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Abstract 

Global land cover change is characterised by the expansion of agricultural and urban areas, 

which results in forest loss, especially in sub-Saharan African countries such as Zambia. This 

topic has received increasing research attention due to the close relationship between land cover 

and land use, food security and climate change. The Zambian landscape has high rates of land 

cover change associated with deforestation, forest degradation and urbanisation. With these 

changes, managing natural resources in Zambia requires reliable information with which to 

make informed decisions during land use planning. However, existing land cover information 

for Zambia is limited in its spatial and temporal scales. The availability of remotely sensed data 

with an open access policy and a long historical record, such as Landsat satellite imagery, offers 

opportunities for monitoring long-term land cover change over large areas. 

This thesis aims to provide an understanding of the different aspects of remotely sensed land 

cover monitoring, including image pre-processing, land cover classification, land cover change 

and factors associated with land cover change in Zambia. This research was conducted at a 

national scale over a period of four decades (1972–2016). The current study started with a 

detailed literature review on the development of the methods of Landsat land cover 

classification, which was followed by testing machine-learning classifiers and pre-processing 

methods on pansharpened and non-pansharpened Landsat Operational Land Imager (OLI-8) 

images. Classification of nine land cover types (primary forest, secondary forest, plantation 

forest, wetlands, cropland, irrigated crops, grassland, waterbodies and settlements) was 

conducted for six time steps (1972, 1984, 1990, 2000, 2008, and 2016), which were chosen by 

considering past economic and political events in Zambia. Post-classification analysis was then 

applied in order to understand changes in land cover. Finally, the factors contributing to land 

cover change were assessed using a classification tree (CT) approach. 

The literature review (Chapter 2) showed that Landsat land cover classification methods have 

developed from manual delineation to advanced computer-based classification methods. These 

developments have occurred due to the advancements in computer science (e.g. machine-

learning and artificial intelligence) and improvements in remotely sensed data acquisition. To 

attain high land cover classification accuracies, Landsat images require the selection of an 

effective classification method and the application of pre-processing methods. The 

combination of object-based image analysis (OBIA) and machine-learning classifiers, such as 

random forests (RF), has become more common than the pixel-based approach.  
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The assessment of pre-processing methods (Chapter 3) on two provinces of Zambia 

(Copperbelt and Central), which were covered by four Landsat OLI-8 images, indicated that 

applying both atmospheric and topographic correction improved classification accuracy. The 

results showed that non-pre-processed images reached a classification accuracy of 68% for 

pansharpened and 66% for standard Landsat OLI-8 images. Classification accuracy improved 

to 93% (pansharpened) and 86% (standard) when combined moderate-resolution atmospheric 

transmission (MODTRAN) and cosine topographic correction pre-processing were applied. 

The results showed that image corrections are more important when applied on multiple scenes, 

especially for time series studies. The results also identified that the RF classifier outperformed 

the other classifiers by attaining an overall accuracy of 96%. These results informed the choice 

of pre-processing and classification analyses to use for the subsequent land cover analysis. 

A nationwide land cover classification analysis was then undertaken for each of the six time 

steps (Chapter 4). Overall accuracies ranging from 79% to 86% were attained, with more recent 

time steps, captured by Landsat OLI-8 imagery, having the highest accuracy. The variation in 

classification accuracies was mainly attributed to the differences in spatial, spectral and 

radiometric resolutions of the satellite images available for each time step. This chapter also 

showed that 62.74% of the Zambian landscape experienced change. Primary forest declined 

from 48% to 16% between 1972 and 2016, while secondary forest increased from 16% to 39% 

during the same period. The results also showed that forests have been recovering by 0.03% to 

1.3% yr−1 (53,000–242, 000 ha yr-1); however, these rates are lower than deforestation rates 

(−0.54% to −3.05% yr−1: 83,000–453,000 ha yr−1). Annual rates of change varied by land 

cover, with irrigated crops having the largest increase (+3.19% yr−1) and primary forest having 

the greatest decrease (−2.48% yr−1). Area of settlements, cropland and grasslands increased, 

while wetlands declined. Due to increased forest fragmentation, forest connectivity declined 

by 22%. 

The CT models for analysing the factors contributing to land cover change (Chapter 5) were 

produced with overall accuracies ranging from 70% to 86%. CTs are statistical approaches 

used to partition categorical data (response variables) into mutually exclusive subgroups using 

a set of explanatory variables. Here, the response variables included a binary scenario 

(change/no change) and changes from individual land covers. The explanatory variables were 

the different factors considered to be associated with the land cover changes. The major factors 

associated with the binary scenario (change or no change to 1972 land cover) were percentage 
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of cultivated area, crop yield, and distance to waterbodies. Forest losses were mainly associated 

with crop yield, area under cultivation, population density and distance to roads and railways. 

An important insight from this chapter was the influence of protected areas (e.g. national 

forests) on forest reversion and recovery.  

Due to the national extent and long temporal record of land cover change, the findings from 

this thesis are important for land use planning in Zambia. This research not only documents 

deforestation and forest degradation occurring throughout Zambia over the past four decades, 

but also highlights the importance of increasing the extent of protected areas in order to support 

forest reversion and recovery. Since forests are an important component of climate change 

mitigation initiatives, these results will provide baseline information for international climate 

change mitigation initiatives such as reducing emissions from deforestation and forest 

degradation (REDD+). 
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Introduction 

1.1 Global land cover change 

Global land cover has changed due to the growing global population and its dependency on the 

limited resources on the Earth’s surface. Land cover is closely related to land use, such that 

most studies do not make a clear distinction and use these terms interchangeably (Comber, 

2008; Coulter et al., 2016; Lambin et al., 2001). However, land cover refers to the physical 

material covering the surface of the Earth, while land use describes how land is utilised by 

humans (Comber, 2008; Fisher et al., 2005). Therefore, land cover change defines the 

conversions that take place on the physical surface of the Earth, which are mainly caused by 

different land uses and natural processes. With the global population projected to increase from 

the current 7 to 9 billion by 2030 (Pimentel & Pimentel, 2006; Seto et al., 2012), accurate 

information on global land cover change is needed for environmental monitoring, sustainable 

development and for mitigating the impacts of climate change. 

Previous studies have shown significant changes in global land cover (Chen et al., 2015; 

Hansen et al., 2000; Wang et al., 2015). These land cover changes are mainly driven by the 

expansion of agricultural and urban areas, particularly in low-income countries in tropical 

regions (Hansen et al., 2013). DeFries et al. (2010) reported a strong correlation between land 

cover change and population increase. By 2030, urban areas are projected to expand by 1.2 

million km2, nearly three times the urban areas reported in 2000 (Seto et al., 2012). Moreover, 

Wang et al. (2015) reported that the expansion of croplands and illegal logging in the Amazon 

and sub-Saharan Africa are the major land cover changes at a global scale. 

1.1.1 Importance of land cover mapping and monitoring 

Land cover change mapping and monitoring are vital for sustainable development because they 

provide decision makers with information to develop effective policies for the management of 

Earth’s resources. The increasing global population comes with increased demand for 

settlements, for food from agricultural land, and for infrastructure. These demands drive 

various land cover changes, such as the decline in areas covered by forests (Foley et al., 2005) 

and wetlands (Dronova, 2015), and the loss of biodiversity (Haddad et al., 2015). Reliable 
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information for land use planning is necessary in order to achieve sustainable utilisation of the 

available resources. Land use policy formulation requires land cover information at different 

spatial scales, and hence having information at large spatial extents such as national, 

continental and global scale contributes to effective policy development. 

Land cover change is also closely related to climate change, so that the decline in certain land 

covers, such as forest cover, reduces carbon sequestration and vice versa (Dube et al., 2016; 

Hansen et al., 2013; McNicol et al., 2018). Climate change mitigation programmes such as 

reducing emissions from deforestation and forest degradation (REDD+) rely heavily on land 

cover change information for monitoring, verification and reporting (De Sy et al., 2012). 

Although land cover information has been produced at different scales in developing countries, 

land cover information at a national-scale usually has spatial and temporal limitations (Ernst et 

al., 2013). Therefore, with the advancement in land cover monitoring approaches, more reliable 

and accurate information can be provided to decision makers.  

1.1.2 Forest cover and dynamics 

Global forest cover changes are an important indication of worldwide environmental 

conditions, such as ecosystem function and carbon stocks. Food and Agriculture Organisation 

(FAO)  defines forests as land extending more than half a hectare, with trees more than 5 metres 

tall that have a canopy cover of greater than 10% (FAO, 2012). According to the 2015 Global 

Forest Assessment Report (GFAR), the net global forest cover declined by 3% from 4128 M 

ha in 1990 to 3999 M ha in 2015 (Keenan et al., 2015). The major losses occurred in the tropical 

regions (5.5 M ha yr−1), especially in low-income countries. However, there were some forest 

gains of 2.2 M ha yr−1 between 1990 and 2015. The gains in forest cover were mainly associated 

with the temperate regions (Keenan et al., 2015; MacDicken, 2015). 

Forest cover is shaped by the dynamics caused by forest gain and losses (Figure 1.1). 

Deforestation, which is the conversion of forest cover to other land use or the permanent 

reduction of forest cover below the minimum 10%, is the major factor driving forest cover 

changes in the low-income countries in tropical regions (FAO, 2012). Forest expansions that 

occur in temperate regions result from forest planting on land that was not previously classified 

as forests. This process of forest establishment on land not previously classified as forest is 

known as afforestation, while reforestation is the establishment of forest on areas previously 

classified as forests (FAO, 2012). The other challenge facing forest cover, especially in low-
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income countries, is forest degradation, which is the process of temporary or permanent 

deterioration in the density or structure of forests. The most common form of forest degradation 

is the transition from intact forests that have no signs of disturbance (primary forest) to a 

disturbed state called secondary forest (FAO, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Overview of the main pathways of forest dynamics and the importance of secondary forests 

in post-disturbance forest recovery.  

1.2 Remote sensing for land cover monitoring 

Land cover monitoring requires accurate information at different temporal and spatial scales. 

Aquiring accurate and reliable information is an important exercise for developing and 

implementing policies for sustainable development. Two main approaches have been used for 

land cover mapping and monitoring; traditional ground surveys and remote sensing. Remote 

sensing is the acquisition of physical information of an area without direct contact. Although 
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ground surveys are still used, remotely sensed data has improved land cover monitoring. With 

the remote sensing technology now available, large areas can be monitored at various spatial 

extents at lower costs than for ground surveys (Hansen & Thomas., 2012). In most cases, the 

combination of ground surveys with remotely sensed data has proved to be an effective 

approach for collecting up-to-date land cover information. 

1.2.1 Historic approaches to land cover mapping and monitoring 

Historically, land cover mapping was done through ground surveys. The information from the 

ground surveys was used for land cover delineation, and monitoring spatial and temporal land 

cover changes (Bettinger et al., 2016). The main advantage of a ground survey is that it 

generates accurate land cover information because land cover mapping is conducted on small 

units. However, the main drawback of a ground survey is that it is more costly in terms of 

human resources, finances and time. The other obstacle with ground surveys is the 

inaccessibility of some areas such as mountains, waterlogged areas and conflict zones. This 

makes it difficult to successfully map large areas using ground surveys.  

Different approaches have been developed to conduct ground surveys on a large scale through 

sampling procedures. For example, different sampling strategies1 such as stratified, random  

and  systematic sampling are commonly used to characterise forests (Van Laar & Akça, 2007). 

The major challenge with sampling strategies is how to balance mapping large areas with 

deriving accurate information from the ground surveys. 

1.2.2 Remote sensing approaches to land cover mapping and monitoring 

Acquiring information through remote sensing has modernised land cover monitoring and 

overcomes the limitations of ground surveying (Jucker et al., 2017). Examples of remotely 

sensed approaches include aerial photography (Colwell, 1959), multispectral scanning 

(Melesse et al., 2007), hyperspectral scanning (Bioucas-Dias et al., 2013), light detection and 

                                                           
 

 

 

1 Random sampling is a probability sampling procedure in which all the samples have an equal chance of being 

selected. Systematic sampling follows a certain pattern and samples are selected based on an interval, while 

stratified sampling involves grouping a population based on common strata. 
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ranging (LiDAR) (Wehr & Lohr, 1999), and radio detection and ranging (radar) (Kasischke et 

al., 1997). Remotely sensed data is usually aquired via platforms such as aircrafts, satellites 

and the emerging unmanned aerial vehicles (UAVs) (Stöcker et al., 2017). Aerial photographs 

were the first technology of remotely sensed data to be used for land cover mapping and 

monitoring (Campbell & Wynne, 2011; Ray, 1960). The early application of aerial photographs 

for land cover mapping was mainly through manual delineation by considering various 

properties of  different land covers including pattern, texture, colour and shape (Spurr, 1952). 

Although different sensors and platforms have been used to collect land cover data, 

multispectral sensors on board satellites have remained the most common tools for land cover 

monitoring. 

Multispectral images are acquired by passive sensors on board satellite platforms, which collect 

data over large spatial extents and have different spatial, spectral, temporal and radiometric 

resolutions (Irons et al., 2012). The properties of the satellite images determine the types of 

land cover information that can be collected from particular satellite images. High spatial 

resolution images (e.g. RapidEye, IKONOS, and QuickBird) provide detailed information and 

are ideal for complex landscapes (Molinario et al., 2017) compared to medium-resolution 

images (e.g. Landsat) or low-resolution images (e.g. moderate resolution imaging 

spectroradiometer (MODIS)). High spectral resolution, which is determined by the number of 

bands, makes multispectral images suitable for characterising land covers such as such as 

vegetation, waterbodies and bare soils that have distinct spectral patterns.  High temporal 

resolution satellite images are useful for monitoring events that happen on a short time interval 

(e.g. fire outbreaks). Beyond multispectral sensors, hyperspectral sensors have proved to be 

useful for characterising complex land cover challenges such as vegetation types (Adam et al., 

2010) or soil classes (Chabrillat et al., 2002).   

The introduction of active sensors such as LiDAR and radar has contributed to the accurate 

analysis of land cover change. Active remote sensing is important for describing forest cover 

with different canopy layers through backscattering (Balzter, 2001). LiDAR has also proved to 

be useful in acquiring structural information in forest applications such as height, volume and 

biomass (Roberts et al., 2007), while radar is more useful in cloud-prone areas because it is not 

affected by cloud cover (Manakos et al., 2019). However, LiDAR or radar alone lack spectral 

information that is important for detecting changes of different land covers. The combination 

of different remotely sensed data through image fusion has proved to be important in land cover 
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change analysis, as these different datasets play complementary roles (Solberg et al., 1994; Xu 

et al., 2015). However, high costs associated with data acquisition and lack of processing 

expertise have contributed to the limited use of LiDAR and active sensors in general 

(Morgenroth & Visser, 2013; Xu, 2017). 

Remotely sensed data can either be available as a commercial product or a free-access product. 

Landsat imagery, a free-access remotely sensed data, has remained the most popular data for 

land cover monitoring.  The long archiving period dating back to 1972 (Haack, 1982; Phiri & 

Morgenroth, 2017) coupled with the National Aeronautics and Space Administration (NASA) 

introduction of a free access policy in 2008 (Woodcock et al., 2008) have together effectively 

promoted the application of Landsat data in land cover monitoring. While different 

multispectral satellite images have been used to describe land cover, Landsat images have 

proved to be more useful and cost effective in long-term large-area monitoring. Thus, a number 

of studies have been conducted using Landsat imagery at different spatial scales including 

national (Gilani et al., 2015; Uddin et al., 2015), regional (Duveiller et al., 2008; Ernsta et al., 

2010), continental (Brink & Eva, 2009) and global scales (Chen et al., 2015; Hansen et al., 

2000).  

1.3 Zambia in context 

Zambia, the focus of this thesis, is a sub-Saharan country located in southern Africa between 

latitude 8° S and 18° S, and longitude 22° E to 34° E (Figure 1.2). The country has a total 

surface area of about 752,000 km² and lies on a plateau with elevation ranging from 329 m to 

2,339 m above sea level. The country was established in 1964 after gaining independence from 

British rule and shares borders with Malawi, Mozambique, Zimbabwe, Angola, Democratic 

Republic of Congo (DRC), Namibia, Botswana and Tanzania. The climate is subtropical with 

three distinct seasons: a cool dry season, a hot dry season, and a hot wet season. The minimum 

temperature is 5 °C and the maximum temperature is 35 °C; rainfall ranges from 800 mm to 

1500 mm per annum (Phiri et al., 2016). The major vegetation types in Zambia are Miombo, 

Kalahari, Savannah and Mopane (Chidumayo, 1997) as well as 60,000 ha of plantation forests 

of Pinus kesiya and Eucalyptus grandis (Ng'andwe et al., 2015).  

According to the central statistics office (CSO) of Zambia, the Zambian population has 

increased from 4.5 million in 1970 to the current 17 million at a rate of 3.2% yr−1 (CSO, 2010). 

While the larger proportion (65%) of the population is found in rural areas, 35% is in urban 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/longitude
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areas such as the capital city, Lusaka, making Zambia one of the most urbanised countries in 

southern Africa. The major economic activities in Zambia include agriculture and mining. 

Small-scale farming dominates the agricultural sector, while the major mineral resource in 

Zambia is copper, which contributes 35% to the total export earnings of Zambia (Ng'andwe et 

al., 2015). 

 

Figure 1.2: Geographic location of the study site – Zambia.The map also shows neighbouring countries, 

provincial boundaries and major towns. 

1.3.1 The state of Zambian land cover 

The Zambian landscape is dominated by both natural (e.g. forest, wetlands and grasslands) and 

human-initiated (e.g. cropland and settlements) land covers. Currently, the major land cover 

types include forests, grasslands, wetlands, waterbodies and croplands. Human-initiated land 

cover types have increased mainly due to urban sprawl and the expansion of agricultural areas 
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(Phiri et al., 2019b; Simwanda & Murayama, 2017). Zambia is mainly covered by native 

forests, which are important to the environment and to the local people, as these forests 

provides different ecosystem services (Ng'andwe et al., 2015; Syampungani et al., 2009).  

Land cover change affects ecosystem integrity and reduces the capacity of ecosystems to 

effectively contribute to human well-being (Reyers et al., 2009; Tolessa et al., 2017). The 

Zambian population benefits from different ecosystem services2 including provisioning 

services (e.g. food, medicine, and timber), regulating services (e.g. climate and water 

regulation) and supporting services (e.g. soil formation and nutrient cycle) (Kalaba et al., 2013; 

Ng'andwe et al., 2015). Considering the rich cultural background of Zambia, cultural ecosystem 

services such as religious value and cultural heritage are some of the most important ecosystem 

services for human well-being that are derived from forests. Maintaining a healthy ecosystem 

needs effective monitoring of land cover changes in order to reduce the loss of important 

components of the ecosystem such as forests (Hein et al., 2008). 

Land cover change involving forests is best described by the concept of forest dynamics, which 

are driven by high rates of forest loss (Chidumayo, 2013; Phiri et al., 2019a) as well as forest 

reversion and recovery in Zambia. Forest recovery and reversions have been reported in 

previous studies that were based on field assessments (Chidumayo, 2013, 2019; Syampungani 

et al., 2016). For example, due to loss of soil fertility, many agricultural areas are abandoned 

after 3 to 5 years of utilisation, and then develop through regeneration and regrowth to 

secondary forest (DeVries et al., 2015; Mayes et al., 2015). Secondary forests may grow into 

closed canopy forests or may be transformed into other land covers depending on land use 

demands. This leads to a constant forest dynamic, because some forests are lost through 

deforestation or degradation, while others recover through regeneration and regrowth. To 

effectively monitor the forest resources and other land cover changes in Zambia, up-to-date 

national-level land cover information is needed. 

 

                                                           
 

 

 

2 The Millennium Ecosystem Assessment (MA) categorises the ecosystem services into four groups: provisioning, 

regulating, and cultural and supporting services. 
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1.4 Research motivations 

National-level land cover information dating back several decades is lacking in most sub-

Saharan African countries (Ernst et al., 2013), and Zambia is no exception. This information is 

important for effective land use planning and for monitoring carbon sinks, especially since land 

cover change is closely related to climate change (Hansen et al., 2013). This research will 

provide new insights on national-level land cover dynamics by monitoring different land cover 

types in Zambia over a long-term period (1972–2016), using Landsat remotely sensed data. 

This study will provide baseline information for land use planning and monitoring of natural 

resources, especially forests, in Zambia. The characteristics and the roles of secondary forest 

in the recovery of forests over the past 40 years in Zambia are also addressed in this study. This 

topic of forest recovery and reversion has been largely ignored, perhaps because much effort 

has been concentrated on finding solutions to the high levels of deforestation (Chidumayo, 

2013; Syampungani et al., 2009). 

On a global scale, this research contributes to the ongoing research on monitoring land cover 

changes in low-income countries that contribute significantly to global land cover changes, 

especially forest losses. Information from this study could improve the reporting of national 

forest statistics in global reports such as the Global Forest Assessment Report (GFAR) for 

2020. Understanding forest connectivity and the factors driving change could also contribute 

to development of effective strategies to reverse the current trends in forest loss. In addition, if 

combined with carbon assessments, land cover change information could be useful in 

understanding the carbon dynamics at a national scale in Zambia. The information produced in 

this study could be useful for global climate change mitigation programmes such as that for 

reducing emissions from deforestation and forest degradation (REDD+). The outputs of this 

study are also important in forest management and land use planning and will help decision 

makers to make informed decisions based on present and future land cover and forest dynamics. 

In summary, this thesis presents a national-level study that monitors land cover changes in 

Zambia using remote sensing over a period of four decades (1972–2016). Forests are a specific 

land cover of interest in this research, as they have been shown to be affected by anthropogenic 

disturbances including urbanisation, agricultural activities and unsustainable harvesting of 

forest resources (Chidumayo, 2013; Kalaba et al., 2013; Simwanda & Murayama, 2018). This 

thesis also provides an analysis of forest connectivity and the driving factors associated with 

land cover changes. 
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1.5 Research objectives  

The main objective of this study is to investigate the long-term (1972–2016) land cover 

dynamics in Zambia using remote sensing. This study has a special focus on forest cover 

changes. The specific objectives and their related research questions include: 

Objective 1: To identify the advancements of land cover classification methods for Landsat 

images. 

a. What are the main methods of land cover classification used on Landsat images? 

b. What are the benefits and drawbacks of the main methods of land cover classification 

methods of Landsat images? 

c. What are the best practices for attaining the desired classification accuracy on Landsat 

images? 

Objective 2: To assess machine-learning classifiers and the effects of different pre-processing 

methods (pansharpening, and atmospheric and topographic corrections) on object-based image 

analysis (OBIA) land cover classification of Landsat imagery. 

a. Which machine-learning classifier produces highest classification accuracy? 

b. How do different pre-processing methods contribute to classification accuracy? 

 

Objective 3: To determine the current and past geographic extents of different land covers in 

Zambia through OBIA classification and change analysis. 

a. What were the areas and geographic extents of different land covers for each of the 

six time steps since 1972? 

b. What are the dynamics of change for forests including primary, secondary and 

plantation forests? 

c. What is the pattern of forest connectivity from 1972 to 2016 for the three forest types? 

 

Objective 4: To determine the factors driving land cover change in Zambia. 

a. What are the factors associated with land cover change in Zambia for the long-term 

period (1972–2016)? 

b. What are the different factors affecting forest loss and recovery for the long-term 

period? 
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1.6 Thesis structure 

This thesis is presented in six chapters. Chapter 1 gives the general introduction for the study 

by describing the background, objectives and motivation for the study. Previous studies on 

developments in Landsat land cover classification methods are presented as a review in 

Chapter 2. Chapter 3 presents the analysis on the effects of pre-processing methods on Landsat 

land cover classification. Classification results, change detection and forest connectivity are 

presented in Chapter 4, while Chapter 5 focuses on the factors driving land cover change during 

the study period, 1972–2016. Finally, Chapter 6 summarises the main findings and suggests 

possible future research avenues.  
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Literature Review: Developments in Landsat 

Land Cover Classification Methods 

The contents of this chapter have been published as: 

Phiri, D., & Morgenroth, J. (2017). Developments in Landsat land cover classification methods: A review. Remote 

Sensing, 9(9), 967. doi: https://doi.org/10.3390/rs9090967  

2.1 Introduction 

The launch of the Earth Resource Technology Satellite (ERTS) 1, later called Landsat 1 in July 

1972, has contributed significantly to the development of remote sensing applications such as 

land cover classification (Haack, 1982; Masek et al., 2001). The main aim of the Landsat 

satellite programme has been to provide a tool for continuous monitoring of Earth’s resources 

(Haack, 1982; Masek et al., 2015; Wulder et al., 2016). With the Landsat programme running 

for over four decades now, different methods for classifying land cover have been developed, 

largely attributed to the improvements in Landsat images, advancement of computer 

technology, development of geographic information systems (GIS) and the Landsat free-access 

policy (Steiner, 1970; Thompson & Mikhail, 1976).  

Land cover classification using Landsat images has evolved over the last four decades. Land 

cover is the physical substance covering the Earth’s surface, for example, forests, water and 

grasslands (Campbell & Wynne, 2011). Thus, land cover classification involves the delineation 

of land cover types through different classification methods that have been developed in the 

field of remote sensing (Ahmad et al., 1992; Lu & Weng, 2007). The launch of new satellites 

with high spatial, spectral, temporal and radiometric resolution, and increasing knowledge in 

the field of information technology have been the major advancements in the development of  

contemporary land cover classification methods (Hansen & Loveland, 2012).  

Land cover classification methods using Landsat images originated from early aerial photo 

interpretation methods that were common in the 1950s and 1960s (Colwell, 1959; Reinhold & 

Wolff, 1970). During this period, classification of land cover was based on visible image 

properties such as texture, colour, shape and compactness (Gordon, 1980; Lo, 1977). The visual 

https://doi.org/10.3390/rs9090967
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image analysis was done on printed images, from which boundaries of different land cover 

types were delineated and represented with different symbols. 

Improvements in computer software and hardware have contributed significantly to the 

development of image interpretation methods through the development of pattern recognition 

techniques (Steiner, 1970). The introduction of numeric-based pattern recognition algorithms 

was a major breakthrough in land cover classification and it is the basis of modern classification 

methods (Steiner, 1970; Thompson & Mikhail, 1976). The last four decades have seen the 

development of land cover classification such as pixel-based, knowledge-based, object-based 

and many other classification algorithms highlighted in this review. Furthermore, the change 

in the Landsat data access policy from a commercial to a free-access approach in 2008 and the 

advent of high performance computing capabilities have led to wider applications of these 

remote sensing classification methods to Landsat images (Hansen & Thomas., 2012; Turner et 

al., 2015; Woodcock et al., 2008; Wulder et al., 2016).  

Since the launch of the first Landsat satellite, Landsat 1 in 1972, the Landsat programme has 

launched seven other satellites, six of which were successfully launched, with the objectives of 

maintaining continuity of the Earth’s monitoring mission and developing improvements to the 

sensors (Cihlar, 2000; Wulder et al., 2016; Zhu et al., 2016). The Landsat programme has 

provided four types of images (Table 2.1): Multispectral Scanner (MSS) by Landsat 1, 2 and 

3; Thematic Mappers (TM) by Landsat 4 and 5, which also provided MSS images; Enhanced 

Thematic Mappers (ETM+) by Landsat 7; and Observation Land Images (OLI) provided by 

Landsat 8 (Zhu et al., 2016). Landsat MSS, TM, ETM+ and OLI have all been used in land 

cover classification using different methods of land cover classification (Li et al., 2014; Lu & 

Weng, 2007). In order to maintain continuity in the provision of  Landsat data, Landsat 9 will 

be launched in 2023 with improved qualities (Wulder et al., 2016). 

Research on land cover classification methods based on Landsat images has been an important 

topic over the past four decades, especially with the current effects of climate change (Barbosa 

et al., 2014; Chambers et al., 2007; De Sy et al., 2012). While many review studies have 

covered topics related to Landsat and land cover classification (Hansen & Thomas., 2012; Li 

& Zang, 2014; Lu & Weng, 2007; Turner et al., 2015), there has been no review of the 

development of Landsat land cover classification methods. In this chapter, the major 

developments in land cover classification methods based on Landsat images are addressed by 

looking at: (1) the major trends in the development of classification methods; and (2) the 
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methods suitable for specific land cover types. The first part of this chapter (Section 2.2) 

presents the overview of the Landsat programme. Section 2.3 focuses on the actual 

classification methods, by reporting on the developments, accuracy, strengths and limitations 

of these methods. Finally, recommendations for optimal ways to use Landsat images in land 

cover classification are presented in Sections 2.4 to 2.6. 

