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Abstract

Collective cell spreading takes place in spatially continuous environments, yet it is often modelled

using discrete lattice-based approaches. Here, we use data from a series of cell proliferation assays,

with a prostate cancer cell line, to calibrate a spatially continuous individual based model (IBM)

of collective cell migration and proliferation. The IBM explicitly accounts for crowding effects by

modifying the rate of movement, direction of movement, and the rate of proliferation by accounting

for pair-wise interactions. Taking a Bayesian approach we estimate the free parameters in the IBM

using rejection sampling on three separate, independent experimental data sets. Since the posterior

distributions from each experiment are similar, we perform simulations with parameters sampled

from the combined distribution to explore the predictive power of the calibrated IBM by accurately

forecasting the evolution of a fourth, experimental data set. Overall, we show how to calibrate a

lattice-free IBM to experimental data, and our work highlights the importance of interactions between

individuals. Despite great care taken to distribute cells as uniformly as possible experimentally, we

find evidence of significant spatial clustering over short distances, suggesting that standard mean-field

models could be inappropriate.
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1. Introduction1

One of the most common in vitro cell biology experiments is called a cell proliferation assay2

(Bosco et al., 2015; Bourseguin et al., 2016; Browning et al., 2017). These assays are conducted by3

placing a monolayer of cells, at low density, on a two-dimensional substrate. Individual cells undergo4

proliferation and movement events, and the assay is monitored over time as the density of cells in the5

monolayer increases (Tremel et al., 2009). One approach to interpret a cell proliferation assay is to6

use a mathematical model (Warne et al. 2017). Calibrating the solution of a mathematical model to7

data from a cell proliferation assay can provide quantitative insight into the underlying mechanisms,8

by, for example, estimating the cell proliferation rate (Tremel et al., 2009; Sengers et al., 2007).9

A standard approach to modelling a cell proliferation assay is to use a mean-field model, which is10

equivalent to assuming that individuals within the population interact in proportion to the average11

population density and that there is no spatial structure, such as clustering (Tremel et al., 2009;12

Sengers et al., 2007; Maini et al., 2004b; Sarapata and de Pillis, 2014; Sherratt and Murray, 1990).13

More recently, increased computational power has meant that individual based models (IBMs) have14

been used to directly model the cell-level behaviour (Binny et al., 2016a; Frascoli et al., 2013; John-15

ston et al., 2014). IBMs are attractive for modelling biological phenomena because they can be used to16

represent properties of individual agents, such as cells, in the system of interest (Binny et al., 2016a,b;17

Frascoli et al., 2013; Peirce et al., 2004; Read et al., 2012; Treloar et al., 2013). Typical IBMs use18

a lattice, meaning that both the position of agents, and the direction of movement, are restricted19

(Codling et al., 2008). In contrast, lattice-free IBMs are more realistic because they enable agents to20

move in continuous space, in any direction. However, this extra freedom comes at the cost of higher21

computational requirements (Plank and Simpson, 2012).22

In this work we consider a continuous-space, continuous-time IBM (Binny et al., 2016b). This IBM23

is well-suited to studying experimental data from a cell proliferation assay with PC-3 prostate cancer24

cells (Kaighn et al., 1979), as shown in Figure 1(a)-(d). The key mechanisms in the experiments25

include cell migration and cell proliferation, and we note that there is no cell death in the experiments26

on the time scale that we consider. Therefore, agents in the IBM are allowed to undergo both27

proliferation and movement events. Crowding effects that are often observed in two-dimensional28
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cell biology experiments (Cai et al., 2007) are explicitly incorporated into the IBM as the rates of29

proliferation and movement in the model are inhibited in regions of high agent density. In this study30

we specifically choose to work with the PC-3 cell line because these cells are known to be highly31

migratory, mesenchymal cells (Kaighn et al., 1979). This means that cell-to-cell adhesion is minimal32

for this cell line, and cells tend to migrate as individuals. We prefer to work with a continuous-space,33

lattice-free IBM as this framework gives us the freedom to identically replicate the initial location34

of all cells in the experimental data when we specify the initial condition in the IBM. In addition,35

lattice-free IBMs do not restrict the direction of movement like a lattice-based approach.36
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Fig. 1: (a)-(c) Experimental data set 3 at t = 0, 12 and 36 hours. The position of each cell is identified with a yellow
marker. The field of view is a square of length 1440 µm. (d) Population size, N(t) for experimental data set 3. (e)-(h)
One realisation of the IBM with γb = 0 µm, leading to an overly clustered distribution of agents. (i)-(l) One realisation
of the IBM with γb = 6.0 µm , leading to a distribution of agents with similar clustering to the experimental data.
(m)-(p) One realisation of the IBM with γb = 20 µm, leading to an overly segregated distribution of agents. All IBM
simulations are initiated using the same distribution of agents as in (a), with m = 1.0 /hour, p = 0.040 /hour, and
σ = 24 µm.
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A key contribution of this study is to demonstrate how the IBM can be calibrated to experimen-37

tal data. In particular, we use approximate Bayesian computation (ABC) to infer the parameters38

in the IBM. Four sets of experimental images (Supplementary Material 1), each corresponding to39

an identically-prepared proliferation assay, are considered. The experiments are conducted over a40

duration of 36 hours, which is unusual because proliferation assays are typically conducted for no41

more than 24 hours (Browning et al., 2017). Data from the first three sets of experiments (Figure42

2) are used to calibrate the IBM and data from the fourth set of images is used to examine the43

predictive capability of the calibrated IBM. The IBM that we work with was presented very recently44

