

Mobile Phone Based AR Scene Assembly
Anders Henrysson1, Mark Ollila1 and Mark Billinghurst2

1NVIS, Linköping University, Sweden {andhe, marol}@itn.liu.se
2HIT Lab NZ, University of Canterbury, New Zealand mark.billinghurst@hitlabnz.org

Abstract
In this paper we describe a mobile phone based
Augmented Reality application for 3D scene assembly.
Augmented Reality on mobile phones extends the
interaction capabilities on such handheld devices. It adds
a 6 DOF isomorphic interaction technique for
manipulating 3D content. We give details of an
application that we believe to be the first where 3D
content can be manipulated using both the movement of
a camera tracked mobile phone and a traditional button
interface as input for transformations. By centering the
scene in a tangible marker space in front of the phone we
provide a mean for bimanual interaction. We describe
the implementation, the interaction techniques we have
developed and initial user response to trying the
application.

Key words: Mobile Phone. Augmented Reality, CAD

1. Introduction
Unlike desktop computer applications, input options on
mobile phones are very restricted. Current mobile phone
interfaces are dominated by keypad input. Although
limited, it is convenient to use the dial buttons for
accessing menus and controlling applications. For
improved navigation control, the keypad has been
extended by five-way joypads or joysticks. In addition,
some high-end smartphones feature stylus input similar
to PDAs. Another interface technique is speech
recognition e.g. for selecting which contact to call.

None of these techniques are suited for interaction with
3D objects or graphical scenes. In this case both the user
viewpoint and individual object position and orientation
need to be set interactively. In recent years the range of
interface techniques with desktop computer interfaces
has been extended with motion sensors and trackers.
These allow the user to make inputs by moving the
device itself. For example, in the BAT interface [31]
virtual objects can be manipulated in 3D space by

moving wooden handles that have a magnetic tracker
embedded inside them. Instead of pressing a mouse
button the user moves the BAT handle naturally and this
is mapped into virtual object translation and rotation.
Using a range of sensors, desktop interfaces can be
developed that provide intuitive six degree of freedom
(DOF) input for 3D applications. However there has
been no such work presented on the handheld or mobile
phone platform.

New opportunities in mobile phone interaction have
emerged with the integration of cameras into the phones.
By analyzing the video stream captured by the camera,
using simple image processing on the phone, it is
possible to estimate the movement of the device. This
can be used in a number of ways such as providing a 6
DOF interface, or recognizing objects to make the phone
context aware. In this paper we provide the first
example of using phone motion to manipulate graphical
objects in 6 DOF to create virtual scenes.

Our work also uses Augmented Reality display
technology. Augmented Reality (AR) [33] is a technique
for visualizing virtual information where the physical
reality is part of the scene. The virtual information is
registered in three dimensions with the real world and is
rendered with a different projection depending on the
position and orientation of the viewing device. The main
advantage of AR is the elimination of context switching
between the real and virtual domains. Another advantage
is that real world reference points can aid the navigation
of virtual content. AR applications typically use desktop
computers. It is only recently that such applications have
begun to appear on mobile phones, and ours is the fix
example of an AR scene assembly application on a
phone.

Traditionally the way to display AR content was to view
it through a head mounted display (HMD). Wearing a
HMD leaves the users hands free to interact with the
virtual content, either directly or through an input device
such as a mouse or digital glove. One disadvantage with
the HMD is that a 2D GUI is likely to block the user’s
view of the real world. An alternative approach is
handheld AR where the display is non-obscuring and
can be compared to a looking glass. For handheld AR
the user looks through the screen of the device to view
the AR scene and needs at least one hand to hold the
device. The user interface for these applications is very
different than those for HMD based AR applications.

