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Abstract. The Universe on scales 10–100h−1Mpc is dominated by a cosmic web of voids,
filaments, sheets and knots of galaxy clusters. These structures participate differently in the
global expansion of the Universe: from non-expanding clusters to the above average expansion
rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOS-
ITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole
in the rest frame of the Local Group. These both have statistically significant amplitudes.
These anisotropies, and their redshift dependence, cannot be explained solely by a boost
of the Local Group in the Friedmann-Lemâıtre-Robertson-Walker (FLRW) model which ex-
pands isotropically in the rest frame of the cosmic microwave background (CMB) radiation.
We simulate the local expansion of the Universe with inhomogeneous Szekeres solutions,
which match the standard FLRW model on >∼ 100h−1Mpc scales but exhibit nonkinematic
relativistic differential expansion on small scales. We restrict models to be consistent with
observed CMB temperature anisotropies, while simultaneously fitting the redshift variation
of the Hubble expansion dipole. We include features to account for both the Local Void and
the “Great Attractor”. While this naturally accounts for the Hubble expansion and CMB
dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incor-
porate additional structures may improve this. This would enable a test of the hypothesis
that some large angle CMB anomalies result from failing to treat the relativistic differential
expansion of the background geometry; a natural feature of solutions to Einstein’s equations
not included in the current standard model of cosmology.
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1 Introduction

In cosmology deviations from a uniform expansion are most commonly treated as peculiar
velocities relative to a linear Hubble law

vpec = cz −H0r (1.1)

where z is the redshift, c the speed of light, r an appropriate distance measure, and H
0
≡

H(t
0
) = 100h km s−1Mpc−1 is the Hubble constant, h being a dimensionless number. Such a

theoretical framework is a natural description if the assumption of homogeneity and isotropy
holds at all scales, so that all cosmologically relevant motions can be understood in terms
the background expansion of one single Friedmann–Lemâıtre–Robertson–Walker (FLRW)
geometry, with a Hubble parameter, H(t), given by the Friedmann equation, plus local
boosts which can be treated by eq. (1.1) for suitably small values of the distance,1 r.

However, on scales of tens of megaparsecs the Universe exhibits strong inhomogeneities,
dominated in volume by voids with density contrasts close to the minimum possible δρ/ρ =

1Even within FLRW models, for large values of r one has to take into account that H(t) varies with time,
and that the redshift is not additive but rather a multiplicative quantity, so a simple addition as in (1.1) does
not apply: 1 + z1+2 = (1 + z1)(1 + z2) 6= 1 + z1 + z2.

– 1 –



−1 [1–4]. Galaxies and galaxy clusters are not randomly distributed but are strung in fila-
ments that thread and surround the voids to form a complex cosmic web [5–7]. The Uni-
verse is only spatially homogeneous is some statistical sense when one averages on scales
>∼ 100h−1Mpc. Just how large this scale is, is debated [8–12]. However, based on the frac-
tal dimension of the 2–point galaxy correlation function making a gradual transition to the
homogeneous limit D2 → 3 in three spatial dimensions, a scale of statistical homogeneity in
the range 70 <∼ rssh <∼ 120h−1Mpc seems to be observed [10].

Despite the fact that the FLRW geometry can only be observationally justified on
>∼ 100h−1Mpc scales, by tradition it is conventionally assumed that such a geometry is still
applicable at all scales on which space is expanding below rssh∼ 100h−1Mpc, that is, until
one gets to the very small scales of bound clusters of galaxies. However, this assumption
is not justified by the principles of general relativity. In general, in solutions of Einstein’s
equations the background space does not expand rigidly to maintain constant spatial curva-
ture as it does in the FLRW geometry. General inhomogeneous cosmological models, such
as the Lemâıtre–Tolman (LT) [13–15] and Szekeres [16] models, exhibit differential cosmic
expansion. The Hubble parameter becomes a function of space as well as time, and any
relation (1.1) can no longer have the physical sense of defining a peculiar velocity field with
respect to a single expansion rate.

In this paper we will present the results of numerical investigations that quantify the
nonlinearity associated with differential cosmic expansion in Szekeres solutions chosen to
match key features of both the Cosmic Microwave Background (CMB) anisotropies, and also
the Hubble expansion on <∼ 100h−1Mpc scales. The crucial feature in these simulations is
that the dipole induced by local inhomogeneities cannot be directly attributed to a 635 km s−1

local boost of the Local Group (LG) of galaxies, and is thus nonkinematic (as we define more
precisely in Section 2.1 below).

Despite its naturalness in general relativity, the hypothesis of a nonkinematic origin
for a fraction of the CMB dipole goes against the consensus of what has been assumed in
observational cosmology [17, 18] ever since the first bounds were placed on the anisotropy
of the CMB in the 1960s [19]. By now it is standard practice to automatically transform
redshift data to the CMB rest frame before performing cosmological analyses.

Within the standard peculiar velocities framework, the amplitude of bulk flows, their
consistency with the standard Lambda Cold Dark Matter (ΛCDM) cosmology and their con-
vergence to the CMB frame, are matters of ongoing debate [20–31]. A possible nonkinematic
origin for a fraction of the CMB dipole would impact directly on this debate, as well as
suggesting a reexamination of other observational puzzles. Arguably the most important of
these are the large angle anomalies that have been observed in the CMB anisotropy spectrum
for over a decade [32–41], with a statistical significance that has increased with the release
of Planck satellite data [42–44].

The hypothesis that a fraction of the local Hubble expansion is nonkinematic should
be subject to appropriate observational tests. In recent work [45, 46] we devised such tests
and found very strong Bayesian evidence for the nonkinematic hypothesis. In an independent
study [47], the hypothesis of a purely kinematic origin for the dipole in the cosmic distribution
of radio galaxies has been rejected at the 99.5% confidence level.

In order to develop more powerful tests of the nonkinematic differential expansion hy-
pothesis, in this paper we will use exact solutions of Einstein’s equations for structures smaller
than the statistical homogeneity scale [10] for the purpose of ray–tracing simulations.

There have been a number of previous studies which have used the LT solution to model
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the effects of anisotropic expansion [48–55], including its effects on the CMB. However, these
have typically considered the effects of voids at large distances from our location, or the
effects of voids much larger than the small scale inhomogeneities we will consider.

To our knowledge this paper contains the first ever study which seeks to use exact
solutions of Einstein’s equations to model structures giving rise to nonlinear expansion on
scales comparable to those observed, constrained directly by both ray–tracing of the CMB
and by the Hubble expansion field from actual surveys. While the Szekeres solution has been
employed for a number of cosmological problems [56–65], we believe that this is also the
first time that it has been used for ray–tracing simulations of local structures. We will see
that although we are not able to match all features of the nonlinear Hubble expansion below
the statistical homogeneity scale, with the Szekeres solution we can nonetheless match more
features of the actual data than with other models, including the standard FLRW cosmology
with a local boost of the Local Group of galaxies.

This paper provides a proof–of–principle demonstration that we hope will encourage
even more sophisticated investigations of relativistic effects beyond the perturbed FLRW
model. Some potential future investigations are outlined in Sec. 5.

2 Terminology

In this paper we often use terms such as nonlinear and nonkinematic. These terms are
ambiguous and therefore this Section describes how these terms are defined in this paper.

2.1 Nonkinematic and relativistic differential expansion

The fact that cosmic expansion can vary not only in time but in space leads to a variation in
the redshift of observed astronomical sources, be they galaxies or the CMB. If the redshift
of an observed object can be described solely in terms of a homogeneous expansion and a
Doppler effect, then we would call the redshift anisotropy kinematic:

(1 + z)obs = (1 + z)FLRW(1 + z)Doppler . (2.1)

The first redshift term on the right hand side refers to the global homogeneous and isotropic
expansion of the FLRW model, and second term is due to a Doppler effect with respect to the
FLRW background that combines the motions of the observer (local boost) and the observed
object (peculiar motion). If the redshift of an observed source (galaxies or CMB) cannot be
explained entirely in terms of the above equation then nonkinematic effects are present, be
they a real physical phenomenon or merely some observational bias2.

The factor (1+z)
FLRW

in (2.1) can only be defined with respect to a canonical choice of
our local Lorentz frame. Since the CMB is remarkably isotropic, with a dipole of amplitude
1.23×10−3T0 of the mean temperature T0 = 2.725K, the canonical CMB rest frame is defined
by matching the 3.37mK temperature dipole to the dipole in the series expansion

T0

γCMB(1− βCMB cos θ)
= T

0

[
1 + β

CMB
cos θ + β2

CMB

(
cos2 θ − 1

2

)
+ . . .

