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Abstract  

 

Mechanical ventilation (MV) is a core life-support therapy for patients suffering from respiratory 

failure or acute respiratory distress syndrome (ARDS). Respiratory failure is a secondary outcome of a 

range of injuries and diseases, and results in almost half of all intensive care unit (ICU) patients 

receiving some form of MV. Funding the increasing demand for ICU is a major issue and MV, in 

particular, can double the cost per day due to significant patient variability, over-sedation, and the 

large amount of clinician time required for patient management. Reducing cost in this area requires 

both a decrease in the average duration of MV by improving care, and a reduction in clinical workload. 

Both could be achieved by safely automating all or part of MV care via model-based dynamic systems 

modelling and control methods are ideally suited to address these problems.  

 

This paper presents common lung models, and provides a vision for a more automated future and 

explores predictive capacity of some current models. This vision includes the use of model-based 

methods to gain real-time insight to patient condition, improve safety through the forward prediction 

of outcomes to changes in MV, and develop virtual patients for in-silico design and testing of clinical 

protocols. Finally, the use of dynamic systems models and system identification to guide therapy for 

improved personalised control of oxygenation and MV therapy in the ICU will be considered. Such 

methods are a major part of the future of medicine, which includes greater personalisation and 

predictive capacity to both optimise care and reduce costs. This review thus presents the state of the 

art in how dynamic systems and control methods can be applied to transform this core area of ICU 

medicine. 
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1. Introduction  
 

1.1. Mechanical ventilation 

Mechanical ventilation (MV) is a core life-support therapy for patients suffering from respiratory 

failure or acute respiratory distress syndrome (ARDS) (de Matos et al., 2012; Girard & Bernard, 2007; 

Herridge et al., 2003; Lorx et al., 2010; Petrucci & De Feo, 2013; Slutsky, 1993; Slutsky & Tremblay, 

1998; Sundaresan et al., 2009). Respiratory failure is a secondary outcome of a range of injuries and 

diseases, resulting in 30%-50% of intensive care unit (ICU) patients receiving some form of MV (Dasta, 

McLaughlin, Mody, & Piech, 2005; Metnitz et al., 2009). While improvements in therapy have achieved 

reduced mortality rates in ventilated patients since 1995 (Maca et al., 2017), the variability and 

severity of condition makes care difficult and thus continues to result in an overall mortality rate of 

30.5% (Wunsch et al., 2010), where the sub-group diagnosed with ARDS have a mortality rate of 45% 

(Maca et al., 2017). Thus, MV is a common therapy operating at the forefront of life support and 

preservation in the ICU. This vision paper will focus on applications of conventional MV. 

 

The primary issue facing healthcare sectors is funding for increasing demand. Intensive care is one of 

the most expensive hospital departments and MV, in particular, is an expensive treatment due to 

patient variability and the resulting over-sedation, and the large amount of clinician time required 

(Cohen & Booth, 1994; Dasta et al., 2005). In fact, MV doubles the cost of an ICU stay (Dasta et al., 

2005). Reducing the cost of this expensive therapy requires both a decrease in the average duration 

of MV by improving care, and a reduction in clinical workload. Both might be safely achieved by 

automating aspects of clinical MV care.  

 

The ultimate aim of MV is to maintain adequate gas exchange in the alveoli. Alveolar collapse is 

common in ARDS, leading to seriously inhibited gas exchange and hypoxemia (Ashbaugh, Bigelow, 

Petty, & Levine, 1967). To induce alveolar  opening, a pressure differential must be applied physically 

across the lungs (Corrado & Gorini, 2002). Historically, this differential was achieved through devices 



such as the iron lung that exposed the patient’s torso to negative pressure to cause lung expansion 

and thus inspiration (Corrado & Gorini, 2002). Today, positive pressure ventilators are used to treat 

ARDS patients (Bernard, 2005). In particular, a clinician-set inspiratory pressure is applied directly to 

the lungs, either invasively via an endotracheal tube (ETT) or tracheotomy, or non-invasively using a 

continuous positive airway pressure (CPAP) or bi-level positive airway pressure (BIPAP) mask 

(Brochard et al., 1995; Kárason et al., 2002). However, both positive and negative pressure ventilators 

can cause mechanical lung damage, known as ventilator induced lung injury (VILI), if incorrect 

ventilator settings are used (Albaiceta & Blanch, 2011; Alviar et al., 2018; M. B. P. Amato et al., 1998; 

de Matos et al., 2012; Dirocco et al., 2006; Frederico C. Jandre, Modesto, Carvalho, & Giannella-Neto, 

2008; Kenneth Jamerson, M.D., Michael A. Weber, M.D., George L. Bakris, M.D., Björn Dahlöf, M.D., 

Bertram Pitt, M.D., Victor Shi, M.D., Allen Hester, Ph.D., Jitendra Gupte, M.S., Marjorie Gatlin, M.D., 

and Eric J. Velazquez, M.D. & Abstract, 2017; Marini, 1994; Pinhu, Whitehead, Evans, & Griffiths, 2003; 

Ranieri et al., 2011; Simonis et al., 2015; Slutsky & Ranieri, 2014; Slutsky & Tremblay, 1998; Terragni, 

Rosboch, Lisi, Viale, & Ranieri, 2003). 

 

Although advances in MV over the last half century have drastically improved ICU outcomes, 

improvements are still possible. It has been said that the future of medicine is predictive, personalised, 

preventative, and participatory (Auffray, Charron, & Hood, 2010; Flores, Glusman, Brogaard, Price, & 

Hood, 2013; Sobradillo, Pozo, & Agustí, 2011). There is thus scope for, at the very least, advances in 

prediction and personalisation to optimise care and prevent avoidable lung injury.  

 

1.2. Ventilator-induced lung injury 

 

Ventilation strategies such as ARDSnet among others (Briel et al., 2010; Brower et al., 2000, 2004; 

Deans et al., 2005; Major, Shaw, & Chase, 2018; M. O. Meade, Cook, Arabi, et al., 2008; Mercat et al., 

2008; Nieman et al., 2017; Slutsky & Ranieri, 2000) tend to follow a set protocol and are not patient-



specific. However, as acute respiratory failure is a secondary outcome of a range of diseases, applied 

MV will have very different pressure-flow outcomes in different patients for the same ventilator 

settings. Sub-optimal settings can lead to several types of VILI (M. B. P. Amato et al., 1998; Brower et 

al., 2000; Hodgson et al., 2011; M. O. Meade, Cook, Arabi, et al., 2008; Slutsky & Tremblay, 1998; 

Valentini, Aquino-Esperanza, Bonelli, & Maskin, 2014), including alveolar-capillary lesions, alterations 

in permeability, oedema, and others, all of which hinder recovery and thus increase the length and 

cost of MV (M. B. P. Amato et al., 1998). Hence, intra- and inter-patient heterogeneity and variability 

over time makes it difficult to select ventilator settings to optimise oxygenation and gas exchange - 

while minimising VILI (Garcia et al., 2006).  