In recent years AR applications have migrated to a
variety of handheld platforms, including Tablet PCs
[27], PDAs [28] and mobile phones [11]. Mobile phones
are an ideal platform for AR thanks to the integrated
camera that allows high quality optical tracking. In
addition to integrated cameras the current generation of
phones have full color displays, fast processors and even
dedicated 3D graphics chips. Henrysson [11] and
Moehring [16] have shown how mobile phones can be
used for simple single user AR applications. In their
work they create custom computer vision libraries that
allows developers to build video see through AR
applications that run on a mobile phone. Henrysson [9]
has also researched face-to-face collaborative AR on
mobile phones, finding that users prefer to collaborate
together in an AR application than a purely graphical
application on the phone.

In this paper we present an application that partly builds
upon the conclusions of our previous user study [10]
conducted in order to compare different interaction
techniques for virtual object manipulation. We show
how different strategies can be combined for
manipulation of a general 3D scene using a standard
mobile phone.

In the next section we review related work on handheld
AR, camera based mobile HCI and 3D interaction on
mobile phones. Next we discuss the relevant user
interface aspects of the mobile phone. We then describe
our platform and the scene assembly application in
detail, and initial user feedback to the application.
Finally we provide some directions for future research.

2. Related Work
There are several examples of camera-based interaction
with mobile devices. Two of the best known are
“Mosquito Hunt” [18] and “Marble Revolution” [15]. In
“Mosquito Hunt”, virtual mosquitoes are superimposed
over a live video image from the camera and simple
motion flow techniques are used to allow the user to
shoot the Mosquitos by moving the phone. Similarly, in
the “Marble Revolution” game the player can steer a
marble through a maze by moving the phone and using
motion flow techniques. Neither have 3D registration of
the graphics overlaid on the real world.

The virtual soccer game of KickReal [12] allows people
to see a virtual ball superimposed over video of the real
world and kick it with their feet, but there is no 3D
object manipulation. The “Symball” application [7]
allows users to hit balls at each other, although with
limited 3D tracking. On their phone screen players can
see a table tennis table and a virtual paddle. They select
a real color that they would like their phone to track and
as they move the phone relative to this color the paddle
moves in the x-y direction on the screen. Thus, while

intuitive, the “Symball” interaction uses 2D rather than
3D object tracking.

By visually tracking real objects, the camera phone can
be used for 6 DOF input. Rohs’ Visual Codes [23] is an
example of mobile phone barcode reading combined
with 3 DOF tracking. By recognizing and tracking a
pattern, the phone movements can be estimated and used
as input. The pattern can also be associated with phone
functions and act as a menu item [24]. Other similar
phone applications are the Spotcode [25] and QR-Code
pattern tracking systems [21]. Spotcode is a two-
dimensional ring like bar code that can be tracked in real
time with a phone camera. The Spotcode software
performs image processing techniques to extract the
identity of the pattern and its angular orientation relative
to the phone. Similarly QR-Code is a two-dimensional
bar code developed in Japan that can also be recognized
by mobile phones, although it does not provide full 6
DOF tracking.

Mobile AR started with backpack configurations such as
Feiner’s Touring Machine [4]. A similar setup,
ARQuake [26], showed how these same systems could
be used for outdoor gaming. Both these systems make
use of a HMD. At the same time Rekimoto started to
experiment with handheld AR. Transvision [22] consists
of a small LCD display and a camera. These are
connected by a cable to a computer that performs the
augmentation. Two users sit across the table and see
shared AR content shown on the displays. They can
select objects by ray casting and once selected objects
are fixed related to the LCD and can be moved. The
ARPAD interface [17] is similar, but it adds a handheld
controller to the LCD panel. ARPAD decouples
translation and rotation. A selected object is fixed in
space relative to the LCD panel and can be moved by
moving the panel. Rotation is performed using a
trackball input device.

The AR-PDA project [5] was the first to use a camera
equipped PDA for AR. The video stream was sent to a
server for image analysis and rendering of graphics.
Wagner developed the first self-contained PDA AR
application [30] by porting ARToolKit [2] to the
PocketPC. The Invisible Train [29] uses a stylus for
interaction with 3D data on a PDA AR application. The
user taps rendered objects on the screen with the stylus
to change the position of tracks on the train set. Klein
used a similar setup for a game on a tablet PC [13]. The
movement of the character is controlled with a stylus.
The user can also toss plastic tokens in the game area to
create effects.