(Binny et al., 2016b). The description of the IBM by Binny et al. (2016b) involves a discussion of45

the mechanisms in the model and the derivation of a spatial moment continuum description (Binny46

et al., 2016b). Our current work is the first time that experimental data has been used to provide47

parameter estimates for this new IBM.48
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Fig. 2: Summary statistics for experimental data sets 1, 2 and 3, shown in blue, red and green, respectively. (a)
Population size, N(t). (b) Local measure of spatial structure, P(t), given by Equation 10. Unprocessed experimental
data are given in Supplementary Material documents 1 and 2.
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Taking a Bayesian approach, we assume that cell proliferation assays are stochastic processes,49

and model parameters are random variables, allowing us to update information about the model50

parameters using ABC (Collis et al., 2017; Tanaka et al., 2006). For this purpose we perform a large51

number of IBM simulations using parameters sampled from a prior distribution. Previous work, based52

on mean-field models, suggests that the proliferation rate and cell diffusivity for PC-3 cells is λ ≈ 0.0553

/hour and D ≈ 175 µm2/hour, respectively (Johnston et al., 2015). The prior distribution for the54

IBM parameters are taken to be uniform and to encompass these previous estimates. We generate55

106 realisations of the IBM using parameters sampled from the prior distribution, and accept the top56

1% of simulations that provide the best match to the experimental data. Our approach to connect57

the experimental data and the IBM is novel, we are unaware of any previous work that has used58

ABC to parameterise a lattice-free IBM of a cell proliferation assay. One possible reason why ABC59

methods are not routinely used to calibrate lattice-free models of cell migration and cell proliferation60

with crowding effects is because of high computational requirements (Fröhlich et al., 2016). For61

example, we find that the typical run time to simulate our experiments is approximately 2 seconds62

on a standard desktop machine using C++. This means that simulating 106 realisations for inference63

with three unknown parameters becomes challenging. All work presented here is simulated on a High64

Performance Computing cluster to manage these computational limitations (QUT High Performance65

Computing, 2017).66

Applying the ABC algorithm to data from three sets of identically prepared experiments leads67

to three similar posterior distributions. This result provides confidence that the IBM is a realistic68

representation of the cell proliferation assays and leads us to produce a combined posterior distri-69

bution from which we use the mean to give point estimates of the model parameters. To provide70

further validation of the IBM, we use the combined posterior distribution and the IBM to make a71

prediction of the fourth experimental data set. Simulating the IBM with parameters sampled from72

the combined posterior distribution allows us to predict both the time evolution of the population73

size, N(t), and a measure of the density of pairs of cells, P(t), which provides a measure of spatial74

structure. These results indicate that the in silico predictions are consistent with the experimental75

observations.76
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This manuscript is organised as follows. Sections 2.1-2.2 describe the experiments and the IBM,77

respectively. In Section 2.3 we explain how to apply the ABC algorithm to estimate the IBM param-78

eters. In Section 3 we present the marginal posterior distributions of the IBM parameters using data79

from the first three sets of experiments. The predictive power of the calibrated IBM is demonstrated80

by using the combined marginal posterior distributions to predict the fourth experimental data set.81

The predictive power of the calibrated IBM is compared with a stochastic analogue of the standard82

mean-field logistic equation (Murray, 2002). While both models can accurately predict N(t), the lo-83

gistic equation provides no information about the spatial structure in the experimental data. Finally,84

in Section 4, we conclude and summarise opportunities for further research.85

2. Material and methods86

2.1. Experimental methods87

We perform a series of proliferation assays using the IncuCyte ZOOMTM live cell imaging system88

(Essen BioScience, MI USA) (Jin et al., 2017). All experiments are performed using the PC-3 prostate89

cancer cell line (Kaighn et al., 1979). These cells, originally purchased from American Type Culture90

Collection (Manassas, VA, USA), are a gift from Lisa Chopin (April, 2016). Cells are propagated91

in RPMI 1640 medium (Life Technologies, Australia) with 10% foetal calf serum (Sigma-Aldrich,92

Australia), 100 U/mL penicillin, and 100 µg/mL streptomycin (Life Technologies), in plastic tissue93

culture flasks (Corning Life Sciences, Asia Pacific). Cells are cultured in 5% CO2 and 95% air in a94

Panasonic incubator (VWR International) at 37 oC. Cells are regularly screened for Mycoplasma.95

Approximately 8,000 cells are distributed in the wells of the tissue culture plate as uniformly96

as possible. After seeding, cells are grown overnight to allow for attachment and some subsequent97

growth. The plate is placed into the IncuCyte ZOOMTM apparatus, and images showing a field of view98

of size 1440 × 1440 µm are recorded every 12 hours for a total duration of 36 hours. Experimental99

images for experimental data set three is shown in Figure 1(a)-(c). Images from the other three100

data sets are provided in Supplementary Material 1. ImageJ is used to determine the approximate101

locations of individual cells in all images, this data is given in Supplementary Material 2. Summary102

statistics, N(t) and P(t), for the first three experimental data sets are given in 2(a)–(b).103
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2.2. Mathematical model104

2.2.1. Individual based model105

We consider an IBM describing the proliferation and movement of individual cells (Binny et al., 2016a,b).106

Since cell death is not observed in the experiments, the IBM does not include agent death. The IBM107

allows the net proliferation rate and the net movement rate of agents to depend on the spatial108

arrangement of other agents. To be consistent with previous experimental observations, the IBM109

incorporates a biased movement mechanism so that agents tend to move away from nearby crowded110

regions (Cai et al., 2007). We use the IBM to describe the dynamics of a population of agents on111

a square domain of length L = 1440 µm to match the field-of-view of the experimental data (Fig-112

ure 1(a)-(c)). Agents in the model are treated as a series of points which we may interpret as a113

population of uniformly-sized discs with diameter σ = 24 µm (Supplementary Material 1). Each114

agent has location xn = (x1, x2), for n = 1, ..., N(t). Since the field-of-view of each image is much115

smaller than the size of the well in the tissue culture plate, we apply periodic boundary conditions116

