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Abstract 

 
Targeted, tight model-based glycemic control in critical care patients that can reduce 
mortality 18 – 45% is enabled by prediction of insulin sensitivity, SI. However, this 
parameter can vary significantly over a given hour in the critically ill as their 
condition evolves. A stochastic model of SI variability is constructed using data from 
165 critical care patients. Given SI for an hour, the stochastic model returns the 
probability density function of SI for the next hour. Consequently, the glycemic 
distribution following a known intervention can be derived, enabling pre-determined 
likelihoods of the result and more accurate control. 
 

Cross validation of the SI variability model shows that 86.6% of the blood glucose 
measurements are within the 0.90 probability interval, and 54.0% are within the inter-
quartile interval. “Virtual Patients” with SI behaving to the overall SI variability model 
achieved similar predictive performance in simulated trials (86.8% and 45.7%). 
Finally, adaptive control method incorporating SI variability is shown to produce 
improved glycemic control in simulated trials compared to current clinical results. 
The validated stochastic model and methods provide a platform for developing 
advanced glycemic control methods addressing critical care variability. 
 
Keywords: stochastic modelling, insulin sensitivity, blood glucose, intensive care, 
adaptive control, probability intervals, control protocol simulations 
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1. Introduction  

 
Critically ill patients often experience stress-induced hyperglycemia and high levels 
of insulin resistance [1-4]. The increased counter-regulatory hormone and cytokine 
response stimulates endogenous glucose production and increases effective insulin 
resistance. Absolute and relative insulin deficiency and steroid-based therapies are 
further causes. The metabolic response to stress is characterised by highly variable 
changes in insulin sensitivity and glucose metabolism. The overall result is 
hyperglycemia, the pathogenesis of which is becoming well described [1, 5]. Tight 
glucose control has been shown to reduce Intensive Care Unit (ICU) patient mortality 
up to 45%. 
 
Previous clinical model-based glycemic control studies include [6-12]. Chase et al. 
[10] and Plank et al. [8] developed highly adaptive, clinically verified, targeted 
control algorithms. Following [10], the specialized relative insulin and nutrition tables 
(SPRINT) protocol [7, 11] was developed to simplify critical care implementation. 
Over 165 patients and 23,000 patient hours, it achieved an average blood glucose 
level of 5.8±1.2mmol/L with 61% of the time in the 4 – 6.1mmol/L band [4]. This is 
the only approach adaptive to insulin sensitivity variation, as reflected in the hour to 
hour insulin-nutrition response to changing blood glucose levels. 
 
A common risk in intensive insulin therapy is hypoglycemia. Many current ad-hoc 
intensive insulin therapy protocols have reported hypoglycemic episodes for up to 
25% of patients [3, 13]. Therefore, understanding and modelling the variability in 
insulin sensitivity can assist clinical control intervention and minimise associated risk.  
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Currently, no intensive insulin therapy protocol offers the glycemic response 
likelihood to an intervention. Clinicians are thus partly blind in controlling this highly 
dynamic system. Therefore, the goal of this study is to produce blood glucose 
probability distributions for control intervention decisions based on stochastic models 
of clinically observed parameter variations. The result will allow more accurately 
targeted control, with user specified likelihood on the glycemic response. 
 
2. Glucose-Insulin System Model and Parameter Identification 

 
A clinically verified patient-specific glucose-insulin metabolic model [10, 12, 14, 15] 
is used to account for time-varying insulin sensitivity in critical care.  
 
2.1 Glucose-insulin system model 

The Glucose-insulin system model is presented in Equations (1)-(5). 
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where G [mmol/L] denotes glucose above an equilibrium level GE [mmol/L], and I 
[mU/L] denotes the plasma insulin from an exogenous insulin input. Insulin utilization 
over time is captured by Q [mU/L], where k [1/min] is the effective insulin half-life 
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parameter. Patient endogenous glucose removal and insulin sensitivity are pG [1/min] 
and SI [L/mU/min] respectively. The parameter VI [L] is the insulin distribution 
volume and n [1/min] is the first order decay rate for plasma insulin. External 
nutrition and insulin inputs are P(t) [mmol/L/min] and uex(t) [mU/min], respectively. 
Michaelis-Menten parameters αI [L/mU] and αG [L/mU] define plasma insulin 
disappearance saturation and insulin-stimulated glucose removal saturation, 
respectively. The exogenous glucose appearance and decay rate used to define P(t) 
are kpr and kpd. Specific details on physiological model dynamics are evaluated in [10, 
12, 16]. 
 
In Equation (1), the saturation mechanism on insulin effect creates a unique index of 
insulin sensitivity, SI, compared to other model-based measures. The result is an SI 
index that more closely approximates the effective net tissue sensitivity to insulin, and 
its variation to the evolution of patient condition and drug therapy. It has also been 
shown to drive patient response to intervention and thus control efficacy in prior 
studies [10, 12]. This model measure is also highly correlated to clamp-derived ISI 
over 146 patients [17-19]. Hence, understanding variation in SI should enable more 
effective control. 
 
2.2 Integral-based parameter identification 

Identifying insulin sensitivity has been extensively studied [1, 20]. Using constant 
population values for pG, αG, αI, n, k and VI [15] limits the model unknowns in this 
case to SI. This study utilizes an integration-based parameter identification method 
first presented in Hann et al. [15]. Constraints are placed on SI to ensure it is within a 
physiologically valid range. 
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3. Stochastic Modelling and Validation 

 
The control algorithms of [10, 12] calculate the interventions necessary for targeted 
glycemic regulation by assuming that the currently identified SI values are constant 
between the control intervention and the one-hour time interval to achieve a pre-
selected target at the next measurement. This assumption is made due to lack of better 
knowledge. However, SI can evolve significantly [15], and sudden variations may 
occur due to the onset of acute conditions [12]. 
 
The ultimate goal is to produce blood glucose probability bands for a given 
intervention based on clinically observed parameter variations using an ICU 
population based stochastic model. Such bands would allow glycemic target selection 
with guaranteed levels of certainty that a result will meet or exceed a given glycemic 
level. Such a model would also identify outlying measurements to a pre-defined 
probability level. 
 
An initial such model was developed using data from 18 critical care patients in the 
Department of Intensive Care Medicine (ICU), Christchurch Hospital [21]. It was 
clinically verified with data from 8 independent critical care glycemic control trials. 
The model successfully captured the identified the SI variation trend, accounting for 
84% of measurements within the 0.90 probability interval, and 45% within the inter-
quartile interval. However, it was limited in its formulation from a population limited 
in size (n = 18), the resulting level and variety of critical illness, and the glucose data 
density (1 – 4 hourly). 
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Between July 2005 and June 2006, 165 patients were put on the SPRINT protocol in 
the Christchurch Hospital ICU [11]. A new stochastic model was created using data 
from these 165 controlled patients, totalling over 23,000 hours, to better represent 
stochastic SI variation in critical care. By comparison, the initial model was only built 
on close to 1,300 hours of data over 18 patients, none of whom were on intensive 
glycemic control. The SPRINT blood glucose data were primarily hourly data, 
whereas the previous model was built from 3 – 4 hourly data. Therefore, SPRINT data 
provides a better view of the highly dynamic critically ill condition that is more 
suitable for intensive glycemic control. 
 

3.1 Stochastic SI model for critical care 

Patient specific insulin sensitivity parameter profiles, SI, are fitted hourly to the 165 
SPRINT patients. Table 1 shows the patient data. Glycemic control had greatest effect 
for those with greater than 3-day stay [3, 13] and they make up 73% of this cohort and 
96% of the patient hours. 
 