AR on mobile phones took a similar path beginning with
client server solutions. The first to explore self-
contained AR on mobile phones were Moehring and
Henrysson. Moehring [16] used 3D markers on which a
coordinate system was printed. Henrysson ported

ARToolKit to Symbian and created an application that
augmented a map with the current tram positions derived
from a timetable [11]. A first step to towards interaction
with 3D data using an AR enabled mobile phone was [9]
were two players sitting face-to-face played tennis using
the mobile phones as rackets. The interaction is limited
to the collision between the device and a virtual ball
being simulated in the marker space between the players.

Henrysson conducted a user study [10] comparing
different interaction techniques for translation and
rotation of 3D objects using a mobile phone with AR.
Similar to the AR-PAD the translation and rotation were
decoupled and studied separately. The user selects the
object using a button on the keypad. Once selected the
object is locked relative to the device. Translation and
rotation can be performed by translating and rotating the
device respectively. Translation and rotation can also be
performed using the keypad. Each axis is mapped to two
buttons for decrementing and incrementing the
transformation. As an alternative for rotation an Arcball
was implemented and controlled by moving the device
in a 2D plane. The application presented in this paper
builds upon this work and look at how to combine
different transformation techniques for general object
manipulation and scene assembly.

There are several examples of 3D graphics applications
on mobile phones. The vast majority are games that
provide joystick type control of vehicles and objects in
3D environments. Larsen [14] describe one of the first
3D applications for the mobile phone with more
complex object manipulation. This is a brick-modeling
program where the user selects and moves virtual bricks
using the arrow keys on the phone. This is a client server
setup where the rendering of the bricks is made on the
server in addition to collision detection. The rendered
sub-images are sent to the mobile phone client on which
only wireframe rendering is possible. There is no
mentioning of interactive change of the view.
Transformation is restricted to 2D translation.

Hachet [6] has developed a 3 DOF bimanual camera
based interface for interaction both on the device itself
and for using a PDA as a 3D mouse. The approach is
similar to ours in that it establishes the position and
orientation of the device by analyzing the video stream
captured by the camera. For the PDA there is also “3D
Blockout” [1], which is a falling block game similar to
Tetris. Since the block is falling there is only need for 5
DOF. The interface consists of a menu bar to the right of
the screen. The user can move and rotate the block while
it is falling to the floor. Watsen et al. [32] has
implemented a 6 DOF interface on a PDA for interaction
with CAVE-like Virtual Environments. The user
controls each degree of freedom with a one-dimensional
slider.

Although our application is based on ARToolKit [2], the
real time performance of some of these systems led us to
believe that we should also be able to get good
performance from our code. The mobile phones have
developed so much in recent years that there is no need
for client server setups for either basic 3D rendering or
the image analysis required for 6 DOF tracking. We
believe it is now time to explore the possibilities of
scene assembly and 3D object manipulation on mobile
phones using the camera tracking as input.

The use of AR is not essential for a 3D application, but it
is convenient when using camera tracking of markers. If
the marker is lost the graphics disappear and the user can
adjust the orientation of the device given the video
feedback. As stated before it also gives more reference
points when navigating the scene.

3. Interaction Methods
There have been several interface metaphors developed
for desktop based 3D virtual object manipulation,
However these may not be appropriate for handheld
phone based systems because of important differences
between using a mobile phone 3D interface and a
traditional desktop interface, including:
- Limited input options (no mouse/keyboard)
- Limited screen resolution
- Little graphics support
- Reduced processing power

There are also several key differences between using a
mobile phone AR interface compared to a traditional
head mounted display (HMD) based AR system,
including:
- The display is handheld rather than headworn
- The phone affords a greater peripheral view
- The display and input device are connected

This suggests that we look at the PDA for appropriate
interface metaphors. However there are some key
differences between a mobile phone and a PDA. Mobile
phones are operated using a one-handed button interface
in contrast to the two-hand stylus interaction of the
PDA. Due to the easy one-handed maneuvering it is
possible to use the mobile phone as a tangible input
object itself. In order to interact we can move the device
relative to the world instead of moving the stylus relative
a fairly static screen. Having one hand free allows the
utilization of bimanual interaction techniques. The
pattern we use for tracking is printed on a piece of paper
that can be translated by the users’ non-dominant hand.