(Jin et. al., 2017).117

Proliferation and movement events occur according to a Poisson process over time (Binny et al., 2016b).118

The nth agent is associated with neighbourhood-dependent rates, Pn ≥ 0 and Mn ≥ 0, of prolifer-119

ation and movement, respectively. These rates consist of intrinsic components, p > 0 and m > 0,120

respectively. Crowding effects are introduced by reducing the intrinsic rates by a contribution from121

other neighbouring agents. These crowding effects are calculated using a kernel, w(·)(r), that depends122

on the separation distance, r ≥ 0, so that123

Pn = max

0, p−
N(t)∑
i 6=n

w(p)(r)

 , (1)

Mn = max

0,m−
N(t)∑
i 6=n

w(m)(r)

 . (2)

Following Binny et al.,(2016), we specify the kernels to be Gaussian with width corresponding to the124
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cell diameter, σ, giving125

w(p)(r) = γp exp

(
− r2

2σ2

)
, (3)

w(m)(r) = γm exp

(
− r2

2σ2

)
. (4)

Here, γp is the value of w(p)(0) and γm is the value of w(m)(0). These parameters provide a measure126

of the strength of crowding effects on agent proliferation and movement, respectively. The kernels,127

w(p)(r) and w(m)(r), ensure that the interactions between pairs of agents separated by more than128

roughly 2-3 cell diameters lead to a negligible contribution. For computational efficiency, we truncate129

the Gaussian kernels so that w(p)(r) = w(m)(r) = 0, for r ≥ 3σ (Law et al., 2003).130

To reduce the number of unknown parameters in the IBM, we specify γp and γm by invoking an131

assumption about the maximum packing density of the population. Here we suppose that the net132

proliferation and net movement rates reduce to zero when the agents are packed at the maximum133

possible density, which is a hexagonal packing (Figure 3(a)). For interactions felt between the nearest134

neighbours only (Figure 3(b)), we obtain135

γp =
p

6
exp

(
1

2

)
, (5)

γm =
m

6
exp

(
1

2

)
, (6)

which effectively specifies a relationship between γp and p, and between γm and m. Note that this136

assumption does not preclude a formation of agents in which some pairs have a separation of less137

than σ and densities greater than hexagonal packing, which can occur by chance.138
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(a) (b)

Fig. 3: (a) Hexagonal packing of uniformly sized discs. The focal agent (red) is surrounding by six nearest neighbouring
agents (blue), and twelve next nearest neighbouring agents (green). (b) Hexagonal packing around a focal agent (red)
showing the six nearest neighbours only.
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When an agent at xn proliferates, the location of the daughter agent is selected by sampling139

from a bivariate normal distribution with mean xn and variance σ2 (Binny et al., 2016b). Since140

mesenchymal cells in two-dimensional cell culture are known to move with a directional movement141

bias away from regions of high density (Cai et al., 2007), we allow the model to incorporate a bias142

so that the preferred direction of movement is in the direction of decreasing agent density. For143

simplicity, the distance that each agent steps is taken to be a constant, equal to the cell diameter, σ144

(Plank and Simpson, 2012).145

To choose the movement direction, we use a crowding surface, B(x), to measure the local crowd-146

edness at location x, given by147

B(x) =

N(t)∑
i=1

w(b)(‖x− xi‖). (7)

The crowding surface is the sum of contributions from every agent, given by a bias kernel, w(b)(r).148

The contributions depend on the distance between x and the location of the ith agent, xi, given by149

r = ‖x − xi‖. Again, we choose w(b) to be Gaussian, with width equal to the cell diameter, and150

repulsive strength, γb ≥ 0, so that151

w(b)(r) = γb exp

(
− r2

2σ2

)
, (8)

where γb is value of w(b)(0), and has dimensions of length. Note that B(x) is an increasing function152

of local density, and approaches zero as the local density decreases. A typical crowding surface is153

shown in Figure 4(b) for the arrangement of agents in Figure 4(a).154
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Fig. 4: (a) Example distribution of agents on a 1 × 1 periodic domain. (b) Level curves of the corresponding crowding
surface, B(x), for this arrangement of agents. The arrows show the preferred direction of movement, Bn. To illustrate
how the direction of movement is chosen, (c) shows the probability density of the von Mises distribution for the red
and green agents highlighted in (a) and (b). The preferred direction, arg(Bn), is shown as dotted vertical lines for
both agents. The red agent is in a crowded region so ‖Bn‖ is large, meaning that the agent is likely to move in the
preferred direction arg(Bn). The green agent is in a low density region and ‖Bn‖ is small, meaning that the bias
is very weak and the agent’s direction of movement is almost uniformly distributed. To illustrate the effects of the
crowding surface as clearly as possible, we set γb = 1, σ = 0.1, L = 1 in this schematic figure to draw attention to the
gradient of the crowding surface.
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To determine the direction of movement we use the shape of B(x) to specify the bias, or preferred155

direction, of agent n, Bn, given by156

Bn = −∇B(xn), (9)

which gives the magnitude and direction of steepest descent. Results in Figure 4(b) show Bn for157

the arrangement of agents in Figure 4(a). To determine the direction of movement, we consider158

the magnitude and direction of Bn, and sample the actual movement direction from a von Mises159

distribution, von Mises(arg(Bn), ‖Bn‖) (Binny et al., 2016b; Forbes et al., 2011). Therefore, agents160

are always most likely to move in the direction of Bn, however as ‖Bn‖ → 0, the preferred direction161

becomes uniformly distributed.162

To illustrate how the direction of movement is chosen, we show, in Figure 4(b), the bias vector163

for each agent, Bn. Note that Bn does not specify the movement step length, and the direction of Bn164

does not necessarily specify the actual direction. Rather, arg(Bn) specifies the preferred direction.165