2.2 Developments in Landsat data 

The Landsat programme has been providing images that have been applied in monitoring the 

surface of the Earth since 1972 (Turner et al., 2015). In January 2015, the Landsat archive held 

over 5 million unique images (Wulder et al., 2016). While other satellites have been launched 

to monitor the Earth’s surface in the last three decades, the Landsat programme is unique in 

the application of land cover classification because: (1) it is the longest running, uninterrupted 

Earth observation programme; and (2) its archives are the first to offer global images free of 

charge (Woodcock et al., 2008; Wulder et al., 2016). 

The long archive period of Landsat images offers researchers a chance to gain insights into past 

trends that are important when monitoring land cover changes (Turner et al., 2015; Wulder et 

al., 2016). Haack (1982) indicated that Landsat images have been used to solve problems of 

having inadequate information on the quality and quantity of resources, especially in 

developing countries. Furthermore, studies that cover larger areas can be more costly if 

commercial satellite images are used. However, the free access to Landsat images offers 

opportunities to researchers who cannot afford commercial satellite images because of the high 

prices (Mayes et al., 2015; Phiri et al., 2019a; Woodcock et al., 2008). This solves the problem 

of many resource-constrained researchers, as these images can be accessed free of charge.  

Landsat images have been constantly improving due to new generations of satellites being 

launched with new and improved sensors (Hansen & Thomas., 2012; Turner et al., 2015). The 

improvements are mainly defined by the richness in spectral, spatial, radiometric and temporal 

resolution (Zhu et al., 2016). Landsat MSS has a spatial resolution of 60 m while Landsat TM, 

ETM+ and OLI have spatial resolutions of 30 m. Additionally, Landsat ETM+ and OLI have 

a panchromatic band with a spatial resolution of 15 m, which can be used to improve the spatial 

resolution of other bands by using pansharpening, an image fusion technique (Wulder et al., 

2016). Landsat MSS images have a radiometric resolution of 6 bits, Landsat TM has 8 bits, 

Landsat ETM+ has 9 bits, and Landsat OLI has 12 bits (Chander et al., 2009; Pahlevan et al., 
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2014). With respect to spectral resolution, Landsat MSS has four bands, Landsat TM has seven 

bands and ETM+ has eight bands. However, the malfunction of the Scan Line Corrector (SLC) 

on the ETM+ sensor makes the application of ETM+ images limited (Wu et al., 2016; Zeng et 

al., 2013). The latest version of the Landsat images, the Landsat OLI, has 11 bands (Table 2.1).   

 Current research indicates that Landsat OLI images give good results in many applications, as 

they have good qualities (Poursanidis et al., 2015; Zhu et al., 2016). Choosing the appropriate 

Landsat images is important; however, researchers will be faced with a few limitations because 

of the uniqueness of sensors at a particular time, and data gaps in the Landsat archives (Wulder 

et al., 2016). The data gaps have greatly reduced because of the ongoing Landsat archive 

consolidation initiative, which started in 2010 (Irons et al., 2012; Wulder et al., 2016). 
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 Table 2.1: Summary of different types of Landsat images indicating spatial, temporal, radiometric and spectral resolution. 

Landsat 1–5 (MSS)3 Landsat 4–5 (TM) Landsat 7 (ETM+) Landsat 8 (OLI) 

1972–2013 1975–2013 1999 to present 2013  to present 

Temporal Radiometric Temporal Radiometric Temporal Radiometric Temporal Radiometric 

18 days 6 bits 16 days 8 bits 16 days 9 bits 16 days 12 bits 

Band name Spectral 

(μm) 
Spatial 

(m) 
Band name Spectral 

(μm) 
Spatial 

(m) 
Band name Spectral        

(μm) 
Spatial 

(m) 
Band name Spectral 

(μm) 
Spatial 

(m) 

Band 4–Green 0.5–0.6 60 Band 1–Blue 0.45–0.52 30 Band 1–Blue 0.45–0.52 30 Band 1–Ultra  0.43–0.45 30 

Band 5–Red 0.6–0.7 60 Band 2–Green 0.52–0.60 30 Band 2–Green 0.52–0.60 30 Band 2–Blue 0.45–0.51 30 

Band 6–NIR 0.7–0.8 60 Band 3–Red 0.63–0.69 30 Band 3–Red 0.63–0.69 30 Band 3–Green 0.53–0.59 30 

Band 7–NIR 0.8–1.10 60 Band 4–NIR 0.76–0.90 30 Band 4–NIR 0.77–0.90 30 Band 4–Red 0.64–0.67 30 

        Band 5–NIR 0.85–0.88 30 

  Band 5–SWIR1 1.55–1.75 30 Band 5–SWIR1 1.55–1.75 30 Band 6–SWIR1 1.57–1.65 30 

  Band 7–SWIR2 2.08–2.35 30 Band 7-SWIR2 2.09–2.35 30 Band 7–SWIR2 2.11–2.29 30 

     Band 8–Pan 0.52–0.90 15 Band 8–Pan 0.50–0.68 15 

        Band 9–Circus 1.36–1.38 30 

  Band 6–TIR 10.40–12.50 120  Band 61–TIR 10.40–12.50 60 Band 10–TIR 10.60–11.19 100 

    Band 62–TIR 10.40–12.50 60 Band 11–TIR 11.50–12.51 100 

Note: NIR is near infrared, SWIR is short-wave infrared, Pan is panchromatic, and TIR is thermal infrared.

                                                           
 

 

 

3 Landsat MSS were first collected by Landsat 1-3 between 1972-1983, while Landsat 4-5 operated between 1975 and 2013. The original pixel size for Landsat MSS was 79 x 

57 m; however, most literature reports the spatial resolution of 60 m because the data has been resampled to 60 m pixel size. 
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Landsat data is stored by a network of ground systems located in different countries through a 

community of international co-operators (ICs) and other stations owned by the United States 

Geological Survey (USGS) (Wulder et al., 2016). In the past, the ICs had a mandate of 

receiving and distributing the data to other users at a fee; however, an open-access policy was 

adopted in 2008 (Turner et al., 2015; Woodcock et al., 2008). Over the years, the ICs around 

the world collectively accumulated more data than the USGS archives. This means that the 

Landsat images held by USGS were limited compared with collective images held by ICs 

around the world. In 2008, the USGS recognised the need for consolidating their Landsat 

database through a Landsat Global Archive Consolidation (LGAC) initiative  and this 

programme, which started in 2010, was initially planned for six years; however, the programme 

is still ongoing (Wulder et al., 2016). By 2016, more than 2.3 million4 unique images had been 

identified and were yet to be added to the USGS archives (Wulder et al., 2016). The 

consolidation programme aimed at minimising the data gaps and securing the global dataset by 

creating a database in a common format. The number of unique images available on the USGS 

Earth Explorer is a testament to the success of the  LGAC programme (Irons et al., 2012). At 

the end of 2016, more than 57% of the images held by USGS were from this initiative; the 

USGS still is not a one-stop shop and there are no indications as to when this may happen 

because the consolidation programme is ongoing. Furthermore, the USGS will still have small 

data gaps due to the challenges in converting the data collected from some of the ICs because 

they are in unknown formats and not in good condition (Wulder et al., 2016). 

2.3 Landsat land cover classification methods 

2.3.1 Early Landsat land cover classification: visual approach 

The early Landsat land cover classification methods were similar to those used in  conventional 

aerial photo interpretations in the 1950s and 1960s (Lo, 1977; Spurr, 1952). Generally, Landsat 

images were used in the same way as aerial photographs, which were rich sources of 

                                                           
 

 

 

4 The total number of Landsat images held by USGS archives before the consolidation process was reported to 

be over 5 million in 2015. The consolidation process identified additional 2.5 million images around the world 

to fill the data gaps. 
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information for spatially characterising landscapes on cartographic maps with different scales 

(Colwell, 1959; Shlien & Smith, 1975). In the early 1970s, Landsat land cover classification 

was visual and manual. This was done through the examination of printed aerial images 

(Campbell & Wynne, 2011). Haack (1982) mentioned that the images were in print format and 

were obtained as black and white composites or showing individual bands.  

Early land cover classification with Landsat images involved delineating land cover classes in 

a systematic way by marking boundaries of land cover types by using transparent surfaces. In 

the final stage of classification, the land cover types were marked with specific symbols to 

differentiate land cover types (Reinhold & Wolff, 1970; Venkataratnam, 1980). In visual 

classification, the delineation of land cover was based on the differences in colours, shapes, 

sizes and patterns (Campbell & Wynne, 2011; Reinhold & Wolff, 1970). Calculations of land 

cover extents were based on derived scales of the relationship of image distance and actual 

distance on the ground (Galmier & Lacot, 1970; Rao, 1978).  

2.3.2 Landsat land cover classification using digital format 

2.3.2.1 Digital numbers 

The advancement in digital land cover classification is based on the numerical manipulation of 

digital number (DN) or brightness values (BV) of remote sensing images (Figure 2.1). Digital 

images are composed of picture elements called pixels located at the intersection of each row 

and column of an image (Reinhold & Wolff, 1970). The lower the DN values, the lower the 

radiance being represented in that pixel (Figure 2.1). The changes in radiance values in the 

pixels represent the variation of the land cover surfaces. The DN values are presented in pixels 

of single images; however, Landsat images are presented as multispectral images in which the 

same scene is recorded simultaneously in several bands of the electromagnetic spectrum 

(Schowengerdt, 2012). 
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Figure 2.1: An example of a remote sensing image showing pixels and digital numbers; the arrow shows 

the progression in the level of detail of information that can be extracted from the images. 

Digital image processing involves the mathematical transformation of digital values to form 

useful information relating to land cover types. Image processing generally involves three 

major stages: (1) pre-processing, (2) image enhancement, and (3) classification. In 

pre-processing, the DN values are calibrated to rectify distortion and remove noise by 

conducting atmospheric and topographic correction (Schowengerdt, 2012; Song et al., 2001). 

The DN values are processed into radiance values that correspond to top of atmosphere 

reflectance and ground reflectance through different methods, as explained in Song et al. 

(2001). After pre-processing, image enhancement is done to improve the quality and visual 

appearance of the image; however, this step is not so important and can be omitted. 

Classification involves mathematical grouping of pixel values (pre-processed DN) into themes 

that correspond to particular land cover types on the Earth’s surface (Schowengerdt, 2012; 

Venkataratnam, 1980). 
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2.3.2.2 Early Landsat digital land covers classification principles 

The Landsat programme contributed to the rapid and broad usage of digital analysis of satellite 

images for Earth observations because they were the only available satellite images in the early 

1970s (Steiner, 1970). In the late 1970s, digital image analysis by computers was carried out 

only in specialised research institutions; personal computers and many remote sensing software 

packages that are now available did not exist (Reinhold & Wolff, 1970; Thompson & Mikhail, 

1976). The development of remote sensing technology advanced in line with the development 

of GIS, which provided the platform for bringing remote sensing data and other geospatial 

information into a common framework (Steiner, 1970; Thompson & Mikhail, 1976).  

Early automatic methods of image processing can be classified as spatial filtering techniques 

or numerical classification methods (Steiner, 1970). The spatial filtering methods deal with 

transformation of images into more useful forms and involves processes such as smoothing, 

sharpening and feature extraction (Steiner, 1970). The numerical classification approach is one 

of the most important developments in pattern recognition and is the foundation of modern 

land cover classification methods (Reinhold & Wolff, 1970; Webster & Wong, 1969). 

Generally, pattern recognition employs similarities between objects in the classification of land 

covers (Thompson & Mikhail, 1976). Modern classification methods were developed from the 

early pattern recognition techniques and are implemented on computer-automated programs 

through machine-learning and artificial intelligence theories.  

The most common types of similarities used in pattern recognition are based on correlation and 

Euclidean distance between objects (Thompson & Mikhail, 1976). In classification, these 

techniques may be used as a single technique; however, Steiner (1970) reported that a 

combination of the two techniques produces superior results. Other important aspects of pattern 

recognition used in classification are discrimination and grouping techniques. Discrimination 

techniques are useful in establishing boundaries between patterns that have been recognised 

and are based on similar properties (Steiner, 1970; Thompson & Mikhail, 1976). These 

methods employ linear or non-linear transformation methods, depending on the normal 

distribution of the data involved. Steiner (1970) reported that non-linear discrimination 

methods produce results that are more accurate than linear methods. Grouping techniques are 

more useful in establishing groups of homogeneous characteristics. Generally, the major 

concern in pattern recognition is to optimise the discrimination and grouping of classes 

(Steiner, 1970). 
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2.3.3 Developments of computer-based land cover classification methods 

Modern methods of land cover classification, called classifiers, developed from numeric 

approaches to pattern recognition and now run as computer programs (Steiner, 1970). The 

classifiers are commonly grouped into parametric or non-parametric classifiers. Parametric 

classifiers are related to probability theories, because their classification principles are based 

on the normal distribution of image values (Kirchhof et al., 1980; Lu & Weng, 2007). Examples 

of parametric classifiers are maximum likelihood, minimum distance and Bayesian classifiers 

(Hardin, 2000). The early developments of computer programs for land cover classification 

were mainly based on a parametric approach, as they grouped pixel values based on a 

probability distribution. On the other hand, non-parametric approaches such as k-nearest 

neighbour (k-NN) are independent of the distribution of the image values and hence are based 

on deterministic theories (Reinhold & Wolff, 1970; Thompson & Mikhail, 1976). The 

advancement in pattern recognition techniques through artificial intelligence and machine-

learning approaches contributed significantly to the development of advanced non-parametric 

classifiers such as support vector machines (SVMs), artificial neural networks (ANNs) and 

decision trees (Huang et al., 2002). 

To date, a number of different classification methods have been developed, especially with 

increasing knowledge in the fields of computer science and GIS (Thompson & Mikhail, 1976). 

The first methods of Landsat land cover classification were developed at pixel level (Figure 

2.2) and hence are called pixel-based classifications (Kirchhof et al., 1980; Shlien & Smith, 

1975). The pixel-based approach is commonly divided into supervised and unsupervised 

classification methods. Classification methods based on subpixel levels were later developed 

in the 1980s to address some of the weaknesses of pixel-based classification, such as separation 

of land covers in mixed pixels (Fisher & Pathirana, 1990). 

In the late 1990s, object-based analysis (OBIA) was developed, with an approach of classifying 

images based on grouping pixels rather than operating at an individual pixel (Lu & Weng, 

2007; Newman et al., 2011; Zhou et al., 2008).  While pixel and subpixel-based approaches 

were commonly developed and applied on Landsat images, OBIA classification was developed 

at a time when finer resolution images were available. Therefore, this method has been 

commonly applied on finer resolution imagery than Landsat images (Li et al., 2014; Lu & 

Weng, 2007).  
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Figure 2.2: The eight Landsat satellites launched from 1972 to date and corresponding developments of land cover classification methods. The satellite operation 

periods highlighted in blue indicate operation without interruption, while red indicates failure in launching and orange indicates malfunction. Arrows attached 

to classification methods are indicative of timing only. 
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2.3.4 Pixel-based classification 

The first automated land cover classification methods were developed in the early 1970s on 

Landsat MSS and were pixel-based (Campbell & Wynne, 2011; Hussain et al., 2013). Pixel-

based classification is the process of assigning each pixel to a class by treating each pixel as an 

individual unit (Newman et al., 2011). Pixels within a class are more spectrally similar to one 

another than they are to pixels in other classes.  

2.3.4.1 Supervised and unsupervised classification 

Pixel-based classification methods are generally grouped as supervised or unsupervised 

classification. The major difference between these methods is that training of the images is 

involved in supervised classification while no training is done for unsupervised classification 

(Li & Zang, 2014; Sahai et al., 1989). Data training is the process of selecting a sample of 

pixels from the image and using it to establish thresholds to delineate specific land covers on 

the ground. A representative set of pixel values for each class is key for the implementation of 

a supervised classification.  Unsupervised classification methods do not require prior 

knowledge of land cover types before classification, and the interpreter is responsible for 

assigning a class to each cluster of pixels (Thompson & Mikhail, 1976). Under unsupervised 

classification, clustering algorithms are used to define and group pixels of similar classes based 

on spectral values.  

Both supervised and unsupervised classification methods were developed in the early 1970s 

when Landsat MSS images were the only available satellite images (Figure 2.2). Unsupervised 

classification was developed first through different clustering methods such as K-means and 

interactive self-organisation data analysis (ISODATA) (Campbell & Wynne, 2011; Duda et 

al., 2000). The most common classifiers under supervised classification are maximum 

likelihood, minimum distance and artificial neural network (ANN) (Li & Zang, 2014; Miller 

& Shasby, 1982; Ritter & Hepner, 1990). Townshend and Justice (1980) highlighted that it is 

difficult to completely separate supervised and unsupervised classification because of their 

similarities in the operation. Furthermore, methods called bagging, boosting or hybrid, which 

combine both approaches, have been developed to improved pixel-based classification (Li & 

Zang, 2014; Lu & Weng, 2007; Lunetta et al., 2002). The last decade has seen the development 

of these hybrid classification methods in order to complement the strength of different 

classification methods (Campbell & Wynne, 2011). 
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2.3.4.2 Parametric and non-parametric classifiers 

Most of the classifiers under pixel-based classification are grouped into two groups: parametric 

and non-parametric classifiers (Campbell & Wynne, 2011; Steiner, 1970). Parametric 

classifiers assume that the data is representative and normally distributed. Although parametric 

classifiers such as maximum likelihood have proved to be useful, these classifiers have two 

major drawbacks in land cover classification: (1) data of high heterogeneous land covers are 

usually not normally distributed; and (2) a lot of uncertainty is associated with distribution of 

land cover surfaces whose descriptions cannot be based on data distribution (Lu & Weng, 

2007).  

Non-parametric classifiers such as SVM and ANN have proved to be more useful because they 

do not base classification on a normality assumption or statistical parameters (Rodriguez-

Galiano et al., 2012). Lu and Weng (2007) explained that non-parametric classifiers are suitable 

when using non-spectral data in classification and that these classifiers provide better results 

than parametric classifiers in complex landscapes.  

2.3.4.3 Contextual-based approach 

The principles of contextual-based classification are based on information that is derived from 

spatial and spectral relationships among pixels within a given image.  Contextual-based 

classifiers were developed in the 1980s to deal with the problems of interclass spectral variation 

(Swain et al., 1981; Tilton & Swain, 1981). This approach has been applied to both classified 

and unclassified pixels, for example, Magnussen et al. (2004) applied contextual classification 

to classify forest cover and compared different contextual classifiers with maximum likelihood. 

Contextual-based approaches usually operate on a preliminary classification to reassign pixels 

to appropriate classes according to contextual information such as the position of the classified 

pixels in relation to other pixels and spatial data (Campbell & Wynne, 2011).  

Contextual-based classifiers simulate higher order processes used by human interpreters in 

order to derive the position of neighbouring objects based on the relationship of pixels (Swain 

et al., 1981; Tilton & Swain, 1981). A common contextual classifier is the Markov random 

field based classifier. Li and Zang (2014), in a detailed review of spatial-contextual 

classification for land cover classification, grouped the classifiers into texture extraction, 

Markov random fields and image segmentation methods. Generally, contextual classification 

methods are commonly used as a post-classification smoothing technique on already classified 
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images, and hence they are important for reclassifying misclassified pixels (Campbell & 

Wynne, 2011; Lu & Weng, 2007). 

2.3.4.4 Multiple (hybrid) classifier approaches 

It is difficult to choose the best classification method because each classification method has 

its own strengths and limitations. For example, supervised methods such as maximum 

likelihood will perform better with sufficient training points and normally distributed image 

values (Lu & Weng, 2007). However, such methods do not give reliable results in complex 

landscapes, and hence the need for other complementary methods through hybrid approaches. 

Early hybrid methods were developed using Landsat images and became common in the 1980s 

just after the development of supervised and unsupervised classification. However, the 

development of more advanced classifiers in the last decade has made the hybrid approach 

more diverse and powerful (Liu et al., 2004; Simpson et al., 2000). In most cases, the results 

from hybrid approaches depend on several factors such as quality of pre-processing, experience 

of the analyst and performance of the classifiers.  

Improved classification results may be obtained, depending on the combination of different 

classification methods (Lu & Weng, 2007). Recent studies have shown that the integration of 

different approaches or classifiers can improve the quality and accuracy of a Landsat land cover 

classification (Campbell & Wynne, 2011; Li & Zang, 2014). For example, maximum 

likelihood and ANN were combined to improve land cover classification using Landsat TM; 

the results had a higher accuracy than by using individual methods (Warrender & Augusteijn, 

1999). 

2.3.5 Subpixel image classification 

Subpixel-based classification was developed because most landscapes are made of different 

land cover types, which might not be easily separated during classification by ordinary 

pixel-based classification (Binaghi et al., 1999; Foody & Cox, 1994; Youngentob et al., 2011). 

In pixel-based classification, it is assumed that a pixel is made up of one homogenous land 

cover type; however, many pixels record more than one land cover type (Somers et al., 2011; 

Wang et al., 2016; Youngentob et al., 2011). Considering Landsat’s ground resolution of 

between 60 m and 30 m, a number of land cover classes can constitute a single pixel. The 

challenges of multiple land cover types in one pixel are common in Landsat images and can be 

minimised by using subpixel methods (Fisher & Pathirana, 1990; Mota et al., 2007). Subpixel 
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classification approaches were developed in the 1980s based on fuzzy-set theory, Dempster–

Shafer theory and certainty factor theory (Campbell & Wynne, 2011; Li & Zang, 2014; Wang, 

1990). The most common methods of subpixel classification are fuzzy-set techniques and 

spectral mixture analysis (SMA) (Li & Zang, 2014; Lu & Weng, 2007). 

2.3.5.1 Fuzzy approach 

In order to improve the classification accuracy of traditional classification, methods such as 

maximum likelihood classification and fuzzy classification methods based on a fuzzy-set 

technique were developed (Fisher & Pathirana, 1990; Wang, 1990; Zhang & Foody, 1998). 

The early developments and application of subpixel methods with Landsat images has been 

reported in Wang (1990), Fisher and Pathirana (1990) and Melgani et al. (2000). In fuzzy-set 

techniques, each pixel receives a partial membership of all possible classes, thus the extent of 

each class within each pixel can be estimated (Fisher & Pathirana, 1990).  

When using this method, each land cover is assigned a fuzzy membership depending on its 

proportion in each pixel. The proportions are in the form of ratios, percentages or probabilities, 

which are converted to actual areas on the ground. Zhang and Foody (1998) reported high 

classification accuracies of up to 93% when a fuzzy classification method was used, compared 

with the maximum likelihood pixel-based method with 61%. Fuzzy classification has proved 

important for solving mixed pixel problems; however, it has not been commonly applied in 

practical terms because it is not as easy to use as other classification methods (Ahmed et al., 

2002; Mota et al., 2007). 

2.3.5.2 Spectral mixture analysis (SMA)  

Spectral mixture analysis (SMA) has been recognised as the most effective method for dealing 

with subpixel methods, especially for medium-resolution imagery like Landsat (Peterson & 

Stow, 2003; Somers et al., 2011). This method was developed in the early 1980s (Figure 2.2) 

and has been applied extensively on Landsat land cover classification (Somers et al., 2011; 

Wang et al., 2016; Youngentob et al., 2011).  The output of SMA is represented as a fraction 

of each land cover type, called endmembers (Dawelbait & Morari, 2012). For example, Mayes 

et al. (2015) applied SMA in establishing the extent of dry tropical forests in Tanzania by 

establishing the fraction of forest and non-forest endmembers. Most studies have indicated that 

SMA is important in improving area estimation of land cover types (Adams et al., 1995; Mayes 

et al., 2015; Roberts et al., 1998).  
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SMA and  subpixel-based classification in general are important for effective classification of 

Landsat images, as they are of medium resolution and are usually used for large areas that have 

heterogeneous land cover types and are likely to have mixed pixels (Adams et al., 1995; Lu & 

Weng, 2007; Somers et al., 2011). The common forms of SMA are linear spectral mixture 

analysis (LSMA) and multiple endmember spectral mixture analysis (MESMA). LSMA is 

designed to work with a fixed number of endmembers, while MESMA can be used on pixels 

with different numbers of endmembers (Mayes et al., 2015; Powell et al., 2007). The major 

challenge for SMA is the errors in the final allocation of fractional endmembers resulting from 

spectral variability and similarity during the selection of endmembers (Somers et al., 2011; 

Wang et al., 2016). 

2.3.6 Object-based approach  

The initial developments of object-based classification approaches were done on Landsat MSS 

images in the 1970s (Figure 2) by Kettig and Landgrebe (1976). The application was known 

as extraction and classification of homogeneous objects (ECHO). Object-based theories and 

concepts improved in the 1990s and were commonly applied as a segmentation procedure; 

however, the application of these concepts faced the challenge of not having a user-friendly 

interface (Campbell & Wynne, 2011; Flanders et al., 2003). A German company called 

Definiens developed Cognition Network Technology (CNT) through Nobel laureate Professor 

Gerd Binnig and team; CNT was later launched as eCognition in May 2000 (Campbell & 

Wynne, 2011; Trimble, 2010). The eCognition software provides a systematic approach and 

user-friendly interface that permits implementation of concepts developed in the past 

(Campbell & Wynne, 2011; Flanders et al., 2003; Hussain et al., 2013). The early evaluation 

of OBIA land cover classification in eCognition  on Landsat ETM+ showed high classification 

accuracy when it was compared with pixel-based maximum likelihood (Böhner et al., 2006; 

Flanders et al., 2003). In June 2010, Definiens sold its earth science market assets, including 

eCognition software and the patent licence for CNT to Trimble Navigation Ltd (Trimble, 

2010).  Trimble Navigation Ltd now provides eCognition software that has continued to 

develop into a robust object-based remote sensing application (Li & Zang, 2014).  

Object-based methods are commonly applied to images with high spatial resolution such as 

IKONOS, GeoEye, QuickBird and SPOT; however, this method has also been applied in land 

cover classification using medium-resolution Landsat images (Li & Zang, 2014; Li et al., 2015; 

Samal & Gedam, 2015). For example, object-based classification was used on Landsat MSS, 
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TM and ETM+ for land cover classification in Ethiopia and on urban sprawl in Eritrea (Kindu 

et al., 2013; Tewolde & Cabral, 2011). Dorren et al. (2003)  applied OBIA to Landsat TM 

images to classify vegetation on rugged terrain in the Montafon region of Austria. OBIA has 

also been applied on Landsat MSS, TM, and ETM+ to classify land cover by using new 

machine-learning techniques such as random forests (RF), k-nearest neighbours (k-NN) and 

support vector machine (SVM) (Li et al., 2014; Wieland & Pittore, 2014). The new Landsat 

images, Landsat OLI,  produced good results when used with OBIA to map different land cover 

types such as urban areas (Poursanidis et al., 2015) and agricultural areas (Gilbertson et al., 

2017). While object-based land cover classification is applied on different Landsat images 

(Araya & Cabral, 2010; Li et al., 2015; Vittek et al., 2014), not much has been reported on the 

performance of OBIA on the earlier version of Landsat images (Landsat MSS), perhaps 

because of their lower spatial resolution, or the availability of newer imagery (Budreski et al., 

2007; Vittek et al., 2014).  

The success of eCognition (Trimble Navigation Ltd, Sunnyvale, California) (Flanders et al., 

2003) triggered the development of other commercial object-based image analysis software 

such as Feature Analyst (Textron Systems, Providence, Rhode Island), ENVI Feature 

Extraction (HARRIS®, Melbourne, Florida) and ERDAS Imagine (Hexagon Geospatial, 

Madison, Alabama). Open-source software, such as SAGA (SAGA User Group)(Böhner et al., 

2006) and GRASS (GRASS Development Team), is also available for OBIA land cover 

classification (Blaschke, 2010). When using OBIA, analysts are faced with a challenge of 

choosing the most appropriate software to use. OBIA software differs mainly in the way 

segmentation is done; for example, eCognition and ENVI Feature Extraction segment the 

whole image while Feature Analyst extracts target features without segmenting the entire 

image. Unlike other software that stands alone, Feature Analyst is implemented as an extension 

in ArcGIS and ERDAS Imagine, and as such, it must have host software (Riggan & Weih, 

2009). 