 

The mechanics of, and strategies for, preventing VILI are contentious (Major et al., 2018). Historically, 

it has been assumed VILI is caused by either excessive global pressure (barotrauma) or excessive 

volume (volutrauma) in a ventilation mode dependent manner. For example, in pressure controlled 

ventilation (PCV), pressure is the controlled variable and volume delivered is dependent on lung 

elastance, thus volutrauma is the risk. The converse is true for volume controlled ventilation (VCV), 

where volume delivery is the controlled variable, and dependent pressure makes barotrauma a 

possible outcome. However, such an approach is potentially over-simplified, and the mechanics of VILI 

are likely much more complex and patient- and/or breath-specific. Studies have recommended that 

both inspiratory plateau pressure and tidal volume should be limited as both barotrauma and 

volutrauma can occur within a given ventilation mode (Hager, Krishnan, Hayden, & Brower, 2005).  

 

More recent research has cast light on mechanisms of injury and strategies for mitigation of VILI. 

Dreyfuss and Saumon (Dreyfuss & Saumon, 1998) postulated that alveolar strain due to the 

transpulmonary pressure gradient could cause injury (Nieman et al., 2018), which was later confirmed 

(Mols, Priebe, & Guttmann, 2006). In addition, closed alveoli can be subjected to very high levels of 

shear stress when exposed to the same pressures as adjacent open healthy alveoli (Mols et al., 2006). 



Excessive shear stress can be mitigated using lung protective strategies (M. B. P. Amato et al., 1998; 

Brower et al., 2000; Donahoe, 2011; Laufer et al., 2017; M. O. Meade, Cook, Griffith, et al., 2008; 

Petrucci & De Feo, 2013; Pintado et al., 2013; Sundaresan & Chase, 2012), such as the use of lower 

tidal volumes, personalised PEEP, and moderating driving pressure (M. B. P. Amato et al., 2015; Brower 

et al., 2000, 2004; Futier et al., 2013; Girard & Bernard, 2007; Iglesias et al., 2008; Jobe, 2009; M. O. 

Meade, Cook, Arabi, et al., 2008; Mercat et al., 2008; Nieman et al., 2018; Petrucci & De Feo, 2013; 

Zick et al., 2013).  

 

1.3. Lung protective strategies and recruitment manoeuvres 

Lung protective strategies have improved patient outcomes by reducing VILI and improving 

oxygenation (M. Amato, Barbas, Medeiros, Magaldi, & Schettino, 1998). This improvement has, in 

turn, resulted in reduced time on MV and thus a reduced ICU cost (Dasta et al., 2005). Recruitment 

manoeuvres when performed safely can also be an effective way of increasing and maintaining 

alveolar recruitment (Bates & Irvin, 2002; Dyhr, Laursen, & Larsson, 2002; Gattinoni, Carlesso, Brazzi, 

& Caironi, 2010; Hess, 2015; Spieth & Gama de Abreu, 2012). However, if performed poorly, RMs can 

expose patients to an increased risk of lung injury due to heterogeneity in lung and patient condition, 

and their response to care. 

 

To avoid injury and to enhance recovery, recruitment of closed lung alveoli is desirable. Alveoli may 

collapse due to disease or injury (Mols et al., 2006), and recruitment is often achieved by applying 

tidal volume (Crotti et al., 2001) and PEEP to prevent derecruitment during expiration (Kacmarek et 

al., 2016). Alveoli have threshold opening pressures, which are typically higher than their threshold 

closing pressures (Sundaresan et al., 2009). Titration of PEEP through a staircase recruitment 

manoeuvre (RM) can open closed alveoli, improving arterial oxygenation (Brower et al., 2004) and 

help clinicians to determine the lowest PEEP needed to ensure sustained ventilation of recruited lung 

(Kacmarek et al., 2016).  



 

Optimal PEEP is used to prevent the repetitive opening and closing of injured alveoli, which causes 

atelectrauma (M. B. P. Amato et al., 1998; Briel et al., 2010; Cavalcanti et al., 2017; Gong, Krueger-

Ziolek, Moeller, Schullcke, & Zhao, 2015; Frederico C. Jandre et al., 2008; Jobe, 2009; Kacmarek et al., 

2016; M. O. Meade, Cook, Arabi, et al., 2008; Mercat et al., 2008; Mols et al., 2006; Nieman et al., 

2017; Pelosi et al., 2001; Pintado et al., 2013). Evidence suggests that titrating PEEP to the point of 

minimum elastance (maximum compliance), which is found using a staircase RM, could improve 

patient outcomes (Carvalho et al., 2007; Chiew, Pretty, Shaw, et al., 2015; Lambermont et al., 2008; 

Pintado et al., 2013). In this manner, the minimum elastance strategy maximises recruitment, while 

minimising the risk of volutrauma or barotrauma. 

 

In a staircase RM that is carried out at the beginning of ventilation, PEEP is typically increased in steps 

of 2 cmH2O or 4 cmH2O until a set limit of plateau pressure (pressure controlled ventilation) or tidal 

volume (volume controlled ventilation) is reached, before being stepped down to the initial PEEP level. 

A first RM can be used to recruit collapsed alveoli, while maintaining recruitment of those already 

open. The process can be immediately repeated to titrate PEEP and determine the PEEP level where 

minimum elastance is achieved (Pintado et al., 2013). After this second RM is completed, a new PEEP 

setting can be selected (Chiew, Pretty, Shaw, et al., 2015). 

 

The optimal RM pressure range  is contentious (Cavalcanti et al., 2017; Hodgson et al., 2011; Mercat 

et al., 2008), as the higher pressures in an RM carry risk  of barotrauma or volutrauma, where short 

exposures to damaging MV may reverse any improvements in patient state (Carvalho et al., 2007; 

Cavalcanti et al., 2017; Hodgson et al., 2011; Suarez-Sipmann et al., 2007). Thus, forward prediction 

of lung mechanics throughout a staircase RM would allow clinicians to manage the trade-off between 

the risk of barotrauma and volutrauma, while maximising the benefit of additional lung volume being 

recruited. Such an approach would enable safer RM application with greater insight into desired 



outcomes and potential risks. 

