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Fluid-Structure Interaction in lower airways of CT-based lung
geometries

Wolfgang A. Wall∗, Timon Rabczuk

Chair for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching,
Germany

SUMMARY

In this study, the deformability of airway walls is taken into account to study air�ow patterns
and airway wall stresses in the �rst generations of lower airways in a real lung geometry. The
lung geometry is based on CT-scans that are obtained from in-vivo experiments on humans. A
partitioned �uid-structure interaction (FSI) approach, realized within a parallel in-house �nite
element code, is employed. It is designed for the robust and e�cient simulation of the interaction
of transient incompressible Newtonian �ows and (geometrically) nonlinear airway wall behavior.
Arbitrary Lagrangian Eulerian (ALE)-based stabilized tetrahedral �nite elements are used for the �uid
and Lagrangian-based 7-parametric mixed/hybrid shell elements are used for the airway walls using
unstructured meshes due to the complexity of the geometry. Air�ow patterns as well as airway wall
stresses in the bronchial tree are studied for a number of di�erent scenarios. Thereby, both models
for healthy and diseased lungs are taken into account and both normal breathing and mechanical
ventilation scenarios are studied. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Air�ow in the lung is of high interest in pulmonary medicine. For example air�ow patterns and
the resulting particle and aerosol depositions play a key role in the pharmaceutic industry. They
are also of interest in intensive-care medicine when patients have to be mechanically ventilated.
We are interested in air�ow patterns and stress distributions in airway walls of mechanically
ventilated patients, especially those with acute lung injuries such as ARDS (Acute Respiratory
Distress Syndrom) and ALI (Acute Lung Injury). Up to now, it is still not clear how to ventilate
these patients and the mortality rate of patients with acute lung injuries is quite high, i.e.
around 50%.
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2 W. A. WALL AND T. RABCZUK

Most existing numerical studies on air�ow patterns in the respiratory system were performed
with idealized geometries such as the Weibel- [54] or Hors�eld- [26] models, Asgharian and
Anjilvel [1], Balashazy and Ho�mann [2], Comer et al. [9, 10], Kimbell et al. [32], Liu et al.
[37, 38], Yu et al. [58, 59], Zhang and Kleinstreuer [60], Zhang et al. [61, 62]. Only few studies
are based on "real", i.e. based on 3D imaging, airway geometries [7, 39, 43]. Almost all studies,
both with arti�cial and real geometries, don't take airway deformations and �uid-structure
interaction e�ects into account [3, 6, 30, 31, 39, 43, 57]. Fluid-structure interaction studies
in lower airway geometries, including complex phenomena such as closure and reopening of
collapsable tubes, were done only in the lower cartilage-free generations of the lung and were
restricted to simpli�ed models/geometries and to single bifurcations, Heil et al. [22, 23, 25, 55].

In former studies (e.g. [45]) we have found that speci�c geometric features are essential,
see also Liu et al. [37, 38], Nowak et al. [43], and hence that arti�cial geometries are not
su�cient in several aspects. In pure computational �uid dynamics (CFD) studies, as reported
in Rabczuk et al. [45], we found severe di�erences in �ow characteristics between arti�cial and
real geometries of the bronchial tree. Consequently, the conjecture seems obvious, that even
small movements of airway walls can play a severe role on airway �ow characteristics. Despite
the overall movement of the bronchial tree, cross sectional deformations in the trachea and in
the �rst airway generations are usually rather small. This is mainly due to the fact that in this
region airway walls are rather sti� and mainly consist of cartilage. However, as can easily be
seen from 4d medical imaging and is also con�rmed by our medical partners, along with some
lung diseases like COPD even in the trachea, cross sections even during normal breathing can
change quite signi�cantly.

Our �nal goal is to understand the breathing/ventilation process in the respiratory system
in order to develop together with our medical partners a strategy how to better ventilate
patients, especially those with acute lung injuries. The breathing process governs �ow patterns,
velocity and �ow distributions, stress and strain distributions in the airway walls, etc. In this
study, we try to get a �rst insight in �uid-structure interaction e�ects during this process. In-
vivo boundary conditions are often very hard to specify or measure. Therefore, the employed
boundary conditions are sometimes non-physiological for this initial study. Nevertheless the
adopted model will allow helpful insights. Later on more realistic models will be studied, e.g.
taking into account the actual composition of airway walls or pressure di�erences inside and
outside the airway walls. One could in the future also use registration techniques and inverse
analysis along with 4D medical imaging.