Fitted SI is constrained between physiological limits of 1×10-5 and 1×10-3 (mU/L/min) 
[22, 23]. A 2-dimensional kernel density estimation method is used to construct the 
stochastic SI model that describes the hourly transition of parameter values. The 
method has the advantage of producing a smooth, continuous function across the 
parameter range [24]. The overall result is a bivariate probability density function for 
the potential parameter values. Figure 1 shows the distribution of fitted hour to hour SI 
and the 2-dimensional kernel joint probability density.  
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The 2-dimensional kernel density method is chosen for creating the stochastic model 
because the distribution of SI at hour n+1 (SI n+1) varies with SI at hour n (SI n), and 
cannot be simply described with a standard statistical distribution. Thus, the variations 
in SI can be treated as a Markov process. A Markov process has the property that the 
conditional probability density function of future states of the process, given the 
present state, depends only upon the current state. Therefore, using the Markov 
property of the stochastic behaviour of SI, the conditional probability density of SI n+1 
taking on a value y can be calculated by knowing SI n = x: 
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Considering the fitted SI in a 2-D space, as shown in Figure 1, the joint probability 
density function across the x-y (SI n - SI n+1) plane is defined by the fitted values shown 
by the dots whose coordinates are xi and yi, 
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Effectively, the 2-D joint probability density function is the normalised summation of 

normal probability density functions ),;( 2
ixixx σφ  centred at individual data points. 
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In Equations (7)-(9), the variance, σ , at each data point is a function of the local data 
density in a centred and orthonormalised space of x and y. Putting Equations (8) and 

(9) into Equation (7) normalises each ),;( 2
ixixx σφ  and ),;( 2

iyiyy σφ  in the positive 

domain, effectively putting boundaries along x = 0 and y = 0, and enforcing 
physiological validity in SI values. 
 
In Equation (6), the right hand side denominator can be calculated by integrating 
Equation (7) with respect to y. Hence, Equation (7) can be calculated: 
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Thus, knowing SI n = x at hour n, the probability of SI n+1 = y at hour n+1 can be 
calculated using Equations (10) and (11). The probability intervals in Figure 1 are also 
calculated from integrating Equation (10). Plotting Equation (10) across the x-y (SI n - 
SI n+1) plane, the resulting 3-D stochastic model is shown in Figure 2. This essentially 
creates an approximation to the parameter variation behaviour according to how the 
existing data behaves. Where there is higher density of data, more certainty can be 
drawn on the “true” behavioural pattern. With this stochastic model, given a current 
identified SI value, the probability density can be calculated across the possible range 
of SI values for the coming hour. The probability is conditional because the 
probability density for a coming hour is dependent on the identified current hourly SI. 
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Across the fitted range of SI, the conditional probability density function is largely 
uni-modal and symmetric. However, as shown in the cascade plot of conditional SI n+1 
probability density functions across the SI n model range in Figure 3, there are some 
numerical artefacts near the boundaries of the fitted range. Probability density 
functions for SI n peak at boundary values because of the fitting constraints. For SI n = 
[1×10-5, 1×10-4] and [0.75×10-3, 1×10-3] at the edges of Figure 3, the percentile values 
away from the median do not necessarily decrease in probability. These ranges span 
34% of the fitting range [1×10-5, 1×10-3], in which 20% of the SPRINT data falls 
(18% between SI n = [1×10-5, 1×10-4] and 2% between [0.75×10-3, 1×10-3] in Figure 
1). Note that Figures 2 and 3 show the conditional probability density functions which 
are scaled to have the area under each function summing to 1. Thus, the asymmetry 
becomes very pronounced in Figures 2 and 3. The probability of SI taking on these 
asymmetric conditional probability density functions is in fact very low in the overall 
joint probability density function shown in Figure 1, where the probability density 
sums to 1 over the entire fitting surface. 
 
The asymmetric SI probability density functions could perhaps be due to other not 
explicitly modelled physiology, such as variations in endogenous glucose production. 
More specifically, “bumpy” areas of SI probability density function in Figure 3 may 
be a sign of SI absorbing physiology unmodelled or undermodelled in Equations (1)-
(5).  However, this unmodelled physiology represents uncommon sudden, or extreme, 
dynamics, evident by the low overall joint probability density in these areas in Figure 
1. Practically, to include all such variations in the glucose-insulin model would make 
it overly complicated and it would thus lose clinical feasibility. Such additions would 
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also require added assumptions for endogenous insulin or glucose production that are 
not clinically measured in real-time.   
 
Assumptions for these responses could also compromise control accuracy, as both 
endogenous insulin and glucose productions are known to vary significantly between 
patients [25-29] and over time. In addition, endogenous glucose production is 
suppressed with significant insulin administration in both normal and stressed states 
[30], which is the case for critically ill patients under insulin therapy for glycemic 
management. Similarly, the endogenous insulin production is effectively removed or 
significantly reduced in the presence of significant exogenous insulin [29, 31-33] , not 
to mention its inhibition in stress hyperglycemia [e.g. 34]. It is therefore, in the 
interest of this model-based clinical control applications, to have these effects 
mitigated into SI. In [10, 12, 15], the model of Equations (1)-(5) and the impact of 
mitigated effects are discussed in detail. The result is a much more clinically feasible 
control model, where SI accounts for critically ill population’s overall sensitivity to 
insulin and/or its utilisation. 
 

In Figure 1, the lower bound for SI has greater influence on the overall stochastic 
model than the upper bound. However, no patients have fitted SI staying at the lower 
bound for a prolonged period, again suggesting that these occasions are more sudden, 
short term condition, such as suppressed insulin sensitivity or utilisation due to drug 
therapies, rather than long term, or gradual changes, such as increased glucose 
production. During numerical fitting, if fitted SI stays at the lower bound for a 
prolonged period of 5 hours, the fitting method recognises a gradual evolution, and 
adjusts GE to address factors such as endogenous glucose production. During the total 
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of 23,324 control hours, only 39 such occurrences were observed, which is 0.17% of 
the time. 
 
The short term changes, although causes fitted SI to hit the lower bound, if 
unconstraint, will often result in negative SI because of significant drug effects or 
acute medical conditions such as atrial fibrillation [12]. In addition, increased 
endogenous production with inhibited glucose production can result in an effectively 
zero or negative modelled SI. These cases are too wide ranged to be accounted for in 
the physiological model. Note that an evolving GE that is too high leads to a reduction 
in modelled endogenous glucose production, and a higher SI may also result in the 
model due to a lower –pGG term. Mitigating the impact of these events into fitted SI 
simplifies the model to be clinically control feasible.  
 
In addition, incorrect modelling of these conditions which are difficult to account for 
can severely compromise patient safety. More specifically, underestimating SI can 
lead to excess insulin being given. With the aim of applying the physiological and 
stochastic models in clinical control, the lower bound of SI has an important role. 
Finally, the fitted SI, with higher data concentration around the lower bound, 
realistically reflects the highly variable dynamics in the critical care environment, 
where drug therapies and acute medical conditions that result in highly resistant 
patients are common. 
 

3.2 Clinical implementation and use 

Having constructed the SI stochastic model, the surface of Figure 2 can be used in a 
look-up table. Given a clinically identified SI [10, 12], the probability density, and 
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hence the probability intervals, can be obtained, as demonstrated in Figure 4. The 
solid line is the kernel density estimate surface sliced along SI n = 0.6×10-3. This line 
represents the probability density for potential SI n+1, one hour after having identified 
the current hour SI n = 0.6×10-3. From this density function, probability intervals are 
also obtained, giving a median probable SI value in an hour of 0.58×10-3, inter-
quartile range [0.49×10-3, 0.66×10-3], and the 0.90 probability interval [0.33×10-3, 
0.79×10-3].  
 