Hansen introduce the term mixed interaction space [8]
and argue that the possibility of using mixed interaction
spaces is what distinguishes camera-based interaction
from other types of sensor-based interaction on mobile
devices. The mixed interaction space has the shape of an
inverted pyramid i.e. the space spanned from a fixed

point obtained by image processing to the end of the
camera view. Movements in the mixed interaction space
are used as input in menus and image browsing
applications.

In [10] we developed input techniques that can be used
one handed and only rely on a joypad and keypad input.
Since the phone is handheld we use the motion of the
phone itself to interact with the virtual object by fixing it
relative to the phone and then position the object by
moving the phone relative to the real world. Table 1
shows the techniques we implemented for translation
and rotation.

Positioning Rotation
A/ Tangible 1: The object
is fixed relative to the
phone and moves when
the user moves the phone.
When released the object
position is set to the final
translated position while
its orientation is reset to its
original orientation.

A/ ArcBall [3]: When the
phone moves the relative
motion of the phone is
used as input into the
arcball technique to rotate
the currently selected
object.

B/ Keypad/Joypad: The
selected object is
continuously translated in
the X, Y or Z directions
depending on the buttons
currently held down.

B/ Keypad/Joypad: The
object rotates about its
own axis according to
joypad and keypad input.
Left and right joypad input
causes rotation left and
right about the vertical
axis etc.

C/ Tangible 2: The same
as tangible 1, but the user
can use bimanual input,
moving both the phone
and the object that the
phone is tracked relative
to.

C/ Tangible 1: The object
is fixed relative to the
phone and moves when the
user moves the phone.
When released the object
orientation is set to the
final phone orientation and
position reset to its
original position.

 D/ Tangible 2: The same
as tangible 1, but the user
can use bimanual input,
moving both the phone
and the object that the
phone is being tracked
relative to.

Table 1: Handheld input techniques

A user study with these techniques showed that the
tangible translation was faster than the button interface,
but most people felt that the keypad provided higher
accuracy. For rotation the Arcball and keypad interfaces
were the fastest ones but there was no difference
between the techniques when it came to perceived

accuracy. These results must be reflected in the
application.

When using keypad/joypad input the objects
continuously rotate or translate a fixed amount for each
fraction of a second while the buttons are pressed. In
contrast when the virtual object is fixed relative to the
phone, the user can move the object as fast as they can
move the phone. Based on this we should expect that the
user should be able to translate or rotate the objects
faster using tangible input techniques than with keypad
input. The fact that the keypad interface was faster for
rotation can be explained by its higher accuracy and of
the clutching effect associated with tangible rotation.

It is also dependent on where we put the error threshold
i.e. when the transformation is considered successful.
Based on the user study we have reason to believe that
for the average user the error decreases according to
figure 1 below. The reason is that for the keypad
interface to be useful, it must not increment or
decrement the transformation more than one unit for
each update. Otherwise it would be useless for fine-
tuning, which is its main purpose. The unit size depends
on the application. In the tangible mode the velocity of
the movement is only limited by the users ability to
move his or her hand. This might correspond to several
units per update. The current update rate is about 8 Hz.
Depending on the error threshold the user would want to
minimize the derivative of the error curve at all times. If
the threshold is below the intersection point it means
switching from tangible to keypad mode. The actual
curves depend on the users’ fine motor skills. If the user
has excellent fine motor skills, the error curves would
intersect at a very low error value with no need for
keypad input.