The computation of Fluid-Structure Interaction (FSI) problems requires the solution of the
coupled �uid and solid underlying governing equations. FSI problems are coupled problems
with kinematical and dynamical coupling conditions at the �uid-structure interface. There are
two major approaches to solve a coupled FSI problem. In the monolithic approach, all �eld
equations of the FSI-problem � i.e. �uid, solid and often also mesh motion � are solved at the
same time [24, 27]. Some drawbacks of monolithic approaches are size and conditioning of the
system of equations and often missing modularity of the code. Partitioned approaches treat the
�uid and the solid domain separately. In each cycle, information has to be transferred from the
�uid to the solid and vice versa. Various partitioned approaches have been developed, ranging
from weakly coupled staggered schemes [12, 13, 44] to iterative or strong coupling schemes
[11, 14, 18, 33, 35, 36, 40, 42, 48�50, 53]. Strong coupling schemes are particularly needed
for stability reasons [16] in many biomechanics problems. The linearized system of equations
is solved independently in the solid and in the �uid domain. The major advantage of this
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approach is that the solvers for the solid and �uid domains can be handled separately which
makes the method very �exible. The major drawback is a slight increase in computation time
since additional iterations between the �uid and solid domain are necessary. Other drawbacks
for very speci�c types of problems are discussed in Küttler et al. [35]. In the �uid domain, we
assume Newtonian �uids under transient incompressible �ow conditions. Due to the complex
geometries considered here, tetrahedra �nite elements based on an ALE description of motion
are used. In the solid domain, we employ 7-parametric triangular shell elements, Bischo� and
Ramm [4], Bischo� et al. [5], that represent the airway walls.

We use a partitioned approach that is based on a non-overlapping non-conforming iterative
Dirichlet-Neumann substructering scheme [33, 42, 53]. The coupling approach prescribes �uid
velocities at the coupling interface of the �uid domain and applies the resulting forces to
the coupling interface of the structural domain. Essential for robustness and e�ciency of the
coupling algorithm are the applied acceleration schemes for the iterative process [33, 42].
For all numerical examples in this paper the Aitken acceleration has been employed. An
Arbitrary Lagrangian Eulerian (ALE) formulation is employed in order to account for the
temporal deformation of the �uid domain. Thus, the �uid mesh is adjusted to the structural
deformation during the solution process. The ALE-mesh is deformed by an elastic body analogy
interpolation according to an algorithm as described e.g. in [15, 52].

We will present FSI studies in a 4 generation lower airway model of CT-scan based lung
geometries. The CT-scans are obtained from in-vivo experiments on humans and pigs at
di�erent times of the breathing cycle. The data was acquired from the Department of Radiology
and the Division of Medical and Biological Informatics of the German Cancer Research Center
Heidelberg. The paper is organized as follows: the next section discusses modeling aspects along
with the corresponding governing equations. Computational approaches for the individual
�elds as well as for the coupled problem are given next. Finally, we will present results in the
bronchial tree under normal breathing conditions and mechanical ventilation.

2. MODELING AND GOVERNING EQUATIONS

2.1. Airway walls
The con�guration of the airway walls is fairly complex and varies at di�erent generations.
The trachea consists of C-shaped cartilaginous rings connected by smooth muscles. The
cartilage governs mainly the sti�ness of the airway walls. In the lower airways, the cartilage
becomes disconnected and the airway walls are softer. In the bronchioli at around generation
13, the cartilage disappears completely. For small strain, elastin �bres mainly contribute to
the sti�ness. Collagen �bres are folded in the undeformed con�guration and contribute to
the sti�ness only under large deformations. The glands, smooth muscle cells, nerves, ground
substance etc. have a much smaller sti�ness than elastin �bres and cartilage and hence do
not signi�cantly contribute to the sti�ness of the airway walls. It is also well known that
the human tissue behaves visco-elastic and non-linear. Since we expect only small strains
and due to lack of experimental data, we assume the airway walls to behave linear elastic
which seems to be fair for �rst studies. The assumption of small strains will be veri�ed in our
numerical simulations. However, we will take large deformations, i.e. geometric nonlinearities,
into account. The development of more complex material models will be a topic of future
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4 W. A. WALL AND T. RABCZUK

investigations.
It is well known that arterial walls are prestressed when they are load-free. McKay et al.