 

Increases in PEEP throughout an RM also result in additional lung volume, or Vfrc, due to alveolar 

recruitment (Dellamonica et al., 2011; Morton, Knopp, Docherty, Shaw, & Chase, 2018; van Drunen, 

Chase, Chiew, Shaw, & Desaive, 2013; Wallet et al., 2013).  Determining Vfrc is often invasive, or 

requires imaging (Computed Tomography (CT) or Electrical Impedance Tomography (EIT)) that either 

cannot be carried out at the bedside (van Drunen et al., 2013) or is not available in every care unit. 

Model-based predictions of Vfrc across each RM step could aid PEEP optimisation, and minimise the 

risk of unintended volutrauma. Potentially, PEEP could even be titrated based on Vfrc, as this recruited 

additional lung volume is the direct goal of applying PEEP. 

 

Due to the nature of respiratory disease (Albert et al., 2009; Bates & Irvin, 2002; Ma & Bates, 2010; 

Marini, 1994), alveoli that have been opened by an RM can collapse despite optimal PEEP settings. 

Therefore, multiple RMs can be required during MV (Morton, Dickson, Chase, Docherty, Howe, et al., 

2018b; Stahl et al., 2006) to re-open collapsed alveoli and sustain oxygenation, along with providing a 

means of monitoring Vfrc (Chiew, Pretty, Shaw, et al., 2015; van Drunen et al., 2013). These RMs often 

involve a clinician carrying out single steps up and down in PEEP. Development of a predictive model 

of lung mechanics would allow this process to be optimised and automated, including monitoring of 

patient-specific condition and regularly optimising PEEP as the condition evolves, which would in turn 

reduce clinical load and potentially improve outcomes via personalised care (Morton, Dickson, Chase, 

Docherty, Howe, et al., 2018b).  

 

Overall, MV is an important and widely used therapy in the ICU. Currently, most MV protocols are 

generalised and fail to address the heterogeneity of MV patients. Tailoring MV to patient condition is 

thus currently reactive, ad hoc, and variable in application. To avoid VILI, ventilator settings need to 

be optimised to individual patient-specific lung mechanics, and the evolving condition. Thus, there is 



a need for greater personalisation of MV. Model-based methods are ideally suited to meet these 

needs.  

 

1.4. Model-based methods 

 

Model-based methods offer a way of using individual patient physiology and response to MV to 

suggest optimal ventilator settings (Chiew, Chase, Shaw, Sundaresan, & Desaive, 2011; Davidson et 

al., 2014; Docherty, Schranz, Chiew, Möller, & Chase, 2014; Pintado et al., 2013; Szlavecz et al., 2014). 

In particular, models and data can be used to gain insight into lung elastance and resistance to flow. 

Elastance is the inverse of compliance and is a measure of lung stiffness or resistance to volumetric 

expansion. Elastance and resistance change depending on the lung injury or disease state. 

Importantly, these models can be used to quantify aspects of patient lung physiology over time, 

capturing a patient’s time-dependent disease state as patient condition evolves. These models have 

the potential to enable predictive, personalised, and potentially automated, approaches to MV, as 

seen successfully in glycaemic control in the ICU (Chase et al., 2010, 2011; Chase, Desaive, & Preiser, 

2016; Evans et al., 2011; Stewart et al., 2016). 

 

This paper reviews common dynamic lung mechanics models, and provides a vision for the future of 

MV through the exploration of what ICU patient respiratory models must be capable of in order to be 

clinically useful. Such methods are a significant first step towards the personalised and predictive 

future of MV and medicine.  



2: Vision of Future  

Better control systems engineering is essential to improve mechanical ventilation therapy. One 

emerging vision for the future of MV involves the use of models and clinical data to personalise care 

and guide MV therapy using the fundamental tools from the dynamic systems and control field. This 

vision incorporates three complementary aspects:  

 

1) Better dynamic system models to provide improved model-based assessment of lung 

condition and response to MV at the bedside in real-time.  

2) Improved system identification to make these models patient-specific and improve their 

predictive capacity so they can be used to safely optimise care.  

 

Combining #1-2 creates an ideal virtual patient, which can then be used to provide: 

3) Improved, patient-specific care at the bedside using virtual patient models and methods to 

guide and optimise care using measured data and a clinically applied form of feedback 

control. 

 

Model-based measures of lung mechanics provide additional insight at the bedside, by merging 

models, clinical data, and system identification to assist clinician decision making. A range of lung 

elastance and mechanics models have been developed (Bates, 2009; Chelucci et al., 1991; Chiew, 

Pretty, Docherty, et al., 2015; Guttmann et al., 1995; Sundaresan et al., 2009; van Drunen et al., 2014; 

Zhao, Guttmann, & Möller, 2011) to assess lung mechanics health throughout MV. However, these 

models are not widely used to determine optimal patient-specific treatment, nor in automated 

decision support.  

 

Real-time information would provide clinicians with immediate indicators of patient-specific condition 

evolution and how they are responding to treatment, beyond the current, static, snapshot of 



information available from a ventilator. Incorporation of emerging, non-invasive imaging techniques 

such as EIT (Balleza-Ordaz, Perez-Alday, Vargas-Luna, & Riu, 2015; Bodenstein, David, & Markstaller, 

2009; Gong et al., 2015; Heizmann, Baumgärtner, Zhao, & Möller, 2014; Karsten et al., 2013; Mezidi 

et al., 2018; Spaeth, Daume, Goebel, Wirth, & Schumann, 2016; Zhao, Fischer, Frerichs, Müller-Lisse, 

& Möller, 2012; Zhao, Steinmann, Frerichs, Guttmann, & Möller, 2010), into predictive lung models 

would ensure the localised effects of many lung diseases could be better seen, and treatment could 

be adjusted accordingly to further optimise patient care. Currently, the most insightful imaging 

techniques are not available at the bedside due to physical limitations (Chase et al., 2014), which 

means pulmonary care and outcome is often determined solely based on limited insight from 

pressure-flow data available from the ventilator.  

 

The limited data available from a ventilator gives a global, not localised idea of mechanics. If a clinician 

chooses to take a more conservative approach to ventilation, the heterogeneity of many lung diseases 

means this choice can result in under-ventilated lung regions. The combination of added imaging 

information with clinically relevant models would thus allow these effects to be better understood, 

monitored, and treated. In particular, EIT provides detailed information about regional ventilation by 

measuring impedance changes across electrodes attached to the skin (Balleza-Ordaz et al., 2015; 

Frerichs et al., 2003; Hahn, Frerichs, Kleyer, & Heilige, 1996; Kunst et al., 2000; Sundaresan & Chase, 

2012; Zhao, Pulletz, Frerichs, Müller-Lisse, & Möller, 2014). It has been shown to be useful in cases 

where volume cannot be easily determined solely through the ventilator, such as in spontaneously 

breathing patients (Frerichs et al., 2003; Gong et al., 2015; Riedel, Richards, & Schibler, 2005; Zhao et 

al., 2018). Unlike other non-invasive imaging techniques, EIT has the ability to be used at the bedside. 