There have been few formal studies comparing the performance of different OBIA software. 

Tsai et al. (2011) compared Feature Analyst, which is based on spatial-contextual 

machine-learning classification with object-based Feature Extraction in ENVI. Both software 

packages were used to delineate buildings in QuickBird imagery. Feature Analyst performed 

better than ENVI Feature Extraction, though the authors did not speculate about the reasons 

for this result. Meinel and Neubert (2004) compared seven software packages for segmenting 
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IKONOS imagery. They found that eCognition segmentation was better than the alternatives,  

including ERDAS Imagine, for a variety of reasons, including  having different segmentation 

algorithms and classifiers (Flanders et al., 2003; Meinel & Neubert, 2004). Open access OBIA 

have continuity to be useful tools for land cover classification, especially considering that the 

licence fees for commercial software are high (Blaschke, 2010; Böhner et al., 2006). Few 

studies exist that compare the performance of different OBIA software for land cover 

classification for medium-resolution imagery (e.g. Landsat). For example,  Landsat ETM+ was 

used to compared the performance of SAGA with eCognition, and the results were promising 

(Böhner et al., 2006). Most studies on OBIA software addressed the development and 

performance  rather than the comparison of different software packages (Blundell & Opitz, 

2006; Opitz & Blundell, 2008). 

2.3.6.1 Advantages and strengths of OBIA land cover classification of Landsat  

Unlike pixel-based and subpixel-based classifications, object-based image classification uses 

geographic objects as the basic unit of classification (Dorren et al., 2003; Peña et al., 2014). 

This approach has advantages over traditional pixel-based approaches, because the approach 

reduces the within-class variation and generally removes the salt-and-pepper noise effects 

(Araya & Cabral, 2010; Kelly et al., 2011; Li & Zang, 2014; Lu & Weng, 2007). The 

salt-and-pepper effects result from isolated pixels that remain after misclassification (Araya & 

Cabral, 2010; Kelly et al., 2011). Additionally, object-based image classification has an 

advantage, because it incorporates various sources of information such as texture, shape and 

position as the basis for classification (Hussain et al., 2013; Li & Zang, 2014; Moskal et al., 

2011). This approach has two main components: (1) segmentation, where the image is divided 

into objects based on their spatial, spectral, textural and contextual similarities; and (2) 

classification of the segmented objects (Huth et al., 2012; Lu & Weng, 2007; Rasuly et al., 

2010). OBIA has been reported to produce high classification accuracy in many studies on 

Landsat images when compared with pixel-based classification (Frohn et al., 2011; Huth et al., 

2012; Li et al., 2014; Peña et al., 2014). 

OBIA land cover classification has become more efficient with the incorporation of 

machine-learning classification techniques in software such as eCognition (Wieland & Pittore, 

2014). Land cover classification using OBIA and Landsat images is enhanced by using 

machine-learning techniques such as RF, CART, k-NN and SVM (Dronova et al., 2012; 

Wieland & Pittore, 2014). For example, Li et al. (2014) reported that machine-learning 
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techniques such as SVM and RF improved classification accuracy on Landsat TM images in 

urban areas. The performances of different machine-learning classification techniques and rule-

based classification were compared on classifications of wetland areas with Landsat TM 

(Dronova et al., 2012). The results showed that SVM produced high classification accuracy. 

2.3.6.2 Limitations for object-based land cover classification of Landsat imagery 

The superior performance and strengths of OBIA are well documented for fine spatial 

resolution images compared to Landsat images (Blaschke, 2010; Liu & Xia, 2010; Myint et al., 

2011). The major challenge of OBIA land cover classification when using Landsat images is 

the low spatial resolution of Landsat images (Darwish et al., 2003). The extraction of small 

land cover types requires high levels of spatial details, which are limited on Landsat images, 

considering the 60 m and 30 m spatial resolutions. Darwish et al. (2003) compared the 

classification accuracy of Landsat TM with Resourcesat-1 (IRS) images that have a 20 m 

spatial resolution. The results showed that the accuracy of small land cover types such as 

building, orchards and small water bodies was low for Landsat images, mainly because of the 

low spatial resolution. Similar results were obtained in Ethiopia when OBIA was used in land 

cover classification with Landsat MSS (60 m resolution), Landsat ETM+ (30 m resolution) and 

RapidEye images (5 m resolution) in which the accuracy increased from 85.7%, 90.7% and 

93.2% for Landsat MSS, Landsat ETM+ and RapidEye respectively (Kindu et al., 2013). In 

these studies, large land cover types such as agricultural fields and forests retained high 

classification accuracy unlike small land cover types. The problem of classification errors due 

to low spatial resolution of Landsat images can be reduced by using the 15 m spatial resolution 

panchromatic band to improve the spatial resolution of the 30 m Landsat ETM+ and OLI 

multispectral bands (Gilbertson et al., 2017). 

OBIA land cover classification using Landsat images also faces a challenge of selecting the 

optimal segmentation scale (Dronova et al., 2012; Möller et al., 2007). When the segmentation 

scale is not appropriate, the image can be under- or over-segmented (Frohn et al., 2011). Under-

segmentation means that the image objects are larger than the objects on the ground, while 

over-segmentation results in more subdivision. Under-segmentation affects classification 

accuracy by increasing the chances that two or more land covers will be included in one large 

image object, thus resulting in errors of commission. Dronova et al. (2012) tested segmentation 

scales ranging from 1 to 10 when classifying wetland areas using Landsat TM and reported 

that the highest classification accuracy occurred at a segmentation scale of 8, which created 
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coarse objects. Likewise, over-segmenting an image can result in a real-world object being split 

into two or more objects of differing classes, especially with low spatial resolution images such 

as Landsat images (Dorren et al., 2003; Frohn et al., 2011).  

Although different formal approaches, such as using an estimation of scale parameter (ESP) 

tool (Drǎguţ et al., 2010) and a segmentation index (Möller et al., 2007), have been developed 

to address the challenges of establishing the optimal segmentation scale, trial-and-error still 

remains the most common approach of selecting the optimal segmentation scale, and hence 

segmentation scale remains an important issue in Landsat land cover classification when using 

OBIA (Frohn et al., 2011; Möller et al., 2007). The general practice in selecting the appropriate 

segmentation scale for Landsat images is that a range of segmentation values are selected and 

the image is segmented repeatedly while inspecting the image visually (Möller et al., 2007). 

The appropriate segmentation scale occurs at a point when the segmented objects are large and 

match target objects on the ground; thus this approach is subjective (Dorren et al., 2003; Möller 

et al., 2007).  Kindu et al. (2013) reported that the scale (Sc) parameter increases with an 

increase in spatial resolution; for example, the scale parameter used was 5 for Landsat MSS, 8 

for Landsat ETM+ and 50 for RapidEye. Based on  available studies on Landsat classification 

with OBIA, the range for the scale (Sc) parameter for Landsat MSS is 5–10, for Landsat TM, 

ETM+ and OLI the range is  5–20, and for pansharpened ETM+ and OLI it is 20–50 (Dorren 

et al., 2003; Frohn et al., 2011; Gilbertson et al., 2017; Möller et al., 2007; Tewolde & Cabral, 

2011). For all the images, the other parameter, shape (Sh) and compaction (Cm), were reported 

to be 0.1–0.5 and 0.5–0.8, respectively (Kindu et al., 2013; Tewolde & Cabral, 2011). 

 Another potential drawback of OBIA, which also applies to Landsat images, is related 

workflows, which involve many steps and can be a source of variation, uncertainty and error 

(Flanders et al., 2003). These steps, such as selecting a segmentation scale, choosing a 

segmentation method, sample selection, training, developing rulesets and choosing classifiers 

when using automated classifiers, can make comparing results between studies difficult 

(Dronova et al., 2012; Vittek et al., 2014; Wieland & Pittore, 2014). However, in the last 

decade, OBIA has become more common than pixel- and subpixel-based classification 

methods, as indicated by the continuous increase of published studies on OBIA (Figure 2.3).                 
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Figure 2.3. The number of published articles on pixel-, subpixel- and object-based Landsat land cover 

classification methods from Google Scholar between 1972 and 2017. 

2.3.6.3 Knowledge-based approaches  

Knowledge-based land cover classification uses existing auxiliary data as a means of 

developing rules for classification. Tailor et al. (1986) reported the development and 

application of knowledge-based imaged land cover classification with Landsat MSS in the 

early 1980s (Figure 2.2). The advancement in the development of knowledge-based image 

classification can be attributed to the availability of geospatial information and the 

development of GIS, which is used for combined analysis of different spatial information (Lu 

& Weng, 2007). Common auxiliary data used include digital elevation models (DEMs), 

existing maps, population densities and climatic data (Sikder, 2009). 

Knowledge-based methods relate land cover types to auxiliary data; for example, vegetation 

can be related to slope, elevation or aspect. The procedure for this method involves developing 

rule sets that have binding thresholds in relation to particular land cover types (Lu & Weng, 

2007; Tailor et al., 1986; Wang & Newkirk, 1988). The development of knowledge-based 

image classification is closely associated with image segmentation, as the clusters depend on 

rule sets developed from datasets other  than spectral information (Lu & Weng, 2007; Tailor et 

0

1000

2000

3000

4000

5000

6000

7000

1972 1977 1982 1987 1992 1997 2002 2007 2012 2017

N
u

m
b

er
 o

f 
p

u
b

li
sh

ed
 a

rt
ic

le
s

Time in five years interval 

Pixel-based

Subpixel-based

Object-based



 

33 
 

al., 1986). Different knowledge-based classifiers have been developed, such as decision trees 

that use thresholds from auxiliary data to delineate land cover types (Lu & Weng, 2007). 

2.4 Landsat image fusions in land cover classification 

One major advancement in the application of Landsat images in land cover classification is the 

integration of other images with Landsat images through image fusion techniques 

(Ghassemian, 2016). The development of effective fusion algorithms coupled with the advent 

of new remote sensing data, such as that from the advanced very high resolution radiometer 

(AVHRR) and moderate resolution imaging spectroradiometer (MODIS), has made Landsat 

images more useful in land cover classification (Ehlers, 1991; Ghassemian, 2016). For 

example, Landsat and MODIS were used to develop improved images for land cover 

classification in China and Southwest City, Missouri, Unites States of America (USA) (Li et 

al., 2015; Wu et al., 2016). AVHRR and MODIS have low spatial resolution ranging from 0.25 

km to 8 km (Cihlar, 2000; Hansen et al., 2000; Li et al., 2015); however, these images have the 

advantage of a high temporal resolution of one day (Ehlers, 1991; Otukei et al., 2015).  On the 

other hand, Landsat images have a higher spatial resolution than MODIS and AVHRR. 

However, the temporal resolutions of 18 or 16 days for Landsat images are not ideal for 

monitoring rapid land cover changes such as fire incidences. Therefore, complementing 

Landsat with MODIS or AVHRR, which has a high temporal resolution of one day, has the 

potential to take advantage of the best qualities of each type of imagery (Carrão et al., 2008; 

Wu et al., 2016).  

During the past two decades, Landsat images have also been integrated with different data such 

as panchromatic images, radio detection and ranging (radar), light detection and ranging 

(LiDAR) and high-resolution images (Ghassemian, 2016). The spatial resolution of Landsat 

ETM+ and OLI images can be improved from 30 m to 15 m using panchromatic sharpening 

(pansharpening), and this technique has been shown to improve classification accuracy 

(Gilbertson et al., 2017). Landsat ETM+ images were integrated with synthetic aperture radar 

(SAR) in monitoring protected areas in Uganda (Otukei et al., 2015). Fusion of multispectral 

images such as Landsat ETM+ and SAR has two major advantages: (1) enhancement of 

spectral information, and (2) reduction  of cloud cover problems, because SAR is less affected 

by cloud cover (Hyde et al., 2006). LiDAR has also been integrated with Landsat ETM+ images 

in order to improve mapping of vertical and longitudinal characteristics of different land cover 

types (Hudak et al., 2002; Xu et al., 2015). Generally, when correct algorithms are applied 
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during image fusion of Landsat images with other remote sensing data, improvements are 

expected on the results of land cover classification (Hilker et al., 2009; Otukei et al., 2015; Pohl 

& Van Genderen, 1998).  

2.5 Comparative performance of different Landsat images in land cover 

classification 

Over the last four decades, four types of Landsat images, Land MSS, TM, ETM+ and OLI, 

have been used in different land cover classification applications. A number of studies have 

reported different results on the comparison of these images in land cover classification. For 

example, Toll (1985) compared the performance of Landsat MSS to Landsat TM images in 

land cover classification and reported that Landsat TM images are superior to Landsat MSS 

images. The major reason for the superior performance of Landsat TM images was attributed 

to its higher spatial resolution, the addition of more spectral bands and the increase of 

radiometric resolution from 6-bit for Landsat MSS images to 8-bit for Landsat TM images 

(Toll, 1985; Wulder et al., 2016) . In a separate study on the performance of Landsat MSS and 

TM by Haack et al. (1987) it was reported that Landsat TM images were more useful in 

separating more homogenous near-urban land cover types than heterogeneous urban areas. 

Most research has indicated the superior performance of Landsat TM over Landsat MSS 

(Haack et al., 1987; Toll, 1985) with a difference in accuracy of between 5% and 7% (Mulligan 

et al., 1985). 

Landsat ETM+ as a sensor has improvements over the previous version of Landsat images 

(Landsat MSS and TM) because of the higher geodetic accuracy, high radiometric resolution 

(9-bit) and reduced periodic sensor noise (Masek et al., 2001). In addition, the introduction of 

a 15-m resolution panchromatic band was a major improvement to the ETM+, especially in the 

application of land cover classification (Wulder et al., 2016). The comparisons of ETM+ with 

MSS and TM in land cover classification indicate that the performance of ETM+ is superior to 

the earlier versions of Landsat images (Zhu et al., 2016). Masek et al. (2001) reported that the 

superior performance of ETM+ in land cover classification  indicates a major improvement of 

the sensor based on higher geodetic accuracy and reduced noise levels (Poursanidis et al., 2015; 

Zhu et al., 2016). 

The launch of Landsat OLI, which produces Landsat OLI images, has proved to be a good 

alternative to the malfunctioning ETM+ line scanner. Recent studies indicated that Landsat 
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OLI performed better than Landsat TM and ETM+ images (Poursanidis et al., 2015; Zhu et al., 

2016). The performances of Landsat ETM+ and OLI were compared with Landsat TM by using 

different classification methods such as OBIA, SVM and maximum likelihood methods; the 

results indicated that the performance of all the images largely depended on the methods of 

classification (Heumann, 2011; Poursanidis et al., 2015). Here, OBIA performed better with 

Landsat OLI, while the use of SVM was good for all the images (Table 2.2). The differences 

in the classification results of Landsat OLI and ETM+ are associated with the narrow spectral 

band of Landsat OLI (Zhu et al., 2016).



 

36 
 

Table 2.2: Summary of land cover classification overall accuracieswith different classifiers  applied on specific Landsat images and land cover type. 

Classification 

approach 

Method Classifier used Landsat images 

used 

Type of land 

cover 

Accuracy attained5 

 (%) 

Source 

Pixel-based Supervised ML, NN, SVM MSS, TM, OLI Urban area 73–82 Poursanidis et al. (2015); Toll (1985); Pullanikkatil 

et al. (2016) 

  ML MSS, TM, OLI Forest 

plantation 

61–90 Pullanikkatil et al. (2016); Kumar et al. (2014); 

Sloan (2012) 

  ML MSS, OLI Dense forest 68–90 Pullanikkatil et al. (2016); Kumar et al. 

(2014);Sloan (2012) 

  ML TM, OLI Open forest 52–81 Pullanikkatil et al. (2016); Vieira et al. (2003) 

 Unsupervised ISODAT TM Urban area 78–94 Justice and Townshend (1982); Lunetta et al. 

(2002) 

  ISODAT TM Forest 

plantation 

71–87 Justice and Townshend (1982); Kirui et al. (2013); 

Lunetta et al. (2004) 

  ISODAT TM, OLI Dense forest 71–87 Justice and Townshend (1982); Kirui et al. (2013); 

Lunetta et al. (2004) 

  ISODAT TM Open forest 69–81 Justice and Townshend (1982); Lunetta et al. 

(2004) 

 Contextual ECHO, Majority 

filter 

TM Urban area 72–81 Flygare (1997); Stuckens et al. (2000) 

  ECHO, Majority 

filter 

TM Forest 

plantation 

70–81 Flygare (1997); Stuckens et al. (2000) 

  ECHO, Majority 

filter 

TM, ETM+ Dense forest 72–82 Flygare (1997); Stuckens et al. (2000) 

  NN MSS Open forest 66–90 Flygare (1997); Stuckens et al. (2000); Swain et al. 

(1981) 

  ECHO, Majority 

filter 

TM, ETM+ Agricultural 

area 

66–97 Flygare (1997);Stuckens et al. (2000); Swain et al. 

(1981) 

                                                           
 

 

 

5 Note that the values of accuracies represent the range from the lowest to the highest overall accuracies for each land cover type. ML is maximum likelihood, NN is nearest 

neighbour, LSMA is linear spectral mixture analysis, MESMA is multiple endmember spectral mixture analysis and RF is random forests 
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Classification 

approach 

Method Classifier used Landsat images 

used 

Type of land 

cover 

Accuracy attained5 

 (%) 

Source 

 Hybrid ISODAT, fuzzy, 

ML 

TM, ETM+ Urban area 64–96 Kuemmerle et al. (2006); Lo and Choi (2004) 

  ML, Rule-based, 

ISODAT 

TM, ETM+, DEM Forest 

plantation 

74–87 Kuemmerle et al. (2006); Lo and Choi (2004) 

  ML, Rule-based, 

ISODAT 

TM, ETM+, DEM Dense forest 79–91 Kuemmerle et al. (2006); Lo and Choi (2004) 

  ML, Rule-based, 

ISODAT 

TM, ETM+ Agricultural 

area 

64–84 Kuemmerle et al. (2006); Lo and Choi (2004) 

Subpixel SMA LSMA, MESMA TM, ETM+, OLI Urban area 83–90 Poursanidis et al. (2015); Powell et al. (2007) 

  LSMA TM Forest 

plantation 

77–93 Peterson and Stow (2003);  Roberts et al. (1998) 

  LSMA TM, OLI Dense forest 75–93 Peterson and Stow (2003); Mayes et al. (2015) 

  LSMA TM Open forest 77–87 Hamada et al. (2013);  Peterson and Stow (2003) 

  LSMA TM, OLI Agriculture 

area 

70–74 Théau et al. (2005); Mayes et al. (2015) 

 Fuzzy analysis Fuzzy C-Mean MSS Urban area 70–90 Fisher and Pathirana (1990); Melgani et al. (2000) 

  Fuzzy partitioning TM Forest 

plantation 

74–90 Mota et al. (2007); Wang (1990) 

  Fuzzy 

membership 

TM Dense forest 74–70 Fisher and Pathirana (1990); Foody and Cox (1994) 

  Explicit fuzzy TM Open forest 56–79 Fisher and Pathirana (1990); Melgani et al. (2000) 

  Explicit fuzzy TM Agriculture 74–92 Melgani et al. (2000); Mota et al. (2007) 

Object-based OBIA6 SVM, DT, RF, 

NN 

ETM+,TM, MSS, 

OLI 

Urban areas 73–98 Poursanidis et al. (2015); Samal and Gedam (2015)  

  Decision rule ETM+, TM Forest 

plantation 

80–97 Samal and Gedam (2015); Dingle Robertson and 

King (2011); Newman et al. (2011) 

                                                           
 

 

 

6 The scale parameter (Sc) ranged between 5 and 10 for Landsat MSS and from 5 to 20 for Landsat TM, ETM+ and OLI, while shape (Sh) and compaction (Cm) were reported 

to be 0.1–0.5 and 0.5–0.8 respectively. 
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Classification 

approach 

Method Classifier used Landsat images 

used 

Type of land 

cover 

Accuracy attained5 

 (%) 

Source 

  Decision rule TM Natural forest 77–95 Samal and Gedam (2015); Dingle Robertson and 

King (2011); Newman et al. (2011); Dorren et al. 

(2003) 

  Decision rule TM Agriculture 

area 

76–90 Dingle Robertson and King (2011); Dorren et al. 

(2003) 

 Knowledge-

based 

Expert-knowledge MSS, TM Urban area 87–90 Tailor et al. (1986); Wang and Newkirk (1988) 

  Spectral expert MSS, TM, DEM Forest 

plantation 

86–94 Manandhar et al. (2009); Ton et al. (1991) 

  Spectral expert MSS, TM, DEM Dense forest 85–92 Manandhar et al. (2009); Ton et al. (1991) 

  Eco-SDSS MSS, TM, GIS Agricultural 

area 

85–88 Sikder (2009); Ton et al. (1991) 
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2.6 Best practices for Landsat land cover classification  

In order to obtain the best classification results from Landsat images, a number of factors such 

as the selection of an ideal classification method and classifier, the quality of pre-processing 

and the type of Landsat images being used need to be considered (Shimoda et al., 1988; Song 

et al., 2001; Zhu et al., 2016). It is important to employ geometric and radiometric correction 

on the images using appropriate methods (Song et al., 2001). A lot of variation can be obtained, 

depending on the quality of the pre-processing calibration of the images before classification, 

especially in areas with topographic variations (Franklin, 1990).  

Geometric correction includes orthorectification and registration of the images with ground 

points. Orthorectification involves correcting the errors resulting from tilting of the platform 

on which the sensor is mounted, in order to produce a planimetrically correct image. This tilting 

usually results in distortion in the scale parameters of the images (Franklin, 1990; Tatem et al., 

2006). Although geometric corrections are important to Landsat land cover classification, most 

studies do not apply these corrections because National Aeronautics and Space Administration 

(NASA) provides images that are already geometrically corrected and orthorectified to a level 

called Landsat Level 1 (L1T) (Gutman et al., 2013; Tatem et al., 2006). However, Tatem et al. 

(2006) reported that in a few circumstances, Landsat images did not produce the desired results 

because they were not geometrically correct; therefore, it is important to check the geometric 

accuracy of the Landsat images before further processing.  

The major sources of geometric errors are insufficient ground control points for some scenes, 

errors in the geo-registration procedures and the level calibration of a particular Landsat 

satellite sensor (Young et al., 2017).  Most of the scenes have been corrected with sufficient 

ground control points; however, errors were identified on Landsat 4 and 5 for some scenes such 

as those from Brazil and Ecuador (Tucker et al., 2004). The geometric accuracy of L1T 

products has been increasing with the introduction of new Landsat satellites. For example, 

Landsat 8 has the highest geometric accuracy (less than 12 m), Landsat TM and ETM+ have 

accuracy of less than 50 m, while Landsat MSS has a geometric accuracy exceeding 50 m. Roy 

et al. (2014) highlighted that the Landsat 8 L1T products have high geometric accuracy because 

of the pushbroom design and the on-board global positioning system (GPS), which aids in 

geometric correction, unlike the other Landsat satellites which are/were dependent on ground 

control. For the purpose of land cover and time-series studies, the acceptable geometric errors 
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should be less than 12 m or less than half a pixel and this can be achieved by further 

georeferencing through image-to-image registration with geometrically accurate images or by 

using additional ground control points (Tucker et al., 2004; Young et al., 2017). 

Another important pre-processing  step on Landsat images is the radiometric correction, which 

involves the transformation of DN values into the top of atmosphere and ground reflectance 

values (Song et al., 2001). The radiometric correction has two major components: 

(1) atmospheric correction, which deals with effects due to scattering and absorption of 

electromagnetic waves in the atmosphere; and (2) topographic correction, which comes as a 

result of variations on the Earth’s surface (Franklin, 1990, 1991). Tatem et al. (2006) indicated 

that it is important to apply atmospheric correction when working with more than one scene in 

which training datasets are transferred to other scenes. Topographic effects are corrected by 

adjusting the surface reflectance by using digital elevation models. A number of radiative 

transfer codes, both simple and complex, have been developed for atmospheric correction and 

common application software for atmospheric corrections include Dark Object Subtraction 

(DOS) and Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) in ENVI, and 

Atmospheric and Topographic Correction (ATCOR), which is implemented as a stand-alone 

software or incorporated in other software such PCI Geomatica (Phiri et al., 2018; Tatem et al., 

2006). 

In land cover classification, OBIA, which has become common in the last decade, has proved 

to be superior to other methods of classification (Castillejo-González et al., 2014; Dingle 

Robertson & King, 2011; Kuemmerle et al., 2006). OBIA produced high classification 

accuracies in most studies that were based on Landsat images for different land cover types; 

however, OBIA has limitations such as choosing the appropriate segmentation scale and 

dealing with different steps, which can be a source of variation if not properly handled 

(Blaschke, 2010). The ability to use a diverse range of information such as shape, texture and 

compaction to complement spectral values makes classification results from OBIA more 

accurate. Although OBIA has not been commonly applied on the first Landsat images, Landsat 

MSS, it has proved to perform better on Landsat TM, ETM+ and OLI (Peña et al., 2014; 

Wieland & Pittore, 2014). SMA has proved to be very useful in complex environments such as 

the tropics, where the landscape is complex and mixed pixels are common. It is worth noting 

that other classification methods can equally produce high classification accuracies when 

appropriate procedures are followed. 
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2.7 Conclusions 

This chapter focused on reviewing the developments of Landsat land cover classification 

methods and determining the best ways of using Landsat images in land cover classification. 

Landsat land cover classification has continued to be an important application, especially with 

the continuous introduction of new sensors and the change in the data access policy from a 

commercial to a free-access approach (Roy et al., 2014; Wulder et al., 2016). The new Landsat 

imagery has improved qualities such as high spectral, spatial and temporal resolution. The fact 

that Landsat images can be accessed free of charge for nearly any location on Earth is an added 

advantage. The land cover classification methods commonly applied to Landsat imagery can 

be broadly grouped into pixel-based, subpixel-based and object-based approaches. While 

methods for land cover classification have advanced over the last four decades, the maximum 

likelihood pixel-based classification method, which was developed in the 1970s, is the most 

commonly used method on Landsat images (Lu & Weng, 2007; Poursanidis et al., 2015). Pixel-

based classification has limitations such as salt-and-pepper effects and challenges due to mixed 

pixels, a common issue in medium-resolution imagery like Landsat. The subpixel approach 

was developed to address the limitations of the pixel-based approach, especially the mixed 

pixel effects. However, effects due to spectral variability and challenges in selecting 

representative samples for endmembers still remain major challenges for the subpixel approach 

(Somers et al., 2011).  

Most studies on Landsat land cover classification have reported the superior performance of 

OBIA in various landscapes such as urban areas (Araya & Cabral, 2010; Li et al., 2014), 

agricultural areas, forests (Heumann, 2011; Kindu et al., 2013) and wetlands (Dronova, 2015). 

The major advantage of OBIA is that it represents the classification units as real-world objects 

on the ground and hence reduces the within-class variability. Although OBIA has been 

commonly applied on fine spatial resolution images, most studies have indicated its superior 

performance on Landsat images, because it combines different types of information in the 

classification procedure (Heumann, 2011; Li et al., 2014). However, OBIA land cover 

classification has limitations such as challenges in selecting the appropriate segmentation scale, 

which can generate errors due to over- or  under-segmentation, and misclassification of small 

land cover types due to the low or medium spatial resolution of Landsat images (Blaschke, 

2010; Liu & Xia, 2010).  The OBIA approach also involves many steps in its workflow, such 

as selecting training samples, developing rule sets and choosing classifiers, all of which have 
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the potential to affect the classification accuracy if not properly implemented (Hussain et al., 

2013). 