[41] studied the prestressing of excised (load-free) airways of di�erent generations and species.
Therefore, the airways were opened in longitudinal direction and the opening angles were
measured. If the airways were prestressed, large opening angles would be measured due to
the stress relaxation. McKay et al. [41] found that the results are species dependent. While
very small up to no opening angles were obtained for human and porcine lungs, large opening
angles were obtained for sheep and rabbit lungs. This indicates that human and porcine lungs
are stress-free under load-free conditions. Hence, no prestressing conditions have to be taken
into account in our airway wall model. We also would like to note, that the observations made
in McKay et al. [41] partially contradict earlier observations in Han and Fung [21] who looked
at excised canine and porcine lungs.

The governing nonlinear equation for the airway walls is the linear momentum equation
given by

ρSd̈ = ∇0 · (F · S) + ρSfS in ΩS (1)

where d are the displacements, ρS and fS represent the density and body force, respectively,
the superscript S denotes the solid domain and the superscript dot denotes material time
derivatives. A Lagrangian formulation will be employed in the solid domain. For the employed
St. Venant-Kirchho� type of material the second Piola-Kirchho� stress tensor S is related to
the Green-Lagrangian strains E with the consistent tangent operator C via

S = C : E (2)

with

E =
1
2

(
FT · F− I

)
, (3)

where F = I−∇0d represents the deformation gradient and the index 0 indicates that partial
derivatives are taken with respect to material coordinates X. As mentioned above within this
paper we will account for geometrical non-linearities but we will assume the material to be
linear elastic. Since it is extremely di�cult to obtain even one-dimensional stress-strain curves
for real lung tissue or components of the airway walls in general, this assumption seems to
be fair. The thickness of the airway walls is assumed to be 1.65mm in all generations. Mainly
based on cartilage, the e�ective Young's modulus is chosen as E = 9MPA. We note that
the material parameters are �rst patient dependent and second subjected to a severe scatter.
Therefore, we tested di�erent combinations of material parameters for selected con�gurations
but we will present results only for the above mentioned material parameters.

2.2. Airway �ow
We assume an Newtonian �uid under unsteady incompressible �ow conditions. The underlying
governing equation is the Navier-Stokes equation formulated on time dependent domains:

∂u
∂t

∣∣∣∣
χ

+
(
u− uG

) ·∇u− 2ν∇ · ε(u) +∇p = fF in ΩF (4)

∇ · u = 0 in ΩF (5)
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where u are the velocities, p is the pressure, uG is the velocity of the grid, a superscript
F denotes the �uid domain and ∇ denotes partial derivatives with respect to the spatial
coordinates x, ν = µ/ρF is the kinematic viscosity with viscosity µ and �uid density ρF ; fF

is the body force. The kinematic pressure is represented by p where p̄ = p ρF is the physical
pressure within the �uid �eld. The balance of linear momentum (4) refers to a deforming ALE
frame of reference denoted by χ where the geometrical location of a mesh point is obtained
from the unique mapping x = ϕ(χ, t). The stress tensor of a Newtonian �uid is given by

σF = −p̄ I + 2µε(u) (6)

with the compatibility condition

ε(u) =
1
2

(∇u + ∇uT
)

(7)

where ε is the rate of deformation tensor.

2.3. Boundary conditions
The initial and boundary conditions in the �uid domain are

u(t = 0) = u0 in ΩF

u = û on ΓF
D

σ · n = ĥF on ΓF
N , (8)

where n denotes the normal to the �uid boundary ΓF = ΓF
D

⋃
ΓF

N , ΓF
D

⋂
ΓF

N = ∅, where ΓF
D is

the Dirichlet boundary and ΓF
N is the von Neumann boundary; ĥF are the prescribed tractions.

We study healthy and diseased/damaged lungs under normal breathing and mechanical
ventilation. For normal breathing conditions, a tidal volume of 2l is assumed which
is a reasonable assumption for moderate activity conditions. For mechanical ventilation,
experimental data from the respirator is available. There are two strategies to apply boundary
conditions. First, velocity in�ow conditions at the trachea and constant (uniform and non-
uniform for healthy and diseased lungs, respectively) pressure out�ow conditions at all out�ow
boundaries can be applied under inspiratory �ow conditions. Then, for the exhalation cycle,
the mass �ow at the outlets is imposed as velocity in�ow boundary conditions where the same
pro�le as for the inspiration is assumed. Alternatively, a pressure-time history can be applied at
the outlets such that the desired tidal volume is obtained. For the case of normal breathing, the
pressure-time history at the outlets would be sinusoidal, negative at inspiration and positive
at expiration as it occurs in "reality". The advantage is that inspiration and expiration can be
handled quite naturally within one computation. The di�culty is to calibrate the boundary
conditions such that the desired tidal volume is obtained which is an iterative procedure. We
note, that due to the deformable airway structure, care has to be taken when Dirichlet "inlet"
boundary conditions are applied under expiration.