To illustrate this property, we highlight two agents in Figure 4(a). The red agent is located on a166

relatively steep part of the crowding surface, so ‖Bn‖ is large. The green agent is located on a167

relatively flat part of the crowding surface, so ‖Bn‖ is close to zero. Figure 4(c) shows the von Mises168

distributions for the red and green agent. Comparing these movement distributions confirms that169

the crowded red agent is more likely to move in the direction of Bn. The bias is weak for the green170

agent, so the direction of movement is almost uniformly distributed since ‖Bn‖ is smaller.171

IBM simulations are performed using the Gillespie algorithm (Gillespie, 1977). To initialise each172

simulation we specify the initial number and initial location of agents to match to the experimental173

images at t = 0 hours (Supplementary Material 1) for experimental data sets 1, 2, 3 and 4. In all174

simulations we set σ = 24 µm and L = 1440 µm. The remaining three parameters, m, p and γb, are175

varied with the aim of producing posterior distributions using a Bayesian framework.176

If γm = γb = 0, and the variance of the dispersal distribution is large, the IBM corresponds to177

logistic growth (Binny et al., 2016b, Browning at al. 2017). Under these simplified conditions, a178

uniformly distributed initial population of agents will grow, at rate p, to eventually reach a uniformly179

distributed maximum average density of p/(2πγpσ
2
p). We do not consider this case here as our initial180

distribution of cells in the experiments is clustered, and so the logistic growth model is, strictly181

14



speaking, not valid (Binny et al., 2016b).182

2.2.2. Summary statistics183

To match the IBM simulations with the experimental data we use properties that are related184

to the first two spatial moments (Law et al., 2003). The first spatial moment, the average density,185

is characterised by the number of agents in the population, N(t). The second spatial moment186

characterises how agents are spatially distributed, and is often reported in terms of a pair correlation187

function (Binny et al., 2016a,b; Law et al., 2003). In the Supplementary Material 1 document we188

present the pair correlation function for all four experimental data sets. These results show that189

we have a fairly typical pair correlation function that contains, at most, one maximum (Binder and190

Simpson, 2013). Therefore, instead of using all details contained in the pair correlation function, we191

use a simplified measure of spatial structure. We consider a local measure of pair density within a192

distance of R µm, given by193

P(t) =

L2
N(t)∑
i=1

N(t)∑
j=1
j 6=i

I‖xi−xj‖≤R

N(t)2πR2
, (10)

where I is an indicator function so that the double sum in Equation 10 gives twice the number of194

distinct pairs within a distance R. For all results presented in the main document we set R = 50 µm.195

Therefore, P(t) is the ratio of the number of pairs of agents, separated by a distance of less than196

50 µm, to the expected number of pairs of agents separated by a distance of less than 50 µm, if197

the agents were randomly distributed. This means that, P(t) = 1 corresponds to randomly placed198

agents; P(t) > 1 corresponds to a locally clustered distribution; and, P(t) < 1 corresponds to a199

locally segregated distribution.200

To ensure that our choice of setting R = 50 µm is adequate, we also repeat some results with201

R = 100 µm. This exercise leads to very similar posterior distributions, confirming that working202

with R = 50 µm is sufficient (Supplementary Material 1).203

2.3. Approximate Bayesian computation204

We consider m, p and γb as random variables, and the uncertainty in these parameters is updated205

using observed data (Collis et al., 2017; Tanaka et al., 2006). To keep the description of the inference206
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algorithm succinct, we refer to the unknown parameters as Θ = 〈m, p, γb〉.207

In the absence of any experimental observations, information about Θ is characterised by specified208

prior distributions. The prior distributions are chosen to be uniform on an interval that is wide enough209

to encompass previous estimates of m and p (Johnston et al., 2015). To characterise the prior for210

γb, we note that this parameter is related to a length scale over which bias interactions are felt.211

Preliminary results (not shown) use a prior in the interval 0 ≤ γb ≤ 20 µm and suggest that a narrow212

prior in the interval 0 ≤ γb ≤ 10 µm is appropriate. In summary, our prior distributions are uniform213

and independent, given by214

π(m) = U(0, 10) /hour, (11)

π(p) = U(0, 0.1) /hour, (12)

π(γb) = U(0, 10) µm. (13)

We always summarise data, X, with a lower-dimensional summary statistic, S. Data and summary215

statistics from the experimental images are denoted Xobs and Sobs, respectively. Similarly, data216

and summary statistics from IBM simulations are denoted Xsim and Ssim, respectively. Information217

from the prior is updated by the likelihood of the observations, π(Sobs|Θ), to produce posterior218

distributions, π(Θ|Sobs). We employ the most fundamental ABC algorithm, known as ABC rejection219

(Liepe et al., 2014; Tanaka et al., 2006), to sample from the approximate posterior distribution. The220

approximate posterior distributions are denoted πu(Θ|Sobs).221

In this work we use a summary statistic that is a combination of N(t) and P(t) at equally spaced222

time intervals. A discrepancy measure, ρ(Sobs, Ssim), is used to assess the closeness of Sobs and Ssim,223

ρ(Sobs, Ssim) =
∑
t

(
[Nsim(t)−Nobs(t)]

2

Nobs(t)2
+

[Psim(t)− Pobs(t)]
2

Pobs(t)2

)
, (14)

Algorithm 1 is used to obtain 106u samples, {Θi}10
6u

i=1 , from the approximate joint posterior distri-224

bution, πu(Θ|Sobs), for each data set. Here, u� 1 is the accepted proportion of samples.225

To present marginal posterior samples, we use a kernel density estimate to form smooth, approx-226

imate marginal posterior distributions, for each parameter, and each data set using the ksdensity227
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Algorithm 1 ABC rejection sampling algorithm to obtain 106u samples from the approximate
posterior distribution, πu(Θ|Sobs).