]
(2.2)

2We assume all observational biases can be accounted for, although this requires care in actual data
analysis [46]. We deal only with the case of real physical effects in this paper. Furthermore, while all galaxies
within larger bound clusters will still be assumed to exhibit peculiar local motions within each cluster, for
nonkinematic redshift anisotropies we are only interested in redshifts and distances assigned collectively to
gravitationally bound structures.
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where βCMB cos θ ≡ βCMB · n̂hel, n̂hel is the unit vector on the sky in the heliocentric frame,
βCMB = vCMB/c is the boost vector of the CMB frame in the heliocentric frame, and γCMB =

(1− β2
CMB

)−1/2 is the standard Lorentz gamma factor.

Using measurements of redshifts and distances of galaxy clusters, one can independently
define the local average isotropic expansion (AIE) frame as the Lorentz frame at our location
in which the spherically averaged distance–redshift relation in independent radial shells has
minimal variations relative to a linear Hubble law [45, 46]. Since isotropy is only defined
by an average then the observed redshift of any individual source will in general display a
nonkinematic anisotropy differing from (2.1) with a dependence, z(n̂AIE), on the unit vector
on the sky in the AIE frame, n̂AIE.

According to (2.1), even a perturbed FLRW model will display nonkinematic effects.
However, such effects are small and are not expected to affect the identification of the dipole in
(2.2). In this paper, we will study models with nonkinematic effects that we will characterize
in terms of the variation of averages of the nearby Hubble expansion. These nonkinematic
effects will turn out to be so large that they are also likely to be distinguishable when
compared to perturbed FLRW models, offering a simple alternative characterization. In
particular, if we make a boost from the AIE frame to the heliocentric frame of our own
measurements then the difference of the CMB temperature dipole and the standard kinematic
dipole identified by (2.2) can be observationally significant.

We will therefore define general relativistic nonkinematic differential expansion (or more
succinctly relativistic differential expansion) to occur when the difference

∆Tnk−hel =
TAIE

γAIE(1− βAIE · n̂hel)
− T0

γCMB(1− βCMB · n̂hel)
(2.3)

has a measurably nonzero dipole when expanded in spherical harmonics3, where βAIE =

v
AIE

/c is the boost of the AIE frame in the heliocentric frame, γ
AIE

= (1− β2
AIE

)−1/2, and

TAIE(n̂AIE) =
T
CMB

1 + z
AIE

(n̂
AIE

)
, (2.4)

is the anisotropic CMB temperature as measured in the AIE frame. Here TCMB = (1+zdec)T0

is the mean intrinsic temperature of the primordial plasma at decoupling, zdec being the
constant isotropic redshift of decoupling in the FLRW model. In practice, “measurably
nonzero” here means a contribution to (2.3) of at the least the same level, 10−5T0, as the
primordial spectrum; i.e., one order of magnitude larger than the boost dipole in (2.2).

This an operational model–independent4 definition. Since eq. (2.4) does not separate
out the primordial CMB anisotropies, our definition cannot distinguish a primordial CMB
dipole from “local” nonkinematic relativistic effects. However, we will construct numerical
solutions constrained by large galaxy surveys, leading to direct predictions for the amplitude
and direction of the nonkinematic dipole in terms of general relativity alone, rather than by
appealing to unknown physics in the early Universe.

3By construction (2.3) has zero monopole.
4The definition applies not only to exact solutions of Einstein’s equations, but to any cosmological model

with a close to linear Hubble law, including models with backreaction such as the timescape model [67–70].
One could further refine this definition to treat the quadrupole and small frequency dependent effects of a
boost on the black body spectrum [71]. However, as yet we are unable to distinguish such terms given current
knowledge of the modelling of foregrounds such as galactic dust.
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Once one accounts for the known motions of the Sun and Milky Way within the bound
system that forms the Local Group of galaxies, to explain the observed dipole in (2.2) the
LG has to move with a velocity

vo = 635 ± 38 km s−1 (2.5)

in the direction
(ℓo, bo) = (276.4◦, 29.3◦)± 3.2◦, (2.6)

in galactic coordinates [66]. The results of [45, 46] show that the CMB and AIE frames are
statistically significantly different, while the LG frame cannot be statistically distinguished
from the AIE frame given uncertainties in the data. Thus if we take the LG frame as the AIE
frame then (2.3) will involve the subtraction of two milli-Kelvin anisotropies, one of which is
nonkinematic, leaving a residual which is likely to be observationally significant.

Our numerical simulations are not yet sophisticated enough that we will apply (2.3)
directly to sky maps. For the purpose of our numerical simulations we will assume that the
average isotropic expansion frame coincides with the LG frame, so that TLG = TAIE and
n̂LG = n̂AIE as given by (2.4). Furthermore, rather than working in the heliocentric frame,
we will work in the LG frame and constrain the CMB dipole and quadrupole of (2.4) directly
by ray tracing.

2.2 Large scale homogeneous isotropic distance–redshift nonlinearity

Independently of the energy momentum tensor, the luminosity distance relation of any FLRW
cosmology can be Taylor expanded at low redshifts to give

dL(z) =
c

H0

{
z +

1

2

[
1− q0

]
z2 − 1

6

[
1− q0 − 3q0

2 + j0 +
kc2

H
0
2a

0
2

]
z3 +O(z4)

}
(2.7)

where dL is the luminosity distance to the observed galaxy, q0 the deceleration parameter, j0
the jerk parameter, a0 = a(t0) the present cosmic scale factor, and k = −1, 0, 1 the spatial
curvature. The O(z2) and higher order terms represent nonlinear corrections to the linear
Hubble law.

Even if the Universe is not described by a FLRW model, but by some alternative in
which a notion of statistical homogeneity applies, then we can still expect a cosmic expansion
law with a Taylor series in z similar to (2.7). This is the case for the timescape cosmology
[67–70], for example. However, in such cases the higher order coefficients will not have the
form given in (2.7). In particular, generically averages of inhomogeneous models do not
expand in such a way as to maintain a rigid constant spatial curvature, k.

2.3 Small scale nonlinearities: the “nonlinear regime”

Even if the FLRW model is a good fit on large scales, the Taylor expansion (2.7) is only a
priori justified on scales dL >∼ rssh on which a notion of statistical homogeneity applies. Small
scale differences will lead to complex deviations from an average linear Hubble expansion.
In the perturbed FLRW model such deviations are induced on small scales when density
perturbations become nonlinear, giving rise to the nonlinear regime of perturbation theory.

In the standard cosmology small scale nonlinear cosmic expansion is investigated with
large N -body numerical simulations using Newtonian gravity in a uniformly expanding box,
with an expansion rate fit to a FLRWmodel. While any form of nonlinear expansion might be
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interpreted as “differential expansion”, by construction the N–body simulations can always
be interpreted in terms of small scale flows in which velocities are added with respect to
the assumed FLRW background. Such models do not allow the possibility of a relativistic
differential expansion as defined by eqs. (2.3), (2.4). The characterization of the differences
between N -body simulations and the models of this paper will be left to future work [72].

In the present paper, we are interested in the observational scales which are usually
interpreted in the nonlinear regime of perturbed FLRW models, but we make different model
assumptions to interpret the observations. Regardless of the assumed cosmological model,
we use the term nonlinear regime to apply to redshift–space distortions due to nonlinear
expansion on scales of tens of megaparsecs that affect all cosmological observations. For more
distant objects the redshift–space distortions at the source will lead to small uncertainties
as a fraction of the overall distance. However, in our own vicinity on scales dL <∼ rssh these
effects can be large.

In order to construct any numerical simulation some model is required. In this paper, we
will perform simulations with the Szekeres solution, which does allow for a relativistic nonk-
inematic differential expansion. However, we will first discuss the recent model–independent
investigation of the Hubble expansion in the nonlinear regime, which motivated the present
study.

2.4 Model independent characterization of small scale nonlinear expansion

In recent work [45, 46] the problem of characterizing the Hubble expansion below rssh was
approached with no prior assumptions about the homogeneity of the spatial geometry. In
particular, given a large data set with good sky coverage, one can simply determine the best
fit average linear Hubble law in radial shells, even in the regime in which the expansion
is nonlinear, a technique first used by Li and Schwarz [73]. Another alternative is to take
angular averages, for example, by employing a Gaussian window averaging method pioneered
by McClure and Dyer [74].

Wiltshire et al. [45] applied these techniques to the COMPOSITE sample of 4,534
galaxies and clusters compiled from earlier surveys by Watkins et al. [20, 75]. A startling
result was found — when the best fit spherically averaged Hubble parameter in inner shells
was compared to the asymptotic value on r > 156h−1Mpc scales, it was found that the
Hubble expansion was more uniform in the rest frame of the Local Group (LG) of galaxies
than in the standard CMB rest frame, with very strong Bayesian evidence. There is no
reason why this should be true in the standard cosmology. It is expected that the CMB rest
frame should coincide with the local frame in which the Hubble expansion is most uniform,
with minimum statistical variations.