Figure 1: Error curves for tangible and keypad

interaction

In the next section we outline in more detail the mobile
phone software and hardware platform we are using.
Then we describe the scene assembly application.

3. Platform
We build upon the same platform as [11] and [10]. The
platform originates from the first custom port of the
ARToolKit computer vision tracking library [2] to the
Symbian operating system presented in [11]. In order to
make it run faster it has been partly converted from
floating points to fixed points due to the lack of FPUs on
the current generation of mobile phones. To do this a
custom made fixed point library was created, partly in
assembler language. The average speed-up of the
functions implemented was about 20 times compared to
floating point versions.

ARToolKit works by recognizing detecting a black
square in a binary image. The corners of the square are
then used for calculating the position and orientation of
the camera in a coordinate system centered on the
square. To get the identity of the marker and its initial
rotation a known pattern is inscribed inside the square.
The square is printed onto an ordinary sheet of paper.
Because this can be moved the interface is potentially
bimanual.

The 3D graphics is rendered using OpenGL ES [19],
which is an embedded subset of OpenGL 1.3, and is
suitable for low-power, embedded devices thanks to the
removal of redundant APIs and functions. The device we
are using, a Nokia 6630, ships with a software
implementation of OpenGL ES. The Nokia 6630 has a
220Mhz processor and an integrated 1.3 megapixel
camera. The screen size is 178 x 208 pixels and the
video capture resolution is 160x120 pixels. The
applications we have developed so far run about 8
frames per second.We have also developed a routine for
converting 3D meshes into OpenGL ES compatible
vertex arrays, but for this application we settled with
simple boxes in order to generalize as much as possible.

Combining ARToolKit on the mobile phone with
OpenGL ES allows us to create mobile phone
applications in which show 3D graphics superimposed
over the real work on the phone display. See Figure 2 for
a simple example of this.

Figure 2: Mobile Phone AR application

3. Application
In our initial study [10] we wanted to consider
positioning and rotation separately. The purpose of the
application presented in this paper is to show see how
these transformations can be combined given the limited
interface of the mobile phone.

The application consists of a minimal scene with two
boxes and a ground plane. The boxes can be moved
freely above the ground plane. In the center of the image
plane are virtual cross hairs that are used for selection.
Selection is made by pressing the joypad button when
the box is in the cross hairs. The selection is based on a
unique alpha value for each object and the selection is
accomplished by sampling the alpha value of the central
pixel, indicated by a crosshair. To indicate which object
is selected, a yellow wireframe box is drawn around the
object (see Figure 3).

Figure 3: The scene with boxes

When the joypad key is pressed the object is locked to
the phone and highlighted in white. The virtual model is
fixed in space relative to the phone and so can be rotated
and translated at the same time (see Figure 4). When the
button is released the new transformation in the global
(marker) space is calculated.

Figure 4: Box locked to phone

The ambition for the keypad interface is for it to allow
modification of all six degrees of freedom. We could
have achieved this by using twelve available buttons and
map each degree of freedom onto two of them, one for
decrementing and the other for incrementing the position
or orientation, but it would be unintuitive to use. Instead
we have chosen to use the same buttons for both
translation and rotation. To switch between these two
modes we have implemented a semi-transparent menu
activated by pressing the standard menu button to the
left of the joypad. By making the menu semi-transparent
we allow the user to see the object to be transformed in
the background. This will reduce the risk of forgetting
which transformation to apply when browsing the menu.
Since the selection is based on the alpha value of the
central pixel, no selection can be made in menu mode
and no object may have the same alpha value as the
menu.

The menu layout consists of a 3 by 3 grid of icons that
are mapped to the keypad buttons 1 to 9. See figure 5. In
our case the number 5 button is mapped to the rotation
mode and the number 4 button is mapped to the
translation mode. By hitting 4 or 5 the user enters a
rotation or translation transformation mode. Once a
transformation mode is entered the menu disappears.
The user can also toggle the menu by pressing the menu
button repeatedly. The transformation will by applied to
the object highlighted by a yellow wireframe.