1: Set σ = 24 µm, L = 1440 µm, and set xn to match experimental data Xobs at t = 0.
2: Draw parameter samples from the prior Θi ∼ π(Θ).
3: Simulate cell proliferation assay with Θi and t ≤ 36 hours.
4: Record summary statistic Ssimi

= {Nsim(t),P(t)}t, where t = 12, 24 and 36 hours.
5: Compute the discrepancy measure εi = ρ(Sobs, Ssimi

), given in Equation 14.
6: Repeat steps 2-5 until 106 samples {Θi, εi}10

6

i=1 are simulated.
7: Order {Θi, εi}10

6

i=1 by εi such that ε1 < ε2 < ....
8: Retain the first 1% (u = 0.01) of prior samples Θi, as posterior samples, {Θi}10

6u
i=1 .

function in MATLAB (Mathworks, 2017). Point estimates of parameters are always given as the228

mean of the posterior distribution, and always presented to two significant figures.229

2.3.1. Sampling from the combined posterior distribution230

Samples from the posterior distributions for each experimental data set are given in Supplemen-231

tary Material 1. Kernel density estimates for the marginal posterior distributions for each exper-232

imental data set are given in Figure 5. Visually, the posterior distributions for each experimental233

data set appear to be similar, therefore we are motivated to form a combined posterior distribution,234

πu(Θ|{S(k)
obs}3k=1), where S

(k)
obs is the summary statistic from the kth experimental data set. We use235

ABC rejection to sample from the combined posterior distribution according to Algorithm 2. That236

is, Algorithm 2 is designed to sample the combined posterior distribution by retaining the top 1% of237

parameter combinations that provide the best fit to all three experimental data sets.238

Algorithm 2 ABC rejection sampling algorithm to obtain 106u samples from the approximate
combined posterior distribution, πu(Θ|{S(k)

obs}3k=1).

1: Set σ = 24 µm, L = 1440 µm.
2: Draw parameter samples from the prior Θi ∼ π(Θ).
3: For experimental data sets k = 1, 2 and 3:

3.1: Set xn to match experimental data set k, X
(k)
obs at t = 0.

3.2: Simulate cell proliferation assay with Θi and t ≤ 36 hours.
3.3: Record summary statistic S

(k)
simi

= {Nsim(t),P(t)}t, where t = 12, 24 and 36 hours.

4: Compute the discrepancy measure εi =
∑3

k=1 ρ(S
(k)
obs, S

(k)
simi

), where ρ is given in Equation 14.

5: Repeat steps 2-4 until 106 samples {Θi, εi}10
6

i=1 are simulated.
6: Order {Θi, εi}10

6

i=1 by εi such that ε1 < ε2 < ....
7: Retain the first 1% (u = 0.01) of prior samples Θi, as posterior samples, {Θi}10

6u
i=1 .
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2.3.2. Predicting experimental data set 4 using the combined posterior distribution239

To test the predictive power of the calibrated IBM, we use 104 parameter samples from the240

combined posterior distribution and simulate the IBM initialised with the actual initial arrangement241

of cells in data set 4 at t = 0. For each parameter combination Ssim is recorded at 12 hour intervals,242

and used to construct distributions of N(t) and P(t). These distributions are represented as box243

plots and compared with summary statistics from experimental data set 4.244

2.3.3. Calibrating the standard mean-field logistic model to the experimental data245

To illustrate the importance of considering individual level details in the IBM, we also calibrate246

the logistic growth model to experimental data sets 1, 2 and 3. The logistic growth model describes247

the IBM when spatial structure is neglected (Law et al., 2003; Binny et al., 2016b). The logistic248

growth model is given by249

dN(t)

dt
= λN(t)

(
1− N(t)

Nmax

)
, (15)

where λ is the cell proliferation rate and Nmax is the maximum number of agents. To find estimates250

of λ and Nmax to best match our experimental data we simulate the stochastic logistic model using251

the Gillespie algorithm (Gillespie, 1977; Fröhlich et. al., 2016). Proliferation events are treated as252

a Poisson process, with the rate given by the right hand side of Equation 15. Details of the ABC253

rejection algorithm used to estimate λ and Nmax are given in Supplementary Material 1.254

3. Results and discussion255

To qualitatively illustrate the importance of spatial structure we show, in rows 2-4 of Figure 1,256

snapshots from the IBM with different choices of parameters. In each case the IBM simulations257

evolve from the initial condition specified in Figure 1(a). Results in the right-most column of Figure258

1 compare the evolution of N(t) and we see that the parameter combination in the second row259

underestimates N(t), the parameter combination in the fourth row overestimates N(t), and the260

parameter combination in the third row produces a reasonable match to the experimental data. A261

visual comparison of the spatial arrangement of agents in rows 2-4 of Figure 1 suggests that these262

different parameter combinations may lead to different spatial structures. This illustration of how263

the IBM results vary with the choice of parameters motivates us to use ABC rejection to estimate the264
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joint distribution of the parameters. To do this we will use summary statistics from three identically265

prepared, independent sets of experiments. The summary statistics for these experiments, N(t) and266

P(t), are summarised in Figure 2, and tabulated in Supplementary Material 1.267

The approximate marginal posterior distributions for m, p and γb are shown in Figure 5(a)-(c),268

respectively, for experimental data sets 1, 2 and 3. There are several points of interest to note.269

In each case, the posterior support is well within the interior of the prior support, suggesting that270

our choice of priors is appropriate. An interesting feature of the marginal posterior distributions271

for all parameters is that there is significant overlap for each independent experimental data set.272

There is some variation in the mean between experimental data sets, for each parameter, which273

could arise as a consequence of some other variation among experiments, or under the assumption274

that cell proliferation assays are stochastic processes. The combined marginal posterior distributions275

are superimposed, and the mean is given by 1.0 /hour, 0.040 /hour and 6.0 µm for m, p and γb,276

respectively. These point estimates of p and m give a cell doubling time of ln(2)/p ≈ 17 hours, and a277

cell diffusivity of approximately 150 µm2/hour, which are typical values for PC-3 cells at low density278