The probability intervals used here for clinical decision making, as shown in Figure 4, 
are equal-tailed.  “Equal-tailed” means that the 0.90 probability interval is between 
the 5th percentile and the 95th percentile in the probability density function. Equal-
tailed probability intervals are based on the assumption and observation that the 
probability density function is (largely) uni-modal and symmetric. Thus, the values 
outside the interval are assumed to have lower probability of occurring than the values 
within the interval and represent “tails” of that distribution. 
 
3.2.1 Probability interval calculation 

Using the equal-tailed probability interval boundary values for SI in Equations (1)-(5), 
the corresponding probability intervals in blood glucose levels for a given 
intervention from current state can be calculated. This statistical approach holds for 
any strictly monotone physiological systems [35]. More specifically, in this case, a 
higher SI value always produces lower blood glucose than a lower SI value for a given 
input and state over the time SI is defined. 
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In the cascade plot of the conditional SI n+1 probability density functions across the SI n 
range in Figure 3, it is evident that the assumption that the conditional probability 
density function is largely uni-modal and symmetric is true for the bulk of the fitted SI 
range, but does not hold near the boundaries. Therefore, in these regions, equal-tailed 
probability intervals may not give an exact representation of the probability intervals. 
More simply, the 5th and the 95th percentile in the resulting blood glucose level 
probability distribution may not contain the exact 90% most probable blood glucose 
levels. In particular, due to the asymmetric boundary density functions in SI, blood 
glucose levels outside this range may have a higher probability density than parts 
within the 0.90 probability interval. 
 
To exactly obtain the probability density in blood glucose resulting from a known 
probability density function in SI, Monte Carlo simulation is the only method. In 
particular, while the percentile values in SI correspond to percentile values in blood 
glucose levels, the “rank” of probability does not [35].  
 
This situation is illustrated in Figure 5, where the left hand side and right hand side 
demonstrate the difference between the 0.90 equal-tailed blood glucose probability 
intervals and the exact probability intervals generated from Monte Carlo simulations. 
Panels A and B display the same probability density function (pdf) (right axis) and the 
cumulative distribution functions (cdf) (left axis) in SI n+1, when SI n = 8×10-4 is known. 
Panels C and D show the resulting pdf (right axis) and cdf (left axis) in blood glucose 
levels at hour n+1 (BGn+1 [mmol/L]) through Monte Carlo Simulation of the model in 
Equations (1)-(5). The pdf and cdf shown in panels C and D are identical and are the 
exact solution for the BGn+1 probability density function given SI n = 8×10-4. Note that 
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in panels A and B, the x-axes are decreasing from left to right, producing a similar 
shaped probability density function in blood glucose levels in panels C and D with 
blood glucose levels increasing as SI n+1 decreases.  
 
The left hand side of Figure 5, panels A and C illustrate how equal-tailed probability 
intervals in SI n+1 are translated into the equal-tailed probability intervals in BGn+1.  
Let f be the transformation function between SI n+1 to BGn+1, which is the 
physiological model shown in Equations (1)-(5), then 
 

BG100-percentile = f(SIpercentile) (12) 
 
Thus, the percentile values of SI n+1 in panel A corresponds to the reversed (100-
percentile) values in BGn+1 in panel C. Or more simply, solving Equations (1)-(5) 
using the 5th percentile value in SI n produces the 95th percentile blood glucose levels, 
BG95= f(SI5) given that f is strictly monotone [35]. Therefore, the SI n+1 probability 
interval between the 5th and the 95th percentile (SI n+1 = [0.33×10-3, 0.98×10-3] 
between  and  in panel A) consequently gives the BGn+1 probability interval 
between the 5th and the 95th percentile (BGn+1 = [1.9, 5.4] between  and  in panel 
C). More simply, as shown in the left hand side of Figure 5, 
 

• Equal-tailed 0.90 probability interval in SI n+1 = [SI5, SI95] 

• Equal-tailed 0.90 probability interval in BGn+1 = [f(SI95), f(SI5)] 
 
However, as illustrated in panel C, the BGn+1 probability interval between the 5th and 
the 95th percentile (  and ) includes values that have lower probability density than 
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some BGn+1 values outside this interval. More specifically,  has lower probability 
density than the region to its left. This higher probability density region outside the 
5 – 95% range is very narrow and at the very extreme end. 
 
On the right hand side of Figure 5, the 90% most probable SI n+1 values are identified 
by the shaded areas in panel B. These values are discontinuous, and have higher 
probability of occurring than values outside the shaded areas. However, taking the 
boundary values for the 90% most probable SI n+1 values then putting them into 
Equations (1)-(5) does not provide the 90% most probable BGn+1 intervals. More 
simply, as shown in the right hand side of Figure 5,  
 

• Exact 0.90 probability interval in SI n+1 = shaded intervals in panel B = [SIa, SIb] 
and [SIc, SI100], where a, b and c are percentile values of SIa, SIb and SIc, and 

 
pdf(SIa) = pdf(SIb) = pdf(SIc) (13) 
cdf(SIk) = k    for k = a, b, c (14) 
(100-c) + (b-a) = 90 (15) 

 

• Exact 0.90 probability interval in BG n+1 = shaded intervals in panel D ≠ 
[f(SI100), f(SIc)] and [f(SIb, f(SIa)], or 

 
pdf(f(SIa)) ≠ pdf(f(SIb)) ≠ pdf (f(SIc)) (16) 

 
Consequently, to obtain the exact probability intervals in BG n+1, Monte Carlo 
simulations using a minimum of 10,000 SI n+1 values needs to be done to achieve an 
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accuracy of 1%. While such a Monte Carlo simulation can provide the appropriate 
probability density in BGn+1, it is too computationally expensive to generate useful 
and effective probability intervals quickly enough for clinical decision support.  
 
3.2.2 Clinical feasibility 

An estimated computational comparison between calculating the equal-tailed and the 
exact probability intervals is summarised in Table 2. The computational timeframe for 
calculating the exact probability interval is clearly not currently feasible for this type 
of real-time clinical control. In conclusion, assuming equal-tailed probability intervals 
provides fast, clinically viable and slightly conservative estimates for the most likely 
ranges of BGn+1. Therefore, it should not compromise patient safety when used to 
assist clinical decision making. As the example in Figure 5 shows, the 0.90 equal-
tailed probability interval in BGn+1 ([1.9, 5.4]) covers most of the exact 0.90 most 
probable range ([1.8, 4.5] and [4.7, 4.9]), providing an effective and clinically useful 
estimate with far less effort. 
 

3.3 Cross Validation 

The stochastic SI model can be integrated into the system model of Equations (1)-(5) 
for use in control. This step allows the blood glucose level probability intervals one 
hour following an insulin and/or nutrition intervention to be found directly based on 
the probability density function of SI n+1. Cross validation is used in this study to test 
the generality of the SPRINT cohort and resulting stochastic model.  
 
For cross validation, the 165 patients are divided into 5 random groups. Each group 
has comparable medical conditions, sex, age, and APACHE (Acute Physiology and 
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Chronic Health Evaluation) scores. Five stochastic SI models are then built, each one 
using fitted SI data from 4 out of 5 groups. Each stochastic model is then evaluated 
against the group that is not used for creating the model. Thus, a stochastic model 
created from Groups 1 – 4 is evaluated against a patient in Group 5 in the following 
steps:  
 

1. At hour 0, the patient’s identified SI is SI 0. The stochastic model then produces 
the 5th, 25th, 75th and 95th percentiles for probable SI at hour 1, denote SI 1-5,  
SI 1-25, SI 1-75 and SI 1-95. 