It was argued by Wiltshire et al. [45] that an arbitrary boost, v, of the central observer
from a rest frame in which the Hubble parameter, H, is close to uniform will display a
systematic offset of the value H ′ determined by least squares regression in spherical shells

in the boosted frame. In particular, when minimizing the sum χ2
s =

∑
i

[
σ−1
i (ri − cz′i/H

′)
]2

with respect to H ′, where ri and σi are individual distances and their uncertainties, under a
boost of the central observer the original redshifts transform as czi → cz′i = czi + v cosφi for
small v, where φi is the angle between each data point and the boost direction. Provided the
number density of objects in a distance catalogue is balanced on opposite sides of the sky,
then terms linear in the boost cancel from opposite sides of the sky in a spherical average,
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leaving a term proportional to v2. The offset is found to give approximately

H ′ −H ≃ v2

2H̄
0

〈
r2i
〉 , (2.8)

in successive radial shells, where H̄0 is the asymptotic Hubble constant in the range where
expansion is linear. McKay and Wiltshire [46] found that such a signature is indeed observed
between the CMB and LG rest frames in both the COMPOSITE sample [20, 75], and in the
larger Cosmicflows-II (CF2) sample [76].

It was also found by Wiltshire et al. [45] that the largest residual monopole variation in
the Hubble expansion in the LG rest frame occurs in a range 40h−1 – 60h−1Mpc, whereas
the monopole variation in the CMB frame is less than in the LG frame in this range only.
Over the same distance range H ′ − H is found to deviate from the relation (2.8) in both
the COMPOSITE and CF2 catalogues5. Angular averages reveal a dipole structure in the
Hubble expansion, whose amplitude changes markedly over the range 32h−1 – 62h−1Mpc,
in different ways in the two rest frames. The conclusion from various analyses [45] is that
the boost from the LG frame to the CMB frame appears to be compensating for the effect
on cosmic expansion of inhomogeneous structures within this distance range. A boost to
the CMB frame has the effect of almost cancelling the monopole and dipole variations; but
not perfectly. Whereas the amplitude of the dipole expansion variation declines to levels
statistically consistent with zero for r >∼ 65h−1Mpc in the LG frame, in the CMB frame the
dipole amplitude drops to a minimum value close to zero at r∼ 44h−1Mpc, but subsequently
increases [45].

Finally, using Gaussian window averages, a sky map of angular Hubble expansion varia-
tion on r > 15h−1Mpc scales was determined for theCOMPOSITE sample and its correlation
coefficient, C, with the residual CMB dipole in the LG frame was computed. It was found
that C = −0.92 for an angular smoothing scale σθ = 25◦, which was almost unchanged as
the smoothing scale was varied in the range 15◦ < σθ < 40◦.

The combination of the above results led to the hypothesis of Wiltshire et al. [45] that
a significant component of the observed CMB dipole, which is conventionally attributed to
a local boost (2.5), (2.6) of the Local Group of galaxies, is nonkinematic in origin. It should
be attributed to a differential expansion of space, due to foreground inhomogeneities on
<∼ 65h−1Mpc scales which result in a 0.5% anisotropy in the distance–redshift relation below
these scales.

From the point of view of general relativity, such a hypothesis is not surprising — it
is simply a property of general inhomogeneous cosmological models. Indeed, using a simple
Newtonian approximation [52] for LT models [13–15], numerical estimates of the size of the
effect were made by Wiltshire et al. [45]. These were indeed consistent observationally both
in terms of the magnitude of the CMB temperature dipole and quadrupole, and the scale of
the void relative to that of the actual structures observed in the nearby Universe [77].

5The reported CF2 distances include untreated distribution Malmquist biases [76] which lead to an addi-
tional spurious monopole [30, 46] when spherical averages are taken. Despite this bias the signature (2.8) is
still apparent in the CF2 catalogue in the difference H

′ − H , but with a somewhat broader distance range,
30 h−1 <

∼ r <
∼ 67h−1Mpc, over which (2.8) does not apply, consistent with there being additional systematic

uncertainties in individual distances [46].
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3 The observational data

3.1 The anisotropy of the Hubble expansion

At low redshifts the Hubble constant for a spatially flat FLRW universe can be calculated
by rearranging the terms of (2.7) to obtain

H0 =
c

dL

[
z +

1

2
(1− q0)z

2 − 1

6
(1− q0 − 3q0

2 + j0)z
3

]
. (3.1)

Given a large set of data with independently measured values of z and dL one could determine
H

0
, q

0
and j

0
for any spatially homogeneous isotropic cosmology using the above formula. In

practice, with current data one is only able to independently determine H
0
at low redshifts,

and when terms beyond the linear Hubble law are used in (3.1) then fixed values of q0 and
j0 must be assumed from other observations. For example, the SH0ES [78] estimate assumes
values q0 = −0.55 and j0 = 1 consistent with a spatially flat FLRW model with Ωm = 0.3.
In the present paper, we use q0 = −0.5275 and j0 = 1, consistent with the best fit value
Ωm = 0.315 of Ade et al. [79].

As seen from Fig. 1, except for the Zone of Avoidance region obscured by our Galaxy
(|b| <∼ 15◦), the COMPOSITE sample has good angular coverage6, and thus can be used to
evaluate large angle anisotropies of the Hubble expansion (dipole and quadrupole). However,
the COMPOSITE sample has large uncertainties associated with the distance measure.

From the point of view of propagation of uncertainty, it is better to work with the
formula (2.7) with dL as the independent variable in the numerator. To infer H

0
from the

data we therefore minimize the following sum

χ2 =
∑

i

(
di − cζi/H0

∆di

)2

, (3.2)

where

ζi =

[
zi +

1

2
(1− q

0
)z2i −

1

6
(1− q

0
− 3q

0
2 + j

0
)z3i

]
, (3.3)

di and zi are respectively the luminosity distance and redshift of each object in theCOMPOSITE
sample, and ∆di is the distance uncertainty. The above is equivalent to calculating the Hub-
ble constant as a weighted average,

H0 =

∑
iHiwd,i∑
iwd,i

, (3.4)

where
Hi = cζi/di (3.5)

and
wd,i = cζidi/(∆di)

2. (3.6)

Wiltshire et al. [45] evaluated (3.4) for spherical averages in independent radial shells, for the
case of a linear Hubble law with ζi = zi, and separately considered angular averages using a
Gaussian window function smoothing in solid angle.

6This statement remains true when the data is broken into concentric radial shells in distance, as is seen
in Fig. 2 of Wiltshire et al. [45], where only the innermost of 11 radial shells (with dL < 18.75 h−1Mpc) was
found to have insufficient sky coverage when performing statistical checks.
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Figure 1. The COMPOSITE sample. Upper Panel: angular distribution of galaxies in the Galactic
coordinates ℓ and b; Lower Panel: distance vs LG frame redshift; z ≤ 0.015 red stars, 0.015 < z ≤ 0.03
green circles, 0.03 < z ≤ 0.045 blue triangle, 0.045 < z ≤ 0.06 magenta square, z > 0.06 black
diamonds.

Here we will apply Gaussian window function smoothing jointly in both solid angle and
redshift, to obtain the following formula for the average local Hubble constant centred at
galactic coordinates (ℓ, b) and redshift, z,

H0(ℓ, b, z) =

∑
iHiwd,iwz,iwθ,i∑
iwd,iwz,iwθ,i

, (3.7)

where Hi and wd,i are given by (3.5) and (3.6) respectively, while

wz,i =
1√
2πσz

exp

[
−1

2

(
z − zi
σz

)2
]
, (3.8)

wθ,i =
1√
2πσθ

exp

[
−1

2

(
θi
σθ

)2
]
, (3.9)

σz = 0.01, σθ = 25◦, and θi is the angle between the direction of each source (ℓi, bi) and the
direction of any given point on the sky, (ℓ, b):

cos θi = cos b cos bi cos(ℓ− ℓi) + sin b sin bi.
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For wz,i = 1 — i.e., with no redshift smoothing — equations (3.7) and (3.9) reduce
to equations (B5) and (B9) derived in Appendix B of ref. [45] using a procedure based on
minimizing the scatter in H−1.

Using (3.7) we calculate the regional contributions to our locally measured Hubble
constant on an angular and redshift grid. For each redshift value on the grid, we construct
the angular maps of the Hubble expansion and express the Hubble flow in terms of its
fluctuations

∆H0

〈H0〉
=

H0(ℓ, b, z) − 〈H0〉
〈H0〉

, (3.10)

where

〈H0〉 =
∫
dΩ H0(ℓ, b, z)

4π
, (3.11)

is the spherically averaged value of (3.7).