The boundary conditions under normal breathing conditions are shown in �gure 1 for one
breathing cycle which lasts 4s, i.e. 2s inspiration and 2s expiration. We assume a parabolic
inlet boundary velocity pro�le though the boundary conditions at the trachea are probably
more complex, see e.g. Ma and Lutchen [39].

For the imposition of the boundary conditions under mechanical ventilation, we used the
data from the respirator. In the experiments, the patients were ventilated with a positive

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1�6
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time [sec]

velocity [m/s]

2 4

6.4

6.4

4 time [sec]

pressure [mbar]

2

Figure 1. Sinusoidal boundary conditions for normal breathing

end expiratory pressure (PEEP) of 5mbar. The tidal volume was 400ml and the ratio between
inspiration time and expiration time I : E=1 : 2 where an inspiration cycle was 1s. Mechanical
ventilation was performed volume-controlled. The pressure-time history for one breathing cycle
and the corresponding �ow-time history is shown in �gure 2. These curves were recorded
during mechanical ventilation at patients in the ICU [47]. We tested uniform and non-uniform
boundary conditions at the outlets. For the case of non-uniform boundary conditions, we set
the pressure consistently at all outlets of the right lobe of the lung twice and three times
as high as on the left lobe. This should model a diseased lung where a higher sti�ness and
resistance is expected in the damaged parts of the lung.

(a) (b)

Figure 2. a) Pressure time history and b) Flow time history of the respirator for the mechanically
ventilated lung [47]

The initial and boundary conditions in the solid domain are

d(t = 0) = d0 and ḋ(t = 0) = ḋ0 in ΩS

d = d̂ on ΓS
D

S · n = ĥS on ΓS
N , (9)

where ΓS
D and ΓS

N denote the Dirichlet and Neumann partition of the structural boundary,
respectively, with ΓS = ΓS

D

⋃
ΓS

N , ΓS
D

⋂
ΓS

N = ∅, and d̂ and ĥS denote the prescribed Dirichlet
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and Neumann values.
The airway walls were �xed at the inlet, i.e. at the top of the trachea. The rest of the lung

was allowed to move freely. The surrounding tissue and potential pressure di�erences that
hamper the movement of the lung were not taken into account in this study. A deformation
plot of the lung under mechanical ventilation at di�erent times during the respiration cycle is
shown in �gure 3 exemplarily for a mechanically ventilated lung.

(a) 0.2 seconds (b) 0.9 seconds

Figure 3. Deformation of the lung under mechanical ventilation at di�erent times during the respiration
cycle

3. COMPUTATIONAL APPROACHES

3.1. Computational Fluid and Solid Dynamics
Due to the complex geometry, the Navier-Stokes equations (4, 5) in the �uid domain are
discretized in space by equal order linear tetrahedral elements with GLS type stabilization
[19, 20, 28]. Details of the discretization of the ALE formulation of the Navier-Stokes equations
by means of stabilized �nite elements are given in Förster et al. [15]. Implicit one-step-θ and
BDF2 schemes are used to discretize this set of equations in time. The occurring nonlinearities
are dealt with Newton or �xed-point like iteration schemes [52]. The Generalized minimal
residual (GMRES) iterative solver with ILU-preconditioner that is available within the open-
source package AZTEC [51] is used in the �uid domain.
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Spatial discretization of the airway walls is done through mixed/hybrid triangular elements
based on a 7-parameter shell formulation [4, 5]. This system is solved using the nonlinear
version of the 'generalized-α method' of Chung and Hulbert [8] along with consistent
linearization and a Newton-Raphson iterative scheme.

3.2. Computational Fluid-Structure Interaction
As stated in the Introduction, the partitioned solution approach is based on a domain
decomposition that separates the �uid and the solid. The "wet" surface of the solid acts
hereby as natural coupling interface ΓFSI across which displacement and traction continuity
at all discrete time steps has to be ful�lled:

dΓ(t) · n = rΓ(t) · n and uΓ(t) · n = uG
Γ (t) · n =

∂rΓ(t)
∂t

∣∣∣∣
χ

· n (10)

σS
Γ (t) · n = σF

Γ (t) · n (11)

where r are the displacements of the �uid mesh and n is the unit normal on the interface.
Satisfying the kinematic continuity leads to mass conservation at ΓFSI, satisfying the dynamic
continuity yields conservation of linear momentum, and energy conservation �nally requires to
simultaneously satisfy both continuity equations. The algorithmic framework of the partitioned
FSI analysis is discussed in detail elsewhere, Küttler and Wall [33], Mok and Wall [42], Wall
et al. [53].