Figure 5: Semi-transparent menu

In both modes we are handling transformation in three
dimensions corresponding to the x, y and z-axes of the
local object coordinate system. Since the joypad is 5-
way and pressing it always means selection, it can only
handle two of the dimensions. This is not surprising
given that the majority of mobile applications are 2D
applications. We map two of the dimensions to the
joypad and the third to the 2 and 5 keys.

To translate the object in the x-y plane we use the four
directions of the joypad and complement it with the 2
and 5 keys for translation along the y-axis. The
translation speed is 4 units/frame yielding a speed of
about 30 units per second. For rotation using the keypad
we use the joypad to rotate around the x and z-axis,
while the 2 and 5 buttons rotate the object around the y-
axis. The speed of rotation is 4 degrees per update i.e.
around 30 degrees per second.

Case study: Virtual LEGO®
So far we have only considered a minimal but general
application allowing virtual block manipulation on a
mobile phone. It can be used as a base for any 3D
application where altering of the spatial relationship
between objects are of interest. To demonstrate this we
have implemented a simple virtual LEGO® application
(see Figure 6).

In this application the user can build structures by
attaching virtual LEGO® bricks to each other in any
configuration that would be possible with the physical
counterpart. The virtual bricks form sub-structures when
attached to each other. These sub-structures can be
treated as a group by selecting the bottom brick. The
transformation made to this brick is propagated to the
other brick in the sub-structure. This grouping into sub-
structures is limited by the fact that a top brick cannot be
attached to more than one bottom brick in the current
implementation. However, one bottom brick can be the
base for two or more top bricks. There is no restriction
on how the number of bricks attached to each other.

Figure 6: Virtual LEGO®

When selected, the brick is detached from the brick
below and can be moved freely. If other bricks are
attached directly or indirectly to the selected brick, they
will remain fixed in the local coordinate system of the
selected brick.

Once released the application checks if the released
piece is positioned within the margin of error to be
attached to another piece. A grid restricts the
transformations, making it easy to attach one piece on
top of another as expected from the physical equivalent.
We have not implemented any proper collision detection
at this stage so the attachment is not checked
continuously.
The phone vibrates when bricks are joined or pulled
apart to give haptic feedback on detachment and
attachment events. Pressing the C button, located to the
right of the keypad, resets the scene. This button was
chosen due to its offset from the buttons used for
manipulation.

The keypad interface works as before, but the
transformation increments and decrements are adapted to
the grid. The selected brick is rotated 90 degrees for
each update and the translation is made one grid step per
update. After each update there is a check for
attachment. The attachment routine cannot properly
handle cases where the z-axes of two bricks are not
parallel.

4. Discussion
Our initial user experiences indicate that our set-up
allows 6 DOF manipulation for scene assembly
applications. By using an easily accessible menu we can
map keys to axis instead of functions. Thus we can
extend the interface to other operations such as scaling,
cloning and various object specific features.

We have not conducted any formal usability studies yet,
but a handful of people have tried the interface
informally. The majority felt that they were able to
manipulate the objects as intended. However many
seemed to release the joypad button immediately on
selection thinking that the object would still be attached
to the phone. We believe that toggling selection in
tangible mode by pressing the joypad button would
introduce a source of error at the moment of release due
to muscle contractions in the users’ hand. This can be
noticed slightly in the keypad mode when the object to
be manipulated is selected. If the joypad button is not
released immediately the selected object is likely to
move due to fine motions of the users’ hand. This is a
common interface problem where selection and
translation are performed in similar ways.

The main limitation is the tracking as the square must be
visible at all times. We use multiple markers to extend
the tracking range. This adds complexity to the

calculations but we have managed to solve the
associated problems. We have also experimented with
motion flow tracking to allow one corner of the square
marker to be outside the image, but this needs more
work.

We believe our work can serve as a base for tabletop 3D
applications where the spatial relationship between the
objects is important. We assume most such applications
will be games similar to the described virtual LEGO®
example, but some Virtual Reality applications that
require 6 DOF could possibly be ported.