As the technology is developed further, higher availability of EIT in care units would allow accurate 

information about global and local lung ventilation to be used in conjunction with ventilator data to 

better guide and personalise care. 

 



Predictive methods can potentially be used to guide therapy for improved control. The prediction of 

potential respiratory mechanics at different MV settings allows more informed decisions to be made 

(Morton, Dickson, Chase, Docherty, Desaive, et al., 2018). Such model-based approaches have already 

been used in glycaemic control to improve the safety and efficacy of insulin dosing (Chase et al., 2007, 

2008; Evans et al., 2011; Langdon, Docherty, Mansell, & Chase, 2018; Lin et al., 2007; Stewart et al., 

2016). For MV, it allows breath-to-breath monitoring of patient-specific condition and tailoring of 

PEEP and RMs to meet patient MV needs. It would allow clinicians to manage risk and reward 

throughout a staircase RM or other changes to MV settings. Model-based approaches could provide 

prediction of the additional lung volume that would be recruited and the peak inspiratory pressure 

that would be achieved after a PEEP change. Such an approach would provide a much better indication 

of the benefits and costs of potential therapeutic options than is possible with current ad-hoc 

approaches. Finally, small maintenance RMs could be automated to reduce clinical workload, increase 

the patient-specific responsiveness of care, and enable pilot investigations of automated control in 

this core ICU therapy (Arrøe, 1991; Chatburn, 2004; F C Jandre, Pino, Lacorte, Neves, & Giannella-

Neto, 2004; T. P. Laubscher, Frutiger, Fanconi, & Brunner, 1996; Thomas P. Laubscher, Frutiger, 

Fanconi, Jutzi, & Brunner, 1994; Sittig, Pace, Gardner, Beck, & Morris, 1989; Tehrani, 2008b, 2008a, 

2013; Tehrani & Roum, 2008).  

 

Another important aspect of model-based approaches, and in this vision, is their use in generating 

virtual patients to use in virtual trials. A fast, effective, and safe method of testing new therapy 

approaches is an unmet need in medicine, and virtual trials could meet this need. Virtual patients have 

already been successfully used in glycaemic control protocol development (Chase et al., 2010, 2011, 

2016; Dickson et al., 2018; Evans et al., 2011; Mombaerts, Thomas, Signal, Desaive, & Chase, 2015; S. 

Penning, Lambermont, Desaive, Pretty, & Chase, 2014; Sophie Penning et al., 2012; Zhou, Dickson, 

Shaw, & Chase, 2018). For their application to MV, existing models must first be able to be used in 

accurate forward predictions, and then be fully clinically validated (Chase et al., 2018). 



 

Achieving this vision of mechanical ventilation will require more physiologically relevant models, 

better system identification and improved control, three fundamental aspects of dynamic systems and 

control. The following three sections of this paper each cover one of these three key aspects. 

  



3. Improved dynamic models and methods 

A range of models have been developed to describe lung mechanics. There is a fundamental trade-off 

between physiological accuracy and clinical relevance. The benefit of identifying aspects of the 

complexity and variability of lung physiology and lung injury or disease is currently ambiguous and 

thus to date, has not justified the high costs of high fidelity data collection. Currently, only airway 

pressure and flow rates are taken as typical practice in most ICU settings. In addition, respiratory 

failure is a secondary outcome to many disease or injury states, complicating the application of MV in 

a broad clinical cohort. In short, for a model to have clinical relevance and widespread use it needs to 

be structured simply enough to ensure clinical relevance and be mathematically identifiable using 

information readily available at the bedside (Chase et al., 2018; Chis, Banga, & Balsa-Canto, 2011; 

Cobelli & DiStefano, 1980; Docherty, Chase, Lotz, & Desaive, 2011; Ljung, 1999; Riedlinger, 

Kretschmer, & Möller, 2015; Schranz, Docherty, Chiew, Chase, & Möller, 2012). 

 

Two main groups of lung models exist: complex, finite element analysis (FEA) models, and variants on 

simpler lumped-parameter models (Ben-Tal, 2006). The complexity of FEA models allows lung and 

disease mechanics to be better understood. FEA models can provide scientists and clinicians with a 

much more thorough idea of the localised effects of clinical factors, such as patient positioning (Kelly 

S. Burrowes & Tawhai, 2006), along with expected disease progression and pulmonary effects (Eom, 

Xu, De, & Shi, 2010; Werner, Ehrhardt, Schmidt, & Handels, 2009). However, for very large scale 

models non-identifiability or non-observability can become a limitation that may need to be overcome 

via new identification and statistical approaches. In addition, these models can also be too complex 

to identify from the type of clinical data that is typically available, and are thus not often accessible 

for clinical use. 

 

Lumped parameter models generally define elastic-resistive respiratory behaviours and have a much 

lower physiological resolution and complexity than FEA models (Ben-Tal, 2006; Major et al., 2018). 



Alveoli and airways are often initially modelled as a balloon at the end of a pipe or similar (Bates, 

2009). The simplicity of these models means they are readily accessible for use in a clinical context. 

More specifically, they are mathematically identifiable (Docherty et al., 2011; Ljung, 1999; Schranz et 

al., 2012) from available pressure and flow data at the bedside. However, their simplicity generally 

means that some dynamics are not captured. In particular, a key improvement to be made in lumped-

parameter models would be more detailed parameterisation to enable disease evolution to be better 

understood. 

 

3.1. Finite Element Analysis Models 

A range of more complex finite element models seeking to accurately describe the true physiological 

behaviour of the lungs have been developed (Kelly S. Burrowes, Clark, Marcinkowski, et al., 2011; Kelly 

S. Burrowes & Tawhai, 2006; Crampin et al., 2004; Ma & Bates, 2010; Swan, Clark, & Tawhai, 2012; 

Tawhai & Bates, 2011; Tawhai & Burrowes, 2003, 2008; Tawhai, Hoffman, & Lin, 2009; Tawhai, Pullan, 

& Hunter, 2000). These models typically use detailed scale-models of the pulmonary system produced 

using anatomical information from computed tomography (CT) (Tawhai & Burrowes, 2003). 