(Johnston et al., 2015). All results in the main document correspond to retaining the top 1% of279

samples (u = 0.01) and additional results (Supplementary Material 1) confirm that the results are280

relatively insensitive to this choice.281
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Fig. 5: (a)-(c) Kernel-density estimates of the approximate marginal posterior distributions for each data set, for
parameters m, p and γb, respectively, with u = 0.01. The combined posterior distribution (black) is superimposed.
The point estimates from the combined posterior distribution are m = 1.0 /hour, p = 0.040 /hour and γb = 6.0 µm.
All distributions are scaled so that the area under the curve is unity.
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To assess the predictive power of the calibrated IBM, we attempt to predict the time evolution282

of a separate, independently collected data set, experimental data set 4, as shown in Figure 6(a)-(d).283

We use the mean of the combined posterior distribution and the initial arrangement of agents in284

experimental data set 4 to produce a typical prediction in Figure 6(e)-(h). Visual comparison of the285

experimental data and the IBM prediction suggests that the IBM predicts a similar number of agents,286

and a similar spatial structure, with some short range clustering present. To quantify our results,287

we compare the evolution of N(t) in Figure 6(i) which reveals an excellent match. Furthermore, we288

predict the evolution of P(t) in Figure 6(j) confirming similar trends.289

21



(a) t = 0 hours t = 12 hours(b) t = 24 hours(c) t = 36 hours(d)

(e) t = 0 hours (f) t = 12 hours (g) t = 24 hours (h) t = 36 hours

(j)

P
(t

)

0

2

0 12 24 36

Time (hours)

Data set 4
Model prediction

(i)

N
(t

)

0

1500

0 12 24 36

Time (hours)

D
a

ta
 s

e
t 
4

M
o

d
e

l 
p

re
d

ic
ti
o

n

Fig. 6: (a)-(d) Experimental images for data set 4. The position of each cell is identified with a yellow marker. The
field of view is a square of length 1440 µm. (e)-(h) One realisation of the IBM with parameters corresponding to the
posterior mean: m = 1.0 /hour, p = 0.040 /hour and γb = 6.0 µm,with the same initial arrangement of agents as in (a).
(i) N(t) for the experimental data (purple) and the IBM prediction (dashed black). (j) P(t) for the experimental data
(purple) and the IBM prediction (dashed black). The quality of fit is measured by the coefficient of determination,
R2

N = 0.99, R2
P = 0.67.
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In addition to examining a single, typical realisation of the calibrated model, we now examine a290

suite of realisations of the calibrated IBM, and compare results with experimental data set 4. The291

suite of IBM realisations is obtained by sampling from the joint posterior distribution. Results in292

Figure 7(a) compare N(t) from experimental data set 4 with distributions of N(t) from the suite of293

IBM simulations, showing an excellent match. The spread of the distributions of N(t) increases with294

time, which is expected. Results in Figure 7(b) compare the evolution of P(t) from experimental295

data set 4 with distributions of P(t) from the suite of IBM simulations, showing the predicted296

distributions of P(t) overlap with the experimental data. Overall, the quality of the match between297

the prediction and the experimental data is high, as the prediction captures both qualitative and298

quantitative features of the data.299
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Fig. 7: Predictive distributions for N(t) and P(t), respectively, generated using the IBM. 104 parameter samples
are taken from the combined posterior distribution, and a model realisation produced for each sample, initiated as in
Figure 6(a). Box plots show the distribution of N(t) and P(t) across these realisations in (a) and (b), respectively.
The quality of fit is measured by the coefficient of determination, where the discrepancy is taken to be between the
mean of each boxplot and the observed data, R2

N = 1.00, R2
P = 0.75.
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We now use ABC rejection to form combined posterior distributions of the parameters in the300

standard logistic growth model, Equation 15, λ and Nmax. Results are shown in Figure 8(a)–(b).301

The point estimates of the combined posterior distributions are λ = 0.037 /hour and Nmax = 3600.302

This estimate leads to a doubling time of approximately 19 hours, which is slightly longer than the303

doubling time predicted using the calibrated IBM. We then examine a suite of solutions of Equation304

15, where we sample from the combined posterior distribution for λ and Nmax. The predicted305

distribution of N(t) is compared with experimental data set 4 in Figure 8(c), revealing an excellent306

match.307
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Fig. 8: (a)- (b) Kernel-density estimates of the marginal posterior distributions are shown for each data set, for
parameters in the stochastic logistic model, Equation 15, λ and Nmax in (a) and (b), respectively. The combined
posterior distribution (black) is superimposed. The point estimates are λ = 0.037 /hour and Nmax = 3600. All
marginal distributions are scaled to an area of unity. (c) A predictive distribution for N(t), generated from the
stochastic logistic model, Equation 15. 104 parameter samples are taken from the combined posterior distribution,
and a model realisation produced for each sample. Boxplots show the distribution of N(t) across these realisations. The
procedure for sampling from the combined posterior distribution for the stochastic logistic model, and the procedure
for solving the stochastic logistic model, are outlined in Supplementary Material 1. The quality of fit is measured
by the coefficient of determination, where the discrepancy is taken to be between the mean of each boxplot and the
observed data, R2

N = 0.98.
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Therefore, while both calibrated models provide good predictions for the observed evolution of308

N(t), the IBM offers additional insights relating to spatial structure in the cell population, while the309

logistic model does not provide this level of information. The differences in the way that the logistic310

model and the IBM treat interactions between individuals could explain why the calibration process311

leads to different estimates of the proliferation rate. These differences suggest that the interactions312

between individuals appear to be relevant for our experimental data.313

4. Conclusions314

In this work we explore how to connect a spatially continuous IBM of cell migration and cell prolif-315

eration to novel data from a cell proliferation assay. Previous work parameterising IBM models of cell316

migration and cell proliferation to experimental data using ABC have been restricted to lattice-based317