2. Examine if the identified SI 1 is within the inter-quartile probability interval 
between SI 1-25 and SI 1-75, and the equal-tailed 0.90 probability interval 
between SI 1-5 and SI 1-95.  

3. Repeat the process from hour 1 until the end of the patient data.  
 

3.4 Further model applications: virtual patients and trial simulations 

A generic stochastic model is built using all 165 SPRINT patients. Incorporating this 
stochastic model into the glucose-insulin system model presented in Equations (1)-(5), 
typical critical care patient dynamics can be reproduced numerically given initial 
conditions in G, Q and I, starting dextrose and insulin inputs, and a starting SI value.  
 
3.4.1 Virtual patient generation and trial implementation 

To generate a “virtual patient” cohort similar to the SPRINT cohort, and therefore 
representative of a critically ill population, initial conditions to Equations (1)-(5) are 
generated to approximate the statistical distribution of these parameters, as recorded 
from the SPRINT cohort. Initial SI values are randomly selected from the initial 
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values fitted from the SPRINT SI data. Trial lengths were also randomly generated to 
create a similar statistical distribution to that in the SPRINT trials. Profiles of SI are 
then generated using the stochastic model. Using these profiles in Equations (1)-(5), 
“virtual patients” are created that (statistically) approximate the SPRINT cohort on 
which the model was created, providing a platform for clinical trial simulation and 
control development. A virtual control trial simulation consists of hourly cycles of the 
following steps: 
 

1. Generate an hourly SI n+1 value from the stochastic model defined probability 
density function of the previous hourly SI value SI n. 

2. Generate the end-of-hour virtual blood glucose level using the generated SI n+1 
and the specified control (insulin and nutrition) interventions at hour n+1 in 
Equations (1)-(5). Standard GlucocardTM blood glucose measurement error [36] 
is numerically added to the generated blood glucose level, matching the 
clinical conditions in Christchurch Hospital ICU [12, 37]. 

3. A new SI, denoted SI’, is fit to the blood glucose levels including random noise 
that are “measured” during hour n+1. Integral-based parameter identification 
is used to identify SI’ [12, 15]. 

4. The median and equal-tailed 0.90 and inter-quartile probability intervals of 
potential SI are generated from the identified SI’ obtained from step 3, using 
the value of SI’ in the stochastic model as described in Figure 4. 

5. Interventions are determined that position the median glucose and probability 
intervals to criterion defined by the control algorithm. 

6. Return to step 1 with SI n+1 being the new SI n. 
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Essentially, a virtual patient’s SI evolution follows the joint probability density 
contour in Figure 1, making its way to the highest probability density regions. Each  
SI n+1 is dependent on the previous state, SI n, where the probability density function of 
of SI n+1 is defined in Equations (10)-(11). Hence, in step 1 above, SI takes a walk to a 
point, say y, along the probability density function curve p(SI n+1 = y | SI n = x) as 
shown in Figure 4. Step 6 then “walk” the SI across (along SI n+1 axis) to where  
SI n = y, and the process repeats.  
 
3.4.2 Virtual trial control algorithm 

The control algorithm used in this study is a target-shooting algorithm that 
probabilistically minimises the risk of hypoglycemia. Interventions include insulin 
bolus injections, and insulin and dextrose infusions. The algorithm obeys the 
following rules in a prioritised order. 

1. The lower bound of the equal-tailed 0.90 probability intervals in blood glucose 
levels resulted from control interventions must never be lower than 4 mmol/L. 

2. The controller specified dextrose feeding rate must be greater than or equal to 
the patient specific minimum [6, 12]. 

3. The total hourly insulin input must not exceed 6U [10, 38]. 
4. Saturation in Q (Equations (1)-(2)) must not exceed 200 mU/L/min: 

min//200
1

LmLQ
QQ

G
≤

+
−

α
 (12) 

5. The target blood glucose level (median of the blood glucose probability 
density function) is 85% of the blood glucose level at the time of intervention, 
to a minimum of 4.5mmol/L. 

6a. To lower blood glucose levels, the control algorithm seeks to lower the 
dextrose feeding rate before adding insulin in bolus (injection) form. Insulin 
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infusions may be used to lower blood glucose levels without resulting in 
excess interstitial insulin saturation (Rule 4). 

6b. To increase low blood glucose levels, the control algorithm reduces insulin 
inputs first, and then increases dextrose rates. 

 
The first 4 rules are designed for patient safety. If the target blood glucose level 
cannot be achieved without violating these first 4 rules, it is “bounded” so it can be 
achieved within these limitations. The final 3 rules define how the algorithm 
prioritises achieving the target blood glucose level. 
 
4. Results and Discussion 

 
4.1 Cross validation 

Table 3 shows the general information on the 5 patient groups used in cross validation. 
 
The percentage of fitted SI within the equal-tailed 0.90 and inter-quartile probability 
intervals for the group not used in creating the cross validation model is summarised 
in Table 4. Each group produced similar results, which were also comparable to the 
overall result. Thus, there is no significant difference between the 5 stochastic models 
created and the SPRINT cohort can be considered a generic representation of this ICU 
population. 
 
More specifically, the mean per patient average of identified SI values within the 
equal-tailed probability interval is 86.6%, and 54.0% for the inter-quartile interval. 
The equal tailed 0.90 probability interval slightly underestimates the identified SI 
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range, because when SI n is close to its fitting constraints, the SI n+1 probability density 
function tends to peak near the boundary value. This behaviour causes some regions 
outside of the equal-tailed 0.90 probability intervals to have higher probability density 
than some regions within the interval, as shown in Figures 3 and 5. Thus, the 
compromise of using equal-tailed probability intervals has negligible impact 
compared to the computational gain over calculating the exact blood glucose ranges 
of the highest 0.90 probability density. 
 
The inter-quartile probability intervals include slightly over 50% of fitted SI, 
suggesting that most of the time the higher probability density is concentrated about 
the median of the probability density functions, as also seen in Figures 3 and 5. 
Similarly, the 0.90 probability interval has slightly less than 90% of all measurements, 
suggesting that there are slightly more outliers than represented in the model. Both 
results suggest that the assumptions used are slightly inexact, but within typical 
variations caused by the 7 – 12% measurement error [36, 39]. 
 
4.2 Virtual control trial results 

A virtual cohort of 200 patients was created and tested in simulated trials. Blood 
glucose probability intervals from control inputs were produced with each control 
intervention using the stochastic model. Hourly blood glucose measurements 
including normally distributed random measurement noise were analysed against the 
probability intervals. An example of a virtual trial is shown in Figure 6. The top panel 
shows the blood glucose excursion through time. The bold crosses are the virtually 
generated blood glucose levels at one hour intervals, with thick bars indicating the 
standard 7% GlucocardTM measurement error [36]. Hourly SI is shown in the bottom 
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panel. Control interventions are determined hourly and shown in the middle panel, 
producing stochastic model derived probability median values and intervals in blood 
glucose shown as circles with thin bars in the top panel. 
 
The average fractions of virtual trial blood glucose levels within the equal-tailed 0.90 
and inter-quartile probability intervals for each patient are shown in Figure 7. The 
logistic mean of percentage blood glucose levels within the equal-tailed 0.90 and 
inter-quartile probability interval are 87.0% and 45.7% respectively. These results are 
in general agreement with the cross validation results in Table 5. These per patient 
results also show the overall validity in total, as well as over all virtual patients, with 
very few outlying virtual patients. 
 