Segmented lung data is fitted to a high order mesh, providing a very detailed anatomical model for 

simulating respiratory mechanics (Tawhai & Bates, 2011). As these models typically have a very high 

computational cost and require individual CT scans for optimum accuracy, they are often not feasible 

for use in a clinical setting. They can also include a range of multi-scale models for various lung 

functions that contribute to gas exchange (K. S. Burrowes et al., 2013; K. S. Burrowes, Swan, Warren, 

& Tawhai, 2008; Kelly S. Burrowes, Clark, & Tawhai, 2011; Tawhai & Bates, 2011; Tawhai & Burrowes, 

2008), and provide valuable information about changes in perfusion and ventilation throughout the 

lungs (Swan et al., 2012). They can also indicate the extent and progression of disease (Tgavalekos et 

al., 2005).  

 

There is thus scope for their clinical use in better understanding perfusion and disease state in general, 



and over time for some patients. Equally, emerging simplified approximations using Bond Graph 

methods offers the potential to significantly increase computational speed (Safaei, Blanco, Müller, 

Hellevik, & Hunter, 2018). Combined with enough data or imaging, they provide a link to bring greater 

detail to simpler elastic-resistive models. 

 

3.2. Elastic-Resistive Models 

3.2.1. Single Compartment Model 

The simplest model of the lung is an elastic balloon at the end of a pipe. The balloon represents the 

distensible tissues, while the airways are modelled by the pipe (Bates, 2009). From this concept, a 

single compartment mathematical model is generated. Many variants on this basic model have been 

established (Ben-Tal, 2006). A single compartment model was pioneered in 1953, for patients capable 

of spontaneous breathing (Mead & Whittenberger, 1953). This form of model describes the 

respiratory system as containing an elastic compliant section representing the lung, along with a 

resistive component representing the airways (Bates, 2009; Chelucci et al., 1991; van Drunen et al., 

2014). This simple model is disproportionally effective for basic analyses. However, as it assumes that 

pressure increases linearly with volume increase, it neglects non-linear flow and other specific 

dynamics  (Bates, 2009; Chiew et al., 2011; Lucangelo, Bernabè, & Blanch, 2007). 

 

This model includes the pressure difference (RV̇(t)) in the lungs, and the elastic pressure (EV(t)) in the 

lungs. Assuming linear flow, it is defined (Bates, 2009):  

 

P(t)=EV(t)+RV̇(t)+ Po 1 

 

Where P is the inspiratory pressure delivered to the lungs (cmH2O),  Po is the ventilator PEEP setting 

(cmH2O), t is time (s), V(t) is the applied volume (L), V̇(t) is the time-dependent flow (L/s), E is the 

elastance (cmH2O/L) and R is the resistance (cmH2O/L*s) (van Drunen et al., 2014). 



 

The low number of parameters in this model means it is easily identifiable using clinically available 

data, along with being computationally inexpensive in its basic form. Thus, it can be widely applied in 

clinical settings with limited clinical data. It has thus been significantly extended. 

 

3.2.2. SLICE method 

The SLICE method was developed by Guttmann et al. in 1995 (Guttmann et al., 1995). Lung mechanics 

are often non-linear and volume dependent. These issues present a challenge when attempting to fit 

clinically relevant linear models to data. As a linear piecewise approximation of lung mechanics, the 

SLICE method splits the tidal volume into a set of 'slices' with a single resistance and single compliance 

value per volume ‘slice’. Combining the resistance and compliance across the delivered volume ‘slices’ 

gives quasi-dynamic compliance and resistance values (Guttmann et al., 1995; Zhao et al., 2011; Zhao, 

Guttmann, & Möller, 2012). To further linearise the behaviour, the Rohrer equation (Rohrer, 1925) is 

used to calculate the tracheal pressure (Guttmann et al., 1995), as opposed to the airway pressure. 

Eq. 1 is thus adapted to become: 

𝑃𝑎𝑤,𝑠𝑙𝑖𝑐𝑒(t)=
𝑉𝑠𝑙𝑖𝑐𝑒(t)

𝐶𝑘
+𝑉̇𝑠𝑙𝑖𝑐𝑒(t)×𝑅𝑘+ P𝑘 2 

 

where Paw,slice, Vslice, and V̇slice are the pressure, volume and airway flow for a single slice, respectively 

(Guttmann et al., 1995). Pk represents the pressure offset for each slice. Ck and Rk are the identified 

compliance (L/cmH2O) and resistance (cmH2O*s/L*s) for each slice (Zhao et al., 2011).  

 

The adaptive slice model was developed to automate selection of the slice sizes based on a selected 

confidence interval of the results, thereby reducing error while maximising computational efficiency 

(Zhao et al., 2011). The linearisation of lung mechanics in the SLICE model, along with the additional 

accuracy in the adaptive form means it remains clinically identifiable, while still providing as many 



trustworthy estimates of elastance and resistance as possible (Zhao et al., 2011). However, tracheal 

pressure is more invasive to measure than airway pressure. 

 

3.2.3. Time-Varying Elastance Model 

Lung elastance is dependent on recruitment, which is a time-varying phenomena (Ma & Bates, 2010; 

Massa, Allen, & Bates, 2008). Therefore, a method to assess changes in this property throughout the 

progression of a disease is essential to guide therapy (Chiew et al., 2011; van Drunen et al., 2014). 

Dynamic lung elastance (Edrs) is an elastance that varies over a breath (time-varying). It is typically fit 

over inspiration using the single compartment model in Eq. 1. Having Edrs and Rdrs fit to every breath 

allows the model to be used to optimise PEEP settings (Chiew, Pretty, Docherty, et al., 2015; van 

Drunen et al., 2014). It can also indicate the occurrence of over-distension or recruitment within the 

breath (van Drunen et al., 2014). Initial trials on dynamic elastance have only been carried out on fully 

sedated patients, therefore negating patient inspiratory effort, and were based on the single 

compartment model (Chiew, Pretty, Docherty, et al., 2015; van Drunen et al., 2014).  

 

The model is defined: 

 

P(t)=Edrs(t)V(t)+RrsV̇(t)+ PEEP. 3 

 

Here Edrs is an overall respiratory system elastance (cmH2O/L) comprising chest wall elastance (which 

is treated as a constant) and lung elastance (which is assumed to change throughout inspiration (van 

Drunen et al., 2014)). Resistance is assumed to be a constant over a breath in this model.  

 

Identifying time-varying elastance over a breath also enables detection and monitoring of the 

incidence and magnitude of asynchronies (Chiew et al., 2018; Kannangara et al., 2016). Asynchrony 

interrupts MV care and worsens outcomes, as it reflects poor interaction between the patient and 



ventilator (Chiew et al., 2018; Kannangara et al., 2016). Hence, the model of Eq. 3 can also be used to 

address and monitor this clinically important outcome, as well.   