Although studies do not clearly indicate the best classification method for Landsat images, it 

is important to consider the strengths and limitations of each method over other methods, and 

hence most of the classification methods remain useful and have the potential to produce high 

levels of accuracy. The use of hybrid methods needs to be investigated further because the 

combination of different classifiers is complex, but from the limited literature, they appear to 

show promise for land cover classification using Landsat imagery. 
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Pre-processing Methods and Machine-learning 

Classifiers for OBIA Land Cover Classification  

The contents of this chapter have been published as: 

Phiri, D., Morgenroth, J., Xu, C., & Hermosilla, T. (2018). Effects of pre-processing methods on Landsat OLI-8 

land cover classification using OBIA and random forests classifier. International Journal of Applied Earth 

Observation and Geoinformation, 73, 170-178. doi: https://doi.org/10.1016/j.jag.2018.06.014 

3.1 Introduction 

The analysis of Landsat data in Earth observation and resource monitoring has increased in the 

last two decades, especially since the transition to a free-access policy in 2008 (Woodcock et 

al., 2008; Wulder et al., 2016; Young et al., 2017). The most notable applications of Landsat 

imagery are land cover classification (Song et al., 2001) and land cover change analysis 

(Chance et al., 2016). Accurate mapping and description of land cover are important for 

sustainable monitoring and management of natural resources, and Landsat can support these 

applications due to its long temporal record (Phiri & Morgenroth, 2017; Phiri et al., 2019a; 

Wulder et al., 2016). Land cover classification with estimated accuracies exceeding 90% are 

possible (Gilbertson et al., 2017; Novelli et al., 2016), especially with data from relatively 

recent Landsat missions,  which have improved spectral, radiometric and temporal resolutions 

as well as having a panchromatic band that can be used to improve spatial resolution for 

Landsat Enhanced Thematic Mapper Plus (ETM+ 7) and Operational Land Imager (OLI-8) 

(Novelli et al., 2016; Phiri & Morgenroth, 2017; Vieira et al., 2012). Despite high potential 

land cover classification accuracies, different effects resulting from atmospheric absorption, 

backscattering of electromagnetic radiation, topographic variation, and shadows affect Landsat 

land cover results (Minu et al., 2017; Pimple et al., 2017).  

Atmospheric and topographic corrections can be applied to satellite images prior to 

classification in order to normalise radiance and digital number (DN) values (Young et al., 

2017). Atmospheric correction aims to determine the true surface reflectance values by 

removing the atmospheric effects resulting from the scattering and absorption of 

electromagnetic radiation by gases and aerosols when passing through the atmosphere to the 

https://doi.org/10.1016/j.jag.2018.06.014
https://en.wikipedia.org/wiki/Operational_Land_Imager
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satellite sensor (Hadjimitsis et al., 2010). Previous studies have reported that atmospheric 

correction is one of the most important corrections, especially when working with multiple 

scenes at different temporal scales (Song et al., 2001; Vanonckelen et al., 2013). Topographic 

correction is the process of reducing variation of image values resulting from differences in 

surface terrain illumination and shadows cast during image acquisition (Vanonckelen et al., 

2013); these effects are especially common in rugged or mountainous areas. Studies have 

reported various effects of topographic correction. For example, Vanonckelen et al. (2013) 

reported that topographic correction improved classification accuracy from 78% to 89% in 

mountainous areas, while other studies showed that topographic correction may not 

significantly improve accuracy in land cover classification routines (Carpenter et al., 1999; 

Goslee, 2012; Mitri & Gitas, 2004; Zhang et al., 2011).  

The accuracy of land cover classification also depends on the methods used during 

classification. Pixel-based classification has traditionally been used for classification; however, 

object-based image analysis (OBIA) is more common in contemporary studies. OBIA has an 

advantage over pixel-based classification because it reduces salt-and-pepper effects, uses 

spectral, textural, and neighbourhood data during classification and generally produces higher 

accuracy (Blaschke, 2010; Novelli et al., 2016; Vieira et al., 2012). Different non-parametric 

machine-learning classifiers such as classification and regression trees (CARTs), k-nearest 

neighbours (k-NNs), support vector machines (SVMs), random forests (RFs) have been used 

for OBIA-supervised classification. Previous studies have tested the performance of these 

classifiers for land cover classification and have reported that RF outperforms most of the 

classifiers (Blaschke, 2010; Li et al., 2016; Li et al., 2014; Peña et al., 2014). Classification 

accuracy exceeding 90% has been reported in different Landsat land cover classification 

studies when an RF classifier was used in combination with OBIA; however, these results can 

be site-specific and hence the need to test the classifiers on different landscapes. A comparison 

of machine-learning algorithms on Landsat images is still needed to select the best algorithm 

for OBIA classification for specific environments. 

Although studies have demonstrated the potential of different pre-processing methods in 

improving land cover classification accuracy (Peña et al., 2014; Shao & Lunetta, 2012; 

Wieland & Pittore, 2014), the performance of different pre-processing methods with the OBIA 

and machine-learning classifiers on Landsat images has not been studied comprehensively. The 

major focus of this study is on pre-processing methods by using Landsat OLI-8 images; 
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however, this chapter follows a two-step analysis. These steps are: (1) comparing the 

classification accuracy of machine-learning classifiers, and (2) assessing the effects of 

atmospheric and topographic correction on the classification accuracy of pansharpened (15 m 

spatial resolution) and standard Landsat OLI-8 (30 m spatial resolution) images using the OBIA 

and the best performing classifier. The results of this study will help to identify the optimal 

pre-processing steps to produce land cover classifications with sufficient accuracy for effective 

monitoring and management of natural resources. 

3.2  Materials and methods 

3.2.1 Study area 

The study area includes 125,998 km2 of the Copperbelt and Central Provinces of Zambia 

(Figure 3.1). This area was chosen for testing different pre-processing methods because it has 

a variety of land cover types and has both rugged and flat terrains. The elevation ranges from 

403 m above sea level (asl) in the Copperbelt Province to 1887 m asl near the Muchinga 

Mountains in Serenje district. This area is dominated by secondary forests because of shifting 

cultivation practices that involve abandoning agriculture fields after 3–5 years of cultivation 

(Kalaba et al., 2013; Phiri et al., 2016). Other common land covers in the study area include 

grasslands, croplands, settlements, and water bodies. 
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Figure 3.1: Location of the study area (Copperbelt and Central provinces) and the terrain represented by 

a hillshade model. 

3.2.2 Remotely sensed data 

In this study, four Landsat OLI-8 scenes (path 171-173/row 69-70) for the year 2016 were used. 

September images with cloud cover of less than 10% were downloaded from the United States 

Geological Survey (USGS) website (http://glovis.usgs.gov). The analysis was done on the 

visible and infrared bands (Table 3.1). The panchromatic bands with 15 m spatial resolution 

were used for pansharpening. The images used here are Level-1 products, which are an 

orthorectified version of Landsat images and have high geometric accuracy (Chance et al., 

2016). 

To conduct topographic correction, digital elevation models were used. The Shuttle Radar 

Topography Mission (SRTM) digital elevation models (DEMs) with a spatial resolution of 1 

arc sec (30 m × 30 m), were downloaded from the USGS website (Slater et al., 2006). In this 

http://glovis.usgs.gov/
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study, the DEMs were resized to the size of the Landsat images and projected to a common 

projected coordinate system (WGS 84, Zone 35 South). 

Table 3.1: Description of Landsat OLI-8 bands used in this study. 

Bands Spectral (μm) Spatial (m) 

Blue 0.45–0.51 30 

Green 0.53–0.59 30 

Red 0.64–0.67 30 

NIR 0.85–0.88 30 

SWIR1 1.57–1.65 30 

SWIR2 2.11–2.29 30 

Panchromatic  0.50–0.68 15 

 

3.2.3 Training and validation samples 

Sample points (n = 1500) for training the classifier and validating thematic maps were 

randomly generated over the study area and each point was assigned a land cover class by a 

trained assessor since land cover determinations were made using the same Landsat imagery. 

The sample size was established by using the multinomial distribution (Congalton & Green, 

2009; Olofsson et al., 2014) and the sample points were randomly divided into training (70%: 

1050 points) and validating datasets (30%: 450 points). 

3.2.4 Methodology overview 

Figure 3.2 shows the overview of the methodology that was used in this study to assess the 

accuracy of the classifiers and the effects of different pre-processing on images with different 

spatial resolution. Firstly, the images were pansharpened using panchromatic bands to improve 

the spatial resolution from 30 m to 15 m. Six bands (visible to infrared) for pansharpened (15 m 

spatial resolution) and standard (30 m spatial resolution) Landsat OLI-8 images were then 

subjected to atmospheric and topographic processing. 

The analysis was done in two steps. First, the images that were pre-processed using a 

combination of atmospheric and topographic correction were classified using five 

machine-learning classifiers. This was done in order to select the best classifier. Second, all the 

images were then classified using the best classifier, which had been selected in the first step. 

For both steps, the accuracy was assessed using the representative independent validation 
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samples, and the results analysed via overall, user’s and producer’s accuracies derived from 

the confusion matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: An overview of the main processing stages involved in this study from data acquisition to 

accuracy assessment.  
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3.2.5 Machine-learning classifiers 

3.2.5.1 Bayes 

Bayes classifiers are machine-learning algorithms that use simple probabilistic approaches 

based on the Bayesian theory. Bayes classifiers assume independence in the features used 

during training and classification (Liao et al., 2016). In Bayes classification, it is assumed that 

the presence or absence of each class is not related to the occurrence or non-occurrence of the 

other classes. The main strength of Bayes is that it does not require a large amount of training 

data. 

3.2.5.2  k-NN  

The k-NN classifiers are non-parametric methods that classify objects based on the closest 

training features. The k-NN classifiers assign a class to an object based on the specified k 

neighbours, where k is an integer greater than or equal to one (Li et al., 2014). In eCognition, 

the algorithm was implemented with k = 1, which means that each object is classified according 

to the class of a single nearest neighbour. The k-NN has been applied in many land cover 

classification studies and has proven to be one of the simplest machine-learning algorithms, 

with the potential to produce high classification accuracy. 

3.2.5.3 SVM 

SVM is a machine-learning method used for pattern recognition, which applies advanced 

principles of classification and regression tree analysis. SVM uses decision planes rather than 

points to separate sets of objects that belong to different classes. The most important parameter 

to set in eCognition is the penalty parameter called kernel, which can be a linear or radial basis 

function (RBF). Heumann (2011) stated that SVM has gained prominence in multispectral and 

hyperspectral data analysis, especially in discriminating spectrally similar land cover classes. 

The mathematical aspects of SVM is presented by Vapnik (2000), and the assessment based 

on the remote sensing application is reported by Huang et al. (2002). 

3.2.5.4 CART 

CART is a common machine-learning classification method for land cover classification based 

on decision tree methods that group data into homogenous subgroups (Sharma et al., 2013). 

The first step in CART analysis is to train the data by building a decision tree that has splits 

and nodes. The decision tree thresholds are then applied to partition the data into subclasses 
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through recursive partitioning. The most important parameters for CART are the minimum 

number of samples per node and the pruning critical parameter (cp) that minimises the effects 

of overfitting. 

3.2.5.5 RF 

RF is a machine-learning classifier that uses a number of decision trees to classify objects 

(Belgiu & Drăguţ, 2016). The trees are created by drawing a number of subsamples through 

replacement. About two-thirds of the samples are used for training the decision trees, while the 

other samples are used for cross-validating internally. The final decision tree used for 

classification is generated by voting at each node. The most important aspect for the RF 

classifier is to specify the number of trees (Ntrees) and the number of variables to be used at 

each node (Mtry). Belgiu and Drăguţ (2016) reported that 500 trees are enough for most 

applications and Mtry is specified by finding the square root of the number of input variables. 

3.2.6 Pre-processing methods 

3.2.6.1 Pansharpening 

To improve the spatial resolution of the multispectral images, the pansharpening process was 

used. Pansharpening is the process of fusing a high spatial resolution panchromatic band with 

low-resolution multispectral imagery to create a high-resolution image with spatial properties 

of the panchromatic band and spectral properties of the multispectral bands. In this study, the 

panchromatic (15 m spatial resolution) and six multispectral bands (30 m spatial resolution) 

were used as input data for the Pansharp algorithm in the Geomatica PCI software (PCI 

Geomatics, Markham, Canada). According to a comparative study of different pansharpening 

methods by Zhang and Mishra (2012), the Pansharp algorithm produced the best results 

compared with other algorithms because the spectral properties and the colour of the images 

were preserved. This algorithm uses the least squares technique to approximate the relationship 

between the multispectral images and the panchromatic band by reducing the chances of colour 

distortion and dataset variations (Lin et al., 2015). 

3.2.6.2 Atmospheric corrections 

Two methods were applied to remove the atmospheric effects on the Landsat images in this 

study: dark object subtraction (DOS) and an absolute atmospheric correction method called the 

moderate resolution atmospheric transmission (MODTRAN) transfer function (Huang et al., 
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2008; Schlapfer et al., 2012). DOS is a simple atmospheric correction that subtracts the lowest 

image digital values (DN) from all other DN values across an image as illustrated in Equation 

3.1:  

  Lλ  =  Lsλ -  Lp                                                       Equation 3.1 

where Lλ is the corrected DN value, Lsλ is the original DN value and Lp is the DN value in the 

dark pixels (Chavez, 1988; Song et al., 2001).  

The MODTRAN implements radiative transfer functions in atmospheric and topographic 

correction (ATCOR 3) software (Schlapfer et al., 2012). The radiative transfer function uses 

different auxiliary information derived from the metadata files of the Landsat images. The 

auxiliary information used in this study during atmospheric correction included the solar angle, 

date of acquisition and position of the satellite.   

3.2.6.3 Topographic correction 

The cosine correction method was employed for topographic correction using the Landsat 

images and DEMs as input data. Slope and aspect surfaces were generated from DEMs and 

used for normalising surface reflectance. The cosine correction method is the most commonly 

used Lambertian method (Pimple et al., 2017) and calculates surface reflectance values using 

Equation 3.2: 

                   ρH = ρT (
cosθz

IL
)           Equation 3.2 

where ρH is surface reflectance; ρT is reflectance of an inclined surface; θz is the solar zenith 

angle; and IL is the average illumination. The atmospherically and topographically corrected 

Landsat images were represented as surface spectral reflectance values. Table 3.2 summarises 

the different pre-processing methods used in this study.  
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Table 3.2: Summary of different pre-processing methods used in the study. 

Type Correction Description Reference 

No correction - Original images  - 

Atmospheric  DOS Subtraction of minimum DN 

values 

Chavez (1996);Song et al. (2001) 

Transfer function MODTRAN function in 

ATCOR 3 

Song et al. (2001) 

Topographic Cosine Based on solar angle and 

derived values from DEM 

Chance et al. (2016) 

Combinations Cosine/DOS DOS and Topographic 

correction 

- 

Transition 

function/Cosine 

Atmospheric and Topographic Schlapfer et al. (2012) 

 

3.2.7 Land cover classification procedure  

The OBIA classification with machine-learning classifiers, implemented in eCognition 

Developer 9.3 (Trimble Navigation Ltd, Sunnyvale, California), was used in this study to 

classify eight land cover types (Table 3.3). OBIA was chosen over pixel-based approaches, as 

many studies have reported high land cover classification accuracies when OBIA was applied 

to Landsat images (Aguilar et al., 2015; Myint et al., 2011). Firstly, to select the best performing 

machine-learning classifier, the five classifiers were used to classify the images, which were 

pre-processed by a combination of topographic and atmospheric corrections. In the second step, 

the best classifier was used to test all the pre-processing methods. Three main steps were used 

to perform OBIA classification with the classifiers: (1) segmentation, which groups 

homogenous pixels into objects; (2) generation of descriptive metrics; and (3) classification of 

segmented objects using the classifiers.  

Table 3.3: Land cover classes used in the study. 

Land cover class Description of land cover class 

Cropland Harvested areas with little green vegetation 

Grassland Areas that are dominated by grass and small shrubs 

Irrigated Crops Areas under irrigated systems such as pivot centres 

Plantation Forests Exotic planted forests areas 

Primary Forests Undisturbed/intact natural forests 

Secondary Forests Natural forests that have been disturbed 

Settlement Built-up areas 

Waterbodies Lakes, rivers and dams 



 

53 
 

3.2.7.1 Image segmentation 

In segmentation, the assessor specifies scale, shape, and compaction parameters. The scale 

factor is the most important parameter for segmentation, as it controls the size of the segments 

(Aguilar et al., 2015). In order to minimise the errors due to over- and under-segmentation 

(Hussain et al., 2013), the optimal scale factor for segmentation was obtained using the 

Estimation of Segmentation Parameter (ESP) tool developed by Drăguţ et al. (2014). Shape 

and compaction parameters were optimised by iteratively changing their values and visually 

assessing the resulting segmented objects. Although visual assessment of segmentation quality 

is subjective, it is one of the most common methods used to complement the quantitative means 

of defining the optimal segmentation parameters (Zhang et al., 2008). 

Multi-resolution segmentation was used in this study on both pansharpened and standard 

Landsat OLI-8 images with a fixed scale factor (= 13), shape (= 0.2) and compaction (= 0.8) 

parameters. The multi-resolution segmentation is a regional growing algorithm merging 

adjacent pixels or regions based on a heterogeneity criteria. A weight of 1 was used for all the 

bands, except for the near infrared (NIR) band, which had a weight of 2 because of the ability 

of the NIR band to express differences in spectral signatures, especially in vegetated and non-

vegetated areas (Gilbertson et al., 2017; Puissant et al., 2014). Effectively, each image was 

only segmented once by applying the optimised fixed segmentation parameters. 

3.2.7.2 Descriptive metrics 

A set of descriptive metrics derived from both spectral bands and vegetation indices was used 

during classification (Table 3.4). Spectral bands were characterised via mean, standard 

deviation, and maximum differences. Vegetation and spectral indices were computed, 

including ratios, normalised difference vegetation index (NDVI), and enhanced vegetation 

index (EVI). Textural values derived from the grey-level co-occurrence matrices (GLCM) were 

also extracted, including mean, standard deviation and entropy (Haralick & Shanmugam, 

1973).  
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Table 3.4: Details of customised features used for land cover classification in this study. 

Spectral Indices Formula/Description References 

Normalized Difference Vegetation Index 

(NDVI) 
NDVI = 

NIR –Red 

NIR +Red
 Liao et al. (2016); Zhu and Liu 

(2015) 

Enhanced Vegetation index (EVI) EVI =2.5 *
(NIR−Red)

(NIR+6∗Red−7.5∗Blue+1)
 Huete et al. (2002) 

Green Normalized Difference Vegetation 

Index (GNDVI) 

 

GNDVI = 
NIR –Green 

NIR +Green
 

Gitelson (1998) 

Green Ratio Vegetation Index (GRVI) 

 
GRVI = 

NIR

Green
 Sripada et al. (2006) 

Leaf Area Index (LAI) 

 

LAI = (3.618*EVI-0.118) Atzberger et al. (2015) 

Simple Ratio (SR) 

 
SR =

NIR

Red
 Birth and McVey (1968) 

Non-Linear Index (NLI) 

 
NLI = 

NIR2 −Red

NIR2 +Red
 Goel and Qin (1994) 

Optimized Soil Adjusted Vegetation 

Index (OSAVI) 

 

OSAVI =
1.5∗(NIR−Red)

NIR+Red+0.16
 Rondeaux et al. (1996) 

Soil Adjusted Vegetation Index (SAVI) SAVI = 
(NIR−Red)

(NIR+Red)
(1+L); L = 0.5 Huete (1988) 

Renormalized Difference Vegetation 

Index (RDVI) 

 

RDVI=
(NIR−Red)

√NIR−Red
 Roujean and Breon (1995) 

Normalized Burn Ratio (NBR) 

 
NBR = 

(NIR−SWIR)

(NIR−SWIR)
 Garcia and Caselles (1991) 

Normalized Difference Built-Up Index 

(NDBI) 

 

NDBI =
SWIR−NIR

SWIR+NIR
 Zha et al. (2003) 

Normalized Difference Snow Index 

(NDSI) 

 

NDSI =
Green− SWIR1

Green+ SWIR1
 Salomonson and Appel (2004) 

Ratio Vegetation Index (RVI) RVI =
Red

NIR
 Silleos et al. (2006) 

Specific Leaf Area Vegetation Index 

(SLAVI) 
SLAVI = 

NIR

Red+NIR
 Silleos et al. (2006) 

 

3.2.8 Evaluation of classifiers and pre-processing methods 

The classification accuracy was measured by using the overall, user’s and producer’s 

accuracies that were derived from confusion matrices by employing the interpreted validation 

samples with a representative sample size (Congalton & Green, 2009). The user’s and 

producer’s accuracies for individual land cover classes were compared in order to understand 

the best accuracy of different land cover classes under different pre-processing methods. In 

order to establish the expected range of the accuracy, the 95% confidence interval was also 

reported. 
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The significant difference between pansharpened and standard Landsat OLI-8 was statistically 

tested using the Z statistic proposed by Congalton and Green (2009), which integrates the 

classification accuracy for the whole study area and also allows the assessor to describe 

individual class accuracy. The Z statistic was calculated by pairing the confusion matrices of 

the pansharpened and standard Landsat images using Equation 3.3: 

           Z   =  
|𝐾1− 𝐾2|

√𝑣𝑎𝑟(𝐾1) − 𝑣𝑎𝑟(𝐾2)
                             Equation 3.3 

where Z is the Z statistic, K1 is the agreement statistic from the confusion matrix based on 

pansharpened images, K2 is the agreement statistic from the confusion matrix based on the 

standard images, var(K1) is the variance from the pansharpened confusion matrix, and var (K2) 

is the variance from the standard confusion matrix. The significant difference between the 

pansharpened and standard images was then established through a two-tailed Z statistic test by 

determining if the corresponding p-value from the normal distribution table was less than 0.05 

(Congalton & Green, 2009). 

3.3 Results 

3.3.1 Machine-learning classifiers 

Figure 3.3 shows the overall accuracies of the five classifiers on pansharpened and standard 

Landsat OLI-8 images. RF had the highest accuracies on both pansharpening (15 m) (96%) and 

standard (30 m) images (91%). Apart from RF, SVM had high overall accuracies compared 

with the other four classifiers. CART and Bayes had lower accuracies (< 86%) in most cases, 

especially on standard images. However, k-NN had a higher accuracy on standard images than 

on the pansharpened images. 
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Figure 3.3: Overall accuracies of five classifiers. RF had the highest accuracy compared with the other 

classifiers. The error bars indicate the confidence interval of the overall accuracies. 

3.3.2 Pre-processing methods 

The overall accuracy of the land cover classification for uncorrected images was 68% and 66% 

for pansharpened and standard Landsat OLI-8 respectively. Nearly all the pre-processing 

methods improved classification accuracy by 2%–25%, with the exception for DOS on 

standard imagery, which reduced accuracy by 2%. A combination of topographic correction 

and the MODTRAN atmospheric correction produced the highest classification accuracy in 

both pansharpened and standard Landsat OLI-8 imagery (93% and 86% respectively). The 

accuracy for topographically corrected images was 70% for standard Landsat images and 71% 

for pansharpened images. Among the corrected images, DOS produced the lowest accuracy for 

both pansharpened (70%) and standard images (64%). The combination of DOS and 

topographic correction improved the classification accuracy by 6% on pansharpened images 

and 4% on standard Landsat OLI-8 images. The confusion matrix for the land cover 

classifications that achieved the highest accuracy is presented in Table 3.5. 
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Table 3.5: Confusion matrix for the highest accuracy on pansharpened images that were pre-processed by MODTRAN atmospheric and topographic correction. 

PA: Producer’s Accuracy (%), and UA: User’s Accuracy (%). 

Reference 

Classification 
Cropland Grassland 

Irrigated 

Crops 

Plantation 

Forests 

Primary 

Forests 

Secondary 

Forests Settlements 

Water- 

bodies Total UA (%) 

Cropland 130 4 0 0 0 0 2 0 134 94 

Grassland 1 36 0 0 0 3 0 0 44 90 

Irrigated Crops 0 0 22 0 0 0 0 0 22 100 

Plantation Forests 0 0 0 18 0 0 0 0 18 100 

Primary Forests 1 0 0 0 100 13 0 0 117 88 

Secondary Forests 3 0 0 0 3 94 0 0 97 94 

Settlements 0 0 0 0 0 0 12 0 10 100 

Waterbodies 0 0 0 0 0 0 0 8 8 100 

Total 135 40 22 18 103 110 14 8 450  
PA (%) 96 90 100 100 97 85 86 100   93% 
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The side-by-side comparison of the performance of pansharpened and standard Landsat OLI-8 

images showed that pansharpening improved classification accuracy by 2%–10% on all the 

corrected images. A combination of atmospheric and topographic correction produced the 

highest overall accuracy of 93%, on pansharpened images (Figure 3.4), with a confidence 

interval of 90%–95% at 95% confidence level. 

 

Figure 3.4: Overall accuracies for pansharpened and standard Landsat OLI-8 images that were 

pre-processed using different methods. AT is MODTRAN transfer atmospheric correction; DOS is dark 

object subtraction; and TOP is cosine topographic correction. Error bars represent confidence intervals. 

The results of the statistical comparison of classification accuracies of pansharpening and non-

pansharpened was significantly different. The statistics test based on the two-tailed Z statistic 

showed a significant difference (Z statistic = 3.73; p-value < 0.05) between the accuracies of 

pansharpened and standard Landsat OLI-8.  

Figure 3.5 shows examples of the classified pansharpened images. Visually, the land cover 

classification results ranged from noisy (e.g. uncorrected images, Figure 3.5A) to generalised 

(e.g. topographic + DOS, Figure 5F). Noisy land cover maps had a relatively large number of 

polygons, representing reference land cover at a very fine scale. In these cases, single reference 

land covers were likely to have been split into two or more classified land covers. The visually 

noisy land cover map also produced the lowest overall classification accuracy (Figure 3.5A). 
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In contrast, generalised land cover maps combined multiple reference land covers into single 

classified land cover polygons, resulting in fewer polygons. The generalised land cover maps 

produced amongst the lowest overall classification accuracies (Figure 3.4). The pre-processing 

steps that yielded the highest overall accuracy, MODTRAN atmospheric combined with 

topographic correction, produced a land cover map that was neither noisy, nor generalised 

(Figure 3.5E). 
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Figure 3.5: Section of outputs and corresponding RGB imagesbased on specific pre-processing methods 

with overall accuracies: (A) Uncorrected – 68%; (B) Atmospheric – 85%; (C) DOS – 70%; 

(D) TOP – 71%; (E) Atmospheric and Topographic – 93%; and (F) Topographic and DOS – 75%. 
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3.3.3 Impact of pre-processing on individual class accuracy 

MODTRAN atmospheric correction combined with topographic correction yielded the greatest 

improvements in land cover classification, increasing the overall classification accuracy from 

68% (uncorrected) to 93% (AT + TOP) (Table 3.6). The accuracy improvements yielded by 

these pre-processing operations varied by land cover class. The Cropland land cover class 

benefited most from atmospheric and topographic correction (producer’s accuracy increasing 

from 53% to 96% and user’s accuracy increasing from 63% to 96%). In contrast, some classes 

(e.g. Irrigated Crops) already had producer’s or user’s accuracies of 100% in uncorrected 

imagery, so there was no improvement in classification accuracy offered by pre-processing. 

Overall, AT + TOP corrections improved producer’s accuracy by between 22% and 43% and 

user’s accuracy by between 28% and 33% for all land cover classes that were not classified 

with 100% accuracy on uncorrected imagery.  

Table 3.6: Individual class accuracies and gain in accuracy (difference between corrected and 

uncorrected) after applying atmospheric and topographic corrections on pansharpened images. 

 

 

 

Land cover 

 

Uncorrected 

 

AT+TOP 

 

Gain in 

accuracy 

PA 

% 

UA 

% 

PA 

% 

UA 

% 

PA 

% 

UA 

% 

Cropland    53 63 96 96 43 33 

Grassland 60 62 90 90 30 28 

Irrigated Crops 100 100 100 100 0 0 

Plantation Forests 78 100 100 100 22 0 

Primary Forests 70 59 97 88 27 29 

Secondary Forests 60 62 86 94 26 32 

Settlements 57 67 80 100 23 33 

Waterbodies 100 100 100 100 0 0 

Overall accuracy  68% 93% - 

 

3.4 Discussion 

The results from this study showed that RF outperformed the other classifiers. These results 

agree with most of the studies that have compared the performance of different classifiers; for 

example, Li et al. (2014) tested different machine-learning approaches on Landsat TM images 

and achieved 92% classification accuracy with RF. Although other classifiers also have the 

potential to produce high classification accuracies, in most cases RF and SVM outperform the 
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other classifiers. The main advantage of the RF classifier is that it is easy to apply and has a 

short processing time (Belgiu & Drăguţ, 2016). 