For each redshift, the fluctuations (3.10) are then analysed using the spherical harmonic
decomposition

∆H
0

H
0

=
∑

l,m

almYlm, (3.12)

which allows us to evaluate the angular power spectrum:

Cl =
1

2l + 1

∑

m

|alm|2. (3.13)

The power spectrum obtained in this way is subject to several biases and uncertainties
[80]

Cl =
∑

l′

Mll′B
2
l′Cl′ +Nl′ (3.14)

where Cl′ is the true underlying power spectrum, Mll′ describes the mode–mode coupling
resulting from incomplete sky coverage, Bl is a window function due to the smoothing, and
Nl is the noise. As seen in Fig. 1 for |b| <∼ 15◦ data is incomplete in the galactic plane.
In this paper, we do not mask these regions. Instead we extrapolate data to these regions
using Gaussian smoothing of radius σθ = 25◦, as follows from eq. (3.14). While this can
potentially affect the inferred power spectrum, for the large angular scales (such as dipole
and quadrupole) of interest here the results are not significantly altered [45]. As for the noise,
we estimate the level of contamination of the power spectrum due to distance uncertainties
and number of data in the next section.

3.2 Completeness and robustness

As seen from Fig. 1, and in more detail in Fig. 2 of Wiltshire et al. [45], there is good angular
coverage in the COMPOSITE data. Potential systematic uncertainties from anisotropies
generated by insufficient sky cover were investigated in detail by Wiltshire et al. [45], who
performed 12 million random reshuffles of the data in independent spherical shells, with the
conclusion that for a binning scale ∆d = 12.5h−1Mpc (or ∆z ≃ 0.004) results concerning
the dipole anisotropy were robust on scales 0.002 < z < 0.04, with up to 99.999% confidence
in some ranges.

In our case, we are also investigating the quadrupole anisotropy and adopt the larger
redshift smoothing scale ∆z = 0.01. However, there is still a possibility that the inferred
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anisotropy could result from some biases in the data. To minimize any systematic bias and
to confirm that the measured anisotropy is not spurious, we performed the following checks:

• We used the fluctuations (3.12) rather than the spherical average (3.4). In the hypothet-
ical case of an exactly homogeneous and isotropic universe (and perfect measurements)
∆H0 = 0, so even if we have all the data only in one part of the sky and the rest of the
sky without any measurement we should not detect any anisotropy.

• We shuffled the data. We tested the robustness of the results on the dipole and
quadrupole anisotropies by analyzing the reshuffled data — for each pair of z and
dL we randomly reshuffled the angular position. We generated 100,000 reshuffled
COMPOSITE catalogues and calculated the dipole and quadrupole of the Hubble
expansion. If the measured signal were comparable with the signal obtained from
reshuffled samples that would indicate that the original result is spurious. That was
not the case, however.

• We used half of the data. An alternative test of robustness was performed by taking
half of the COMPOSITE sample to calculate the dipole and quadrupole anisotropies
of the Hubble expansion. This was done for 100,000 randomly selected halves of the
original COMPOSITE catalogue. If the measured signal was not consistent with the
anisotropy obtained from half of the sample that would indicate that the original result
is spurious. Again, this was not the case.

The results of the above analyses are combined in Fig. 2. As seen our analysis passes
these tests at the 2σ level for z <∼ 0.045. This is consistent with the more exhaustive tests
of Wiltshire et al. [45], which showed that the dipole is not a systematic effect, to very high
confidence.

3.3 Kinematic interpretation of anisotropies

The results presented in Fig. 2 indicate the presence of anisotropy in the Hubble expansion
up to z∼ 0.045, as determined from the COMPOSITE sample redshifts transformed to the
LG rest frame. The anisotropy is largest for small redshifts z ∼ 0.02, with the amplitude of
the dipole dropping one order of magnitude from z = 0.02 to z = 0.045, from which point
the dipole amplitude is consistent with that of the randomly reshuffled data at 2σ.

According to the conventional explanation the anisotropy of the Hubble expansion ob-
served in Fig. 2 should have a kinematic origin, due to a boost (2.5), (2.6) from the LG to
CMB rest frame. This hypothesis can be directly tested by assuming a spatially homoge-
neous universe in the CMB frame, generating mock COMPOSITE samples in that frame,
adjusting the redshift by performing a local boost to the LG frame, and then analysing the
mock data in the manner of Fig. 2. Specifically,

1. We take the COMPOSITE sample. For each galaxy we have its angular position (ℓi, bi),
luminosity distance di, uncertainty in distance ∆di and redshift zi. For each of these
directions (ℓi, bi) we use the FLRWmodel to find the redshift (zFLRW) at which dL = di,
by solving

dL = (1 + z)
c

H0

zFLRW∫

0

dz
1√

Ωm(1 + z)3 + 1− Ωm

,
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Figure 2. The anisotropy of the Hubble expansion in the LG frame: dipole (Upper Panel) and
quadrupole (Lower Panel). The green bands show the 65% and 95% confidence intervals for the
COMPOSITE sample. The red bands show the 65% and 95% confidence intervals obtained using
100,000 random halves of the COMPOSITE sample. The purple bands show the 65% and 95%
confidence intervals obtained using 100,000 random reshuffles of the COMPOSITE sample.

with Ωm = 0.315, corresponding to the best fit parameters from the Planck satellite
[79]. (We also take the Planck satellite normalized H0 = 67.3 km s−1Mpc−1. However,
since we normalize all distances to h−1Mpc, this is inconsequential.)

2. We adjust the redshift for the local boost

1 + zFLRW−B = γ(1− βo cos θ)(1 + zFLRW)

≃ (1− βo cos θ)(1 + zFLRW), (3.15)

where βo = vo/c = (2.1± 0.1) × 10−3 by (2.5), while

cos θ = cos bo cos bi cos(ℓo − ℓi) + sin bo sin bi,

ℓo and bo being given by (2.6), and we have set γ =
(
1− βo

2
)−1/2 ≃ 1, ignoring terms

of O(βo
2).

3. We construct a mock COMPOSITE catalogue in the LG frame, by replacing zi with
zFLRW−B, (i.e., the redshift obtained in the FLRW model adjusted for the LG motion).
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Figure 3. The anisotropy of the Hubble expansion: dipole (Upper Panel) and quadrupole (Lower
Panel). The green bands show the 65% and 95% confidence intervals for the COMPOSITE sample.
The red bands show the 65% and 95% confidence intervals obtained using mock COMPOSITE cat-
alogues based on FLRW redshifts corrected by the local boost of 635 km/s. The purple bands show
the 65% and 95% confidence intervals for mock FLRW catalogues with a 350 km/s boost in the same
direction.

4. We construct 100,000 mock catalogues, using the known uncertainties. Firstly, each
boosted redshift in step 3 is drawn randomly from a Gaussian distribution taking into
account the uncertainties in (2.5) and (2.6). Secondly, in step 1 each distance from the
COMPOSITE sample is replaced with a distance dN

dN = N (µ = di, σ = ∆di) (3.16)

equal to a random number drawn from a Gaussian distribution whose mean value is di
with standard deviation equal to each individual distance uncertainty, ∆di.

5. For each of these mock catalogues we calculate the Hubble expansion and its anisotropy
as outlined in Sec. 3.1.

The results are presented in Fig. 3. As seen the anisotropy produced by a FLRW
model with local boost is characterized by a dipole three times larger than is observed in
the COMPOSITE data at low redshift, and differs by more than 2σ for all redshifts z <
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0.04. On the other hand the quadrupole generated by the FLRW model with local boost
is comparable to that of the COMPOSITE sample as z → 0, but becomes smaller than
that of the COMPOSITE sample for z >∼ 0.01, being consistent with that of the randomly
reshuffled data in Fig. 2. Thus for z > 0.01 the local boost of 635 km/s cannot account for
the amplitude of the observed quadrupole in the COMPOSITE sample.

We note that the linear cos θ dependence in (3.15) gives rise to a pure dipole anisotropy
at fixed values of zFLRW and dL in a linear Hubble relation. However, once (3.15) is substi-
tuted in the Taylor series (3.3), a quadrupole and higher order multipoles are also generated
at fixed redshift. The amplitude of the boosted quadrupole in Fig. 3 is larger than would
be produced with perfect data, the ratio of the boost quadrupole and dipole contributions
to (3.12) generated by (3.3) and (3.15) being proportional to βo

2 ∼ 4 × 10−6. The rela-
tively large value of the ratio C2/C1 ∼ 0.05 reflects the combination of the effect of angular
smoothing in the Gaussian window average (3.7)–(3.9) with the actual distance uncertainties
assigned to the mock data, leading to C2∼ 0.004 at low redshift for the randomly reshuffled
COMPOSITE data in Fig. 2.

We have investigated by how much the magnitude of the local boost on the axis of the
CMB and LG frames must be reduced in order to match the Hubble expansion dipole of the
COMPOSITE sample. We find that a 350 km/s boost would match the Hubble expansion
dipole, giving results which are also shown in Fig. 3. The quadrupole of the COMPOSITE
sample is not matched, however. For a 350 km/s boost the quadrupole is consistent with the
residual level of the randomly reshuffled data within 2σ for all redshifts.