IBMs (Johnston et al., 2014). This is partly because ABC methods require large numbers of IBM318

simulations, and lattice-based IBMs are far less computationally expensive than lattice-free IBMs319

(Plank and Simpson, 2012). We find it is preferable to work with a lattice-free IBM when dealing320

with experimental data as a lattice-based IBM requires approximations when mapping the distribu-321

tion of cells from experimental images to a lattice (Johnston et al., 2014; Johnston et al., 2016). This322

mapping can be problematic. For example, if multiple cells in an experimental image are equally323

close to one lattice site, ad hoc assumptions have to be introduced about how to arrange those cells324

on the lattice without any overlap. These issues are circumvented using a lattice-free method.325

To help overcome the computational cost of using ABC with a lattice-free IBM, we introduce326

several realistic, simplifying assumptions. The IBM originally presented by Binny et al. (2016b)327

involves 12 free parameters, which is a relatively large number for standard inference techniques328

(Schnoerr et al. 2016). The model is simplified by noting that our experiments do not involve329

cell death, and specifying the width of the interaction kernels to be constant, given by the cell330

diameter. Another simplification is given by assuming that crowding effects reduce the proliferation331

and movement rates to zero when the agents are packed at the maximum hexagonal packing density.332

This leads to a simplified model with three free parameters: m, p and γb. Using ABC rejection,333

we arrive at posterior distributions for these parameters for three independent experimental data334

sets. The marginal posterior distributions for the three parameters are similar, leading us to form a335
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combined posterior distribution. The point estimates from the combined posterior distributions for m336

and p are consistent with previous parameter estimates (Johnston et al., 2015) and the point estimate337

for γb is consistent with previous observations that mesenchymal cells in this kind of two-dimensional338

experiment tend to move away from regions of high cell density (Cai et al., 2007).339

In the field of mathematical biology, questions about how much detail to include in a mathe-340

matical model, and what kind of mathematical model is preferable for understanding a particular341

biological process are often settled in an ad hoc manner, as discussed by Maclaren et al. (2015). Our342

approach in this work is to use a mathematical model that incorporates just the key mechanisms,343

with an appropriate number of unknown parameters. Other approaches are possible, such as using344

much more complicated mathematical models that describe additional mechanisms such as: (i) de-345

tailed information about the cell cycle in individual cells (Fletcher et al., 2012); (ii) concepts of leader346

and follower cells (Kabla, 2012); (iii) explicitly coupling cell migration and cell proliferation to the347

availability of nutrients and growth factors (Tang at al., 2014); or (iv) including mechanical forces348

between cells (Stichel at al., 2017). However, we do not include these kinds of detailed mechanisms349

because our experimental data does not suggest that these mechanisms are relevant to our situa-350

tion. Furthermore, it is not always clear that using a more complicated mathematical model, with351

additional mechanisms and additional unknown parameters, necessarily leads to improved biological352

insight. In fact, simply incorporating additional mechanisms and parameters into the mathematical353

model often leads to a situation where multiple parameter combinations lead to equivalent predic-354

tions which limits the usefulness of the mathematical model (Simpson et al., 2006). In this study,355

our approach is to be guided by experimental data and our ability to infer the parameters in a math-356

ematical model based on realistic amounts of experimental data (Maclaren et al. 2015). In particular357

we use three experimental data sets to calibrate the IBM, and an additional data set to separately358

examine the predictive capability of the calibrated IBM. We find that the process of calibrating the359

IBM leads to well defined posterior distributions of the model parameters, and that the calibrated360

IBM produces a reasonable match to the experimental data. The process of calibrating the IBM,361

and then separately testing the predictive capability of the calibrated IBM, provides some confidence362

that the level of model complexity is appropriate for our purposes.363
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An interesting feature of all experimental data at early time, when the cell density is relatively364

low, is that P(t) suggests that the cells are clustered at short intervals, and that this clustering365

becomes less pronounced with time. This observation is very different to the way that previous366

theoretical studies have viewed the role of spatial structure. For example, previous simulation-367

based studies assume that some initial random spatial arrangement of cells can lead to clustering368

at later times (Baker and Simpson, 2010). In contrast, our experimental data suggests it could be369

more realistic to consider that the spatial structure is imposed by the initial arrangement of cells.370

Moreover, since all of our experimental data involves some degree of spatial clustering, our work371

highlights the importance of using appropriate models to provide a realistic representation of key372

phenomena. Almost all continuum models of collective behaviour in cell populations take the form of373

ordinary differential equations and partial differential equations that implicitly invoke a mean-field374

assumption (Tremel et al., 2009; Sengers et al., 2007; Maini et al., 2004b; Sarapata and de Pillis,375

2014; Sherratt and Murray, 1990). Such assumptions ignore the role of spatial structure. While pair-376

wise models that avoid mean-field assumptions are routine in some fields, such as disease spreading377

(Sharkey et al., 2006; Sharkey, 2008) and ecology (Law et al., 2003), models that explicitly account378

for spatial structure are far less common for collective cell behaviour.379

Using our parameter estimates, the continuum spatial moment description could be used to inter-380

pret experimental data sets with larger numbers of cells (Binny et al., 2016b), such as experimental381

images showing a wider field-of-view, or experiments initiated with a higher density of cells. Our382

approach to estimate the parameters in the model is to work with the IBM since this allows us more383

flexibility in connecting with the experimental data, such as choosing the initial locations of the384

agents in the IBM to precisely match the initial locations of cells in the experimental images.385