The findings from this study showed that pansharpening and some pre-processing steps could 

improve classification accuracy. The uncorrected images yielded a classification accuracy of 

66%, while the pansharpened uncorrected images yielded 68% classification accuracy. There 

was variation on the impact of different pre-processing methods on classification accuracy. The 

combination of MODTRAN atmospheric and topographic corrections proved to be the most 

effective correction, with overall accuracy reaching 93% on pansharpened images (Figure 3.4). 

Together, atmospheric and topographic correction increased the producer’s accuracy by up to 

43% and the user’s accuracy by up to 33% for individual land cover classes, relative to 

uncorrected imagery (Table 3.6). 

The significant improvement in classification accuracies of different land cover types with 

pansharpened images instead of standard Landsat images can only be attributed to the increase 

in spatial resolution from 30 m to 15 m because other image properties (temporal, spectral and 

radiometric) and processing methods were identical. As reported in previous studies (Ehlers et 

al., 2010; Gilbertson et al., 2017; Lin et al., 2015), increasing spatial resolution preserves 

detailed spectral information that is useful in land cover classification, especially by creating 

smooth boundaries and identifying small land cover patches. Lin et al. (2015) reported that 

pansharpening improved classification accuracy by more than 12%, especially when robust 

machine-learning classifiers such as RF were used. Though it is a larger improvement, it is 

comparable to the overall accuracy increasing from 86% to 93% due to pansharpening in this 

study. 

Many studies have acknowledged that atmospheric correction is one of the most important 

corrections in land cover classification, especially when working with multiple and 

multi-temporal scenes (Song et al., 2001; Young et al., 2017). Our results support many 

previous studies, which improved classification accuracy by between 5% and 15% on different 

landscapes (Huang et al., 2008; Mitri & Gitas, 2004; Vanonckelen et al., 2013). For example,  

Lin et al. (2015) highlighted the importance of atmospheric correction in large-area mapping 

and reported that it improved classification accuracy by 12% when combined with 

pansharpening. In general, the process of comprehensive atmospheric correction reduced the 

variation in reflectance across multiple scenes, which is the main reason for achieving high 

classification accuracy (Hansen & Thomas., 2012; Vanonckelen et al., 2013). On the other 
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hand, Song et al. (2001) and Young et al. (2017) suggested that atmospheric correction is not 

important on a single scene and recommended employing DOS or even using raw images with 

DN values. Therefore, the high classification accuracy attained in this study when atmospheric 

correction was applied is mainly attributed to the normalisation across the images, which 

resulted in reduced variation in reflectance values for specific land cover classes.  

DOS had the lowest impact on the classification accuracy of the pre-processing methods, 

because it improved the classification accuracy of pansharpened images by only 6%, while 

there was no improvement on non-pansharpened images. The results agree with those presented 

in previous studies, which reported that DOS did not significantly improve land cover 

classification accuracy on multiple scenes compared with other atmospheric correction 

methods (Song et al., 2001; Young et al., 2017). This is probably because it normalises image 

values by subtraction rather than conducting a comprehensive image correction based on 

reflectance values (Hansen & Thomas., 2012; Vanonckelen et al., 2013; Young et al., 2017). 

Despite a lack of proven, consistent accuracy improvement, DOS is still widely used in land 

cover classification because it offers a cheap and easy alternative to comprehensive 

atmospheric correction (Chavez, 1988; Young et al., 2017). The challenge when using DOS is 

how to define dark objects or pixels; it is common in many studies to define water bodies and 

shadows as dark pixels, while in other cases, an automatic selection procedure of dark pixels, 

which was also used in this study, is common (Song et al., 2001; Young et al., 2017). The effect 

of using different methods in selecting the dark objects needs to be investigated in order to 

establish its contribution towards the quantitative gain in classification accuracy. 

Topographic correction on its own did not yield markedly better classification results in this 

study area, which is interesting given the mountainous terrain in much of the study area. It is 

possible that the homogeneity of the primary forests covering the mountainous regions in our 

study area precluded the efficacy of topographic correction. Similar results have previously 

been reported (Carpenter et al., 1999; Goslee, 2012; Pimple et al., 2017; Zhang et al., 2011). 

Another potential explanation for the minimal effect of topographic correction is that, in this 

study area, the satellite overpass time is around midday (10–11 a.m. local time) when shadow 

is less pronounced. Topographic correction has been shown to be less effective in such cases 

(Goslee, 2012; Pimple et al. 2017). Finally, Zhang et al. (2011) and Pimple et al. (2017) 

observed that the resolution of the DEM has an influence on the performance of topographic 
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corrections and thus it is possible that the 30 m resolution DEM used in this study was 

insufficiently detailed to allow for effective topographic correction. 

Notwithstanding the minimal classification accuracy improvement from topographic 

correction in isolation, our results agree with numerous previous studies that demonstrate high 

and improved land cover classification accuracy when combining atmospheric and topographic 

corrections (Huang et al., 2008; Lin et al., 2015; Vanonckelen et al., 2013). In contrast, the 

combination of topographic correction with DOS did not have much impact on the 

classification accuracy compared with the combination of atmospheric and topographic 

correction, perhaps because of multiple scenes involved in this study. 

The pre-processing methods and the approach used in this study are important for obtaining 

greater accuracy when classifying Landsat OLI-8 images. The steps used in this analysis, 

including pre-processing methods and segmentation, could be reproduced and transferred to 

other environments or studies with similar land cover types. The application of the RF 

classifier, however, may introduce some uncertainty in the reproducibility of results, and might 

require further caution on the selection of the parameters (Belgiu & Drăguţ, 2016; Breiman, 

2001; Juel et al., 2015).  

3.5 Conclusions 

This main aim of this chapter was to determine the quantitative impact of pre-processing 

methods (atmospheric and topographic correction) on the classification accuracy of 

pansharpened and standard Landsat OLI-8. Prior to testing the impact of pre-processing, a 

comparison of the machine-learning classifiers was undertaken. The RF classifier 

outperformed the other four classifiers. Pansharpened and standard Landsat OLI-8 images were 

classified using an OBIA-RF (the best performing classifier) after conducting the pre-

processing using one topographic (Cosine) and two atmospheric (i.e. MODTRAN, DOS) 

corrections individually and combined. The results showed that the combination of 

MODTRAN atmospheric and topographic correction produced the highest overall accuracies 

on both pansharpened (93%) and standard Landsat OLI-8 images (86%). This research 

provides an approach for improved object-based land cover classification accuracies for 

Landsat OLI-8 through image pre-processing, including pansharpening, atmospheric, and 

topographic corrections. Future studies can focus on investigating the transferability and 
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reproducibility of RF results, and the combined effects of pre-processing and segmentation 

quality on the classification accuracy of Landsat land cover classification. 
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Four Decades of Land Cover and Forest 

Connectivity Study in Zambia  

The contents of this chapter have been published as: 

Phiri, D., Morgenroth, J., & Xu, C. (2019). Four decades of land cover and forest connectivity study in Zambia—

An object-based image analysis approach. International Journal of Applied Earth Observation and 

Geoinformation, 79, 97-109. doi: https://doi.org/10.1016/j.jag.2019.03.001                                                                         

4.1 Introduction 

Tropical dry environments are of significant importance to global carbon and biodiversity, but 

are often overlooked compared with tropical humid environments (Ernst et al., 2013; Kalacska 

et al., 2007). Constituting approximately 14% of global forests, tropical dry environments are 

among the areas that are being rapidly transformed by land use and climate change. Although 

previous studies have mapped land cover on regional and global scales (Chen et al., 2015; 

Hansen et al., 2013), land cover dynamics and forest connectivity in these areas are not well 

understood on a national scale because studies are temporally constrained (Cao et al., 2015; 

Mayes et al., 2015). In sub-Saharan Africa, rapidly increasing populations have raised the 

demand for natural resources such as land for both agriculture and settlements (Hansen et al., 

2000). Climate change and the expansion of agricultural and urban land uses have had a 

negative impact on the quality and quantity of other natural land covers such as forests, 

wetlands and waterbodies (Brandt et al., 2018; Dronova et al., 2012). These land use and land 

cover changes affect biodiversity through landscape fragmentation and loss of structural 

connectivity, especially in forest areas (Grech et al., 2018; Piquer-Rodríguez et al., 2015). 

Structural connectivity is the spatial relationship among the elements of the landscape and it is 

a key topic in forest resilience, gene flow and habitat provision (Fagan et al., 2016; Henry et 

al., 2018). Therefore, understanding land cover dynamics and forest connectivity on a national 

scale is critical for land use planning and implementation of conservation strategies (Eberle et 

al., 2017; Haddad et al., 2015). 

National-scale information on the condition and quantity of varying land covers is also 

important for effective policy formulation for the sustainable management of natural resources 

https://doi.org/10.1016/j.jag.2019.03.001
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and understanding the uncertainties resulting from climate change (Dronova, 2015; Uddin et 

al., 2015). However, such critical information on land cover is lacking in most dry tropical sub-

Saharan countries (De Sy et al., 2012; Gilani et al., 2015; Kindu et al., 2013). Ernst et al. (2013) 

reported that most of the data on land cover for Africa is available through the Food and 

Agriculture Organisation (FAO); however, the data lack consistency and are usually spatially 

and temporally incomplete; hence it is of limited use. The lack of basic data such as detailed 

historical land cover maps confirms the reports by the Intergovernmental Panel on Climate 

Change (IPCC), which recognised sub-Saharan African countries such as Zambia as data 

deficit areas (De Sy et al., 2012). This draws attention to the need for national-scale land cover 

information, dating back several decades in order to understand historic land cover changes, 

present land cover status, and to inform future land cover trends.  

Like that of many other sub-Saharan countries, the Zambian landscape has a high rate of 

deforestation, which has led to landscape fragmentation and loss of biodiversity value 

(Syampungani et al., 2016). As a result of this, Zambia was selected as one of the pilot countries 

for the United Nations (UN) reducing emissions from deforestation and forest degradation 

(UN-REDD+) initiative in 2010 (Leventon et al., 2014). In addition to deforestation, forest 

degradation that results from unsustainable utilisation of natural resources is also a major issue 

(Syampungani et al., 2009). In rural areas where shifting cultivation is practised, land is usually 

left fallow after 3–5 years of cultivation, which leads to degraded forests regenerating into 

secondary forests. This process of forest regeneration combined with other restoration 

programmes result in forest recovery in some areas (Müller et al., 2016; Schulz et al., 2010). 

Together, deforestation, forest degradation, and recovery result in a dynamic landscape that 

requires frequent national-scale mapping and description in order to be fully understood 

(Barbosa et al., 2014).  

Advancements in satellite remote-sensing technology in the last four decades make it possible 

to monitor the Earth’s surface with a high degree of certainty (Finer et al., 2018). The 

availability of Landsat imagery coupled with machine-learning analysis presents opportunities 

for large-area land cover mapping (Belgiu & Drăguţ, 2016; Hansen & Thomas., 2012). With 

the introduction of the free-access policy in 2008 (Woodcock et al., 2008) and the long-term 

archive period dating back to 1972, Landsat data has become an important tool for long-term 

land cover monitoring at large spatial extents such as at national or global scales (Hansen & 

Thomas., 2012; Phiri & Morgenroth, 2017). Large-area land cover mapping using Landsat data 
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has also been recognised as an important means for establishing baseline information for 

subsequent reporting and monitoring for climate change programmes. These programmes 

include the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto 

Protocol and the Paris Agreement under the UN-REDD+ initiative (De Sy et al., 2012; Ernst 

et al., 2013).  

Remote sensing studies conducted in Zambia and other countries in sub-Saharan Africa to 

characterise land cover have either been conducted over relatively small extents (Lembani et 

al., 2018; Munyati, 2000; Petit et al., 2001; Simwanda & Murayama, 2017) or short time 

periods (Chomba, 2012; Mukosha, 2008). Consequently, there have been no studies focusing 

on national-scale land cover change in Zambia spanning more than a decade.  Moreover, 

previous studies have focused more on quantifying forest losses, without considering aspects 

of forest connectivity and gains from forest regeneration. Information on forest connectivity 

has the potential to highlight the levels of landscape fragmentation – a major pathway to forest 

degradation. A long-term, national-scale land cover study is needed to describe forest cover 

dynamics and connectivity in Zambia. 

To understand the different land cover dynamics in Zambia, a detailed spatial and multi-

temporal analysis was carried out by quantifying land cover change and forest structural 

connectivity for six discrete time periods spanning the period from 1972 to 2016 using the 

freely available Landsat remotely sensed data. Specifically, this study aimed to: (1) classify the 

area covered by different land covers, (2) determine the long-term land cover dynamics, and 

(3) quantify the forest connectivity by using different landscape metrics. The findings from this 

study will provide important information on the status of forests and land cover in general, 

which is vital for national forest management and forest reference emission level (FREL) 

assessments for the UN-REDD+. 

4.2 Materials and methods 

4.2.1 Study area 

The study area covers the whole of Zambia, which is a sub-Saharan African country located in 

southern Africa between latitude 8° S and 18° S, and longitude 22° E to 34° E. Zambia is a 

landlocked country covering over 752,000 km2 and sharing borders with Tanzania, Malawi, 

Mozambique, Zimbabwe, Angola and the Democratic Republic (DR) of Congo (Figure 4.1). 
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Zambia is characterised by a combination of both flat and mountainous areas, ranging from 

318 m above sea level (asl) in the southern region to 2,299 m asl in the northern region. The 

climate is subtropical with a mean annual rainfall range of 800–1500 mm and mean annual 

temperature ranging from 5°C to 35°C (Phiri et al., 2016). Land covers including dry tropical 

secondary forests, grasslands and wetlands currently dominate the country.  

According to the projections of the 2010 national census, Zambia has a population of  about 

17 million (annual growth rate of 3.2%) with a population density of 17 people km-2,  65% of 

which live in rural areas and 35% in urban areas (Kalaba et al., 2013; Syampungani et al., 

2010). The major socioeconomic activities include agriculture and mining. The Zambian 

landscape is under constant transformation due to shifting agriculture, mining and harvesting 

of forest resources and is ranked as one of the most highly deforested countries in sub-Saharan 

Africa (Chidumayo, 2002, 2013). 

 

Figure 4.1: The location of the study area, Zambia, and the elevation across the country as a hillshade 

model. 



 

70 
 

4.2.2 Data sources 

4.2.2.1 Remotely sensed data 

This study used Landsat scenes with less than 10% cloud cover that were acquired from the 

United States Geological Survey (USGS). Landsat scenes were downloaded to temporally 

correspond to six time steps: 1972, 1984, 1990, 2000, 2008 and 2016. The time steps were 

based on different socioeconomic and political activities that had direct impacts on land cover 

and land use changes. These activities include the change of government in 1991, the closing 

of mines between 1991 and 1996, and the economic recession in 2008 (Chidumayo, 2013). In 

this study, the September scenes for each time step were used because of the stability in the 

vegetation phenology, and high chances of acquiring cloud-free images. The whole study area 

is covered by 50 Landsat scenes (each scene 185 km × 185 km), and thus in total 300 scenes 

were processed for the six time steps. Four types of Landsat images (Table 4.1), including 

multispectral scanner (MSS), thematic mapper (TM), enhanced thematic mapper (ETM+) and 

observation land imager (OLI), were used in this study (see Phiri and Morgenroth (2017) for a 

detailed description of Landsat images). The images used were Landsat Level-1 products, 

which are orthorectified and have high geometric accuracy (Chance et al., 2016; Young et al., 

2017). All the Landsat ETM+ and OLI-8 images were pansharpened to 15 m resolution.  Six 

bands (three visible and three infrared bands) were used for land cover classification on all the 

images, except for Landsat MSS, which has four bands. 

The Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) generated 

by National Aeronautics and Space Administration (NASA), which have a spatial resolution 

of 30 m were used for topographic corrections. The SRTM DEMs were also downloaded from 

the USGS website. The DEMs, together with the Landsat data, were projected to a common 

projected coordinate system, World Geodetic System 84 (WGS 84), Zone 35 south. 

Table 4.1: Description of the Landsat images used in this study 

Landsat 

Images 

Year Number 

Bands used 

Radiometric 

Resolution (bit) 

Spatial 

resolution (m) 

MSS 1972/1984 4 6 60 

TM 1990/2008 6 8 30 

ETM+ 2000 6 9 15 

OLI 2016 6 12 15 

Note: the spatial resolution of the ETM+ and OLI images is 30 m; the images were pansharpened to 15 m. 
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4.2.2.2 Training and validation data 

The training and validation datasets were derived by visual interpretation of the raw images. 

Random points were generated for the whole study area and raw images were used to assign 

land covers classes. Where possible, higher spatial resolution images in Google Earth (by 

employing a time lapse tool) were used to verify the interpreted land cover associated with 

each point, especially for the years after 2000, for which Google Earth has high spatial 

resolution images (e.g. SPOT and DigitalGlobe). The minimum number of sample points per 

land cover class were calculated based on the multinomial probability theory (Congalton & 

Green, 2009; Olofsson et al., 2014). According to the multinomial probability theory, a total of 

5,740 points were randomly generated across the whole country for each time step, thus six 

sets of random points were generated based on the year of analysis. The allocation of points to 

each class was done by using the estimated area of each land cover class from previous land 

cover products. The common practice in training and validation is to allocate more samples to 

training than for validation (Congalton & Green, 2009; Olofsson et al., 2014). The samples 

were randomly allocated into training (70% – 4,020 samples) and validating samples (30% – 

1,720 samples) following a ratio (70%:30%) recommended by Phiri et al. (2018) and 

Gilbertson et al. (2017).  

To understand the land cover transitions between forest and non-forest land covers, nine land 

covers were considered (Table 4.2). The non-forest classes included classes which have direct 

impacts on the forests (e.g. cropland, settlements, and irrigated crops), while three types of 

forests including primary, secondary and plantation forests were considered. Other natural land 

covers including grassland, wetland and water body were also included in the study. Primary 

forest represented undisturbed forests with closed canopy, while secondary forests represented 

forests under transition through disturbance and regeneration. The relationship between 

primary and secondary forest was central to the study because this relationship determines 

forest degradation, loss and recovery. 
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Table 4.2: A brief description of land covers classified in this study. 

Land cover type Brief description 

Primary forest Undisturbed forests with closed canopy 

Secondary forest Disturbed/fragmented forests 

Plantation forest Planted trees covering areas more than 0.5 ha 

Wetland Vegetation near waterbody and usually green, e.g., riparian forests 

Waterbody Large volume of water such as lakes, rivers and dams 

Cropland Open area dominated by  rain-fed agriculture and usually harvested 

Irrigated crops Evergreen crops under irrigation system 

Grassland Characterised by small trees and grass 

Settlement Built-up area in rural and urban areas 

4.2.3 Methods 

The steps used in the Landsat image analysis included pre-processing, segmentation, 

classification, post-classification change detection and forest connectivity analysis. The 

methods are described in detail below. 

4.2.3.1 Pre-processing 

Pre-processing improves the quality of the images by reducing errors associated with the image 

digital numbers (DN) resulting from atmospheric effects and surface irregularities. Previous 

studies have shown that pre-processing through atmospheric and topographic corrections 

improves the accuracy of Landsat imagery classification (Phiri et al., 2018; Vanonckelen et al., 

2013; Young et al., 2017). In this study, atmospheric and topographic corrections were applied 

on each image using (moderate resolution atmospheric transmission) MODTRAN and cosine 

correction by transforming the DN values to the top of atmospheric (TOA) reflectance values. 

To reduce the misalignment between the images (Young et al., 2017), the Landsat MSS that 

were not perfectly aligned to the other images were registered to the 2016 Landsat OLI-8 

images. The Landsat OLI-8 and ETM+ were pansharpened to 15 m spatial resolution using 

panchromatic bands and the Pansharp algorithm in Geomatica PCI software (PCI Geomatics, 

Markham, Canada). Compared with other pansharpening techniques, the Pansharp algorithm 

reduces the errors resulting from image fusion (Gilbertson et al., 2017). The pansharpening 

technique fuses the high-resolution images (panchromatic bands) with low-resolution 

multispectral images in order to create enhanced high-resolution images. The high-resolution 

images preserve the colour from the original images while increasing the spatial resolution, 

and hence improving the classification accuracy (Gilbertson et al., 2017; Phiri et al., 2018). 
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4.2.3.2 Segmentation 

Object-based image analysis (OBIA) groups pixels into homogeneous clusters through a 

process called segmentation, and has advantages over the traditional pixel-based approach 

(Myint et al., 2011). The multiresolution segmentation process in eCognition 9.3 (Trimble 

Navigation Ltd, Sunnyvale, California) was used to segment each Landsat scene 

independently. Multiresolution segmentation requires parameterisation of scale, shape and 

compaction. The scale parameter is critical, as it determines the size of the segments. The 

Estimation of Segmentation Parameter (ESP) tool (Drăguţ et al., 2014; Drǎguţ et al., 2010) was 

used to optimise the scale parameter. Once a scale was optimally selected, the shape and 

compaction parameters were changed iteratively and the resulting segmentations were visually 

assessed. The scale parameter ranged between 6 and 13, while shape and compaction were 

between 0.2 and 0.8 (Table 4.3). A weight of 1 was used for all the bands used in the 

multiresolution segmentation, except for the NIR band, which was assigned a weight of 2 

because it is important for discriminating vegetation (Gilbertson et al., 2017; Phiri et al., 2018).  

Table 4.3: Optimised segmentation parameters used for multiresolution segmentation. 

Landsat Images Bands Used Scale  Shape Compaction 

MSS B, G, R, NIR 6 0.2 0.8 

TM B, G, R, NIR, IR1, IR2 8 0.3 0.7 

ETM+ B, G, R, NIR, IR1, IR2 13 0.2 0.8 

OLI-8 B, G, R, NIR, IR1, IR2 13 0.2 0.8 

4.2.3.3 Classification metrics and random forests classifier 

Different input features were used during classification, including those derived from spectral 

indices such as the normalised difference vegetation index (NDVI), band values (TOA 

reflectance), texture values and geometry (Table 4.4). The features were chosen to separate 

similar land cover classes; for example, NDVI was important in separating vegetated from non-

vegetated areas. Due to the differences in NIR spectral values between cropland and grassland, 

NIR was important in separating the two classes. Textural values are recommended for 

separating land covers with similar reflectance properties but different textural characteristics 

(Aguilar et al., 2016); hence, they were important in separating plantation forests from primary 

and secondary forests. Geometric features such as shape and length were vital in extracting 

classes with distinct shapes such as irrigated crops (Kindu et al., 2013). 
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Random forests (RF), a non-parametric machine-learning classifier, was applied on the 

segmented objects for classification because of its superior performance based on stability and 

efficiency on different sample sizes (Belgiu & Drăguţ, 2016). Higher accuracies have also been 

reported when RF was used for land cover classification than with other classifiers 

(Lebourgeois et al., 2017; Rodriguez-Galiano et al., 2012; Wieland & Pittore, 2014). RF 

generates a multitude of decision trees based on sub-samples (usually one-third of the total 

samples). Unlike traditional decision trees, which depend on a single decision tree, RF depends 

on the average of many decision trees that are generated using sub-samples. Using an RF 

classifier requires the setting of two parameters – number of trees (Ntree) and number of 

features (Mtry). The Ntree was set to 500 and Mtry to the square root of the total number of 

features, as recommended in previous studies (Belgiu & Drăguţ, 2016; Immitzer et al., 2016; 

Wieland & Pittore, 2014). 
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Table 4.4: Description of the features used for classification in the present study. 

Type  of 

Feature 

Name Description References 

Spectral 

information 

Blue, Green, RED, NIR, 

SWIR1, SWIR2 

Mean, maximum difference, inverse 

and standard deviation of the band 

values 

Aguilar et al. (2016) 

Spectral 

indices 

Brightness Brightness = 
(Red+Green+Blue)

3
 Bezryadin et al. (2007); 

Huete et al. (2002) 
Normalised Difference 

Vegetation Index (NDVI) 

NDVI = 
NIR –Red 

NIR +Red
 

 Enhanced Vegetation 

index (EVI) 

EVI = 2.5 *
(NIR−Red)

(NIR+6∗Red−7.5∗Blue+1)
 

 Green Atmospherically 

Resistant Index (GARI) 

GARI =
NIR –[Green – 0.7(Blue –Red)] 

NIR +[Green – 0.7(Blue –Red)]
 Gitelson (1998) 

 Leaf Area Index (LAI) LAI = (3.618*EVI-0.118) Atzberger et al. (2015) 

  Mean visibility (MV) 
MV =√

Blue+Green+Red

3
 

 Visible Atmospherically 

Resistant Index (VARI) 

VAR = 
Green−Red

Green+Red−Blue
 Gitelson et al. (2002) 

 Soil adjacent total 

vegetation index 

(SATVI) 

SATVI = 
SWIR−Red

SWIR+Red
 (1+0.5)-

SWIR2

2
 

 Soil Adjusted Vegetation 

Index (SAVI) 

SAVI = 
(NIR−Red)

(NIR+Red)
(1+L); L = 0.5 

 Green Normalised 

Difference Vegetation 

Index (GNDVI) 

GNDVI = 
NIR –Green 

NIR +Green
 

 Simple Ratio (SR) 

 

SR =
NIR

Red
 Birth and McVey (1968) 

 Burn Area Index (BAI) 

 

BAI = 
1

(0.1−Red)2+(0.06−NIR)2 Chuvieco et al. (2002)  

 Difference Vegetation 

Index (DVI) 

DVI = NIR-Red Tucker (1979) 

 Normalised Burn Ratio 

(NBR) 

NBR = 
(NIR−SWIR)

(NIR−SWIR)
 Key and Benson (2005)  

 Normalised Ratio 

Vegetation Index (NRVI) 

NRVI =
RVI−1

RVI+1
 Silleos et al. (2006) 

Textural 

features 

GLCM  Homogeneity, 

GLCM Entropy, GLCM 

Agular second moment 

GLCM  based on standard 

deviation, mean values of bands and 

indices 

Haralick and 

Shanmugam (1973) 

Geometric 

features 

Shape, width, area and 

length 

 Extent and characteristics of the 

segmented features 

Wieland and Pittore 

(2014) 
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4.2.3.4 Accuracy assessment 

The accuracy assessment of all six (1972, 1984, 1990, 2000, 2008 and 2016) classified land 

cover maps was performed using the validation samples (30% of all the samples) derived from 

visual assessment of raw images, as indicated in Section 4.2.2.2. Classification accuracy for 

each map was calculated using a confusion matrix by matching the validation samples and the 

thematic maps, as recommended by Congalton and Green (2009). Statistics such as overall, 

producer’s and user’s accuracies were used to assess the classification accuracy. The overall 

accuracy was reported in order to determine the accuracy of the overall classification. 

Producer’s and user’s accuracies were also used to determine the class-level accuracy. In order 

to establish the reliability of the accuracy, the confidence interval for the overall accuracy was 

also calculated using Equation 4.1 (Congalton & Green, 2009):  

 

            CI = p ± (sZ1-α +   
1

2𝑛
)                  Equation 4.1 

where p is the user’s, producer’s or overall accuracy, s is the standard deviation, Z1-α is the 

two-tailed normal score, and n is the total number of samples. 