The interpretation of the anisotropy within a framework of the FLRW model plus local
boosts leads to a conundrum. The mismatch between the 350 km/s amplitude of a Local
Group boost that would be consistent with the Hubble dipole anisotropy and the 635 km/s
boost required to account for the CMB dipole kinematically suggests two possible solutions:
(i) the galaxies in the COMPOSITE sample are in a coherent bulk flow with respect to the
CMB on scales up to z∼ 0.045; or (ii) the Hubble dipole and other anisotropies contain a
substantial nonkinematic component.

While the bulk flow hypothesis is the one that is widely studied — being based on the
standard FLRW model — it is at odds with the results of [45] that the spherically averaged,
or monopole, Hubble expansion variation is very significantly reduced in the LG frame as
compared to the CMB frame on <∼ 70h−1Mpc scales. The spherical average of a coherent
bulk flow on such scales does not produce a monopole expansion variation of the character
seen in the COMPOSITE sample [45], and such a result is not seen in N–body Newtonian
simulations7. Moreover, the signature of a systematic boost offset (2.8) from the LG to
CMB frame is seen in both the COMPOSITE and Cosmicflows-2 samples [46], providing a
potential explanation for the CMB frame monopole variation if the LG rest frame is closer
to being the frame in which anisotropies in the Hubble expansion are minimized.

We will now investigate the extent to which a nonkinematic interpretation of the
anisotropies is observationally consistent by ray tracing in exact inhomogeneous solutions
of the Einstein equations.

7The effect of a local boost of the central observer is the most significant aspect of our analysis. FLRW
models with additional inhomogeneities produced by Newtonian N–body simulations do not lead to results
significantly different from a pure FLRW model plus local boost shown as shown in Fig. 3. These results will
be reported elsewhere [72].
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4 Light propagation in the non-linear relativistic regime and the origin of

anisotropies

Relativistic cosmological models predict the expansion of the Universe, which induces cosmo-
logical redshift. Cosmic expansion, however, does depend on the local coupling of matter and
curvature, and only in the FLRW model is expansion spatially homogeneous and isotropic.
The general relativistic formula for the redshift is [81]

1

(1 + z)2
dz

ds
=

1

3
Θ + Σabn

anb + ua;bu
bna, (4.1)

where ua is the matter velocity field, na is the connecting covector field locally orthogonal8 to
ua, Σab is the shear of the velocity field, and Θ = ua;a is its expansion. In the limit of spatially
homogeneous and isotropic models the shear vanishes, Σab → 0, and the expansion of the
velocity field reduces to the Hubble parameter, Θ → 3H(t). However, once cosmic structures
form, the expansion field becomes non-uniform (ranging from Θ = 0 inside virialized clusters
of galaxies to Θ > 3H0 within cosmic voids), and so the shear, Σab, and acceleration, ua;bu

b,
of the velocity field are nonzero.

Distances are also affected by presence of cosmic structures. The general relativistic
framework that allows us to calculate the distance is based on the Sachs equations [82, 83]

d2dA
ds2

= −
(
σ2 +

1

2
Rabk

akb
)
dA, (4.2)

where ka is the tangent to null geodesics in a congruence, σ = 1
2
σabσ

ab is the scalar shear of
the null geodesic bundle, and Rab is the Ricci curvature. The first term on the right hand
side of (4.2) is often referred to as the Weyl focusing as it involves the Weyl curvature, while
the second term is known as the Ricci focusing. For the type of inhomogeneities considered
in this paper, the amplitudes of the density contrast and density gradient are such that the
Weyl focusing is negligibly small compared to the Ricci focusing [84]. Therefore, in this
paper we work within the Ricci focusing regime9 and we neglect any contribution from σ.
The luminosity distance dL is then given by the reciprocity theorem [81, 85]

dL = (1 + z)2dA. (4.3)

Solving (4.2), (4.3) for the areal and luminosity distances, and (4.1) for the redshift, we
arrive at a general relativistic distance–redshift relation, which will give rise to an anisotropic
Hubble expansion generated by the spatial inhomogeneities in the geometric terms on the
right hand sides of (4.1) and (4.2). The anisotropies will be most prominent over length
scales characteristic of the matter inhomogeneities, and will have characteristics which are
distinct from a simple FLRW geometry plus Lorentz boosts.

4.1 The geometry and Einstein equations

In order to solve (4.1), (4.2) for the distance–redshift relation we need to calculate all relevant
physical quantities such as the Ricci curvature, the shear of the null and timelike geodesic

8I.e., ua
na = 0, nan

a = 1. In the case that the vorticity of the velocity field vanishes — i.e., u[a;b] = 0 —
then na is also the normal to a spatial hypersurface with tangent ua. For practical purposes, this is taken to
be the case in cosmological averages.

9See ref. [84] for a detailed discussion on the applicability of Ricci focusing and the contribution of the
Weyl curvature on light propagation.
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bundles, and the expansion scalar. For this purpose we use the Szekeres solution [16], which
is the most general known exact solution of the Einstein equations for an inhomogeneous
dust source. In the limit of a spatially homogeneous matter distribution it reduces to the
FLRW model.

The advantage of the Szekeres model over the perturbed FLRW model10 is that we can
account for possible nonkinematic differential expansion which we find to be associated with
actual observed structures in the local Universe. In particular, we will study a quasispherical
Szekeres model generated by a spherical void onto which an additional inhomogeneity with
an axial density gradient is superposed. Thus we have both overdense and underdense regions
in the same exact solution of Einstein’s equations.

The Szekeres model reduces to the spherically symmetric LT model in the limit of no
superposed axial density gradient. In the LT limit the anisotropy in the Hubble expansion
is generated solely by the off–centre position of an observer relative to the centre of the
inhomogeneity. In the Szekeres model this parameter will still play a role. However, the
angle between the observer and the density gradient axis will also give rise to more complex
and realistic anisotropies than are possible with the LT model alone. This allows us greater
freedom to more closely model actual structures in the local Universe. Of course, the Szekeres
model still has limitations as to what it can describe. (We will return to this issue later on.)

The metric of the quasispherical Szekeres solution [16, 86] is usually represented in the
following form

ds2 = c2dt2 −

(
R′ −RE ′

E

)2

1− k
dr2 − R2

E2
(dp2 + dq2), (4.4)

where ′ ≡ ∂/∂r, R = R(t, r), and k = k(r) ≤ 1 is an arbitrary function of r. The function E
is given by

E(r, p, q) = 1

2S
(p2 + q2)− P

S
p− Q

S
q +

P 2

2S
+

Q2

2S
+

S

2
, (4.5)

where the functions S = S(r), P = P (r), Q = Q(r), but are otherwise arbitrary. We take
the coordinates r, p, q and the functions P , Q, R, S, E all to have dimensions of length. We
can also define angular coordinates, (θ,φ), by

p− P = S cot
θ

2
cosφ, q −Q = S cot

θ

2
sinφ. (4.6)

Then E = S/(1− cos θ), and the metric (4.4) takes the form

ds2 = c2dt2 − 1

1− k

[
R′ +

R

S

(
S′ cos θ +N sin θ

)]2
dr2 −

[
S′ sin θ +N (1− cos θ)

S

]2
R2dr2

−
[
(∂φN) (1− cos θ)

S

]2
R2dr2 +

2 [S′ sin θ +N (1− cos θ)]

S
R2dr dθ

− 2(∂φN) sin θ (1− cos θ)

S
R2dr dφ− R2(dθ2 + sin2 θ dφ2), (4.7)

where N(r, φ) ≡ (P ′ cosφ+Q′ sinφ).
The Einstein equations with cosmological constant, Λ, and dust source of mass density,

ρ,
Gab − Λgab = κ2ρ uaub, (4.8)

10We will present a comparison of the distinct differences from N–body simulations in a future paper [72].
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where κ2 = 8πG/c4, reduce to the evolution equation and the mass distribution equation.
The evolution equation is

Ṙ2 = −k(r) +
2M(r)

R
+

1

3
Λc2R2, (4.9)

where ˙≡ ∂/∂t, and M(r) is a function related to the mass density by

κρ =
2 (M ′ − 3ME ′/E)
R2 (R′ −RE ′/E) . (4.10)

Note that
E ′

E =
−1

S

[
S′ cos θ +N sin θ

]
(4.11)

is the only term in (4.10) which gives a departure from spherical symmetry. One is free to
specify the various functions as long as (4.9)–(4.11) are satisfied. Since R(t, r) is the only
function that depends on time, (4.9) can be integrated to give

t− tB(r) =

R∫

0

dR̃√
−k + 2M/R̃ + 1

3
Λc2R̃2

, (4.12)

where tB(r) is one more arbitrary function called the bang time function, which describes the
fact that the age of the Universe can be position dependent. If we demand that the age of
the Universe is everywhere the same for comoving observers — the homogeneous Big Bang
condition — then the above equations link M(r) and k(r). In the generic case M and k
can be arbitrary, which could mean either a non-uniform Big Bang, or some turbulent initial
conditions; i.e., conditions that would require a more complicated model than the Szekeres
model.