 

3.2.4. Spontaneous Breathing Model 

Spontaneously breathing patients apply their own inspiratory efforts on top of a ventilator supported 

breathing cycle (Langdon, Docherty, Chiew, Damanhuri, & Chase, 2015). A time-varying elastance 

model was developed to describe the mechanics of spontaneously breathing patients on partial assist 

mechanical ventilation (Chiew, Pretty, Docherty, et al., 2015). This model utilises a negative elastance 

component to describe patient-specific breathing efforts. The overall model is based on the single 

compartment model of Eq. 1 and the time-varying model of Eq. 3, but an adjusted Edrs value captures 

the additional patient effort on top of the ventilator support. The components of this adjusted Edrs 

value are defined: 

 

Edrs(t)=Echest+ Edemand(t)+ Elung(t) 4 

 

where Edrs is the overall time-varying respiratory system elastance (cmH2O/L), Echest is the constant 

elastic properties of the chest wall, Elung(t) is a time-varying measure of the elastic properties of the 

lung, or the collection of alveoli, and Edemand(t)  is the patient-specific inspiratory demand, which varies 

from breath-to-breath (Chiew, Pretty, Docherty, et al., 2015). Given a value for Echest, the net balance 

of Edemand(t) and Elung(t) can be identified. It may be a positive or negative value as that patient may 

provide either inspiratory or expiratory pressure. The negative elastance accounts for patient 

breathing efforts separate to the airflow provided by the ventilator. 

 

The ability of this model to accurately capture mechanics of spontaneously breathing patients without 

invasive measures extends the clinical ability of minimal models to enable titrating care for all 

ventilated patients (Chiew, Pretty, Docherty, et al., 2015). Negative elastance and area above this 



curve allows estimation of breathing effort by the patient. Finally, it lets the same model be used for 

sedated and spontaneous breathing MV modes. 

 

3.2.5. Other Elastic-Resistive Models 

A range of other elastic-resistive models have been developed (Ben-Tal, 2006). These models include 

those of Massa et al. (Massa et al., 2008) and Ma et al. (Ma & Bates, 2010) which were used to define 

the processes of recruitment and derecruitment. Both of these models attempt to capture the specific, 

time-dependent processes carried out in an airway branch before extending this local model to 

estimate global lung behaviour based on expected distributions (Massa et al., 2008). It assumes that 

each branch has a critical opening and closing pressure, along with corresponding time constants (Ma 

& Bates, 2010). 

 

Abboud et al. (Abboud, Barnea, Guber, Narkiss, & Bruderman, 1995) developed a model to capture 

the lung’s flow-volume curve throughout forced expiration. This model was used to more thoroughly 

investigate the differences in lung stiffness between different lung diseases. Finally, in 2007, Lucangelo 

et al. adapted Eq. 1 to capture dysfunctional patient-ventilator interactions such as asynchronies, air-

leaks or sudden changes in patient condition (Lucangelo et al., 2007). 

 

Each of these models is able to provide useful information about current lung response to ventilation 

and uses clinically-available information. However, the models lack the combination of predictive 

capabilities and clinical identifiability to be able to be used in determining lung mechanics during 

future changes in ventilation. 

 

3.3. Summary 

A range of models have been developed to define lung mechanics. Finite element models are too 

complex for bedside use in model-predictive and potentially automated care. Simple, mathematically 



identifiable models have demonstrated the ability to capture clinically relevant dynamics and lung 

mechanics. However, improvements in the field require the ability to predict the effect that changes 

in therapy will have on individual patients and cohorts as a whole, prior to making the change, which 

is not yet proven.  

 

  



4. Improved system identification for both monitoring and prediction of lung mechanics 

While many pulmonary models have been developed to the point where they can accurately describe 

elastance and suggest a suitable PEEP level, it is a reactive, retrospective process. For more effective 

and patient specific treatment, models need to be able to extrapolate from past or current data to 

predict how the lung will respond to MV setting changes (Langdon, Docherty, Chiew, & Chase, 2016). 

This predictive capability is essential for defining when and how to alter ventilator settings for 

optimised patient outcomes.  

  

 

4.1. Stochastic Models 

Stochastic models use distribution information about a population to predict future behaviour in an 

individual patient. Stochastic models have been used for predictive models of insulin sensitivity and 

virtual patient development to ensure safety in semi-automated glycaemic control (Chase et al., 2010, 

2018, 2016). Specifically, these models have been instrumental in the STAR glycaemic control protocol 

(Evans et al., 2011; Stewart et al., 2016), using information from large amounts of clinical data to 

inform clinical decisions about future changes in insulin uptake to avoid hyperglycaemic and 

hypoglycaemic episodes.  

 

However, stochastic modelling may be limited in its application for lung mechanics. Insulin sensitivity 

is modelled as a one-dimensional problem, either increasing or decreasing over time. More recent 

work has extended this variable in a model-based glycaemic control scenario   to a two-dimensional 

variable that takes into consideration rate of change by including rate of change (Uyttendaele et al., 

2018).  However, for lung mechanics models, this variability is spread over a more variable and high, 

breath-to-breath time resolution. 

 

Notably, the single compartment model of pulmonary mechanics (P = EV + RQ + PEEP) already has two 



dimensions. However, this model lacks predictive capabilities. To allow for changes in elastance and 

resistance over time to be taken into account, the model needs to be of a higher dimension.  A recent 

predictive elastance basis function model (Morton, Dickson, Chase, Docherty, Desaive, et al., 2018; 

Morton, Dickson, Chase, Docherty, Howe, et al., 2018a; Morton, Docherty, Dickson, & Chase, 2018) 

has four identified dimensional (E1,E2,R1,R2), meaning stochastic models will require extremely high 

data density.  

 

4.2. NARX Model 

Work has been done to predict lung mechanics at a high PEEP using information provided at a lower 

PEEP (Langdon, Docherty, Chiew, & Chase, 2016). A non-linear autoregressive (NARX) resistance and 

basis function elastance model was developed  from a viscoelastic form of the single compartment 

model (Langdon, Docherty, Chiew, & Chase, 2016; Langdon et al., 2015). Basis functions were 

developed from overlapping B-spline functions of different orders (Langdon, Docherty, Chiew, & 

Chase, 2016; Langdon et al., 2015; Langdon, Docherty, Chiew, Möller, & Chase, 2016). This model 

successfully predicts lung behaviour at high PEEP levels using information provided at a lower PEEP 

setting/value. However, the basis function terms that were used cannot be explicitly linked to lung 

mechanics. This issue reduces the clinical utility of this particular model to be used in a virtual patient, 

as well as its diagnostic relevance. 