A few trials in Figure 7 have comparatively lower percentages within the probability 
intervals. These trials are all shorter, and consequently a small number of blood 
glucose levels outside of the probability intervals are reported as higher percentages 
of the total. Figure 8 illustrates how shorter trials can produce outliers, where most 
variability is gone after 50-75 hours, indicating stabilised patient condition under long 
term, tight glycemic control with little variability in glycemic level.It also shows how 
as time length of trial increases, the 0.90 and inter-quartile probability intervals are 
both slightly conservative estimates by 2 – 4%, as also seen in the median values of 
Figure 7. 
 
The control algorithm used to run these virtual trials targets the blood glucose 
probability density medians to the desired level. The controller specified interventions 
should thus theoretically result in the median blood glucose level being at the desired 
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level one hour later. The distribution of virtual trial deviations (percentage value) 
from the probability density medians is shown in Figure 9. The mean per patient 
average deviation is 8.84%, as compared to a normally distributed random 
measurement error of 7 – 10%. Outliers are again associated with shorter trial length. 
 
Examining the signed blood glucose deviations from probabilistic medians, 58% are 
negative. This result suggests that slightly higher density may be concentrated at 
higher SI in the probability density functions. In future, this blood glucose deviation 
could be “corrected” for in the control algorithm by targeting a percentile higher than 
the 50th, for example the 58th percentile, until the deviation is minimised, thus further 
improving the targeting accuracy. Similar manipulation may also be carried out to 
“correct” the accuracy of the probability intervals. 
 
Virtual trial controller performance is compared to the actual clinical SPRINT results 
and summarised in Table 5. The blood glucose is more tightly controlled, with a lower 
mean level (5.5 v.s 5.9 mmol/L), and a similar, but safer, 5 – 95th percentile interval 
([4.1 – 8.3] v.s [3.6 –  7.8]). The percentage of blood glucose in the 4 – 6 mmol/L 
range increases from 61% to 72%. Without the stochastic targeting, the effectively 
same control protocol delivered only 64% time in this band [6]. It is a significant 
difference as tighter control has been shown to imply a better mortality outcome [4]. 
Again, the control quality is linked with trial length. Shorter trials tend to give a 
sparser blood glucose distribution and higher variance. This was also seen in SPRINT 
where the cohort with length of stay <3 days had greater variability. 
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Finally, a similar comparison of is shown in Figure 10. The percentage lower than 4 
mmol/L is slightly increased from 3.3% to 4.5%, with 0% under 2.5 mmol/L. The 
percentage lower than 4 mmol/L can be easily reduced by setting a higher percentile 
limit in Rule 1, and/or increasing the minimum target from 4.5 mmol/L to 4.8 – 5.0 
mmol/L in Rule 5.  
 
5. Conclusions 

 
The stochastic model presented defines the probability density functions of blood 
glucose levels one hour following a known glycemic control intervention, and thus 
enables more knowledgeable and accurate prediction for glycemic control. The model 
created from 165 SPRINT trial patients was cross validated, verifying the generality 
of the chosen cohort and the method used to create the stochastic model. The model 
was then used to create 200 virtual patients representative of hyperglycaemic ICU 
patients based on clinical SPRINT protocol results. A stochastically targeted control 
protocol was then tested through numerical simulations. 
 
Both the cross validation and the virtual trial simulation results confirm that the 
stochastic model provides accurate probabilistic knowledge. The cross validation 
results show that the 0.90 and inter-quartile probability intervals provide a slightly 
conservative bound, but accurately capture the cohort. The virtual trials also show that 
a stochastically-driven computerised control method can outperform a simplified 
version of the same basic insulin and nutrition control protocol, demonstrating further 
benefits of this model and/or computer control in general. In summary, the stochastic 
glucose-insulin system model presented can effectively capture critical care patient 
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behaviour, enhance glycemic control and create a virtual patient platform for further 
development. 
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Table 1. Comparison of clinical SPRINT and retrospective cohorts. 
 All Length of stay >= 

3 days 
Number of 
patients 165 120 

Age (years) 65 [50 – 74] 65 [49 – 74] 
% Male 66% 66% 

APACHE II 
score 19 [15 – 25] 19 [15 – 26] 

APACHE II 
risk of death 29% [15 – 55%] 31% [16 – 56%] 

* Only 74% of APACHE II data for the retrospective cohort 
was available. Data are expressed as median [inter-
quartile range] where appropriate. 
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Table 2. Comparison between probability interval computational cost. 
0.90 

probability 
interval 

calculation Equal-tailed 
Calculation 

Time Exact 
Calculation 

Time 
Steps 1. Calculate the 5th and 

95th percentiles in SI n+1, 
SI5 and SI95 

~0 sec 1. Generate 10,000 SI n+1 
using the derived pdf 
from the stochastic 
model 

2 sec 

 2. Equal-tailed 0.90 
probability interval in 
BGn+1 = [f(SI95), f(SI5)] 

1 sec 2. Calculate BGn+1 for 
each of the 10,000  
SI n+1 values 

5,000 sec = 
83 min 

   3. Sort the 10,000 BGn+1 
values and find the 5th 
and 95th percentiles 

1 sec 

Total Time  ~1 sec  ~83 min 
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Table 3. Sub-cohorts of 165 SPRINT patients for cross validation. 
Group no. of 

patients 
age (yr) gender 

(% male) 
average blood 
glucose level 
(mmol/L) 

length of trial 
(Hr) 

time in 4 – 
6.1mmol/L 
band (%) 

1 
2 
3 
4 
5 

overall 

33 
33 
33 
33 
33 
165 

57.4 (19.4) 
66.5 (13.8) 
61.0 (15.6) 
63.7 (15.9) 
56.5 (18.1) 
61.0 (16.5) 

69.7% 
63.6% 
63.6% 
60.6% 
72.7% 
66.1% 

6.2 (1.9) 
5.9 (0.7) 
6.0 (0.9) 
6.0 (0.7) 
5.9 (0.8) 
6.0 (1.0) 

144.6 (189.1) 
141.1 (167.7) 
138.6 (169.4) 
142.7 (143.2) 
139.8 (169.0) 
141.4 (167.7) 

58.1 (24.5) 
59.0 (17.3) 
59.8 (22.1) 
58.2 (16.1) 
59.1 (21.0) 
58.9 (20.2) 

 
Group average 

insulin usage 
(U/Hr) 

average 
absolute goal 
feed [ml/hr] 

average % 
goal feed 

mortality 
(%) 

APACHE II 

1 
2 
3 
4 
5 

overall 

2.6 (1.1) 
2.6 (1.2) 
2.6 (0.7) 
2.7 (1.0) 
2.5 (0.7) 
2.6 (0.9) 

75.3 (10.6) 
73.0 (10.3) 
74.7 (10.7) 
70.9 (10.3) 
77.3 (10.4) 
74.2 (10.5) 

48.3 (38.7) 
52.0 (36.0) 
52.5 (42.3) 
54.0 (32.7) 
52.7 (32.5) 
51.9 (36.4) 