The matter distribution in the Szekeres model has a structure of a dipole superposed on a
monopole, (cf., upper left panel of Fig. 4). In order to determine the Szekeres model and solve
all the equations, we need to specify its five arbitrary functions. These are: M and k which
describe the monopole distribution, and S, P , and Q which describe the dipole. If S, P , Q are
constant the dipole vanishes and we recover spherical symmetry; if S′ 6= 0, and P ′ = 0 = Q′

then the model is axially symmetric. These five functions (or any other combination of
functions from which these can be evaluated) are sufficient to solve all the equations that
describe the evolution of matter and light propagation in the evolving geometry.

In the FLRW limit when the model becomes spatially homogeneous and isotropic we
have:

R → ra(t) (4.13)

M → M0r
3, (4.14)

k → k0r
2, (4.15)

where M0 = 1
2
H0

2 Ωm, k0 = H0
2(Ωm + ΩΛ − 1), and the functions S, P , and Q are constant

(S′ = 0 = P ′ = Q′). Therefore, in the FLRW limit the dependence on r in (4.9) cancels out
and after dividing by a2 we recover the well known form of the Friedmann equation

H2 = H0
2
(
Ωma−3 +Ωka

−2 +ΩΛ

)
,
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where ΩΛ = Λc2/(3H0
2), and Ωm +Ωk +ΩΛ = 1.

Let us then model the departure from homogeneity using the following profile of the
mass function

M = M0r
3 [1 + δM (r)] , (4.16)

where

δM (r) =
1

2
δ
0

(
1− tanh

r − r0
2∆r

)
, (4.17)

with −1 ≤ δ0 < 0, is a localized perturbation which is underdense at the origin. As r → ∞,
we have δM → 0 so that the spatial geometry is asymptotically that of the homogeneous and
isotropic FLRW model. We normalize this geometry by choosing the spatially flat FLRW
model which best fits the Planck satellite data, with Ωm = 0.315 andH0 = 67.3 km s−1 Mpc−1

[79].

The function k(r) is then evaluated from (4.12) for each r under the assumptions:
(i) the age of the Universe is everywhere the same for comoving observers, tB = 0; and
(ii) R(t

0
, r) = r for each r, where the age of the Universe, t

0
, is equal to that of the asymptotic

background spatially flat FLRW model.

Finally we assume axial symmetry, with dipole described by only the function S, which
we choose to be:

S = r

(
r

1 Mpc

)α−1

,

P = 0,

Q = 0, (4.18)

where α is a free parameter. When α → 0 the model becomes the spherically symmetric LT
model, as shown in the lower left panel of Fig. 4.

The model has 7 free parameters:

• 4 parameters that specify the Szekeres model α, δ0, r0, ∆r,

• 3 parameters that specify the position of the observer robs, ϕobs, ϑobs.

Since the model considered here is axially symmetric, we can choose the observer to lie in
the plane ϕobs = π/2 without loss of generality. In order to reduce the dimension of the
parameter space we also set ∆r = 0.1r0 for simplicity. That leaves us with 5 parameters. In
reality, we expect the perturbations that describe actual cosmic structures to be much more
complicated than the parameterization adopted here. So while this gives us some flexibility,
not all structures can be described using this parameterization. The structures that can
be described using this parameterization consist of a void and an adjacent overdensity, as
presented in the upper left panel of Fig. 4. While not perfect, this parameterization aims to
model some of the major structures in the local Universe, such as the Local Void and the
overdensity known as the Great Attractor [66].

By varying the five free parameters, we can tune the size of the void and/or overden-
sity, the amplitude of the density contrast and the position of the observer relative to the
structures. We run a search through this 5-dimensional parameter space looking for a model
which as closely as possible satisfies constraints in the following order of importance:
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1. The CMB temperature has a maximum value of T0 + ∆T relative to the mean T0 =
2.725K, where

∆T (ℓ = 276.4◦, b = 29.3◦) = 5.77 ± 0.36 mK, (4.19)

which corresponds to the CMB temperature dipole amplitude and direction in the LG
rest frame.

2. The quadrupole of the CMB anisotropy is lower than the observed value [87]

C2,CMB < 242.2+563.6
−140.1 µK2. (4.20)

While the dipole of the CMB is significantly affected by local expansion, the quadrupole
is dominated by the baryonic physics of the early Universe, and the observed value
itself is about 5 times smaller than the expectation based on the standard cosmology.
Therefore we implement this constraint to ensure that the quadrupole generated by
local inhomogeneities is much lower than the quadrupole generated at last scattering.

3. The dipole of the Hubble expansion anisotropy and its redshift dependence must be
consistent with the observed anisotropy of the COMPOSITE sample as presented in
Fig. 3.

4. The quadrupole of the Hubble expansion anisotropy and its redshift dependence must
be consistent with the observed anisotropy of the COMPOSITE sample as presented
in Fig. 3.

4.2 Constructing mock catalogues

The algorithm of our analysis can be summarized by the following steps:

1. We first specify the Szekeres model.

2. We apply the HEALPix grid of the sky and propagate light rays in these directions.

3. We then calculate the CMB temperature maps.

4. We use HEALPix routines to calculate the anisotropy of the CMB map.

5. We take the COMPOSITE sample. For each galaxy we have its angular position (ℓi, bi),
luminosity distance di, uncertainty in distance ∆di and redshift zi. For each of these
directions (ℓi, bi) we numerically propagate light rays, using the null geodesic equations
of the Szekeres model, up until d = di. We then write down the redshift evaluated
within the Szekeres model z

Sz
.

6. We construct the mock COMPOSITE catalogue, by replacing zi with zSz, (i.e., the
redshift obtained in the Szekeres model for this direction and this distance).

7. We construct 100,000 mock catalogues, by taking into account the actual uncertainties,
∆di, in the distances. As for the boosted FLRW mock catalogues, this is done by
replacing the distance from the COMPOSITE sample by dN according to (3.16).

8. For each of these mock catalogues we calculate the Hubble expansion and its anisotropy
as outlined in Sec. 3.1.
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Figure 4. The anisotropy of the Hubble expansion. Upper Panels show the anisotropy of the Hubble
expansion within the Szekeres model, whose density distribution is presented in the upper left panel
(this panel shows the density contrast, δρ = (ρ − ρ̄)/ρ̄ given in the right hand scale, when smoothed
with Gaussian kernel of size 8 h−1Mpc); the position of the observer is marked with a cross “+”.
Lower Panels show the anisotropy of the Hubble expansion within the spherical model (LT) model,
whose density distribution is presented in the lower left panel (cross “+” marks the position of the
observer); the anisotropy of the Hubble expansion evaluated within the FLRW model with a local
boost of 635 km/s is also presented for comparison. This shows how important matter anisotropies
are to fully account for the observed anisotropies of the Hubble expansion.

4.3 Anisotropy of the Hubble expansion generated by cosmic structures mod-

elled by the Szekeres model

Our search through the 5-dimensional parameter leads us to a model, whose mass profile as
well as the position of the observer are presented in the upper left panel of Fig. 4. The values
of the free parameters are

α = 0.86,

δ
0
= −0.86,

r0 = 38.5 h−1 Mpc,

∆r = 3.85 h−1 Mpc, (4.21)
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and the position of the observer:

robs = 25h−1 Mpc,

ϕobs = 0.5π,

ϑobs = 0.705π. (4.22)

These distances are coordinate distances, not radial proper distances or luminosity distances.

Interestingly, if we take the region of maximum overdensity in Fig. 4, with density
contrast δρ/ρ > 2, this region is found to be located at redshifts and luminosity distances
in the ranges 0.003 <∼ z <∼ 0.013 and 16h−1 <∼ DL <∼ 53h−1Mpc, comparable to those of the
Centaurus cluster / Great Attractor11. We did not supply the redshift of the overdensity
as an a priori constraint, but arrived at it using a grid search on possible Szekeres models
following the criteria specified above.

Furthermore, in terms of the angular extent, the region with δρ/ρ > 2 occupies an
ellipsoidal region with 220◦ < ℓ < 320◦, and −60◦ < b < 40◦. The Centaurus cluster at
(ℓ, b) = (302.4◦, 21.6◦) on the near side of the Great Attractor is thus contained with the
overdense region. However, the Norma cluster at (ℓ, b) = (325.3◦,−7.3◦) which is in the
angular centre of the Great Attractor, but on the far side in distance at z = 0.0141± 0.0002
in the LG frame falls 5◦ outside our overdense region by angle and ∆z = 0.0011 by redshift.
The fact that the alignment of the overdensity is very close to the actual Great Attractor,
but does not yet match precisely is consistent with the fact that there are further features of
the Hubble expansion that we have still to account for – its quadrupole – as we shall discuss
below.