There are many ways that our study could be extended. For example, here we choose a summary386

statistic encoding information about the first two spatial moments. However, other summary statis-387

tics may provide different insight, and it could be of interest to explore the effect of this choice. For388

example, here we describe the spatial structure over a relatively short interval, approximately 2σ. It389

could be of interest to repeat our analysis using the entire pair correlation function, accounting for390

spatial structure at all distances. However, here we take a simpler approach and we provide evidence391
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that our results are insensitive to our measure of spatial structure as we obtain similar results when392

we consider spatial structure over larger distances. Another limitation of our work is that the IBM,393

which explicitly accounts for interactions between agents, can be computationally expensive to simu-394

late. This limitation can be particularly problematic for computational inference and severely limits395

the number of parameters that can be dealt with by taking a purely individual-based approach.396

One promising way of overcoming this difficulty is to make use of more theoretical ways to treat397

interactions between individuals in an IBM, and to perform inference using some kind of stochastic398

continuum description, such as the recent work by Schnoerr et al. (2016; 2017).399
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[14] Fröhlich, F, Thomas, P, Kazeroonian, A, Theis, FJ, Grima, R, Hasenauer, J, 2016. Inference437

for stochastic chemical kinetics using moment equations and system size expansion. PLoS Comput438

Biol 12, e1005030.439

[15] Gillespie DT. 1977. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81,440

2340–2361.441

31



[16] QUT High Performance Computing. 2017 https://www.student.qut.edu.au/technology/research-442

computing/high-performance-computing Accessed: October 2017.443

[17] Kabla AJ. 2012. Collective cell migration: leadership, invasion and segregation. J R Soc Interface444

9, 20120448.445

[18] Jin W, Shah ET, Penington CJ, McCue SW, Maini PK, Simpson MJ. 2017. Logistic proliferation446

of cells in scratch assays is delayed. Bull Math Biol 79, 1028–1050.447

[19] Johnston ST, Simpson MJ, McElwain DLS, Binder BJ, Ross JV. 2014. Interpreting scratch448

assays using pair density dynamics and approximate Bayesian computation. Open Biol 4, 140097.449

[20] Johnston ST, Shah ET, Chopin LK, McElwain DLS, Simpson MJ. 2015. Estimating cell diffu-450

sivity and cell proliferation rate by interpreting IncuCyte ZOOMTM assay data using the Fisher-451

Kolmogorov model. BMC Syst Biol 9, 38.452

[21] Johnston ST, Ross JV, Binder BJ, McElwain DLS, Haridas P, Simpson MJ. 2016. Quantifying453

the effect of experimental design choices for in vitro scratch assays. J Theor Biol 400, 19–31.454

[22] Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. 1979. Establishment and charac-455

terization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17, 16–23.456

[23] Law R, Murrell DJ, Dieckmann U. 2003. Population growth in space and time: Spatial logistic457

equations. Ecology 84, 252–262.458

[24] Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MPH. 2014. A framework for parameter459

estimation and model selection from experimental data in systems biology using approximate460

Bayesian computation. Nat Protoc 9, 439–456.461

[25] Maclaren OJ, Byrne HM, Fletcher AG, Maini PK. 2015. Models, measurement and inference in462

epithelial tissue dynamics. Math Biosci Eng 12, 1321.463

[26] Maini PK, McElwain DLS, Leavesley DI. 2004. Traveling wave model to interpret a wound-464

healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng 10, 475–482.465

32



[27] Mathworks. 2017. Kernel smoothing function estimate for univariate and bivariate data.466

http://www.mathworks.com/help/stats/ksdensity.html. Accessed: October 2017.467

[28] Murray JD. 2002. Mathematical Biology. Springer, Berlin.468

[29] Peirce SM, Van Gieson EJ, Skalak TC. 2004. Multicellular simulation predicts microvascular469

patterning and in silico tissue assembly. FASEB J 18, 731–733.470

[30] Plank MJ, Simpson MJ. 2012. Models of collective cell behaviour with crowding effects: com-471

paring lattice-based and lattice-free approaches. J R Soc Interface 9, 2983-2996.472

[31] Read M, Andrews PS, Timmis J, Kumar V. 2012. Techniques for grounding agent-based sim-473

ulations in the real domain: a case study in experimental autoimmune encephalomyelitis. Math474

Comp Model Dyn 18, 67–86.475

[32] Sarapata EA, de Pillis LG. 2014. A comparison and catalog of intrinsic tumor growth models.476

Bull Math Biol 76, 2010–2024.477

[33] Sengers BG, Please CP, Oreffo ROC. 2007. Experimental characterization and computational478

modelling of two-dimensional cell spreading for skeletal regeneration. J R Soc Interface 4, 1107.479

[34] Sharkey KJ, Fernandez C, Morgan KL, Peeler E, Thrush M, Turnbull JF, Bowers RG. 2006.480

Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact481

networks. J Math Biol 53, 61–85.482

[35] Sharkey KJ. 2008. Deterministic epidemiological models at the individual level. J Math Biol 57,483

311–331.484

[36] Sherratt JA, Murray JD. 1990. Models of epidermal wound healing. P Roy Soc Lond B 241, 29.485

[37] Schnoerr, D, Grima, R, Sanguinetti, G. 2016. Cox process representation and inference for486

stochastic reaction-diffusion processes. Nat Commun 7, 11729.487

[38] Schnoerr, D, Sanguinetti, G, Grima, R. 2017. Approximation and inference methods for stochas-488

tic biochemical kineticsa tutorial review. J Phys A 50, 093001.489

33



[39] Simpson MJ, Landman KA, Hughes BD, Newgreen DF. 2006. Looking inside an invasion wave490

of cells using continuum models: Proliferation is the key. J Theor Biol 243, 343–360.491

[40] Stichel D, Middleton AM, Müller BF, Depner S, Klingmüller U, Breuhahn K, Matthäus F.492
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