4.2.4 Change detection 

To establish the magnitude of change between the six classification steps and for the whole 

period, 1972 to 2016, post-classification change detection was used by employing overlay tools 

under spatial analysis in ArcMap 10.4.1 (ESRI, 2016). Post-classification change detection is 

a comparative analysis that involves independently produced thematic maps (Schulz et al., 

2010). This process involves combining the initial and the final map by taking into account the 

land cover classes assigned at each stage. Overlay tools including dissolving, merging and 

intersection were used to combine the maps and to derive important change information 

including the ‘to and from’ change direction. The changes at each particular stage (i.e. 1972–

1984; 1984–1990; 1990–200; 2000–2008; and 2008–2016) were first calculated, and then the 

change for the whole period (1972–2016) was established. Area and percentage change for 

each land cover were determined at each particular time step. To compare land cover 

percentages, especially for land covers with small areas (e.g. plantation forest, irrigated crops), 

the cover percentages were presented both as absolute values and log base 10 (log10) 

transformations. Because log10 transformation for land cover percentages of less than 1% 

resulted in a negative value, 1 was added to all land cover percentages (Equation 4.2): 
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                        LCt = log10(LCorig + 1)                                                    Equation 4.2 

where LCt is the transformed land cover percentage and LCorig is the untransformed land cover 

percentage. The rate of change for land covers was calculated using Equation 4.3 (Gilani et al., 

2015; Puyravaud, 2003): 

                        r = ( 
1

𝑡2−𝑡1
) x ln (

𝐴1

𝐴2
)                    Equation 4.3  

where r is the rate of change, t1 and t2 are the years at the start (1) and the end (2) of the 

assessment, and A1 and A2 are the areas at the beginning (1) and at the end (2) of the assessment 

period. Positive values show an increase in land cover, while negative values show a decrease 

in land cover. Wall-to-wall land cover maps were also created for each time step to visualise 

the distribution of land cover changes across all of Zambia.  

Identification of the different stages of forest transition was based on the land cover change 

analysis. Five attributes of land cover transition including deforestation, forest degradation, 

afforestation, regeneration (regrowth) and forest recovery were evaluated (Chidumayo, 2013; 

McNicol et al., 2018). Deforestation was considered to be the transition from forests to non-

forests (GOFC-GOLD, 2009; McNicol et al., 2018); while degradation indicated changes from 

primary forest to secondary forest (Chidumayo, 2013). Afforestation was defined as the change 

from non-forests to forests, and regeneration indicated the conversion of previously forested 

land to secondary forest and the growth of secondary forest to primary forest (Chidumayo, 

1989). Finally, forest recovery comprised both afforestation and regeneration (Chidumayo, 

2013; McNicol et al., 2018; Syampungani et al., 2016).  

4.2.5 Forest connectivity 

Forest connectivity was analysed using class-level landscape metrics based on patches from 

three forest classes: primary, secondary and plantation forest.  Patches were defined as clusters 

of interconnected cells based on the 8-neighbour rule (McGarigal et al., 2012). The metrics 

were analysed as individual forest types and combined (all forests). The analysis was done 

using a spatial pattern analysis for categorical maps software – FRAGSTATS 4.1 (McGarigal 

et al., 2012).  
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Landscape metrics that best describe proximity and fragmentation were used to understand 

connectivity.  The metrics calculated were Euclidean nearest neighbour distance (ENN), 

number of patches (NP), and connectivity (connectance) index (CI) (Table 4.5).  

Table 4.5: The three landscape metrics used to analyse forest connectivity. 

Landscape Indices Description Units References 

Total number of patches 

(NP) 

Count of patches  Counts Haddad et al. (2015); Nyamugama 

and Kakembo (2015) 

Euclidean nearest neighbour 

(ENN) 

Direct distance of patches 

to neighbouring patches 

Meters Echeverria et al. (2006); Haddad 

et al. (2015)  

Connectivity index (CI) Linkage of patches to other 

adjacent patches 

Percentage Eberle et al. (2017); Tischendorf 

and Fahrig (2000) 

 

ENN describes the proximity of different patches from neighbouring patches. NP describes the 

level of forest connectivity based on the number of patches for a specific classification time. 

CI presents probabilistic forest connectivity; it ranges from 0 to 1 or can be expressed as a 

percentage. CI models the relationship between patches by conducting a network analysis 

(McGarigal et al., 2012), and is calculated as indicated in Equation 4.4: 

                                          CI = [   
∑  𝑐𝑖𝑗𝑘

𝑛
𝑗≠𝑘

𝑛i   (𝑛i−1)

2

     ] (100)                   Equation 4.4  

where CI is connectivity index, Cijk is the connection between patch j and k of type i, and ni is 

the number of patches for a specific class. 

To establish the statistical significance and differences among the six classification periods, 

analysis of variance (ANOVA) was used for CI and ENN, as they are continuous data. The 

Bonferroni test (Bonferroni, 1936), a post hoc analysis, was also used to identify the years with 

different patterns. For NP, a Kruskal–Wallis non-parametric test (Kruskal, 1953) with Dunn's 

post hoc test (Dunn, 1961) was used because NP is count data, which did not satisfy the 

normality of residuals assumption. All the statistical analyses were conducted in R statistical 

software (R Core Team, 2017). 
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4.3 Results 

4.3.1 Land cover classification 

Figure 4.2 shows wall-to-wall land cover maps for Zambia for 1972, 1984, 1990, 2000, 2008 

and 2016. The overall classification accuracy for the six time steps ranged from 79% to 86%, 

and the 95% confidence interval for the overall accuracies ranged between ±3.31% and ±3.79% 

(Table 3). The highest overall accuracy (86%) was from the 2016 map, while the lowest 

accuracy (79%) was from the 1972 map. It appears that the levels of accuracy were associated 

with the differences in spatial, spectral and radiometric resolution of the images used, because 

the images with better properties had higher accuracies. Thus, the 60 m MSS for 1972 and 1984 

had lower accuracies than the 30 m TM images for 1990, which had a lower overall accuracy 

than the 15 m ETM+ and OLI-8 images.  
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Figure 4.2: Thematic land cover maps for Zambia for the six time steps between 1972 and 2016. 

The individual land cover accuracies (producer’s and user’s accuracies) were between 66% and 

100%. Irrigated crops and waterbodies had consistently high classification accuracies of nearly 

100% across all the maps. Primary and secondary forest had some of the lowest (66%–67%) 

user’s and producer’s accuracies of the land cover classes, especially on the 1972 Landsat MSS 

images (Table 4.6). 
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Table 4.6: Overall, user’s and producer’s accuracy (in %) for the land cover classification with 

confidence intervals. 

 1972 1984 1990 2000 2008 2016 

Land cover PA  UA PA  UA PA  UA PA UA PA UA PA  UA 

Primary forest 66 85 78 79 88 87 88 88 81 80 84 89 

Secondary forest 74 70 78 67 76 82 82 83 79 71 85 80 

Plantation forest 85 100 74 78 88 88 92 100 81 84 83 100 

Wetland 88 73 90 80 79 82 79 88 85 85 84 85 

Waterbody 100 100 86 98 93 95 93 99 100 98 100 98 

Cropland 88 78 74 82 79 71 83 84 81 81 84 84 

Irrigated crops 91 100 91 100 83 94 100 100 98 94 100 97 

Grassland 86 77 86 80 79 77 86 83 76 83 85 87 

Settlement 76 92 77 98 75 76 78 80 85 82 93 83 

Overall accuracy 79(±3.79) 80(±3.74) 82(±3.63) 85(±3.38) 81(±3.70) 86(±3.31) 

4.3.2 Changes in land cover composition 

Throughout the classification period, all the land cover classes were present; however, the area 

for individual land covers changed over time (Figure 4.3). Between 1972 and 1990, primary 

forest was the dominant land cover with 48% (36,335,000 ha) which changed to 41% 

(32,647,000 ha) before declining to 16% (12,434,000 ha) in 2016. Secondary forest had the 

highest coverage between 2000 and 2016, covering 35%–38% of the country. Between 1990 

and 2000, a drastic change for primary and secondary forest was observed, with primary forest 

declining by 17% and secondary forest increasing by 14%. Although plantation forest and 

irrigated crops experienced some changes, they had the smallest (>1%) area for all the years. 

Settlement area consistently increased from 0.54% (407,000 ha) in 1972 to 1.03% (773,000 ha) 

in 2016.  Cropland increased from 6.16% in 1972 to 11.88% in 2016. Waterbody remained 

almost the same (1.70%–1.80%) across the classification periods. By 2016, grassland increased 

by 4%, while wetland declined by 1%. 
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Figure 4.3: Land cover changes for nine different land covers and six time steps between 1972 and 2016 

(A). Log-transformed values allow for changes to be observed for land cover types with relatively small 

total areas (e.g. plantation forest, irrigated crops) (B). Zambia’s total area is 75.29 million ha. Error bars 

indicate confidence intervals. 

4.3.3 Rates of land cover change 

Between 1972 and 2016, 62.74% (47 million ha) of Zambia’s total land area experienced land 

cover change. Primary forest showed the largest decline with an annual rate of −2.48% yr−1 

(see Appendix B, Table B1). Wetland and plantation forest both declined at an annual rate of 
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−0.50% yr−1. Although irrigated crops had the smallest percentage area of the total national 

area (>1% yr−1), it had the highest positive rate of change of 3.20% yr−1 as it increased from 

13,000 ha in 1972 to 51,000 ha in 2016. Secondary forest increased from 11,975,000 ha 

(15.80%) in 1972 to 28,993,000 ha (38.50%) in 2016 with an annual rate of change of 2.01%. 

Both cropland and settlement area increased at an annual rate of 1.50% yr−1, with cropland 

increasing from 4,640,000 ha (6%) to 8,944,000 (12%) and settlement from 0.50% to 

1.02% yr−1. Waterbodies had the lowest rate of change of 0.20% and changed from 

3,753,000 ha (1.70%) in 1972 to 1,366,000 ha (1.80%) in 2016. The annual rates of change 

varied among the change analysis period with the period between 1990 and 2008 having the 

highest and the lowest rates for most land covers. For example, during this period, secondary 

forest and irrigated crops had the highest rates, while primary and plantation forests had the 

lowest rates.  

4.3.4 Land cover transitions 

Transitions between land cover classes, between 1972 and 2016, are summarised in Table 4.7. 

Only 30% (9,557,800 ha) of primary forests remained unchanged during the study period, with 

major transitions to secondary forest (net loss = 14,697,230 ha), grassland (net loss = 5,137,730 

ha), and cropland (net loss = 2,873,250 ha). Meanwhile 46% (5,621,960 ha) of secondary 

forests in 1972 remained unchanged by 2016. In contrast to primary forests that only 

experienced net losses, secondary forests showed net increases against many other land covers, 

including primary forest, grassland (net gain = 1,616,810 ha), and wetlands (net gain = 929,770 

ha). The largest net losses of secondary forest were to cropland (469,890 ha) and settlements 

(124,790 ha) while some areas of secondary forest also reverted to primary forests 

(1,593,270 ha). Plantation forests were mainly established from the primary forests (net gain = 

10,120 ha) and lost most of their area to secondary forest (net loss = 8,080 ha) and cropland 

(net loss = 3,750 ha). 
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Table 4.7: Land cover change transitions between 1972 and 2016. Values are in 000s of hectares. 

2016 

  

                    TO 

FROM 

Primary 

Forest 

Secondary 

Forest 

Plantation 

Forest 

Wetland 

 

Water-

body 

Cropland 

 

Irrigated 

Crops 

Grassland 

 

Settlement 

 

Total Area 

     (1972) 

 

Primary Forest 9,557.80 16,290.50 12.40 1,130.31 68.40 3,045.08 17.20 5,929.60 284.24 36,335.52 

Secondary Forest 1,593.27 5,621.96 1.59 233.74 30.96 2,035.97 9.28 2,339.21 259.80 12,125.78 

Plantation Forest 2.23 9.67 0.80 0.88 0.00 3.92 0.01 3.06 0.20 20.78 

Wetland 273.31 1,163.51 1.16 1,021.54 83.05 208.72 3.54 986.82 12.21 3,753.85 

Water Body 9.77 41.83 - 48.71 1,097.22 10.23 0.75 38.14 2.79 1,249.44 

Cropland 171.83 1,566.08 0.17 60.42 13.55 1,450.60 9.93 1,284.07 83.49 4,640.15 

Irrigated Crops 0.22 3.08 - 0.28 0.21 5.23 1.64 2.23 0.14 13.03 

Grassland 791.87 3,956.02 0.51 508.14 70.60 2,071.30 7.65 9,258.28 83.40 16,747.77 

Settlement 33.59 135.01 0.18 7.35 2.79 113.18 1.01 67.37 46.29 406.77 

 

Total Area (2016) 12,433.89 28,787.67 16.80 3,011.36 1,366.79 8,944.22 51.02 19,908.78 772.56 75,293.09 

 

Note that the row total sums up the amount of each land cover in the initial years (1972), while the column total sums up the amount of land cover in the final year 2016. The 

figures in bold on the diagonal indicate the unchanged area and the other numbers indicate the transitions. For example, the second value in the first column (1,593.27) indicates 

the amount of secondary forest in 1972 that was converted to primary forest by 2016. 

1
9

7
2
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4.3.4.1 Deforestation and forest degradation 

Assessments of deforestation and degradation were based on the losses for the three forest 

types. For primary and plantation forest, the losses included deforestation and degradation, 

while for secondary forests the losses included deforestation and regeneration to primary forest 

(Figure 4.4). Deforestation rates for all the forest types ranged from −0.54 to −3.05% yr−1 

(83,000 to 453,000 ha yr−1). Primary forest experienced high levels of deforestation after 1990, 

and deforestation for secondary forest also increased 1990. The rates of forest degradation 

(conversion from primary to secondary forest) increased from −1% yr−1 to −2.23% yr−1 

between 1990 and 2000.  

 

Figure 4.4: Log-transformed areas for losses (left) and gains (right) for each land cover type for the six 

change analysis periods between 1972 and 2016. Log base 10 transformation was used on land cover 

areas (000 ha) to show the changes in small land covers. 

4.3.4.2 Afforestation, regeneration and forest recovery 

 Afforestation and regeneration determined the gains on all the forest types, except for 

secondary forest, which was based on afforestation and degradation from primary forest. In 

this study, regeneration was defined as the change to secondary forest from areas that were 

once forests, while afforestation is the establishment of forests on areas that were not forests in 

the past. The conversion rates of non-forested areas to forests (afforestation) were between 

0.01% to 1.18% yr−1. Cropland (1.73 million ha), wetland (1.42 million ha) and grassland 
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(4.75 million ha) were the major contributors towards afforestation. The highest rates of 

afforestation were between 1990 and 2008 with the lowest rates between 2008 and 2016 

(Figure 4.4). Forest regeneration ranged between 0.02% and 0.16% yr−1 with the highest rates 

between 1984 and 1990. 

Forest recovery (afforestation and regeneration) rates ranged between 0.03% to 1.34% yr−1 

(53,000 to 242,000 ha yr−1) and resulted mainly from the transition of other land covers to 

secondary forest, regrowth to primary forest and replanting of harvested plantation areas. The 

forest recovery rate for the whole period was 0.25% yr−1 with the highest recovery of 

1.07% yr−1 for the period 1984 to 1990. During the entire period, 8.15 million ha were 

converted from other land covers back to forests (plantation forest = 20,170 ha, primary 

forest = 1.28 million ha, secondary forest = 6.86 million ha). 

4.3.5 Forest connectivity 

Figure 4.5 presents the connectivity index at each classification point for primary, secondary 

and plantation forests, and a combination of the three forest types (all forests). The connectivity 

for all forests was higher than the connectivity of primary, secondary and plantation forest 

throughout the study period (1972–2016). The connectivity for all forests was 87% in 1972 and 

declined to 65% in 2016.  During the initial periods (1972–1984 and 1984–1990), primary 

forest was more aggregated, resulting in all forests having high connectivity. The connectivity 

for primary forest declined throughout the whole period from 79% in 1972 to 13% in 2016, 

with a sharp decrease observed between 1990 and 2016. The connectivity for secondary forest 

increased from 16% in 1972 to 65% in 2000 before declining to 54% in 2016. A similar pattern 

was noticed for plantation forests, with an increase in connectivity from 5% in 1972 to 56% in 

2000 before declining to 34% in 2016. The changes in the levels of connectivity for the 

classification stages was statistically different (p-value < 0.05) for the individual forests and 

all forests, especially on connectivity before and after 1990 (Figure 4.5).  
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Figure 4.5: The connectivity index for the forest types (primary, secondary, plantation and all forests) 

for six time steps between 1972 and 2016. The letters adjacent to the symbols indicate statistical 

differences in connectivity within each forest type.  

The forest connectivity was also explained indirectly by using the number of patches (NP) and 

Euclidean nearest neighbour (ENN) distance. An increase in NP indicated a decline in forest 

connectivity and an increase in fragmentation. However, an increase in NP might also indicate 

a recovery of forests from other land covers. All forests showed an increase in NP throughout 

the classification period, except for a decline in 1990 (see Appendix B, Table B2). The NP for 

primary forest increased between 1972 (36 million) and 1984 (41 million) and declined to 

27 million in 2016. For secondary forest, the NP increased from 32 million in 1972 to 

69 million in 2016; however, a decrease was noticed in 2008. For plantation forest, the number 

of patches increased from 56,000 in 1972 to 196,000 in 2000 before declining to 55,000 in 

2016. NP showed statistical differences (p-value < 0.05) over time for primary, secondary and 

plantation forest, especially for 1990–2000. The minimum distance between patches, ENN, 

was significantly different (p-value < 0.05) for the six classification stages for all the forest 

types (see Appendix B, Table B2). The ENN for all forests increased throughout the 
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classification from 1972 to 2016, while the ENN for secondary forest declined from 951 m in 

1972 to 705 m in 2016.  

4.4 Discussion 

4.4.1 Land cover dynamics 

The results from this study show that the wall-to-wall land cover maps for Zambia for the six 

time steps between 1972 and 2016 were produced with high accuracies (79% to 86%). Similar 

high accuracies (75%–87%) were attained by Gilani et al. (2015) and Kindu et al. (2013) on 

Landsat imagery in Bhutan and Ethiopia respectively. In the present study, the overall 

accuracies for 2000 and 2016 exceeded those for other years; this has previously been attributed 

to the higher spatial, spectral and radiometric resolution of the pansharpened OLI-8 and ETM+ 

imagery (Phiri et al., 2018; Poursanidis et al., 2015). Pansharpening only improves 

classification accuracy and has no direct impact on change detection apart from providing 

accurate input for change detection, especially that post-classification change detection was 

employed.  The lower accuracy of 79% indicates the limitation of the Landsat MSS, which has 

a spatial resolution of 60 m; however, with an upper confidence interval of 3.79%, the 

accuracies were ideal for further analysis such as change detection. Compared to the available 

global and regional land cover maps (Chen et al., 2015; Hansen et al., 2013), this study yields 

greater accuracies, covers a long temporal record and employs relatively high-resolution 

datasets. Therefore, land cover maps from the present study are better suited than existing 

global or regional maps for national-level applications in Zambia, including forest 

management, land use planning and climate change programmes. 

The findings in this study clearly show marked land cover change in Zambia between 1972 and 

2016 with 62.74% of the total area experiencing change. The changes were dominated by the 

transition from primary to secondary forest, which is mainly attributed to degradation of intact 

forests resulting from the ever-increasing population, small-scale farming and unsustainable 

harvesting of forest products (Chomba, 2012; Mayes et al., 2015; Syampungani et al., 2009). 

This transition has previously been shown to be associated with habitat and biodiversity loss, 

extinction of threatened species and loss of carbon sinks (Kalacska et al., 2007; Müller et al., 

2016). While causes of land cover transitions were not explored, it is possible that an increase 

in population, from 4 million inhabitants in 1970 to 17 million in 2017 (Simwanda & 

Murayama, 2017), contributed to primary forest conversion to other land cover types. Ernst et 
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al. (2013) reported similar patterns in the decline of primary forest of the moist environment 

of the Congo basin, which was mainly influenced by the increasing population. 

The land cover dynamics were also characterised by increasing rates of deforestation and low 

rates of forest recovery. These results are in line with McNicol et al. (2018) who indicated that 

the rates of deforestation have remained high in sub-Saharan Africa. The rates of forest change 

here are higher than those reported (−0.3% yr−1) by the United Nations Food and Agriculture 

Organisation (FAO) and are comparable to the rates of other countries in the region (e.g. 

Zimbabwe = −2.1% yr−1, Namibia = −1.0% yr−1, Uganda = −5.5% yr−1) (FAO, 2015). The high 

rates reported in this study are because they were directly calculated using remote sensing 

change analysis, while those reported by FAO are usually extrapolated or based on prediction 

from baseline information (FAO, 2015; Morales-Hidalgo et al., 2015). 

The estimates from this study are important for both FAO global forest assessment and UN-

REDD+ programme because of three major reasons: (1) the long historical record of over four 

decades, (2) the largely ignored aspect of secondary forest and forest recovery, and (3) forest 

degradation, which has been assessed through a different approach of forest connectivity. 

MacDicken (2015) and Morales-Hidalgo et al. (2015) indicated the challenges associated with 

global forest assessment information, including incomplete reporting and inconsistency. The 

estimates of forest cover and other transitions (e.g. recovery, regeneration and degradation) in 

this study are consistent across different periods and hence the information is comparable. The 

estimates are important for updating the existing information through the forthcoming 2020 

FAO Global Forest Resources Assessment Report and are applicable in exploring global 

drivers of change (e.g. urbanisation and population) and in the assessment of global carbon 

emission levels (Keenan et al., 2015; Morales-Hidalgo et al., 2015). The present study also 

contributes to the monitoring of forest conditions (e.g. forest degradation) and assessing carbon 

stocks under the UN-REDD+ starting from the 1990 benchmarking year. Mitchell et al. (2017) 

reported that assessing deforestation is much easier than assessing forest degradation in carbon 

assessment. Degradation has been addressed here by quantifying the transition from primary 

to secondary forests. Considering that the amount of carbon held by different forests types vary, 

the estimations of the three forest types in this study is important for stratification and carbon 

estimates in the specific forest types. 

The decrease in primary forest cover occurred as other covers such as cropland, settlements, 

irrigated crops, and plantation forests increased their cover (and area). The increases in the 
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latter land covers were probably necessary to support Zambia’s increasing population. Previous 

studies have similarly noted the inverse relationship between forest cover, and ‘anthropogenic’ 

land covers (Chomba, 2012; Mayes et al., 2015; Syampungani et al., 2009). Specifically, the 

demand for land for agriculture and urban settlements has been found to be a major cause of 

significant deforestation (Reddy et al., 2016; Schulz et al., 2010). Changes in plantation forest 

cover were volatile during the period 1972–2016. Plantation forest cover increased between 

1972 and 1990 because of the establishment of new plantations, but then declined sharply 

between 2000 and 2008. The continuous decline in plantation forests was mainly due to the 

low rates in replanting and establishment of new plantations, which did not match the levels of 

forest harvesting driven by the demands from the mines and construction industry (Ng'andwe 

et al., 2015). The loss in plantation forest cover is temporary, and the area is expected to 

increase in the future due to plans to establish new forest plantations (Ng'andwe et al., 2015; 

Vinya, 2012). 

An interesting result was the transition of other land covers to primary or secondary forest. 

This process is critical for biodiversity conservation, because it indicates forest recovery due 

to regeneration and reversion of abandoned land covers, specifically agricultural land, to forest. 

Barbosa et al. (2014) indicated that secondary forests play an important role in climate change 

mitigation because they act as carbon sinks by storing significant amounts of carbon. Although 

the role of secondary forest in forest recovery after disturbance has long been acknowledged 

based on ground monitoring (Buttrick, 1917; Chidumayo, 2013), this had not been addressed 

using remotely sensed data in many dry tropical countries including Zambia. This is evident 

by the lack of information on primary, secondary and regenerating forest in the 2015 Global 

Forests Assessment Report (FAO, 2015). Global studies such as that by Hansen et al. (2013) 

did not fully address forest recovery and indicated that there was no forest recovery in Zambia. 

However, this study disagrees with these findings and quantifies Zambian forest recovery, 

which will contribute to policy formulation on afforestation and ecosystem restoration.  

4.4.2 Forest connectivity 

Assessing forest connectivity at a national scale provides critical information for monitoring 

forest degradation, biodiversity conservation and planning for forest management (Willcock et 

al., 2016; Zemanova et al., 2017). The results here indicate that the connectivity for all forests 

decreased by 22% between 1972 and 2016, suggesting that forests in general are becoming 

progressively degraded and fragmented. Similar results were reported by Echeverria et al. 
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(2006) in the dry tropical landscape of Chile in which the connectivity decreased by 35% 

between 1985 and 2013; however, that study was on a smaller scale. Many previous studies 

(Ernst et al., 2013; Fagan et al., 2016; Haddad et al., 2015) have attributed decreases in forest 

connectivity to changes in land use practices, especially agricultural activities and the 

construction of settlements, roads or railways in forests. These factors also apply to Zambia. 

Since 1990, many forested areas have been degraded or deforested to make way for agriculture 

and infrastructure development, resulting in high levels of fragmentation and low levels of 

connectivity for the remaining forests (Chidumayo, 2013; Mayes et al., 2015). 

The connectivity for primary forest declined over the study period, while secondary and 

plantation forest connectivity increased. The increase in the connectivity for secondary forest 

was driven by the transition from primary to secondary forest. Nyamugama and Kakembo 

(2015) reported similar results in South Africa where the connectivity for intact forests 

declined, while that for degraded areas increased. Establishment of new plantation between 

1984 and 2000 explains the increase in connectivity for plantation forest. Many studies have 

reported that forest structural connectivity and fragmentation are greatly influenced by patch 

isolation (Eberle et al., 2017; Nyamugama & Kakembo, 2015; Tischendorf & Fahrig, 2000). 

This implies that patches that are isolated have a greater chance of being completely 

transformed into other land covers and hence reduce forest connectivity.  

The establishment of new forest plantations and implementation of conservation programmes 

(e.g. UN-REDD+) are likely to affect Zambia’s forest connectivity in the future (De Sy et al., 

2012; Vinya, 2012). In addition, sustainable methods of agriculture, which promote 

biodiversity conservation, are being promoted through agroforestry and conservation 

agriculture, and hence this study will act as a reference point for monitoring the impact of these 

conservation programmes (Syampungani et al., 2010). Going forward, these practices are likely 

to improve forest connectivity across the landscape of Zambia. 

4.4.3 Implications and limitations of the study 

This study presents consistent information for forest monitoring and land use planning in 

Zambia. The information on forest dynamics informs decision makers on where to apply 

effective forest management programmes, and this information will act as reference levels for 

future forest assessments. The results present opportunities to consolidate information in the 

forthcoming FAO Global Forest Assessment Report for 2020, especially on the area covered 
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by primary and secondary forests, which were not reported in 2015 (FAO, 2015). The 

information will also play a vital role in UNFCCC climate change programmes such as the 

Paris Agreement and Kyoto Protocol under the monitoring, reporting and verification (MRV) 

for the UN-REDD+. Specifically, the information will be useful for benchmarking and for 

estimating carbon credits in line with the IPCC Good Practices Guidelines (Birdsey et al., 2013; 

GOFC-GOLD, 2009). The forest connectivity results will play an important role in monitoring 

the success of current and future reforestation and ecosystem restoration programmes. 

The results presented should be interpreted within the context of the study’s limitations. Firstly, 

the classification accuracy was dependent upon the quality of the input images, which were 

different across the four types of Landsat images. Since the image quality and properties 

differed across the six time steps because of the different satellite sensors used, the levels of 

accuracy and certainty of the results from these images vary. The variation in the levels of 

accuracy might also affect the results for forest connectivity. Secondly, the land cover and area 

values reported are snapshots in time. They describe the land cover in Zambia for six discrete 

time steps over the past 45 years. Consequently, all the land cover changes within each time 

step cannot be described. Capturing the nuance of ephemeral land cover changes would require 

increasing the number of time steps. Finally, though some drivers of land cover change were 

discussed above (e.g. population growth), it is acknowledged that numerous other factors 

contribute to land cover dynamics (Kim et al., 2014; Serneels & Lambin, 2001). Previous 

studies grouped the factors (drivers) of land cover change into direct and indirect factors 

(Chidumayo, 1989; Ernst et al., 2013; Vinya, 2012). The indirect factors include government 

policies, social-economic conditions, demographic structures and environmental factors, while 

direct factors include agriculture expansion, infrastructure development, forest resource 

extraction and fire. A future study to comprehensively understand the drivers of change for the 

land cover dynamics described in the present study could inform Zambia’s land use planning 

and policy.  

4.5 Conclusions 

For the first time, the empirical results of a nationwide land cover dynamics and forest 

connectivity analysis are presented for Zambia, a sub-Saharan country. This study fills the 

information gaps in the nationwide forest losses and recovery, which have been lacking for the 

dry tropical environment, especially on a long temporal scale. These findings showed 

increasing rates of forest decline and low levels of forest recovery. This study also reported the 
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decline in primary forest and the increase in secondary forests, which have come to dominate 

the landscape – a sign of both forest degradation and recovery. Other land covers such as 

cropland, grassland and settlements increased over the study period, while wetland and 

plantation forest declined.  