The anisotropy of the Hubble expansion within such a model is presented in the upper
panels of Fig. 4. We find that the first three criteria given in Sec. 4.2 are all satisfied. In
particular, the CMB temperature dipole is

∆T
CMB

= 5.58 mK,

as is expected in the LG frame, while the quadrupole of the CMB temperature anisotropy is

C2,CMB = 8.26 µK2.

Furthermore, the dipole of the Hubble expansion within this model is consistent with the
dipole of the Hubble expansion inferred from the COMPOSITE sample.

The results shown in Fig. 4 display the clear advantage of the Szekeres model in com-
parison with a FLRW model plus local boosts, as discussed in Sec. 3.3. Applying a local
boost to an otherwise homogeneous and isotropic universe we found that it was not possible
to fit the Hubble expansion dipole and the CMB temperature dipole simultaneously. By
contrast the Szekeres model simultaneously matches both the CMB temperature dipole in
the LG frame and the Hubble expansion dipole of the COMPOSITE sample over all redshifts
in the survey with sufficient data. Given the fact that the structure of the Universe on scales
below 100h−1Mpc is very inhomogeneous, and that differential cosmic expansion is a generic
feature of cosmological solutions of Einstein’s equation, it should perhaps not be a surprise
that the inhomogeneous model performs better.

11The Centaurus cluster, at LG frame redshift of z = 0.0104 ± 0.0001 [88], lies in the nearer portion of the
Great Attractor region [89].
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On the other hand, the particular Szekeres model considered here is not able to re-
produce the quadrupole of the Hubble expansion seen in the COMPOSITE sample, which
is about three times larger in magnitude than in the simulation. The Hubble expansion
quadrupole in the Szekeres model (4.16)–(4.22) in fact has an amplitude consistent with that
of the randomly reshuffled data in Fig. 2, and is not statistically significant.

The fact that we can account for the Hubble expansion dipole, but not the quadrupole
may well be due to the simplicity of the model (4.16)–(4.22), (cf., upper panel of Fig. 4).
In particular, the choice (4.18) enforces an axial symmetry on the mass distribution, which
could be altered to give finer details. This would require a more complex model, and is left
for future investigations.

As an indication of how the properties of the Hubble expansion variation are induced
by changes in the matter distribution, we have also investigated the anisotropy of the Hubble
expansion evaluated using a spherical void LT model, which is obtained from the Szekeres
model in the limit of a vanishing matter dipole, α → 0.

We use the same parameterization and procedure as outline above with α = 0, which
ensures spherical symmetry. As in the case of a simple boost (Sec. 3.3) we are not able to
simultaneously fit the CMB temperature variation and the full redshift dependence of the
Hubble expansion anisotropy. At best, we can only reproduce some of the features.

An example of this investigation is presented in lower panels of Fig. 4. The values of
the free parameters are

α = 0,

δ0 = −0.95,

r0 = 45.5 h−1 Mpc,

∆r = 4.55 h−1 Mpc (4.23)

and the position of the observer is

robs = 28h−1 Mpc,

ϕobs = 0.5π,

ϑobs = 0.5π. (4.24)

The model matches the correct temperature dipole of the CMB in the LG frame

∆TCMB = 5.63 mK

and the quadrupole of the CMB temperature anisotropy is

C2,CMB = 20.73 µK2.

However, the Hubble expansion dipole anisotropy can only be matched at very low redshifts
(see middle panel of Fig. 4). As the redshift is increased the magnitude of the dipole increases
until for, z > 0.015, it becomes consistent with that predicted by the FLRW model plus a
local boost of 635 km/s in the LG frame — which was not consistent with the COMPOSITE
data, however.

This illustrates the fact that the amplitudes of the CMB dipole and higher multipoles
in LT models can be roughly estimated for off–centre observers by an effective Newtonian
approximation [52] using the velocity appropriate to a boosted observer in the FLRW geom-
etry. This limit was discussed by Wiltshire et al. [45], who gave an example of a LT void
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with a somewhat different mass profile but with similar parameters, being 18% larger but
with a less sharp density gradient.

An examination of the density profile panels of Fig. 4 illustrates the role that is played by
differential cosmic expansion. In particular, Lorentz boosts represent a point symmetry in the
tangent space of any general observer. In the case of the LT model, the axis which joins the
centre of the void to the position of the off–centre observer defines a direction along which a
radial boost can be taken to act from the void centre. Since the differential expansion is purely
radial with respect to the centre, it still somewhat mimics the action of a point symmetry.
Thus it is not surprising that the LT dipole becomes equivalent to the FLRW model plus
boost on scales larger than r0 + robs. By contrast, the Szekeres model incorporates a mass
dipole on an axis distinct from that joining r0 to robs. This distributed density gradient
therefore gives rise to a differential cosmic expansion which cannot be mimicked by a boost
or any other point symmetry relative to the central point, r0.

The models considered in this Section show how the presence of cosmic structures affect
the anisotropy of the Hubble expansion. The more structures that are present in the model,
the better is the consistency with observational data.

5 Potential impact on CMB anomalies

Any model cosmology in which (2.3) is nonzero will demand a different to standard approach
to the analysis of large angle CMB anisotropies. The multipole expansion of (2.3) will consist
of terms which could be deemed to be “anomalous multipoles” relative to the kinematic
expectation. As the dipoles will not cancel perfectly, to leading order there will generally be
an “anomalous dipole” which may demand a reexamination of the observed power asymmetry
and related large angle anomalies [42, 43]. This would have a major impact on observational
cosmology, as has already been discussed by Wiltshire et al. [45].

While one should naturally be sceptical of any suggestion that large angle CMB anoma-
lies result from a nonkinematic relativistic differential expansion on <∼ 70h−1Mpc scales, a
very important implication of the present paper is that ray-traced exact solutions similar to
those described here will provide, for the first time ever, concrete models that can actually be
tested against Planck satellite data for their effect on large angle anomalies. Such a project
might even demand subtle changes in the treatment of the galactic foreground in the map
making procedures. Thus it is important to first have the best possible model of relativistic
differential expansion before embarking on such a challenge.

A detailed analysis of the multipoles of (2.3) is therefore left for future work. In par-
ticular, we need to first refine the Szekeres model to incorporate additional structures giving
a Hubble expansion quadrupole with the observed redshift dependence. Since the CMB
quadrupole for the Szekeres model (4.21), (4.22) is 30 times smaller in amplitude than the
observed CMB quadrupole, we should reasonably expect that this can be accommodated. The
redshift dependence of the Hubble expansion dipole and quadrupole seen in theCOMPOSITE
sample should also to be confirmed with other data sets12.

In this paper, we have considered LT and Szekeres models in the the LG frame treated
as the average isotropic expansion frame, with a ray-traced CMB treated according to (2.4),
as this is computationally simpler. With a refined Szekeres model one should also boost to
the heliocentric frame and constrain the ray traced simulations with the complete sky map

12In the case of the Cosmicflows-2 sample [76], for example, this requires a careful treatment of Malmquist
biases to remove a monopole bias [30, 46].
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of the observed heliocentric dipole from Planck satellite data with an appropriate galactic
sky mask applied, rather than adopting our simpler procedure (4.19) of just matching the
amplitude of the equivalent temperature dipole in the LG frame.

While one cannot know the outcome of any such simulations before performing them,
there are as yet no obstacles to the possibility that such investigations will result in ob-
servationally consistent alternative models of the large angle CMB sky. In particular, as
was discussed in ref. [45], the claim of the Planck team [90] that the kinematic nature of
the transformation from the heliocentric to CMB frames has been verified by the effects of
frequency modulation and aberration in the CMB anisotropy spectrum actually depends on
angular scale. The boost direction coincides with the expected direction (ℓ, b) = (264◦, 48◦)
only for small angle multipoles lmin = 500 < l < lmax = 2000. For large angle multipoles
l < lmax = 100 the inferred boost direction moves across the sky to coincide with the mod-
ulation dipole anomaly direction [39], (ℓ, b) = (224◦,−22◦) ± 24◦. Since the nonkinematic
terms in (2.3) will only affect large angle power, this angular scale dependence of the results
of [90] and their association with the anomaly direction is perhaps suggestive.

6 Conclusion

Cosmic structures such as voids, sheets, filaments, and knots participate differently in the
expansion of the Universe. The expansion rate gradually changes from no expansion inside
virialized high density regions such as superclusters to a higher than average expansion rate
inside voids. This differential expansion of the space can be observed in the anisotropy of
the Hubble expansion, especially on scales up to a few hundreds megaparsecs. In general
relativity, differential cosmic expansion is the norm in all cosmological models which are
not spatially homogeneous and isotropic. The anisotropy of the Hubble expansion is thus
expected to quantitatively differ from that of a FLRW model in which all departures from
homogeneity can be described by local Lorentz boosts of the source and observer.