72.7% 
81.8% 
84.8% 
87.9% 
82.4% 
81.9% 

20.5 (8.8) 
17.7 (7.1) 
20.9 (8.8) 
21.3 (6.4) 
20.5 (7.3) 
20.2 (7.7) 
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Table 4. Stochastic insulin sensitivity model cross validation results. 
Group Groups used in 

creating 
stochastic model 

Average percentage of 
fitted SI within equal-tailed 
0.90 probability interval 

Average percentage of fitted 
SI  within inter-quartile 
probability interval 

1 
2 
3 
4 
5 

overall 

[-,2,3,4,5] 
[1,-,3,4,5] 
[1,2,-,4,5] 
[1,2,3,-,5] 
[1,2,3,4,-] 
[1,2,3,4,5] 

85.7% 
83.2% 
87.4% 
88.7% 
87.9% 
86.6% 

54.2% 
52.3% 
54.7% 
54.1% 
54.8% 
54.0% 
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Table 5. Virtual trial results compared to clinical SPRINT results. 
 SPRINT Virtual Trials  
Overall data    
   Number of patients 165 200  
   Hours of control 23,324 33,889 hours 
   Total BG measurements 15,874 34,089  
   BG mean a 5.9 [4.1 – 8.3] 5.5 [3.6 – 7.8] mmol/L 
   BG standard deviation a 1.3 1.3 mmol/L 
   Percentage between 4 – 6.1 mmol/L 61% 72%  
   Percentage between 4 – 7.0 mmol/L 82% 82%  
   Percentage between 4 – 7.75 mmol/L 89% 87%  
   Percentage < 4 mmol/L 3.3% 4.5%  
   Percentage < 2.5 mmol/L 0.1% 0.02%  
    
Per-patient data    
   Hours of control 95 [12 – 447] 79 [20 – 688] hours 
   Number of measurements 68 [10 – 271] 80 [21 – 689]  
   BG mean  5.9 [5.0 – 7.4] 5.3 [4.6 – 7.5] mmol/L 
   BG standard deviation  1.1 [0.7 – 2.3] 1.0 [0.5 – 2.1] mmol/L 
   Median hourly insulin  2.5 [1.3 – 4.1] 3.2 [1.3 – 4.4] U 
   Median nutrition rate (RESOURCE Diabetic)  37.5 [0 – 80.3] 28.2 [18.1 – 42.9] ml/hr 
      (assuming 1.06 cal/ml)  954 [0 – 2043] 717 [461 – 1093] kCal/day 
   Median percentage of goal feed 52.7% 

[29.7% – 70.3%] 
38.4% 
[29.3% – 67.6%] 

 
a Lognormal distribution 
Data are expressed as median [5th – 95th percentile range] as appropriate 
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Figure 1. Fitted hourly SI variation (dots) and joint kernel probability density (shaded 
contours). The area under the joint probability density function surface in the model 
space sums to 1.0. 
 

. 
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Figure 2. Stochastic model of SI variability. Conditional probability density functions 
are the surface slices along SI n+1 axis, each slice has an area under the curve summing 
to 1.0. 
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Figure 3. Cascade of SI probability density function slices over the fitted SI range. 
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Figure 4. Probability density function of potential SI. Probability intervals across the 
model space from Figure 2 are shown by shaded areas. 
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Figure 5. Probability density transition from SI to blood glucose levels. Panels A and 
B show the pdf (right axis) and the cdf (left axis) in SI n+1, when SI n = 8×10-4 is known. 
Panels C and D show the resulting pdf (right axis) and cdf (left axis) in blood glucose 
levels at hour n+1 (BGn+1 [mmol/L]) through Monte Carlo Simulation. The 
transformation through Equations (1)-(5) from upper panels to lower panels is 
denoted by f. The shaded areas in panel B and D have the highest 90% probability. 
The 90% most probable SI n+1 intervals in panel B are between cdf = [a×10-2, b×10-2] 
and [c×10-2, 1.0]. Note that higher SI values in the left hand side of the reversed x-axis 
in panels A and B results in higher BG values on the right hand side in panels C and 
D. 
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Figure 6. Example of a virtual trial. The top panel displays the blood glucose 
evolution, where bold crosses are virtually generated blood glucose levels are one 
hour intervals, with thick bars indicating measurement error. The controller predicted 
blood glucose levels are shown in circles, with thin bars indicating their probability 
intervals. 
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Figure 7. Probability interval analysis per patient. Plotted are the individual patient 
averages. The upper plot is the fraction of measurements in the inter-quartile interval. 
The bottom panel is the fraction in the 0.90 probability interval. 
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Figure 8. Virtual trial length versus probability interval accuracy. 
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Figure 9. Percentage deviation of virtual trial blood glucose levels from probabilistic 
medians. 
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Figure 10. Blood glucose measurement distribution comparison between clinical 
SPRINT results and virtual patients under the improved stochastic controller 
presented. 



 1 

 
 
Dear Prof Carson,  
 
Re-submitted is our manuscript entitled: "Stochastic Modelling of Insulin Sensitivity and 
Adaptive Glycemic Control for Critical Care". The paper presents the application of 
Markov modelling to create a stochastic model of insulin sensitivity variability in critical 
care glycemic control. The model can then be used clinically, as shown, to help optimise 
decision making during the provision of model-based intensive insulin therapy. 
 
The re-submitted manuscript has been modified to address the two reviewers’ 
comments. A general comment between both reviewers is on the stochastic model 
probability intervals. As both reviewers pointed out, the probability density functions are 
asymmetric near stochastic model boundaries. Therefore, it is important to discuss the 
implication and the impact of having these asymmetries in the model space. The 
discussion on probability intervals, their calculation, and clinical feasibility are extensively 
revised in Section 3.2. The manuscript is now better structured, and should be easier to 
follow. Finally, the manuscript offers a solution to the computational intensity of exact 
probability intervals, which is the use of equal-tailed probability interval estimates for 
clinical decision support. This solution provides fast, and therefore clinically useful 
glycemic control assistance, and is adequately accurate with minimal losses of 1-4% in 
exactness. 
 
Specific reply to each reviewers’ comment is attached with this submission. We thank the 
reviewers for their input and efforts. The manuscript should now be more solid, with 
issues raised more clearly addressed. In particular, the link between text and figures is 
now stronger, with figure captions expanded to be more self-explanatory.  
 
The re-submitted manuscript, however has grown in length, to strengthen and address 
each reviewer’s commented issues. The manuscript now consists of 24 pages of text, 4 
pages of references, with 5 tables, and 10 figures in the end. Each page is double spaced 
and has around 250 words equivalent per page. The total equivalent length is now 
approximately 9,000 words. All work submitted in this manuscript is original. 
 
Again, thank you for your time and consideration of our manuscript. We look forward to 
your response. 
 
Regards, 
 
 
Jessica Lin 
 
Research Assistant 
Centre for Bio-Engineering/Dept of Mechanical Engineering  
University of Canterbury 
Christchurch, New Zealand 
ph: +64 3 364 2987 ext 7486 fax: +64 3 364 2078 

Department of Mechanical Engineering 
University of Canterbury Telephone: +64-3-366 7001 
Private Bag 4800 Facsimile: +64-3-364 2078 
Christchurch Website: www.mech.canterbury.ac.nz 
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Reply to reviewer #1 
 
General comments: 
 
The reviewer commented that the problems at the tails of the insulin sensitivity 
probability distribution “could be probably avoided by allowing, for instance, 
endogenous glucose production to present some stochastic variability.” The authors 
thank the reviewer for pointing this out. Although many detailed discussions on the 
physiological model were omitted in this manuscript due to length restriction, this 
point should be made clearer to justify the methodology. The authors have modified 
the last paragraph of Section 3.1, and also added another 2 paragraphs after it, to 
clarify and address this point: 
 
“Across the fitted range of SI, the conditional probability density function is largely 
uni-modal and symmetric. However, as shown in the cascade plot of conditional SI n+1 
probability density functions across the SI n model range in Figure 3, there are some 
numerical artefacts near the boundaries of the fitted range. Probability density 
functions for SI n peak at boundary values because of the fitting constraints. For SI n = 
[1×10-5, 1×10-4] and [0.75×10-3, 1×10-3] at the edges of Figure 3, the percentile values 
away from the median do not necessarily decrease in probability. These ranges span 
34% of the fitting range [1×10-5, 1×10-3], in which 20% of the SPRINT data falls 
(18% between SI n = [1×10-5, 1×10-4] and 2% between [0.75×10-3, 1×10-3] in Figure 
1). Note that Figures 2 and 3 show the conditional probability density functions which 
are scaled to have the area under each function summing to 1. Thus, the asymmetry 
becomes very pronounced in Figures 2 and 3. The probability of SI taking on these 
asymmetric conditional probability density functions is in fact very low in the overall 
joint probability density function shown in Figure 1, where the probability density 
sums to 1 over the entire fitting surface. 
 