The annual rates of change of different land covers varied during the five periods of change 

analysis with most of the land covers having high rates of change between 1990 and 2008. 

Overall, forest connectivity declined by 22% between 1972 and 2016, mainly driven by a 

decrease in primary forest connectivity. In contrast, the connectivity for secondary and 

plantation forest increased due to primary forest degradation to secondary forest, reversion of 

abandoned agricultural land to secondary forest, and establishment of new plantation forests. 

The land cover estimates produced here are critical for national policies including sustainable 

forest management and climate change mitigation programmes such as the UN-REDD+. This 

information will also be useful to the Zambia Forest Department for the forthcoming 2020 

Global Forest Resources Assessment Report. Furthermore, the information from this study is 

vital for benchmarking and estimating carbon credits under the UN-REDD+ for the period 

1990 to 2016. 
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Modelling Factors of Long-term Land Cover 

Changes in Zambia: 1972-2016 

The contents of this chapter have been published as: 

Phiri, D., Morgenroth, J., & Xu, C. (2019). Long-term land cover change in Zambia: An assessment of driving 

factors. Science of The Total Environment, 134206. doi:https://doi.org/10.1016/j.scitotenv.2019.134206 

5.1 Introduction 

Land cover change (LCC) has significant implications for global ecosystem diversity and 

function and is closely related to climate change (Foley et al., 2005; Hansen et al., 2013; Kim 

et al., 2014). The impacts of LCC on the environment are visible through ecosystem 

transformation, loss of biological resources and changes in regional climate (McDowell et al., 

2015; Schwantes et al., 2017). Sub-Saharan Africa is particularly vulnerable to LCC and 

climate change due to a lack of adaptation measures and increasing human activities that are 

reducing carbon sinks (Bryan et al., 2009; Challinor et al., 2007; Syampungani et al., 2010). 

Compared to other parts of the world (Ernst et al., 2013; Mayes et al., 2015), sub-Saharan 

Africa is under-represented in studies of LCC due to a lack of national-level monitoring 

programmes (De Sy et al., 2012; Mayes et al., 2015; Schneibel et al., 2016). In Zambia, a sub-

Saharan country, rapid land cover changes are mainly driven by deforestation through the 

conversion of forests to non-forest covers (e.g. cropland and settlements) (Lembani et al., 2018; 

Phiri et al., 2019a; Simwanda & Murayama, 2017). Deforestation is a particularly important 

LCC, as the practice has been predicted to contribute to between 17% and  25% of global 

atmospheric carbon emissions, a principal factor leading to global warming (Baccini et al., 

2012; Van Khuc et al., 2018). Identifying the factors that lead to LCC may help to limit these 

processes or, at least, minimise the negative consequences of LCC. 

There are several factors associated with LCC, broadly classified as direct and indirect factors, 

especially with respect to forest changes (Austin et al., 2019; Kleemann et al., 2017; Van Khuc 

et al., 2018). Direct factors (e.g. agricultural expansion, logging, and mining) are human 

activities at a local scale, which originate from intended land use and have immediate impacts 

on land cover. Indirect factors are mainly human activities (e.g. population dynamics, policies, 

https://doi.org/10.1016/j.scitotenv.2019.134206
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poverty) and natural processes (e.g. climate) that influence the direct factors (Quintero-Gallego 

et al., 2018; Weatherley-Singh & Gupta, 2015). The impacts of these factors are highly region 

specific; therefore, including a spatial context to the factors of LCC is critical (Shu et al., 2014; 

Van Khuc et al., 2018).  

Evaluating the factors that influence LCC is the first step towards creating effective 

mechanisms to change the negative effects of LCC (Shu et al., 2014). Identifying causes of 

LCC is also crucial for developing and implementing policies that aim to alter current LCC 

scenarios at a national scale (Hosonuma et al., 2012; Kim et al., 2014). For example, 

understanding the driving factors of LCC at a national level is important for climate change 

mitigation  programmes under the United Nations Framework Convention on Climate Change 

(UNFCCC), specifically reducing emissions from deforestation and forest degradation 

(REDD+) (Hosonuma et al., 2012).  

Due to the lack of effective land use policies, landscapes in many sub-Saharan Africa countries 

like Zambia have experienced rapid changes, mainly through deforestation and forest 

degradation (Brandt et al., 2018; Bryan et al., 2009; Conway & Schipper, 2011). To reduce 

forest losses and degradation, Zambia was selected as one of the pilot countries for the REDD+ 

programme in 2010. Thus, identifying the factors contributing to LCC (e.g. loss, reversion and 

recovery of forest cover) is important for developing effective measures for climate change 

mitigation. Here, forest reversion is referred to as the change from non-forest cover to forest, 

while recovery is the transition within the forest succession stages (e.g. from secondary to 

primary forest) (Brandeis, 2003; Chidumayo, 2013).  

Opportunities exist to better understand the factors affecting LCC in Zambia; however, 

previous studies have focused mainly on assessing drivers of deforestation using qualitative 

approaches, and these studies have spatial and temporal limitations (Chomba, 2012; Handavu 

et al., 2019; Syampungani et al., 2009; Vinya, 2012). This chapter investigates the factors 

contributing to nationwide LCC, spanning more than four decades (1972 to 2016) in Zambia. 

It specifically focuses on: (1) identifying the factors influencing the binary scenario (change or 

no change) of land cover in Zambia, and (2) determining the factors associated with forest 

losses, recovery and reversion.  The results will provide a novel spatial assessment of factors 

of LCC and the information generated from this study will be useful for the management and 

planning of mechanisms for mitigating the negative consequences of LCC (e.g. under the 

REDD+) in sub-Saharan Africa.  
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5.2 Material and methods 

5.2.1 Study area 

Zambia is a sub-Saharan country located in southern Africa between latitudes 8° S and 18° S 

and longitudes 22° E to 34° E (Figure 5.1). The country is characterised by a tropical climate 

with rainfall ranging from 800 mm in the south to 1500 mm in the north. Mean annual 

temperature ranges from 7°C to 37 °C. The major economic activity is agriculture, because 

most of the land in Zambia is suitable for crop production. Historically, Zambia has been 

known as a mining country with minerals such as copper being the major export commodity 

(Phiri et al., 2016). 

The Zambian natural landscape is characterised by dry tropical forests, commonly called 

‘Miombo’ woodlands; these have an important socioeconomic bearing on the local people 

(Chidumayo, 2013; Syampungani et al., 2009). However, most of these forests have been 

deforested or degraded (Kalaba et al., 2013; Mayes et al., 2015). Because of its high 

deforestation rate (−0.54 to −3.05% yr−1) (Phiri et al., 2019a), Zambia was chosen as a pilot 

country for the REDD+ programme. 

 

Figure 5.1: The geographic location of the study site – Zambia  and its 10 provinces. The inset map 

shows the global position for Zambia. 
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5.2.2 Data 

5.2.2.1 Thematic land cover maps 

To assess the factors contributing to LCC, thematic land cover maps for 1972 and 2016, derived 

from Landsat imagery (Phiri & Morgenroth, 2017) were used. This period (1972–2016) was 

selected because the first Landsat images were acquired in 1972 (Phiri & Morgenroth, 2017) 

and this study started in 2016. The thematic maps included both forest and non-forest land 

covers (Figure 5.2) and had a spatial resolution of 30 m (Phiri et al., 2019a). Details of the 

pre-processing, classification and mapping accuracy are presented in Phiri et al. (2018) and 

Phiri et al. (2019a). Furthermore, information on the rates of land cover change for individual 

land covers have previously been reported in Phiri et al. (2019a). 

 

Figure 5.2: Land cover maps for 1972 and 2016 showing the nine land cover types. Land covers such 

as plantation forest and irrigated crops have small spatial extents, which are generally below the 

minimum mappable unit, and hence they cannot be seen readily on the map.   

5.2.2.2 Sampling Units 

The modelling process involved relating land cover changes (response variables) to factors that 

may have contributed to LCC (explanatory variables) in sampling units established across the 

thematic maps for 1972 and 2016. An appropriate minimum sample size was selected using 

the multinomial approach, which accounts for the number of  land cover classes used in this 
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study (Congalton & Green, 2009; Zhao, 2018). The final sample size was 27,678 points, which 

was increased to 30,000 points, distributed throughout the landscape according to the 

proportional area covered by each type of land cover. The detailed calculations for the 

multinomial approach are shown in Equation 5.1: 

      N = 
𝐵

4𝑏2
               Equation 5.1 

where N is the number of samples, b is the desired precision (i.e. 1% error) and B is derived 

from the chi-square distribution with 1 degree of freedom and 1-𝛼/k; α is the significance level 

(0.01) and k is the number of land cover classes (k = 9 classes in this study).  

The samples were allocated across the whole country by using a systematic approach (Kamwi 

et al., 2018). A regular grid was generated in ArcGIS 10.4 (ESRI, 2016) using the Fishnet tool 

and overlaid on Zambia’s boundary. One sample was generated in the centre of each grid cell. 

The values for the response and explanatory variables were extracted to the samples. 

5.2.2.3 Response variables – land cover change 

Modelling  in this study involved two steps: (1) identifying the factors contributing to any land 

cover change, whereby the response variable was binary – change or no change; and (2) 

identifying the factors contributing to specific land cover changes, whereby the response 

variable was changed from forest to other land covers or vice versa. The first analysis aimed to 

identify the factors that influenced any type of change to the landscape, while the second 

analysis focused on the factors influencing loss (deforestation), forest recovery and reversion.  

5.2.2.4 Explanatory variables – potential factors contributing to LCC 

Different factors contributing to LCC can be summarised into groups (Kamwi et al., 2018; 

Kumar, 2009; Van Khuc et al., 2018). For example, Shu et al. (2014) indicated five major 

groups of LCC factors, which included natural eco-environment, accessibility, socioeconomic 

development, neighbourhood and policy. These factors have different effects on LCC; some 

factors accelerate changes, while others reduce changes. In this study, the factors were grouped 

into topographic, climatic, conservation, socioeconomic, proximity and accessibility categories 

(Table 5.1). 
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Table 5.1: Summary and description of the characteristics of explanatory factors   used in this study. This table also includes the names of the factors as they 

appear in CT models in Figures 5.3, 5.4, and 5.6.  

Category Factors and units CT  factor 

names 

Range Spatial 

resolution 

 

Temporal 

resolution 

Sources References for other 

studies that have used 

these factors for LCC  

Topographic 
Elevation  (m) Elevation 325–2296 30 m _ United States 

Geological Survey 

(USGS) 

Kim et al. (2014); 

Wang et al. (2017) 

 

Slope (°) 

 

Slope 

0–57.42  

30 m 

 

_ 

 

USGS 

 

 

Kim et al. (2014); 

Kindu et al. (2015) 

Aspect (°) Aspect −1–+359.90 30 m _ USGS 

 

Lin et al. (2014); Kindu 

et al. (2015);  

Topographic Wetness 

Index 

(unitless) 

TWI 3–18.91 30 m _ USGS Kim et al. (2014); 

Rutherford (2007) 

Climatic Total annual rainfall (mm) Total rainfall 590–1503 1 km 1970–2000 WorldClim Lin et al. (2014); 

Coops et al. (2009)  

Solar radiance (Wm-2) Radiance 15,763–20,511 1 km 1970–2000 WorldClim Rutherford (2007) 

 Maximum temperature 

(°C) 

Max temp  19.78–33.63 1 km 1970–2000 WorldClim Lin et al. (2014); 

Coops et al. (2009) 

Minimum temperature 

(°C) 

Min temp 8.60–21.57 1 km 1970–2000 WorldClim Lin et al. (2014); 

Coops et al. (2009) 

Mean temperature (°C) Mean temp 14.30–26.30 1 km 1970–2000 WorldClim Lin et al. (2014); 

Coops et al. (2009) 

http://www.worldclim.org/node/1
http://www.worldclim.org/node/1
http://www.worldclim.org/node/1
http://www.worldclim.org/node/1
http://www.worldclim.org/node/1
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Category Factors and units CT  factor 

names 

Range Spatial 

resolution 

 

Temporal 

resolution 

Sources References for other 

studies that have used 

these factors for LCC  

Conservation Protection status 

(National forest, local 

forest, National Park, 

Game management area 

(GMA), non-protected) 

Protect status  

– 

Single areas _ Wildlife 

Department of 

Zambia (WD) 

Kamwi et al. (2018); 

Shi et al. (2017) 

Period under protection 

(years) 

Protect years 0–136 Single areas 1900–2016 WD Kamwi et al. (2018); 

Shi et al. (2017) 

Ecological zones 

(I, IIA, IIB, III) 

Ecoregion – Four zones _ Forest Department 

of Zambia (FD) 

Kindu et al. (2015) 

Socioeconomic District status 

(urban, rural, peri-urban) 

District status  

– 

District level  Central Statistics 

Office of Zambia 

(CSO) 

Kim et al. (2014)  

Total population (count) Total popu  25,294 –1,701,640 District level 1969–2010  CSO Aniah et al. (2013); Shi 

et al. (2017) 

Population density 

(persons km−2) 

Popu density 2.70–4,841.60 District level 1969–2010 CSO Kleemann et al. (2017); 

Xu et al. (2013) 

Population change (count) Popu change 17,369–1,359, 354 District level 1969–2010 CSO Kleemann et al. (2017); 

Xu et al. (2013) 

Mean yield (tonnes) Mean yield  451.93–67,600.78 District level 1976–2016 CSO Van Khuc et al. (2018)  

Change in yield (tonnes) Change yield  213–90,270 District level 1976–2016 CSO Van Khuc et al. (2018)  

Percentage cultivated area 

(%) 

Percent cultivate 8.96– 67.80 District level 1976–2016 CSO Van Khuc et al. (2018); 

Kumar (2009);  

Change in cultivated area 

(ha) 

Change 

cultivate area 

−3,837.43 to 

93,944.86 

District level 1976–2016 CSO Kim et al. (2014);  
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Category Factors and units CT  factor 

names 

Range Spatial 

resolution 

 

Temporal 

resolution 

Sources References for other 

studies that have used 

these factors for LCC  

 Ratio of yield to total area 

(tonnes ha−1) 

Ratio yield area 0–0.09 District level 1976–2016 CSO Kim et al. (2014) 

Proximity Euclidean distance to 

active mine centres (km) 

Eucl dist act 

mines 

 

0–280.35 

 

30 m _ Ministry of Mines 

for Zambia 

Hosonuma et al. (2012) 

Euclidean distance to 

licensed mine centres (km) 

Eucl dist lice 

mines 

0–384.35 30 m _ Ministry of Mines 

for Zambia 

Hosonuma et al. (2012) 

Euclidean distance to 

waterbody edges (km) 

Eucl dist water 0–108.62 30 m _ FD Kleemann et al. (2017); 

Lin et al. (2014) 

Euclidean distance to town 

centres (km) 

Eucl dist town 0–82.56 30 m _ FD Kleemann et al. (2017); 

Lin et al. (2014) 

Network distance to town 

centres (km) 

Network dist 

towns 

0–423.01 30 m _ FD Kleemann et al. (2017); 

Lin et al. (2014) 

Accessibility Euclidean distance to road 

(km) 

Eucl dist road  0–104.25 30 m _ Road Development 

Agency of Zambia  

Kleemann et al. (2017) 

 Euclidean distance to 

railway (km) 

Eucl dist 

railway 

0–108.67 30 m _ FD Wang et al. (2017) 

Euclidean distance to 

rivers (km) 

Eucl dist rivers  0–28.62 30 m _ FD Kleemann et al. (2017) 
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5.2.2.4.1 Topographic factors 

Topographic factors influence land cover in many ways including determining the soil and 

drainage type for particular sites (Kim et al., 2014). For example, settlement and agriculture 

would require flat areas that are within certain elevation and slope ranges (Kumar, 2009). In 

this study, topographic factors were derived from digital elevation models (DEMs) and 

included elevation, slope, aspect, and topographic wetness index (TWI). 

5.2.2.4.2 Climatic factors 

Climate influences land covers directly and indirectly, especially with the increased impacts of 

climate change. Rainfall and temperature control vegetation growth and determine the type of 

crops that can be grown in particular areas (Kim et al., 2014; Shi et al., 2017). Here, climatic 

factors included temperature, rainfall and solar radiation (Fick & Hijmans, 2017). Different 

parameters (maximum, minimum and mean) of annual temperatures (Table 5.1) were included 

because they have different influences on LCC.  

5.2.2.4.3 Proximity factors 

Proximity factors are also known as neighbourhood factors and are mainly associated with 

distance to a particular area or facility (Shu et al., 2014). Here, factors such as distance to urban 

centres, mines and waterbodies were included (Table 5.1). Since mining in Zambia has a major 

economic bearing (Chidumayo, 1989), distance from the mines was included as a proximity 

factor. Different algorithms were used within ArcGIS 10.4 (ESRI, 2016) to calculate distances, 

depending on whether distances were calculated along networks, or as a Euclidean distance 

between vector features (Near tool) or raster data (Euclidean distance tool). 

5.2.2.4.4 Accessibility factors 

LCC is also influenced by accessibility (Kim et al., 2014). Accessibility is determined by 

transport infrastructure, such as roads and railways that bring major economic value associated 

with an area. Although transportation by water through rivers is uncommon in Zambia, many 

economic activities linked to rivers (e.g. fishing) use rivers as a means of transport. Therefore, 

the river network was considered as an accessibility factor. Like the proximity factors, 

accessibility factors were also calculated using various algorithms based on ArcGIS 10.4 

(ESRI, 2016). The algorithms were selected depending on whether distances were calculated 
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along networks, or as a Euclidean distance between vector features (Near tool) or raster data 

(Euclidean distance tool). 

5.2.2.4.5 Conservation factors 

The conservation strategies of natural resources have an influence on LCC (Kamwi et al., 2018; 

Lindsey et al., 2014). Protected areas, in particular, are expected to have intact forest cover and 

stable grasslands compared with areas that are not protected. However, due to the 

encroachment into protected areas, there has been an increase in anthropogenic activities in 

wildlife and forest reserves in Zambia, especially around the boundaries (Lindsey et al., 2014; 

Syampungani et al., 2009). Here, the conservation factors included the areas that are under 

different protection regimes (i.e. forest and wildlife reserves), and the number of years an area 

has been under protection (Table 5.1). Ecological zones were also included under conservation 

factors because they define specific activities that take place in particular regions based on land 

suitability and environmental impacts. 

5.2.2.4.6 Socioeconomic factors 

The economic activities taking place in a particular area have an influence on LCC (Van Khuc 

et al., 2018; Xu et al., 2013). Population attributes and crop yield, among others, influence 

LCC.  In this study, the mean values, changes, and ratios to the total area were used as measures 

for assessing LCC. The mean values were calculated by taking the average of all the available 

values for a particular district. Changes were derived by subtracting the initial values from the 

final values. The ratio of yield or cultivated area to the total area was calculated by dividing 

the yield or cultivated area by the total area of the district. In the case of cultivated area, the 

ratio was presented as a percentage. Limited socioeconomic factors were included because data 

was inconsistent or unavailable for the period during which land cover change was measured, 

that being 1972–2016. 

5.2.3 Statistical analysis 

Land cover change models are based on either spatial or statistical approaches, but a 

combination of the two approaches improves the understanding of factors contributing to LCC. 

Common modelling approaches include multiple regression analysis, structural modelling, 

system dynamics, binary logistic regression, and classification trees (CT) (De'ath & Fabricius, 

2000; Shu et al., 2014). The CT method was used in this study because it is non-parametric, 
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handles categorical response variables and employs both numerical and categorical explanatory 

variables (Guo et al., 2018; Morgenroth et al., 2017; Van Khuc et al., 2018). 

5.2.3.1 CT Modelling  

This study employed the CT approach to analyse the factors contributing to LCC. The CT 

approach has an added advantage because it is not complex and produces simple graphical 

outputs (CT diagram) that improve the interpretation of results (Guo et al., 2018; Morgenroth 

et al., 2017). The CT analysis is based on the principle of recursively partitioning the data into 

binary subsets. While multicollinearity can affect some statistical models (Dormann et al., 

2013), it has little impact on the classification accuracy of machine-learning algorithms, 

including CTs (Kotsiantis, 2013; Kotsiantis et al., 2006). Therefore, all the potential 

explanatory variables were included during the process of model development. The limitation 

of the CT approach is that the decision tree can overfit the data by producing a large decision 

tree. To minimise this, pruning was applied by setting the complex parameter (cp) to a 

minimum cross-validation error (Guo et al., 2018; Morgenroth et al., 2017).  

The classification tree models were produced in the R statistical software environment (R Core 

Team, 2017) by employing the ‘rpart’ package (Therneau & Atkinson, 1997). The cp values 

were determined by using the printcp () and plotcp () functions in the rpart package (Therneau 

& Atkinson, 1997), and the default rpart variables were used for the other variables. In addition, 

the ‘rpart.plot’ package was used to produce the graphical outputs (Milborrow, 2015).  In the 

CT models, the explanatory variables are presented according to the declining deviance; thus, 

the explanatory variables that appear first are more important than the subsequent variables 

(Morgenroth et al., 2017). 

5.2.3.2 Model validations 

The systematic samples generated over the whole country were divided into training and 

validation samples using a 70:30 ratio (Guo et al., 2018; Phiri et al., 2019a) for both analyses. 

Classification trees were trained using the 21,000 training samples and cross-validated using 

the 9,000 validation samples. The cross-validation was done by examining the prediction 

accuracies of the models (Coops et al., 2009; Morgenroth et al., 2017). Measures such as overall 

accuracy, user’s and producer’s accuracy were used to ascertain the accuracies of the models. 
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5.3 Results 

5.3.1 Binary model: change/no change  

The binary (change or no change) model predicted land cover change or no change with an 

overall accuracy of 81%. The user’s and producer’s accuracies ranged between 70% and 89%. 

Figure 5.3 shows that most changes (55%) occurred in districts with greater than 66% of their 

area cultivated and within 4.8 km of the nearest water body, indicating that agriculture and 

access to water bodies have considerable influence on LCC. Most of the no change scenarios 

occurred in areas where the percentage of the cultivated area was less than 66%, change in 

yield was less than 5,786 tonnes and elevation exceeded 934 m (Figure 5.3). 

 
Figure 5.3: The CT for 1972 to 2016 for change or no change showing the factors contributing to LCC 

in Zambia. The percentages in each terminal node show the percentage of all samples that were 

represented by each outcome (i.e. Change/No Change), or in the case of Figures 5.4 and 5.6, by each 

land cover. Percent cultivate area refers to percentage of the areas under cultivation in a district, Eucl 

dist water refers to Euclidean distance to water bodies in km, change yield refers to change in yield in 

tonnes, mean temp refers to mean temperature in degrees Celsius and Elevation refers to elevation in 

metres above sea level. 

5.3.2 Factors contributing to deforestation or degradation 

5.3.2.1 Primary forests 

The CT model indicated that most of the undisturbed forests (primary forest) changed to 

degraded forests (secondary forests), plantation forests, and grassland (see Phiri et al. (2019a) 
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for the rates of change for individual land covers). The model accuracy was 72% with user’s 

and producer’s accuracies ranging from 62% to 83%.  Areas with a population density between 

4.9 and 44 people km−2 were likely to be converted to secondary forest, while areas with 

population density over 44 people km−2 changed to plantation forests. Mean temperature and 

percentage of cultivated area also contributed to primary forest change (Figure 5.4A).  

5.3.2.2 Secondary forests 

The overall accuracy for the model for secondary forest was 70% with user’s and producer’s 

accuracies ranging from 68% to 76%. Most of the changes from secondary forest to other land 

covers occurred if the ratio of yield to the total areas was greater than or equal to 0.0079 tonnes 

ha−1 (Figure 5.4B). Apart from this, secondary forests also changed to other land covers if they 

were not protected as national forests, if they were less than 5.6 km from the nearest waterbody, 

and if they were within 10 km of the nearest active mine. The terminal nodes indicated that 

64% of the secondary forests, which were in districts with crop harvest of less than 0.0079 

tonnes ha−1, remained as secondary forests. In contrast, where crop harvests exceeded that 

threshold, secondary forests changed to land covers such as cropland, primary forests and 

settlements (Figure 5.4B). 
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Figure 5.4: CTs for changes from primary (A), secondary (B) and plantation forest (C)   to other land 

covers. (A) Popu density refers to population density in people km−2, Percent cultivate area refers to the 

percentage of the cultivated area in a district in hectares, and mean temp refers to mean temperature in 

degrees Celsius. (B) Ratio yield area refers to the ratio of the total yield to the total area in tonnes per 

hectare and Protect status refers to being in a protected areas. Eucl dist act mines refers to the Euclidean 

distance to the active mines in km and Eucl dist water refers to the Euclidean distance to the edge of 

the nearest waterbody in km. (C) Mean yield refers to mean yield in tonnes and Eucl dist water is the 

Euclidean distance to waterbodies in km. Eucl dist railway is the Euclidean distance to railway in km, 

max temp refers to the maximum temperature in degrees Celsius, and Direct dist towns refers to the 

nearest distance to towns in km. 
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5.3.2.3 Plantation forests 

The overall accuracy of the CT model for plantation forest was 71% and the user’s and 

producer’s accuracy were between 73% and 80%.  Between 1972 and 2016, most (64%) of the 

plantations changed to secondary forest, with other plantations changing to croplands, 

grasslands, primary forests and wetlands. Most changes occurred in areas with mean crop yield 

of greater than 2,622 tonnes. For example, the plantations changed to secondary forest if the 

mean crop yield was greater than 2,622 tonnes, the distance to railway was less than 88 km and 

if the distance to the nearest active mine was less than 29 km. When the distance from the 

railway was greater than 88 km, plantation forest change to primary forests (Figure 5.4C). 

5.3.3 Forest recovery and reversion from other land covers 

The CT models confirmed that some forest recovery and reversion occurred between 1972 and 

2016. The overall accuracies for CT models that showed forest reversion ranged from 71% to 

85% (Figure 5.5), while the user’s and producer’s accuracies were between 64% and 92%. The 

terminal nodes for the non-forest land covers indicated that the land covers that reverted to 

forest were grasslands, croplands, wetlands, waterbodies and irrigated crops (Figure 5.6 and 

Appendix C – Figure C1). These mainly changed to secondary and plantation forest. The 

annual rates of change were high (2.92%) in protected areas compared with non-protected areas 

(1.21%), indicating that there is an increase in the area covered by secondary forest in protected 

areas (see Phiri et al. (2019a) for  the rates of change for all land covers and Appendix C – 

Table C1 for the rates change  in protected and non-protected areas). 
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Figure 5.5: Overall accuracies for all the CT modelsbased on different land covers and the binary 

models. The error bars show the confidence intervals. 

To understand the implications of the factors of forest reversion and recovery, the factors were 

considered in two groups: (1) environmental and spatial factors (e.g. climate, distance to roads), 

and (2) conservation or protection factors (e.g. protection status). The environment and spatial 

factors tended to be associated with non-forest covers with relatively small spatial extents, such 

as irrigated crops and waterbodies. For example, irrigated crops with greater than 772 mm per 

annum and in less than 7% cultivated areas were more likely to revert to forest covers 

(Appendix C – Figure C1).  
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Figure 5.6: CTs for cropland (A), grassland (B), and wetland (C) showing forest reversion and recovery. 

Protect status refers to being in a protected area, protected years refers to the number of years an area 

has been under protection, and Euclidean dist water indicates the Euclidean distance to water bodies in 

km. Mean temperature refers to the mean temperature in degrees Celsius, and Total rainfall refers to the 

total rainfall in mm. 

The reversion of non-forest covers to forest was dominated by the conservation and protection 

factors (i.e. the status of being a protected area) (Figure 5.6). Forest recovery, the change from 

secondary forest to primary forest areas, was also influenced by the protection status of being 

in a national forest (Figure 5.4B). This factor appeared in three models for the non-forest land 

covers with large extents (i.e. grassland, crop and wetland) (Figure 5.6). Specifically, cropland 

(Figure 5.6A) and wetland (Figure 5.6C) designated as being within a national forest often 

reverted to secondary forest. Likewise, grasslands protected by a protection status including 

GMA, national forest and national park transitioned to secondary forest (Figure 5.6B). National 

forest protection status together with other factors (mean temperature and protect years) were 

the driving factors for the changes from wetland to plantation forest (Figure 5.6C), perhaps 

because many plantations were established in areas that were formerly forest protected areas. 

