may need to be included in the model to be fully clinically practical.

Such features could include automated data acquisition, parameter identification, airway

resistance estimates, and more efficient analysis. However, the overall goal of a clinically
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useful minimally complex model has been proven in concept.

6 Conclusions

A minimal model of mechanics of ventilated lung is developed. It employs only 2 unique

parameters for each limb of the breathing cycle. Its physiological representation is discussed

and compared to more complex not uniquely identifiable physiological model. The model was

validated by fitting to clinical data, showing its ability to capture the fundamental mechanics

of ventilated lung with reasonable error. Methods for determining different ventilator settings

using this model are presented and discussed. The model and its applications are proven in

concept and show significant potential as a non-invasive decision-support tool at bedside and

could provide non-subjective guidance for optimal ventilation management and continuous

patient monitoring.
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