In fact there are currently few interaction devices that
offers true 6 DOF input and most of these are used in
advanced Virtual Reality environment requiring
tracking. Our solution could provide an inexpensive 3D
mouse solution for PCs by sending the position and
orientation information via Bluetooth to the computer.
Since the tracking is performed on the phone there is no
computational overhead for the PC compared to a 2D
mouse.

5. Future Work
The present platform allows a single user to manipulate
position and orientation of 3D objects. In future versions
we will extend this to allow collaboration between
multiple users sending scene graph updates via
Bluetooth. We also want to go beyond treating the
objects as rigid and let the user edit the geometry. To do
this we need to come up with a way to select individual
vertices, edges and polygons. A rigorous user study with
different tasks needs to be done..

6. Conclusion
We have presented an application that represents a new
way of 3D interaction using mobile phones. We have
built a general scene assembly application using an
optimized port of ARToolKit. The application allows
both isomorphic (keypad) and isometric (tangible) 6
DOF manipulations while allowing interactive viewing.
The current restriction is the tracking range of the
marker based optical tracking.

This is the first AR scene assembly program developed
for the mobile phone. The lessons that we have learned
developing this application and the feedback from users
will allow us to develop further AR modeling and
graphics applications for the mobile phone environment.

Acknowledgements
The first author is funded by the Research Center for
High technology Construction (Brains & Bricks) as well
as receiving supervisory support from the Swedish
National Graduate School in Computer Science.

References
[1] 3D Blockout website:

www.pda3dware.com/3dblockout.htm
[2] ARToolKit website: www.hitl.washington.edu/artoolkit/.
[3] Chen, M., Mountford, S., Sellen, A. (1988) A Study in

Interactive 3-D Rotation Using 2-D Control Devices.
Computer Graphics 22(4): 121-129.

[4] Feiner T. H. S., MacIntyre B. and Webster T. A touring
machine: Prototyping 3d mobile augmented reality
systems for exploring the urban environment. In Proc.
ISWC ’97 (First IEEE Int. Symp. On Wearable
Computers), Cambridge, MA, 1997.

[5] Geiger C, Kleinjohann B, Reimann C, Stichling D.
Mobile AR4ALL, ISAR 2001, The Second IEEE and
ACM International Symposium on Augmented Reality,
New York, (2001).

[6] Hachet M,, Pouderoux J. and Guitton P.: A Camera-
Based Interface for Interaction with Mobile Handheld
Computers. To be published in proceedings of I3D'05
SIGGRAPH symposium on interactive 3D graphics and
games, April 2005.

[7] Hakkarainen, M., Woodward., C., “SymBall - Camera
driven table tennis for mobile phones”, submitted to
ACM SIGCHI International Conference on Advances in
Computer Entertainment Technology (ACE 2005),
Valencia, Spain, 15-17 June, 2005 .

[8] Hansen, T.R. Eriksson, E., Lykke-Olesen, A., Mixed
Interaction Spaces – Designing for Camera Based
Interaction with Mobile Devices, short paper accepted at
CHI 2005.

[9] Henrysson, A., Billinghurst, M., Ollila, M. Face to Face
Collaborative AR on Mobile Phones. In Proceedings of
ISMAR 2005, 2005 (To Appear) Vienna, Austria.

[10] Henrysson, A., Billinghurst, M., Ollila, M. Virtual
Object Manipulation using a Mobile Phone. In
Proceedings of ICAT 2005, 2005 (To Appear)
Christchurch, New Zealand.

[11] Henrysson A. and Ollila M. UMAR - Ubiquitous Mobile
Augmented Reality In Proc. Third International
Conference on Mobile and Ubiquitous Multimedia

[12] KickReal website: http://www.kickreal.de/
[13] Klein, G. and Drummond T,: Sensor fusion and

occlusion refinement for tablet-based AR, In Proc. of the
IEEE and ACM ISMAR, 2004, pp. 38–47.