The asymmetric SI probability density functions could perhaps be due to other not 
explicitly modelled physiology, such as variations in endogenous glucose production. 
More specifically, “bumpy” areas of SI probability density function in Figure 3 may 
be a sign of SI absorbing physiology unmodelled or undermodelled in Equations (1)-
(5).  However, this unmodelled physiology represents uncommon sudden, or extreme, 
dynamics, evident by the low overall joint probability density in these areas in Figure 
1. Practically, to include all such variations in the glucose-insulin model would make 
it overly complicated and it would thus lose clinical feasibility. Such additions would 
also require added assumptions for endogenous insulin or glucose production that are 
not clinically measured in real-time.   
 
Assumptions for these responses could also compromise control accuracy, as both 
endogenous insulin and glucose productions are known to vary significantly between 
patients [25-29] and over time. In addition, endogenous glucose production is 
suppressed with significant insulin administration in both normal and stressed states 
[30], which is the case for critically ill patients under insulin therapy for glycemic 
management. Similarly, the endogenous insulin production is effectively removed or 
significantly reduced in the presence of significant exogenous insulin [29, 31-33], not 
to mention its inhibition in stress hyperglycemia [e.g. 34]. It is therefore, in the 
interest of this model-based clinical control applications, to have these effects 
mitigated into SI. In [10, 12, 15], the model of Equations (1)-(5) and the impact of 
mitigated effects are discussed in detail. The result is a much more clinically feasible 
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control model, where SI accounts for critically ill population’s overall sensitivity to 
insulin and/or its utilisation.” 
 
Specific comments: 
 
1. The following two sentences regarding stress-induced hyperglycemia are added 

after the first sentence in the first paragraph of Section 1. 
 

“The increased counter-regulatory hormone and cytokine response stimulates 
endogenous glucose production and increases effective insulin resistance. 
Absolute and relative insulin deficiency and steroid-based therapies are further 
causes.” 
 
The reviewer suggested discussion on the possible implications of ignoring 
endogenous glucose production is added to Section 3.1, as per the reply to the 
general comments. 
 

2. The introduction sentence now reads: 
 
“A clinically verified patient-specific glucose-insulin metabolic model [10, 12, 14, 
15] is used to account for time-varying insulin sensitivity in critical care.” 
 

3. Paragraphs after Equations (1)-(5) in Section 2.1 now read: 
 
“where G [mmol/L] denotes glucose above an equilibrium level GE [mmol/L], and 
I [mU/L] denotes the plasma insulin from an exogenous insulin input. Insulin 
utilization over time is captured by Q [mU/L], where k [1/min] is the effective 
insulin half-life parameter. Patient endogenous glucose removal and insulin 
sensitivity are pG [1/min] and SI [L/mU/min] respectively. The parameter VI [L] is 
the insulin distribution volume and n [1/min] is the first order decay rate for 
plasma insulin. External nutrition and insulin inputs are P(t) [mmol/L/min] and 
uex(t) [mU/min], respectively. Michaelis-Menten parameters αI [L/mU] and αG 
[L/mU] define plasma insulin disappearance saturation and insulin-stimulated 
glucose removal saturation, respectively. The exogenous glucose appearance and 
decay rate used to define P(t) are kpr and kpd. Specific details on physiological 
model dynamics are evaluated in [10, 12, 16]. 

 
In Equation (1), the saturation mechanism on insulin effect creates a unique index 
of insulin sensitivity, SI, compared to other model-based measures. The result is 
an SI index that more closely approximates the effective net tissue sensitivity to 
insulin, and its variation to the evolution of patient condition and drug therapy. It 
has also been shown to drive patient response to intervention and thus control 
efficacy in prior studies [10, 12]. This model measure is also highly correlated to 
clamp-derived ISI over 146 patients [17-19]. Hence, understanding variation in SI 
should enable more effective control.” 
 
Due to the length restriction for the manuscript, detailed aspects of the 
physiological model is referred to previous publications. 
 

4. The following paragraphs are also added to the end of Section 3.1 to discuss the 
lower bound imposed on the SI stochastic model. 
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“In Figure 1, the lower bound for SI has greater influence on the overall stochastic 
model than the upper bound. However, no patients have fitted SI staying at the 
lower bound for a prolonged period, again suggesting that these occasions are 
more sudden, short term condition, such as suppressed insulin sensitivity or 
utilisation due to drug therapies, rather than long term, or gradual changes, such as 
increased glucose production. During numerical fitting, if fitted SI stays at the 
lower bound for a prolonged period of 5 hours, the fitting method recognises a 
gradual evolution, and adjusts GE to address factors such as endogenous glucose 
production. During the total of 23,324 control hours, only 39 such occurrences 
were observed, which is 0.17% of the time. 

 
The short term changes, although causes fitted SI to hit the lower bound, if 
unconstraint, will often result in negative SI because of significant drug effects or 
acute medical conditions such as atrial fibrillation [12]. In addition, increased 
endogenous production with inhibited glucose production can result in an 
effectively zero or negative modelled SI. These cases are too wide ranged to be 
accounted for in the physiological model. Note that an evolving GE that is too high 
leads to a reduction in modelled endogenous glucose production, and a higher SI 
may also result in the model due to a lower –pGG term. Mitigating the impact of 
these events into fitted SI simplifies the model to be clinically control feasible.  
 
In addition, incorrect modelling of these conditions which are difficult to account 
for can severely compromise patient safety. More specifically, underestimating SI 
can lead to excess insulin being given. With the aim of applying the physiological 
and stochastic models in clinical control, the lower bound of SI has an important 
role. Finally, the fitted SI, with higher data concentration around the lower bound, 
realistically reflects the highly variable dynamics in the critical care environment, 
where drug therapies and acute medical conditions that result in highly resistant 
patients are common.” 

 
5. Section 3.2 discusses and explains the, in fact, simple applicability of the 

stochastic model that, at first glance, may have appeared too complex to be 
clinically useful given its asymmetric distributions near the model boundaries. 
This section employs Figure 5 to illustrate the implication of using the easy-to-
calculate equal-tailed probability intervals. The equal-tailed probability intervals 
although do not provide the exact solutions to the most probable intervals, they 
do provide satisfactory solutions at an incomparably advantageous speed over 
Monte Carlo simulation method, and therefore makes the stochastic model 
clinically feasible for control applications.  

 
Section 3.2 has been re-written and broken into two subsections to make it easier 
to follow. The probability intervals are now identified in Figure 4. The differences 
between equal-tailed and exact probability intervals are further explained, with a 
clearer tie to Figure 5. A new table, now Table 2, is added to make the 
comparison even more straight forward. 
 