 

4.3. Basis Function Models 

More recently, work has been done to develop the NARX model to more explicitly link physiological 

mechanics to basis function terms for use in virtual patient development (Morton, Dickson, Chase, 

Docherty, Desaive, et al., 2018; Morton, Dickson, Chase, Docherty, Howe, et al., 2018a; Morton, 

Docherty, et al., 2018; Morton, Knopp, et al., 2018). Basis functions define both elastance and 

resistance as dependent on changes in pressure, flow, volume and time, which are all measured.  

 



Elastance is modelled with contributions from both distension and alveolar recruitment. These basis 

functions were shaped to match observed mechanical lung behaviour during inspiration and, in 

particular, the impact and trade-off between alveolar recruitment and distension across the full range 

of pressure and tidal volume (Morton, Dickson, Chase, Docherty, Desaive, et al., 2018). The constants 

E1 and E2 are identifiable from a single breath (Morton, Dickson, Chase, Docherty, Desaive, et al., 

2018). 

 

Pressure drop due to airway resistance is defined by the overall form of the Rohrer equation for 

endotracheal tube (ETT) resistance (Rohrer, 1925). ETT resistance makes up a significant proportion 

of ventilator resistance, causing a substantial pressure drop between the start of the endotracheal 

tube or the airway pressure and the end or the tracheal pressure (Guttmann et al., 2000; Guttmann, 

Eberhard, Fabry, Bertschmann, & Wolff, 1993; Karason, Sondergaard, Lundin, Wiklund, & Stenqvist, 

2001). This drop can lead to incorrect values of pressure being used in calculations. Therefore, the 

resistance of the ETT is an important factor in determining a correct elastance and thus the optimal 

ventilator settings.  While this equation does not consider some clinical considerations, such as 

deformation of the tube and lung secretions (Karason et al., 2001), its accuracy was high enough to 

achieve accurate lung mechanics predictions (Morton, Dickson, Chase, Docherty, Desaive, et al., 2018). 

  

The overall model is thus defined: 

 

   P(t)= (E1eb(V(t))+ E2

P(t)

60
) V(t) + (R1+ R2|Q(t)|)Q(t)+PEEP 5 

 

where P(t) is the inspiratory airway pressure (cmH2O), V(t) is the volume delivered (L), Q(t) is the 

airway flow (L/s), and PEEP is defined in units of cmH2O. E1, b, E2, R1 and R2 are all breath-specific 

parameters to be determined (Morton, Dickson, Chase, Docherty, Desaive, et al., 2018). 

 



This model can also provide an estimation of the additional lung volume gained from each step in an 

RM, Vfrc. This value estimates the increased alveolar recruitment caused by increases in PEEP that lead 

to an increased end-expiratory lung volume, or dynamic function residual capacity (Dellamonica et al., 

2011; Morton, Knopp, et al., 2018; van Drunen et al., 2013; Wallet et al., 2013). This value is often 

difficult to determine in a clinical setting. In particular, volume is generally defined as the integral of 

flow, and this is subject to drift in estimation. To remedy this issue, volume is generally zeroed at the 

end of expiration, and absolute volume in the lung is unknown. The final predictive model thus uses 

the derived Vfrc to determine the total inspired volume as such: 

 

𝑃(𝑡) = (𝐸1𝑏(𝑉(𝑡)+𝑉𝑓𝑟𝑐) +  𝐸2

𝑃(𝑡)

60
) 𝑉(𝑡)  + (𝑅1 +  𝑅2|𝑄(𝑡)|)𝑄(𝑡) + 𝑃𝐸𝐸𝑃𝑛+1 6 

 

where identified lung mechanics from measured data at PEEPn are used to predict inspiratory 

pressures at PEEPn+1 before it is applied. Vfrc is estimated iteratively from PEEPn data using: 

 

𝑉𝑓𝑟𝑐
𝑛 =

(𝑃𝐸𝐸𝑃𝑛+1−𝑃𝐸𝐸𝑃𝑛)

𝐸1𝑒
𝑏𝑉𝑓𝑟𝑐+𝐸2𝑃𝐸𝐸𝑃𝑛+1 60⁄

. 

 

7 

 

For an initial proof of concept of virtual patients in MV, the model has been tested against clinical data 

(Morton, Dickson, Chase, Docherty, Desaive, et al., 2018). Results show low error when predicting 

upwards over the clinically relevant pressure range, with the model able to predict peak inspiratory 

pressure with less than 10% error over 90% of the range of PEEP changes up to 12 cmH2O. Figure 1 

shows typical prediction results for a studied patient data set (Morton, Dickson, Chase, Docherty, 

Desaive, et al., 2018). 

  



 

 

 

PEEP of 14 cmH2O to predict a PEEP of 18 
cmH2O  

PEEP of 14 cmH2O to predict a PEEP of 26 
cmH2O 

  

Figure 1. Typical results for prediction of pressure at a higher PEEP level using information about 
lung mechanics at a lower PEEP level. The solid blue line shows model prediction, the dashed black 
line shows the average breath at the higher PEEP level, and the light grey lines show all breaths at 

that PEEP level.  
  



5. Stable control for clinical application 

The future of MV could utilise model-based methods to gain insight into patient condition and improve 

safety on a patient level through the forward prediction of outcomes, such as peak inspiratory 

pressure (PIP) and volume gain with a PEEP change. On a cohort level, development of virtual patient 

models and methods would be essential for design and efficient testing of clinical protocols with a 

lower patient burden (Chase et al., 2018). However, future use of such models and methods is not yet 

a complete concept. 

 

5.1. Case Study 

Figure 2 shows a case study of a possible future of MV care based on the defined vision. Model-based 

treatments are used throughout the entire treatment timeline. Patient-specific prediction is a key 

element. 

 

In Steps 1 and 2 the patient is admitted to the care unit and intubated. At this point, pressure-flow 

data from the ventilator could be run through an elastic-resistive model to give the clinician an initial 

idea of lung mechanics and thus patient-specific lung condition. Additionally, EIT or an alternative non-

invasive imaging technique would offer a better idea of heterogeneous lung effects, depending on the 

presenting condition. Thus, clinicians would already have far more insight and patient-specific 

information than in current care. 