[14] Larsen, B., Bærentzen, J., Christensen, N. Using cellular
phones to interact with virtual environments ACM
Siggraph 2002, Conference Abstracts and Applications,
pp. 274.

[15] Marble Revolution. http://www.bit-
side.com/entertainment/MOBILE%20GAMES/Marble

[16] Moehring, M., Lessig, C. and Bimber, O. Video See-
Through AR on Consumer Cell Phones. In Proc. of
International Symposium on Augmented and Mixed
Reality (ISMAR'04), pp. 252-253, 2004.

[17] Mogilev, D., Kiyokawa, K., Billinghurst, M., Pair, J. .AR
Pad: An Interface for Face-to-face AR Collaboration,
Proc. of the ACM Conference on Human Factors in

Computing Systems 2002 (CHI '02), Minneapolis,
pp.654-655, 2002.

[18] Mosquito Hunt website:
http://w4.siemens.de/en2/html/press/newsdesk_archive/2
003/foe03111.html

[19] OpenGL ES website: http://www.khronos.org/opengles/
[20] Piekarski, W. and Thomas, B. H. Tinmith-Hand: Unified

User Interface Technology for Mobile Outdoor
Augmented Reality and Indoor Virtual Reality. In IEEE
Virtual Reality Conference, Orlando, Fl, Mar 2002.

[21] QR Code website: www.qrcode.com/
[22] Rekimoto J., TransVision: A Hand-held Augmented

Reality System for Collaborative Design. Virtual
Systems and Multi-Media (VSMM)'96, 1996.

[23] Rohs, M: Real-World Interaction with Camera-Phones
2nd International Symposium on Ubiquitous Computing
Systems (UCS 2004), Tokyo, Japan, November 2004.

[24] Rohs, M., Gfeller, B.: Using Camera-Equipped Mobile
Phones for Interacting with Real-World Objects.
Advances in Pervasive Computing, Austrian Computer
Society (OCG), ISBN 3-85403-176-9, pp. 265-271,
Vienna, Austria, April 2004

[25] SpotCode website: http://www.highenergymagic.com
[26] Thomas, B., Close, B., Donoghue, J., Squires, J., De

Bondi, P., Morris, M., and Piekarski, W. ARQuake: An
Outdoor/Indoor Augmented Reality First Person
Application. Proc. 4th Int'l Symposium on Wearable
Computers, pp 139-146, Atlanta, Ga, USA, Oct 2000.

[27] Träskbäck M., Haller, M. Mixed reality training
application for an oil refinery: user requirements., In
ACM SIGGRAPH International Conference on Virtual
Reality Continuum and its Applications in Industry,
VRCAI 2004, pp. 324- 327, Singapore.

[28] Wagner, D., Schmalstieg, D.: First steps towards
handheld augmented reality. Proc. of the 7th
International Symposium on Wearable Computers
(ISWC2003), White Plains, NY, USA, IEEE Computer
Society (2003) 127–137.

[29] Wagner D., Pintaric T., Ledermann F., Schmalstieg D.
Towards Massively Multi-User Augmented Reality on
Handheld Devices. Proc. of the Third International
Conference on Pervasive Computing (Pervasive 2005),
Munich, Germany (to appear).

[30] Wagner, D., Barakonyi, I.: Augmented reality kanji
learning. Proc. of the ISMAR 2003, Tokyo, Japan, IEEE
Computer Society (2003) 335–336.

[31] Ware, C., and Jessome, D.R. "Using the Bat: A six-
dimensional mouse for object placement," IEEE
Computer Graphics and Applications, November 1988,
pp. 65-70.

[32] Watsen K., Darken R. and Capps M.: A Handheld
Computer as an Interaction Device to a Virtual
Environment, 3rd International Immersive Projection
Technology Workshop (IPTW'99), 1999.

[33] Wellner, P., Mackay, W. & Gold, R. Eds. Special issue
on computer augmented environments: back to the real
world. Communications of the ACM, Volume 36, Issue 7
(July 1993).