Regarding to the use of equal-tailed probability intervals in clinical decision 
making, while asymmetry exists near model boundaries, for the majority of the 
model pace, the probability density functions are near-symmetric. Therefore, 
equal-tailed probability intervals do, a large majority of the time, provide the most 
probable forecast for the clinical outcome, with small errors being accepted in 
other instances for the sake of computational simplicity. In addition, equal-tailed 
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probability intervals are generally well accepted and most familiar to clinicians 
over other forms of expressions. 
 

6. APACHE = Acute Physiology and Chronic Health Evaluation. This is now added 
to the text. 

 

7. Step 6 is modified to read: 
“Return to step 1 with SI n+1 being the new SI n.” 
 
And a paragraph is added after step 6 to clarify virtual SI generation: 
 
“Essentially, a virtual patient’s SI evolution follows the joint probability density 
contour in Figure 1, making its way to the highest probability density regions. 
Each SI n+1 is dependent on the previous state, SI n, where the probability density 
function of of SI n+1 is defined in Equations (10)-(11). Hence, in step 1 above, SI 
takes a walk to a point, say y, along the probability density function curve  
p(SI n+1 = y | SI n = x) as shown in Figure 4. Step 6 then “walk” the SI across (along 
SI n+1 axis) to where SI n = y, and the process repeats.” 

 
8. Section 3.4 is now broken into 3.4.1 and 3.4.2. 
 
9. Thickness of bars are now noted in the text. More explanation is also added to 

the figure caption. 
 
10. Virtual trial lengths are generated according to data from SPRINT patient cohort, 

as explained in Section 3.4.1, “Trial lengths were also randomly generated to 
create a similar statistical distribution to that in the SPRINT trials.” 
 
To clarify the relationship between trial length and control accuracy, the 4th line 
now reads: 
 
“Figure 8 illustrates how shorter trials can produce outliers, where most variability 
is gone after 50-75 hours, indicating stabilised patient condition under long term, 
tight glycemic control with little variability in glycemic level.” 
 

11. This line now reads: 
 
“The percentage lower than 4 mmol/L is slightly increased from 3.3% to 4.5%, 
with 0% under 2.5 mmol/L.” 

 
12. The 2nd part of the legend is now in the footnote of Table 5 (which used to be 

Table 4). 
 
13. The authors feel that the use of these figures is important for explaining different 

issues raised in the manuscript. In addition, contours are now added in Figure 1, 
and used to explain virtual patient generation. Figure 2 provides a whole picture 
of the stochastic model. Figure 3 is used to bring out the shapes of probability 
density function across the model space, and therefore acts as an important lead 
into the discussion on probability intervals. Figure 4 demonstrates the derivation 
of probability intervals from probability density functions, and shows the 
probability intervals across the model space.  
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Therefore, the authors do not wish to omit any of these figures. However, more 
information is added to the figure captions and/or legend to make their difference 
in form and function more self-explanatory.  
 
The authors can condense as required but feel there will be a loss of clarity. 
Therefore, the authors leave this decision to the editor’s discretion. 

 
14. Better linkage between text and the Figure is now made, and more information is 

added to the figure caption. 
 
15. Figure 10 now compares the cumulative distribution of virtual trial and SPRINT 

trial blood glucose levels, and the horizontal axis now has a more suitable limits. 
 
16. Additional information has been added to figures to make them more self-

explanatory. 
 
 
Reviewer #2:  
 
General Comments: 
 
Reviewer #2’s general comment regards Section 3.2, where the probability interval 
calculations and clinical use are discussed. The exact method for calculating 
probability intervals was presented. A clinically feasible solution to the exact method 
was then offered that produce little errors with a fast clinical delivery time. This 
section employs Figure 5 to illustrate the implication of using the easy-to-calculate 
equal-tailed probability intervals. The equal-tailed probability intervals although do not 
provide the exact solutions to the most probable intervals, they do provide 
satisfactory solutions at an incomparably advantageous speed over Monte Carlo 
simulation method, and therefore makes the stochastic model clinically feasible for 
control applications.  
 
Section 3.2 has been re-written and broken into two subsections to make it easier to 
follow. The probability intervals are now identified in Figure 4. The differences 
between equal-tailed and exact probability intervals are further explained, with a 
clearer tie to Figure 5. Better links between Figure 5 and text are also made, with 
more information added to the figure caption. Finally, a new table, now Table 2, is 
added to make the comparison even more straight forward. 
 
Specific comments: 
 
(i) The symbol “P” is now changed to lower case “p” to stand for probability densities. 
 
(ii) As shown in Figure 3, the maximum probability density for each conditional 

probability density functions across SI n+1 varies. In particular, the curve in Figure 
4 is the SI n = 6×10-4 curve shown in Figure 3, and the curve in the upper panels 
in Figure 5 is the SI n = 8×10-4 curve shown in Figure 3. Therefore, Figures 4 and 
5 have lower limits for the vertical axes.  

 
(iii) The spelling is now corrected. 
 
(iv) As per the text in now Section 3.2.1, 4th paragraph, last sentence,  
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“Note that in panels A and B, the x-axes are decreasing from left to right, 
producing a similar shaped probability density function in blood glucose levels in 
panels C and D with blood glucose levels increasing as SI n+1 decreases”,  
 
the right-pointing triangles show the 5th percentiles, and the left-pointing triangles 
show the 95th percentiles in both distributions. This is also noted in the Figure 
legend. 
 

(v) These unshaded regions have lower probability density than shaded regions, as 
pointed out in the text in Section 3.2.1,  
 
“…, the 90% most probable SI n+1 values are identified by the shaded areas in 
panel B. These values are discontinuous, and have higher probability of occurring 
than values outside the shaded areas”, 
 
and in the bullet points following this passage. 
 

(vi) The reviewer has mistaken the multiplication symbol as variable “x”. A different 
font is chosen to make the multiplication symbol more obviously identified.  

 
 
Other Comments: 
 
1. the sentence now reads: 

 
“Over 165 patients and 23,000 patient hours, it achieved an average blood glucose 
level of 5.8±1.2mmol/L with 61% of the time in the 4 – 6.1mmol/L band [4]” 
 
where “mmol/L” is a commonly accepted unit for measuring blood glucose levels. 
 

2. kpr and kpd are The exogenous glucose appearance and decay rate used to 
define the glucose appearance P(t). This is now added in the paragraph after 
Equations (1)-(5) in Section 2.1. 
 

3. This has been modified to the reviewer’s suggestion.  
 
4. This figure is a cascade plot of the probability density functions across the model 

space. This figure shows how shape of the probability density functions changes 
across the fitting space. This is explained in the 3rd to last paragraph in Section 
3.1 (used to be the last paragraph). The model space has lower limit of 10-5 and 
10-3, thus Figure 3 has the same limits for its horizontal axis. 

 
5. The reference style has been corrected. 
 
6. Contour curves are now added to the figure to aid readability. The authors 

suspect that the “purple” referred to by the reviewer are actually dots of fitted data. 
These dots are now made bigger to ensure readability in print. 

 
The scale of the colour map and the contours has a maximum of 5.5×1011 
because the joint probability density function sums to 1 over the entire fitting 
surface. This is explained in the 3rd to last paragraph in Section 3.1 (used to be 
the last paragraph). Because the values for SI are small (10-5 to 10-3), the “height” 
of the joint probability density function in the model space is thus great. 

 
7. This has been corrected. 