 

In Step 3, the first half of an initial staircase RM is carried out to recruit as many alveoli as possible, 

while minimising any form of VILI. Predictive methods serve two purposes at this stage. First, 

predicting PIP at a higher PEEP level based on current lung mechanics prior to increasing it would 

minimise the risk of barotrauma. The model would be generalisable enough to predict tidal volume in 

pressure controlled ventilation to minimise risk of volutrauma. Second, the additional lung volume to 

be gained from an increase in PEEP, Vfrc, could also be estimated, allowing clinicians to assess the 



diminishing returns of lung volume recruitment against the risk of barotrauma or volutrauma. This Vfrc 

value would significantly enhance MV care, where this trade-off cannot be evaluated today: an all-

new capability. This capability would also be useful in ensuring that patients with non-recruitable lungs 

would not undergo a full RM, as the lack of recruitment would be indicated by plateauing of gained 

Vfrc . For additional insight, this could also be combined with ventilation information from EIT imaging. 

 

In Step 4, a second RM straight after the first would also use the ability of the model to predict PIP. 

Lung mechanics change with recruitment, so the elastance curve changes, requiring re-fitting of the 

initial PEEP level. PEEP should be increased incrementally until the elastance appears to have reached 

a minimum. Overlaying the elastance curves from the two RMs will further confirm the range in which 

minimum elastance and optimal oxygenation occurs, to optimise MV settings. 

 

Multiple smaller maintenance RMs would be - potentially automatically - carried out throughout the 

rest of MV care, as shown in Step 5. These RMs are used to re-recruit alveoli that have collapsed 

despite optimal PEEP, as well as to adjust PEEP as defined via prior RMs, as patient condition evolves. 

These RMs could be automated with the methods and models proposed. Development of a predictive 

model of lung mechanics that would allow this process to be optimised and automated, would also 

reduce clinical workload (Morton, Dickson, Chase, Docherty, Howe, et al., 2018b).  

 

Finally, as patient condition improves, the patient can be weaned from ventilator support (Brochard 

et al., 1994; Hetland, Lindquist, & Chlan, 2015; Lellouche et al., 2006; Marelich, 2000; Yang & Tobin, 

1992). Throughout MV, the amount of PEEP required to maintain recruitment and oxygenation should 

decrease and patient breathing effort increase (Branson & Johannigman, 2009). Typically, the weaning 

process is not begun until patient condition has significantly improved (Alía & Esteban, 2000; Branson, 

2012; Branson & Johannigman, 2009). In Step 6, the decrease in PEEP requirement due to improved 

PEEP selection could largely automate weaning, another major and difficult aspect of MV (Lellouche 



et al., 2006; Marelich, 2000; M. Meade et al., 2001), as PEEP levels fall over time and lead to a 

consequent reduction in ventilator dependency.  

 
Figure 2. Case study showing anticipated patient treatment timeline in future model-based MV.   



5.2. Virtual Patients 
 
Virtual patients can be developed to model the responses one may expect from an individual, or a 

cohort-wide scale (Chase et al., 2018, 2016). Virtual patients are used to personalise and optimise care 

for an individual patient by predicting response to a change in treatment prior to implementing the 

change. This personalisation is especially critical for ICU patients, who exhibit a great deal of variation 

in condition, and response to treatment (Dickson, Gunn, & Chase, 2014). As noted, in intubated 

patients, personalisation would be used to predict the effects of an RM on lung elastance to minimise 

the risk of VILI while also maximising lung recruitment, and thus, oxygenation. 

 

Virtual cohorts offer a method of safely and efficiently validating the effect that testing new 

treatments can have on a population of patients (Chase et al., 2016). A validated in-silico virtual trial 

platform could reduce the number of Phase II and III human trials (Chase et al., 2018). It would thus 

be a substantial development in mechanical ventilation, as two of the main metrics for judging an 

improvement in treatment across a cohort (length of mechanical ventilation and ventilator-free days 

(Schoenfeld & Bernard, 2002)) are both highly skewed (Morton et al., 2017). This skew requires a large 

number of patients in a given clinical trial to reach statistical power (Morton et al., 2017). Capitalising 

on the recent FDA change to recognising virtual trials (Smalley, 2018) as a method of testing medical 

treatments, having virtual cohorts to test new mechanical ventilation protocols would allow the field 

to move forward much faster. 

 

5.3. Future Questions 

Improvements in model-based MV and the development of virtual patients will open up new clinical 

questions. Many of these questions will require the combination of model-based techniques along 

with imaging techniques to optimise treatment.  

 

Assuming perfect prediction of patient response to treatment, the first of these questions is 



determining how much additional lung volume, Vfrc, is enough to consider an RM useful. While 

population statistics can provide general information about lung capacity in healthy individuals, the 

variation in patients suffering from respiratory failure means this information needs to be 

personalised to ensure that long-term damage is not caused to the lungs. The emergence of bedside 

accessible, non-invasive imaging techniques will also be increasingly essential for this application and 

to further improve care.  

 

A further question may ask how optimal PEEP can be defined for patients and how best to continually 

assess and alter this value. While research has indicated titration of PEEP to minimum elastance results 

in good patient outcomes (Carvalho et al., 2007; Chiew, Pretty, Shaw, et al., 2015; Lambermont et al., 

2008; Pintado et al., 2013), this approach may not hold true for all cohorts of patients. Potentially, Vfrc 

should also be considered in setting PEEP and other MV settings. In addition, lung mechanics often 

change as lung condition evolves and previously opened alveoli collapse, necessitating another RM or 

change in MV settings. Assuming perfect prediction of lung response throughout these RMs, their 

optimal frequency needs to be considered – whether additional gains in oxygenation are worth 

potential lung injury from changes in pressure. All of these methods will require the models and 

methods first, before their clinical investigation. 

 

Ultimately MV is about maintaining blood oxygenation. Mechanical models can also be combined with 

gas exchange models and bedside oxygenation data to allow the effect that RMs have on oxygenation, 

specifically the existence of pulmonary shunt, to be better understood. Elastance and resistance 

values calculated from pressure and flow data offers information about the mechanical health of the 

lungs and subsequent alveolar recruitment. However, the success of oxygen and carbon dioxide 

diffusion from the alveoli to the bloodstream cannot be determined from mechanical information 

alone.  Combining mechanical and gas exchange models would provide clinicians with more data to 

be able to better optimise care.  



 

  



6. Conclusion  

The incorporation of model-based methods and automation into mechanical ventilation will aid the 

healthcare sector in meeting increasing demand in intensive care units. In particular, a change from 

more generic protocols to the use of predictive, patient-specific models will improve individual patient 

outcomes while also reducing clinical workload. The future use of virtual patients and cohorts will also 

allow new treatments and therapies to be safely and more efficiently tested, allowing for faster 

advancements in the field. 
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