The influence of protected areas highlights the positive contribution of conservation 

interventions towards forest recovery. Number of years under protection was one of the factors 

influencing forest reversion (Figure 5.6). For example, grassland in protected areas of less than 

15 years of protection was likely to recover to secondary forest (Figure 5.6B). 
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5.4 Discussion 

5.4.1 Factors affecting general changes and forest losses 

The binary CT model indicated that agriculture-related factors had a large impact on land cover 

changes in Zambia from 1972 to 2016. Factors such as the percentage of area cultivated in a 

district, change in yield and distance to water bodies have a direct relationship with both 

rain-fed and irrigation agriculture. These findings are in line with Hosonuma et al. (2012) who 

indicated that LCC was driven by both commercial and subsistence agriculture in developing 

countries; however, in the current study, agricultural factors were combined due to lack of 

access to separate datasets for commercial and subsistence agriculture. If available, commercial 

and subsistence agricultural datasets, as well as agricultural export data, would help to present 

new insights in the pattern of land cover change. Other factors such as temperature and 

elevation have an indirect relationship with agriculture; however, they are important 

determinants of land use suitability. Most land use systems need specific elevations and 

temperatures; for example, high elevation might be associated with steep slopes, which are not 

suitable for most land uses ( e.g. agriculture and settlements) (Kim et al., 2014). Elevation, 

especially high altitude, is also associated with low temperatures that impact the crops that can 

be grown (Hatfield & Prueger, 2015; Wheeler et al., 2000). 

The drivers of forest cover change included socioeconomics, climate, proximity and 

accessibility. Crop yield was a strong predictor for land cover conversion to cropland, 

especially from secondary and plantation forest (Figure 5.4B and 5.4C). These findings are 

supported by previous studies that indicated that agriculture-related factors are the major 

driving factors for forest change in sub-Saharan Africa (Hosonuma et al., 2012; Kamwi et al., 

2018; Kindu et al., 2015). Population density was another driver for the changes from primary 

forest to other land covers. These results are in agreement with previous studies which  

indicated that areas with high population densities are likely to experience more change due to 

increased human activities (Kamwi et al., 2018; Van Khuc et al., 2018). In the Zambian context, 

the population increased from 4 million to 17 million between 1970 and 2016 (Phiri et al., 

2019a; Simwanda & Murayama, 2017). This increase in population comes with the demand 

for land, which is manifested by the increase in the crop yield and the total cultivation area 

(DeFries et al., 2010). 
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Although the proximity and accessibility factors were generally not identified as the most 

influential factors for forest losses, the CT models indicated that they play a role in forest 

change, especially on secondary and plantation forest (Figure 5.4B and 5.4C). These factors 

showed that areas proximal to facilities and infrastructure are more likely to change than distant 

areas (Kindu et al., 2015; Kumar, 2009; Shu et al., 2014). Apart from the distance to mines, 

roads and major towns, the railway network was also one of the drivers of LCC, especially for 

the changes in plantation forests, because both the railway and the plantation forest were 

established strategically to support the mines in Zambia (Ng'andwe et al., 2015; Njovu, 2004).  

Climatic variables were another group of drivers that contributed to forest loss. In all the 

models, a temperature of 20 °C was identified as a common threshold for changes from forest 

cover to other land covers, perhaps because the major crop grown in Zambia – maize (Zea 

mays) – thrives at temperatures above 20 °C (Sánchez et al., 2014). Kim et al. (2014) explained 

that areas with ideal temperatures, especially in areas with favourable rainfall, have high 

potential for agricultural use; hence forests in these areas are likely to change to other covers 

due to opening of forest areas for agricultural use. Thus, areas in the northern part of Zambia 

are likely to experience increasing forest loss compared with the southern part because the 

northern part experiences higher rainfall and has favourable temperatures that support many 

agricultural practices (Chidumayo, 2013; Syampungani, 2008). Although these areas with 

favourable conditions may experience significant forest losses, they have the potential to 

recover due to high vegetation regrowth. 

5.4.2 Factors of forest reversion and recovery 

This study showed that the environmental and spatial drivers that influenced the reversion (i.e. 

change from non-forest to forest) of forest cover included accessibility (e.g. distance from the 

railway and the roads), climatic (e.g. temperature and rainfall), topographic (e.g. elevation) and 

socioeconomic factors (e.g. cultivated area and yield). Forest recovery (change from secondary 

to primary forest) was also affected by similar drivers including crop yield and distance to 

waterbodies, whereby areas with low yield and distant from waterbodies had the potential to 

recover. Generally, these factors are associated with the economic value of land in a particular 

area (Van Khuc et al., 2018), and hence areas with low economic value are more likely to 

recover or remain forested. For example, Kim et al. (2014) indicated that the areas that were 

far from the facilities were not commonly used for agriculture or settlements in the 

mountainous region of South Korea. Favourable climatic conditions promote the growth of 
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vegetation, and hence areas with high rainfall have the potential to recover after disturbances 

(Chidumayo, 2013; Syampungani, 2008). Accounting for these drivers when developing area-

specific policies can translate into increasing forest reversion and recovery. 

It was clear from the results that humans have a positive influence on forest reversion and 

recovery through the establishment and management of protected areas. For example, the status 

of being in the national forest was the most important factor for the reversion of secondary 

forest from croplands and wetlands (Figure 5.6). In Zambia, National forest status is more 

important for forest conservation than other protected areas (GMA, National parks and local 

forests) for two reasons; (1) National forests were established in areas with denser forests than 

other protected areas, and (2) National forests are strictly managed, such that limited activities 

are permitted (Chidumayo, 2002; Vinya, 2012).  

Primary forest also recovered from secondary forest in national forests compared with any 

other protected area (Figure 5.4C). These findings are in agreement with Chidumayo (2002) 

who tested the effects of land tenure systems on the recovery of forests after a disturbance in 

central Zambia, and reported that plots which were in forest reserves recovered faster than 

those in non-protected areas. Other protected areas such as wildlife management areas also 

showed that grasslands are likely to revert to secondary forest after a disturbance (Figure 5.6B). 

Willcock et al. (2016) indicated that forest cover expanded in protected areas compared with 

non-protected areas in Tanzania. Although the spatial extents of protected areas have been 

reported to increase globally (Jones et al., 2018), protected areas in Zambia and most of the 

sub-Saharan African countries have continued to decline both in spatial extent and biodiversity 

value, especially along the boundaries (Jones et al., 2018; Lindsey et al., 2014). Thus, 

establishing new protected areas or expanding existing ones, and developing effective policies 

to manage the protected areas have the potential to increase forest reversion and recovery. 

An interesting insight from this study was the dominance of the protection status as a driver 

for forest reversion in non-forest land covers with large spatial extents (e.g. cropland, wetland 

and grasslands) rather than the land covers with smaller extents (e.g. irrigated crops and 

waterbodies). Phiri et al. (2019a) indicated that cropland, grassland and wetlands have large 

extents in Zambia (10%–30%) compared with irrigated crops, water bodies or settlements 

(< 2%). Since most of the forest reversions in Zambia are expected to be from croplands, 

grasslands and wetlands, the protection or conservation measures are likely to have a large 

positive impact on forest reversion and recovery at a national scale.  
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5.4.3 Implications of the study 

LCC in Zambia is associated with different drivers that influence forest losses, reversion and 

recovery. Forest losses are mainly influenced by crop yield, percentage of cultivated area, 

population density, and distance to facilities (e.g. railway, roads and towns). These results 

highlight the need for appropriate and effective policy to protect existing forests and promote 

forest recovery in degraded and deforested areas. For example, policies that promote 

sustainable agriculture and agroforestry systems are likely to balance agricultural activities and 

forest management (Syampungani et al., 2010). 

An important result from the study was the indication that forest reversion and recovery were 

mainly influenced by the conservation or protection factor – the status of being in a protected 

area. Establishment of new protected areas or expansion of existing ones, and effective 

management of protected areas (e.g. wildlife and forest reserves) are potential tools for 

promoting forest recovery and reversion in Zambia (Syampungani et al., 2009). The protection 

status and other drivers identified in this study are likely to play an important role in developing 

effective climate change mitigation strategies, especially under the REDD+ project that 

emphasises the need for understanding the drivers of LCC (Hosonuma et al., 2012; Quintero-

Gallego et al., 2018; Van Khuc et al., 2018). 

5.4.4 Limitation of the study and potential future studies 

The findings need to be considered in the context of study limitations. First, the major limitation 

was that the data used to develop the explanatory factors had different spatial and temporal 

resolutions. For example, population data were only available at a district scale, while 

temperature and precipitation data had a 1-km2 resolution. Likewise, not all explanatory 

variables were temporally synchronous with the thematic maps used to describe land cover 

change. Having all high-resolution datasets would have increased the reliability of results; 

however, the original resolutions were determined by the sources of the data. Another 

consideration is the reliability of the thematic land cover maps. The overall accuracy of the 

thematic maps ranged from 79% to 86% (Phiri et al., 2019a), so some of the changes or lack 

of changes modelled in this study may have been artefacts of misclassifications in the thematic 

land cover maps.  
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Considering that the drivers of LCC are dynamic (Kamwi et al., 2018; Shu et al., 2014) and  

this study only focused on a long-term period, future studies could investigate and compare the 

factors associated with a more recent, and possibly short-term period. In addition, the factors 

identified in this study could be used in future studies to predict impending land cover changes. 

5.5 Conclusions 

The findings from this study showed that different factors influence LCC. Of all these factors, 

crop yield, cultivated areas and accessibility factors (e.g. distance to railway and roads) were 

the most common factors for LCC.  The major influencing factors for forest loss were 

population density for primary forest, yield per hectare for secondary forest and mean yield for 

plantation forest. The protected status, especially being designated as a national forest, had a 

large impact on promoting forest reversion in non-forest land covers with large extents (e.g. 

cropland, wetland and grassland). Forest reversion and recovery were also associated with 

other factors such as distance from railway, rainfall and elevation. Thus, inaccessible areas with 

low population densities and high rainfall are likely to recover or revert to forest.  This study 

provides new insights into the driving factors of LCC, especially the factors associated with 

the reversion and recovery of forest cover over a long-term temporal scale and large spatial 

extent (national scale) in a sub-Saharan African country, Zambia. These findings are important 

for land use planning and for the management forest resources such as national forests, which 

support the reversion and recovery of forests after disturbances. In addition, the models 

developed in this study contribute significantly to the prediction of impending LCC scenarios, 

a potential future research topic. 
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Summary and Conclusion 

6.1 Introduction 

Global land cover studies indicate that Africa’s sub-Saharan environments are among the least 

understood land cover types (Ernst et al., 2013; Mayes et al., 2015). In Zambia, previous studies 

on land cover changes have temporal and spatial limitations (Chidumayo, 1989, 2002). Thus, 

important information for national-level land use planning and policy development has been 

lacking. This thesis has focused on long-term (1972–2016) land cover monitoring at a national 

scale using Landsat imagery in order to provide reliable information with which to make 

informed decisions. The current research was structured to address specific aspects of land 

cover dynamics in Zambia including classification, change analysis, forest connectivity and 

factors of land cover change. This chapter discusses the main findings of each chapter and 

presents the implications of the results and the limitations of the study. Finally, potential areas 

for future research are proposed. 

6.2 Summary of the major findings 

6.2.1 Developments in Landsat land cover classification methods 

The aim of Chapter 2 was to understand the advancements in Landsat land cover classification 

by reviewing the literature. This chapter focused on: (1) identifying the common methods used 

in Landsat land cover classification, (2) understanding the benefits and the drawbacks of each 

method, and (3) identifying the best practices for attaining the desired classification accuracy 

of Landsat images. The study showed that the development of  remote sensing technology and 

increasing computing capabilities has led to the development of new methods of land cover 

classification (Phiri & Morgenroth, 2017). Previous review studies such as Lu and Weng 

(2007) focus on methods of land cover classification for multiple types of remotely sensed data. 

However, the review chapter in this thesis has a particular focus on the development of Landsat 

land cover classification methods and the best practices for optimising accuracy. Literature 

shows that the first method of land cover classification was manual classification, which was 

common in the 1970s. Land cover classification methods improved with the introduction of 

pixel-based, subpixel-based and OBIA.  



 

118 
 

Pixel-based approaches were common before 2000 and OBIA has become common in 

contemporary studies (Phiri & Morgenroth, 2017). Subpixel-based classification (e.g. SMA) 

was introduced to deal with problems of mixed pixels (Mayes et al., 2015). The results from 

the pixel-based approach are affected by different factors such as pepper-and-salt effects and 

mixed pixels. OBIA overcomes such problems and performs better on high spatial resolution 

images (e.g. pansharpened Landsat ETM+ and OLI-8). The strength of this method is its  ability 

to use different sources of information such as texture, shape and other neighbourhood factors 

(Blaschke, 2010). In addition, the review shows that the combination of OBIA with machine-

learning classifiers (e.g. RF, SVM) has the potential to attain high classification accuracies of 

over 80% on Landsat images (Li et al., 2014; Wieland & Pittore, 2014). Notwithstanding the 

strength of OBIA, the issues associated with optimal scale parameters for segmentation remain 

a major concern and it is still an active research topic. 

To attain the desired classification accuracies, different factors such as using an appropriate 

training sample size (Li et al., 2014), selecting the best classifier (Wieland & Pittore, 2014), 

choosing the optimal segmentation factor for OBIA (Drăguţ et al., 2014) and applying the 

necessary pre-processing (Young et al., 2017) need to be considered. Topographic and 

atmospheric correction are the most cited prerequisites for accurate Landsat land cover 

classification (Phiri et al., 2018). Topographic correction is needed for mountainous 

environments (Chance et al., 2016; Pimple et al., 2017), while atmospheric corrections such as 

MODTRAN are ideal for large area land cover monitoring, which involves multiple images for 

time series studies (Song et al., 2001; Vanonckelen et al., 2013).  

6.2.2 Evaluating of pre-processing methods and machine-learning classifiers 

Chapter 3 focused on assessing machine-learning classifiers and the effects of pre-processing 

methods, by evaluating the accuracy of the classifiers and the contribution of the pre-processing 

method towards classification accuracy when applied either individually or combined. Like 

other satellite images, Landsat images are affected by atmospheric absorption, backscattering 

of electromagnetic radiation and topographic variation, which have the potential to reduce 

classification accuracy (Pimple et al., 2017; Young et al., 2017). Different pre-processing 

methods have been developed to reduce these effects. To determine the most effective method 

for Landsat images, atmospheric (MODTRAN and DOS) and topographic (cosine) correction 

methods were tested individually and combined on pansharpened and non-pansharpened 

Landsat OLI-8 images. Prior to testing the impacts of pre-processing methods, a comparison 
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of the machine-learning classifiers (RF, SVM, Bayes, k-NN and CART) was undertaken in 

order to select the best classifier. 

The RF classifier outperformed (96%) the other machine-learning classifiers, with SVM being 

in second place (94%). The findings also showed that the combination of MODTRAN 

atmospheric and cosine topographic correction attained the highest classification accuracy on 

both pansharpened (93%) and non-pansharpened images (86%) (Phiri et al., 2018). 

Uncorrected images had lower accuracies on both types of images; however, pansharpened 

images had a higher accuracy than the original images. These findings show that classification 

accuracy depends on the spatial resolution (Gilbertson et al., 2017), the classifier used (Wieland 

& Pittore, 2014) and pre-processing (Young et al., 2017). Therefore, to attain high accuracy, it 

is good practice to pansharpening and to apply both atmospheric and topographic corrections 

on the Landsat images when using OBIA-RF. Although this chapter was based on only the 

latest Landsat images (OLI-8), the results for pre-processing methods and classifiers may be 

applied on the other Landsat images, and pansharpening can also be applied on Landsat ETM+ 

images, which have a panchromatic band. 

6.2.3 Nationwide land cover dynamics and forest connectivity  

The goal of Chapter 4 was to determine the current and past geographic extents of different 

land covers in Zambia at six time steps. This chapter particularly focused on explaining forest 

dynamics and the pattern of forest connectivity between 1972 and 2016 in Zambia. Although 

national-level land cover data is important for land use planning and management of natural 

resources, such information is limited in terms of its spatial and temporal extent in Zambia. 

Therefore, the development of land cover classification is a major highlight of this thesis, as it 

provides important information for land use planning. The land cover classification achieved 

accuracies ranging from 79% to 86%, with Landsat OLI-8 having higher accuracy, while 

Landsat MSS had the lowest accuracies, perhaps because classification accuracy is influenced 

by the images’ relatively low spatial resolution.  

The findings show that 62.74% of the Zambian landscape has undergone some changes 

between 1972 and 2016, with the transition from primary to secondary forest being the major 

change. The results also confirmed that the rate of forest loss (−0.54 to −3.05% yr−1) is higher 

than forest recovery (0.03 to 1.3% yr−1) (Phiri et al., 2019a). This was also in line with the 

declining levels of forest connectivity, an indicator of forest degradation. Between 1972 and 
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2016, forest connectivity declined by 22%, with primary forest having the highest decline in 

connectivity, while secondary and plantation forest showed some gains. Annual rates of change 

varied by land cover: primary forest had the largest decline of −2.48% yr−1 and irrigated crops 

had the largest increase of 3.19% (Phiri et al., 2019a). These findings also showed that the rates 

of land cover change were high between 1990 and 2008, perhaps due to the changes in the 

socioeconomic structure of the country (Ng'andwe et al., 2015).  

Since Zambia is a signatory to international agreements such as the Kyoto Protocol and the 

Paris Agreement, these results are important for the implementation of climate change 

programmes such as the REDD+ (De Sy et al., 2012; Ernsta et al., 2010). The information 

generated from this study could be an important component of the activity data when 

establishing the national emission levels and monitoring of carbon sequestration. 

6.2.4 Modelling the drivers of land cover change at a national scale 

Chapter 5 focused on understanding the factors driving land cover changes in Zambia by: (1) 

exploring the factors influencing the binary scenario (change or no change) to land cover 

change, and (2) determining the factors associated with forest losses, recovery and reversion. 

This chapter extended the knowledge of land cover changes presented in Chapter 4 by 

employing the CT approach to model the driving factors of land cover change over the long-

term period (1972–2016). Understanding the factors behind land cover change is the first step 

towards developing effective strategies for mitigating the negative effects of land cover 

changes (Kim et al., 2014). Chapter 5’s analysis was done on binary changes, forest losses and 

forest recovery and reversions. The models were produced with accuracies ranging from 70% 

to 86%. 

The major factors associated with the binary (change/no change) outcome were percentage of 

cultivated area, crop yield, and distance to waterbodies. Forest losses were mostly affected by 

population density, crop yield, and distance to roads and railways. It was clear that forest areas 

that were in areas with fewer human impacts and were more distant from the roads, towns and 

mines remained unchanged or were likely to recover after disturbance. Apart from crop yield, 

the changes in plantation forest were mainly affected by the location of the mines and the 

railways, because forest plantations in Zambia were established to support mining activities 

(Chidumayo, 1987; Chidumayo, 1989; Ng'andwe et al., 2015).  
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An interesting result from this study was the effect of protected areas on the reversion and 

recovery of forests (Phiri et al., 2019b). Areas designated as protected areas (e.g. National 

forests) have the potential to recover after disturbance unlike non-protected areas. Therefore, 

enhancing the management of the existing protected areas can be an important tool for 

biodiversity conservation and reversing the current trends of forest losses. 

6.3 Implications of the findings 

One of the major problems facing the sub-Saharan African countries is the rapid changes to 

their land cover that results from rapid forest losses and expansion of urban and agricultural 

areas. This region is also faced with the problem of limited information with which to develop 

effective policies for the management of the natural resources that provide different ecosystem 

services (Ernsta et al., 2010; Mayes et al., 2015). Addressing this lack of information is one of 

the major contributions of this thesis, because information on long-term land cover dynamics 

and forest connectivity has been presented.  

With the increasing impacts of climate change, monitoring forest cover is important, as forests 

provide important ecosystem services, including carbon sequestration, storage, and climate 

regulation. Thus, global climate change mitigation programmes (e.g. REDD+) under the 

UNFCCC require reliable information for monitoring, reporting and verification (De Sy et al., 

2012). Therefore, the results of this study can act as a baseline for future land cover assessments 

and carbon assessments in Zambia. 

Since land cover changes are caused by various driving factors, understanding the factors 

behind land cover change is the first step toward reversing negative trends in land cover change 

(Kim et al., 2014). Developing area-specific policies for managing natural resources could be 

effective in reducing forest losses. In addition, enhancing the management of protected areas 

by expanding the existing areas and reducing human influence around the boundary could be 

a promising strategy towards forest recovery and reversions.  

6.4 Limitations and priorities for future studies 

This study has several limitations that affected the levels of accuracy and the reliability of the 

results. First, the low resolution of the Landsat images (30–60 m), especially the Landsat MSS 

which has a spatial resolution of 60 m, had an impact on classification accuracy. Since the 

accuracy depends on the spatial resolution, some details might not have been detected at this 
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spatial resolution. With the recent availability of Sentinel-2 images, which have a higher spatial 

resolution (10 m) than Landsat, such errors could be minimised. However, the historical record 

of Sentinel-2 is limited since it was only launched in June 2015 (Immitzer et al., 2016). Future 

studies could use Sentinel-2 data to classify the landscape and understand the present land 

cover dynamics in Zambia. 

Second, although it is common to use raw images as the source for training and validating 

samples, ground-based assessment of training and validating samples is still the most effective 

way of allocating samples. In this study, the samples were collected from the raw images 

because of the high costs associated with collecting data on a national scale and the lack of 

historical ground data.  Assigning samples based on the images has a chance of generating 

errors due to allocation of samples to wrong classes, because of the poor detail available from 

low-resolution images. Where possible, higher resolution images such as those used in Google 

Earth can be employed; however, the older Google Earth images lack spatial details because 

Landsat images were used to produce the mosaics.   

Third, the post classification analyses such as change detection, connectivity analysis and 

assessment of factors of change depended on the accuracy of the thematic maps, which were 

produced with accuracies ranging from 79% to 86% (Phiri et al., 2019a). Although these 

accuracies are high, some errors might have been propagated in the results for the post 

classification analysis due to misclassification in the thematic maps.  

Finally, the data used to model factors of land cover change had various original sources and 

spatial resolutions. Having data with similar and high spatial resolution would have increased 

the accuracy of the classification tree (CT) models. In addition, since the study on modelling 

factors of change focused on past land cover changes, predicting future land cover changes 

could inform decision makers of impending land cover changes. 

6.5 Conclusions 

This study presents vital information for the countrywide monitoring of land cover changes, 

including forest dynamics, in Zambia. Different topics such as image pre-processing, land 

cover classification, change detection and factors of land cover change were assessed. The 

findings show that the Zambian landscape has undergone drastic changes in the last four 

decades that were mainly driven by agricultural area expansion, population density and 
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distances to railways and roads. An important insight from the study was the important role 

played by protected areas in forest recovery and reversion. The information from this study is 

important for planning, monitoring and managing resources across Zambia and it could also 

inform decision makers on important environmental aspects such as climate change mitigation 

programmes (e.g. REDD+).  
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Appendices 

Appendix A: The ESP tool for optimal segmentation parameters 

Appendix A shows the ESP tool for determining the optimal scale parameters. Figure A1 

indicates the input ruleset in eCognition. The most important parameters that need to be set 

before establishing the optimal scale parameter are compaction and shape. Figure A2 shows the 

output for establishing the optimal segmentation scale parameter. Here, the optimal scale 

parameter is established by looking at the steep changes on the graph. 

 

Figure A1: An example of the input ruleset for the ESP tool in eCognition 9.0. 

 

Figure A2: An example of the output of the ESP tool showing the graph for the optimal scale parameter. 



 

144 
 

Appendix B: Rates of change and landscape metrics 

Appendix B presents the results of the annual rates of change (Table B1), and the landscape 

metrics (Table B2) for the three forest types and the combination of all the forest types. Six sets 

of rates of change are presented, including the change between intermediate classification steps 

and the changes for the whole period (1972–2016). The negative rates of change indicate losses, 

while the positive rates indicate gains. 

 Table B2 presents the landscape metrics, which include number of patches (NP) and Euclidean 

nearest neighbour (ENN) for the six classification steps. The superscript letters (a, b, c for NP 

and x, y for ENN) denote statistical differences in the connectivity and fragmentation metrics 

for each forest type, across all the classification stages. 

Table B1: Annual rates of change for each land cover class between time steps. 

Land cover 1972-1984 1984-1990 1990-2000 2000-2008 2008-2016 1972-2016 

Primary Forest −0.93 −1.02 −5.65 −2.25 −2.19 −2.48 

Secondary Forest 2.12 2.02 4.03 0.57 0.75 2.01 

Plantation Forest 1.5 1.78 2.38 −6.92 −6.81 −0.48 

Wetland −1.12 2.71 2.6 −0.21 −2.09 −0.5 

Waterbody 0.39 0.37 −0.01 −0.5 0.76 0.2 

Cropland 0.11 1.63 2.24 1.93 0.72 1.49 

Irrigated Crops −0.11 4.77 4.21 5.0 −1.51 3.19 

Grassland 0.28 −0.07 0.89 0.37 0.32 0.39 

Settlement 1.53 1.00 1.82 0.3 2.24 1.46 
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Table B2: NP (count) and ENN (m) for plantation, primary, secondary and all forests for the six classification stages.   

 

 

Forest types 

Year 

        1972        1984        1990          2000        2008        2016 

NP ENN  NP ENN NP ENN NP ENN NP ENN NP ENN 

 

All forests 

   

39, 717a 

 

1,105x 

  

86, 456b 

       

1, 068x 

    

 80,301b 

           

833y 

  

 110, 606c 

        

   930y 

  

81, 842b 

        

1109x 

   

 87, 363b 

 

971x 

 

Plantation 

 

56a 

 

2, 618x 

 

83b 

 

1, 864x 

 

99b 

 

2, 867x 

 

196c 

 

6, 543y 

 

64a 

 

1, 484x 

 

55a 

 

1, 491x 

 

Primary 

 

36, 442a 

 

850x 

 

41, 361a 

 

872x 

 

35,530a 

 

1, 013y 

 

33, 338a 

 

980y 

 

27, 737b 

 

1, 105y 

 

27, 548b 

 

1, 127y 

 

Secondary 

 

32, 219a 

 

951x 

 

45, 012a 

 

861x 

 

44, 672a 

 

913x 

 

77, 072b 

 

720y 

 

64, 408b 

 

724y 

 

69, 760b 

 

 725y 
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Appendix C: Classification Trees 

Appendix C presents the annual rates of change in protected and non-protected areas (Table 

C1), and classification trees (CT) for the non-forest covers (Figure C1) presented in Chapter 5 

of the thesis. The non-forest covers include irrigated crops, waterbodies and settlement.  

Table C1: Annual rates of change for protected and non-protected areas and overall 

  Protection Status 

Land cover Protected Non-protected Overall 

Primary Forest −0.36 −2.09 −2.48 

Secondary Forest 2.92 1.21 2.01 

Plantation Forest 0.13 −0.64 −0.48 

Wetland 0.36 −1.61 −0.50 

Waterbody 0.04 0.41 0.20 

Cropland 1.02 2.80 1.49 

Irrigated Crops 2.00 3.66 3.19 

Grassland 0.23 1.02 0.39 

Settlement 0.70 2.26 1.46 
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Figure C1: CT diagram showing the changes from irrigated, settlement and waterbodies to other land 

covers. (A) Total rainfall refers to total rainfall in mm, Percent cultivate area refers to the percentage of 

the cultivated area in km2, Network dist towns is the network distance to town in km, Eucl dist railway 

is the Euclidean distance in km, and mean temp refers to the mean temperature in degrees Celsius. (B) 

TWI refers to Topographic wetness index, Change yield is the change in yield in tonnes, ratio yield area 

refers to the ratio of yield to the total area in tonnes per hectares, and Ecoregion refers to the Ecological 

zones. (C) Max temp is the maximum temperature in degrees Celsius, change yield is the change in 

crop yield in tonnes, and elevation refers to elevation above sea level in metres. 

 