The effects that we consider in this paper appear to have been largely overlooked as
serious possibilities in the past for two reasons. Firstly, in considering nonlinear anisotropies
many cosmologists typically think about the Rees–Sciama effect [91], in which one considers a
photon traversing from one average position across a nonlinear structure to another average
position. Such considerations miss the peculiar potential effect of placing observers deep
inside the nonlinear structures (cf. Fig. 6 in ref. [56]). When we take the same structures
studied in this paper and place observers far from the structures then the amplitude of the
temperature anisotropies is of order |∆T |/T < 3 × 10−7 consistent with previous estimates
which use larger voids and generate a somewhat larger amplitude [92, 93].

Secondly, simple order of magnitude estimates suggest that a Rees–Sciama dipole will
in general generate a Rees–Sciama quadrupole of similar order [94], and one might näıvely
assume that similar arguments apply to all general nonlinear distance–redshift anisotropies.
However, our results show again that one cannot extrapolate the argument for the Rees–
Sciama effect involving both a source and observer far from a structure to the case of an
observer inside the structure. While it is certainly possible that the relative size of the CMB
quadrupole and dipole would be comparable at certain locations in other structures, we find
that for observers placed at any position in the Szekeres model (4.21), (4.21) the quadrupole
is always much smaller than the bound (4.20). Thus when one is dealing with observers
inside a nonlinear structure the details of the density profile and the observer’s position are
crucially important. In our case, we have a particular location relative to structures such as
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the Local Void and the “Great Attractor”. Our study is the first to benefit from constraining
ray tracing simulations with actual large galaxy surveys outside a framework of the FLRW
cosmology plus local boosts.

In this paper we investigated the anisotropy pattern of the Hubble expansion, consider-
ing the dipole and quadrupole variations in the LG frame. Most previous studies have either
focused on the monopole, i.e., the global (average) value of H0, or on bulk flows. In a way
this is analogous to studies of the CMB in 1970s–1990s. However, with increasing amount
of data and precision of measurements, we are slowly arriving at the stage where we can
study anisotropies of the Hubble expansion, just as we now study the anisotropy of the CMB
temperature fluctuations.

In analogy to CMB temperature fluctuations, we show that the Hubble expansion can be
decomposed using spherical harmonics and expressed in terms of an angular power spectrum.
Moreover, by averaging data at various redshifts we can have additional information about the
redshift dependence of the multipoles of the Hubble expansion. Irrespective of any theoretical
assumptions about cosmic expansion, this is a novel technique that carries complimentary if
not additional information to studies of bulk flow that have been extensively carried out in
the past years.

In Sec. 3.1 we developed the formalism used to study the anisotropy of the Hubble
expansion. When applied to the COMPOSITE sample we identified the presence of dipole
and quadrupole anisotropies in the Hubble expansion. These anisotropies are statistically
significant in the data up to z <∼ 0.045. For larger redshifts the amount of data is small and
the signal is no longer distinguishable from noise.

We compared the measured anisotropy with predictions from a FLRW model assumed
to be homogeneous and isotropic in the CMB frame, and also particular LT and Szekeres
models with small scale inhomogeneities in the LG frame. All models were assumed to be
identical to a spatially flat FLRW models on scales >∼ 100h−1Mpc, with parameters fixed to
those of the FLRW model that best fits the Planck satellite data [79]. The FLRW model
with a local boost from the CMB to LG frame did not fit the observed redshift dependence of
the dipole of the Hubble expansion of the COMPOSITE sample as seen in the LG frame. In
order to match the observed features of the dipole of the Hubble expansion, the local boost
would have to be reduced to approximately 350 km/s, which is much smaller than the actual
635± 38 km/s that is required if the CMB temperature dipole is purely kinematic.

A quasispherical Szekeres solution that allows for variations of the local geometry gener-
ated by the presence of cosmic structures, which effectively model the Local Void and “Great
Attractor”, was found to improve the fit. This analysis shows that the local cosmological
environment does affect the Hubble expansion. Physically, this can be understood in terms
of the differential expansion of the space, with the void expanding faster and the overdensity
expanding at a slower than the average expansion rate.

As yet, the numerical model does not have a Hubble quadrupole as large as that seen
in the COMPOSITE sample. However, if extra modifications are added — for example, by
using methods to include extra structures [65] — then given the magnitude of the effects that
remain to be explained, it is highly plausible that highly accurate models of the local cosmic
expansion can be developed.

All our models are constrained by a match to the magnitude and direction of the CMB
temperature dipole. Since the models are nonlinear the addition of further structures can
affect the alignment and scale of the structures, and the position of the observer, as compared
to a simpler model. In moving from the simple LT void model to our single void / single
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overdensity Szekeres model, for example, the scale of the void was reduced by 40%, while
also achieving a fit to the Hubble expansion dipole over a range of redshifts.

The effect which remains to be explained – the Hubble expansion quadrupole – is an
order of magnitude smaller than the Hubble expansion dipole. Therefore we should not
expect such large changes of scale as occurred between the LT and Szekeres models already
studied. However, we note that the overdensity in our simple Szekeres model overlaps with
the observed Great Attractor in both angle and redshift on the near side but not completely
on the far side. Furthermore, the additional major structures that should still be accounted
for include most notably the Perseus–Pisces concentration, which lies at LG frame redshifts
0.0182–0.0194. This is at the upper end of the redshift/distance range of the structures
that we are considering, with a a likely impacting on the alignment of the far side of the
overdensity which we have identified with the Great Attractor. Whether this can be done
while also accounting for the Hubble expansion quadrupole is an important question left for
future work.

As discussed in Sec. 5, our approach may potentially provide a simple physical expla-
nation of particular large anomalies in the CMB radiation, in terms of known physics. But
this is a matter for future investigations.

The main result of this paper is that with just the FLRW geometry plus a local boost
of the Local Group of galaxies it is impossible to simultaneously fit both the CMB dipole
and quadrupole anisotropies and the redshift dependence of the dipole anisotropy of the
local expansion of the Universe, determined by the COMPOSITE sample. To explain the
observed features we need to use models that exhibit differential cosmic expansion. Further
refinement of such models may potentially have a major impact on cosmology.
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[80] E. Hivon, K.M. Górski, C.B. Netterfield, B.P. Crill, S. Prunet and F. Hansen, Master of the
cosmic microwave background anisotropy power spectrum: a fast method for statistical analysis
of large and complex cosmic microwave background data sets, Astrophys. J. 567 (2002) 2,
[astro-ph/0105302]

[81] G.F.R. Ellis, in Proceedings of the International School of Physics ‘Enrico Fermi’ (1971)
Course 47: General Relativity and Cosmology, ed. R.K. Sachs (Academic Press, New York and
London), pp. 104–182; reprinted, with historical comments, in Gen. Rel. Grav. 41 (2009) 581

[82] R. Sachs, Gravitational waves in general relativity. VI. The outgoing radiation condition, Proc.
Roy. Soc. Lond. A 264 (1961) 309

[83] P.J.E. Peebles, Principles of Physical Cosmology, (Princeton University Press, 1993)

[84] K. Bolejko and P.G. Ferreira, Ricci focusing, shearing, and the expansion rate in an almost
homogeneous Universe, JCAP 05 (2012) 003, [arXiv:1204.0909]

[85] I.M.H. Etherington, Phil. Mag. 15 (1933) 761; reprinted, with historical comments, in Gen.
Rel. Grav. 39 (2007) 1055

[86] P. Szekeres, Quasispherical gravitational collapse, Phys. Rev. D 12 (1975) 2941

– 30 –

http://arxiv.org/abs/arXiv:0705.4139
http://arxiv.org/abs/gr-qc/0702082
http://arxiv.org/abs/arXiv:0709.0732
http://arxiv.org/abs/arXiv:0909.0749
http://arxiv.org/abs/arXiv:1306.3208
http://arxiv.org/abs/astro-ph/0210165
http://arxiv.org/abs/arXiv:0710.5073
http://arxiv.org/abs/astro-ph/0703556
http://arxiv.org/abs/arXiv:0911.5516
http://arxiv.org/abs/arXiv:1307.7213
http://arxiv.org/abs/astro-ph/0610005
http://arxiv.org/abs/arXiv:1103.2976
http://arxiv.org/abs/arXiv:1303.5083
http://arxiv.org/abs/astro-ph/0105302
http://arxiv.org/abs/arXiv:1204.0909


[87] Planck Legacy Archive COM PowerSpect CMB R2.01.fits (2013)
http://www.cosmos.esa.int/web/planck/pla

[88] M.F. Struble and H.J. Rood, A compilation of redshifts and velocity dispersions for ACO
clusters, Astrophys. J. Suppl. 125 (1999) 35
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