The Dirichlet-Neumann partitioning with the �uid domain acting as Dirichlet partition
with prescribed velocities uΓ and the structure domain acting as Neumann partition loaded
with interface forces fΓ is particularly suited for partitioned FSI solutions, at least from an
implementational point of view. A Dirichlet-Neumann coupling algorithm with synchronous
time discretization [33, 42, 53] and block Gauss-Seidel iteration using Aitken-style relaxation
is considered here. For stability reasons strong coupling schemes are essential for this kind of
problems as has been shown in the analysis in Förster et al. [16]. Let (·)I and (·)Γ denote
variables or coe�cients in the interior of a subdomain Ωj and on the coupling interface ΓFSI,
respectively, while a vector without any of the subscripts I and Γ comprises degrees of freedom
on the entire subdomain including interior and interface.

To highlight the coupling behavior, the following outline abbreviates the nonlinear �eld
equation for solid and �uid, respectively, with the symbolic systems

ASdS = fS and AF uF = fF (12)

In every time step the subsequent calculations have to be performed.

1. Transfer the latest structure displacements dS
ΓFSI,i+1 to the �uid �eld, determine

the appropriate �uid velocities at the interface uS
ΓFSI,i+1 (satisfying the geometric

conservation law) and calculate the �uid domain deformation.
2. Solve for the inner �uid velocities and pressures uF

I,i+1

AF
IIu

F
I,i+1 = fF

I ext − AF
IΓFSIu

S
ΓFSI,i+1 (13)

3. Find the �uid forces at the interface ΓFSI

fF
ΓFSI,i+1 = AF

ΓFSIIu
F
I,i+1 + AF

ΓFSIΓFSIu
S
ΓFSI,i+1 (14)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1�6
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4. Solve for the structural displacements
[

AS
ΓFSIΓFSI AS

ΓFSII

AS
IΓFSI AS

II

][
d̃

S

ΓFSI,i+1

dS
I,i+1

]
=

[
fS
ΓFSI ext − fF

ΓFSI,i

fS
I ext

]
(15)

5. Relax the interface displacement

dS
ΓFSI,i+1 = ωid̃

S

ΓFSI,i+1 + (1− ωi)dS
ΓFSI,i (16)

The iteration �nishes when the error of the interface displacement d̃
F

ΓFSI,i+1 is su�ciently small.

4. RESULTS

The calculations were carried out with the parallel in-house research code baci [17, 34] on parts
of a 54-node Opteron cluster with two 2.6GHz processor nodes and 4GB memory per node
using In�niBand for the network communication. The parallelization was done using Message
Passing Interface (MPI) taking advantage of distributed memory.

4.1. Background Information for Result Presentation
4.1.1. Lung geometry The bronchial tree of the upper airways was obtained from CT-scans
of human and porcine lungs under in-vivo conditions. Therefore, CT-scans were made under
normal breathing and mechanical ventilation at di�erent times. The images were segmented
from the Division of Medical and Biological Informatics of the University of Heidelberg by a
region-growing technique and the surface of the bronchial tree was obtained by a 3D-sceleton
method [46] from a system based on MITK (Medical Imaging Interaction Toolkit), see Wolf
et al. [56]. The surface model of the bronchial tree was stored in stereolithography-format
(.stl). The surface was then smoothed by a Gauss �lter. The outlets of the airways were
cut perpendicular to the center line of the airways to facilitate the imposition of boundary
conditions. For the �uid, an unstructured Eulerian tetrahedral �nite element mesh was then
generated from the surface model. For the solid, triangular Lagrangian shell elements were
generated from the surface model that are non-conforming to the �uid mesh. The ALE mesh
coincided with the Eulerian �uid mesh. We re�ned the mesh from 110,000 up to 520,000 �uid
elements and 50,000 to 295,000 shell elements, respectively, until the calculated mass �ow rate
was within a tolerance of 1%. The stl-model used as initial mesh for the simulation was the
CT-based model at the beginning of the inspiration cycle. The models at other time steps can
be used as comparison to the deformed con�guration of the bronchial tree in the numerical
simulation.

4.1.2. Flow phenomena and measures In this study, �ow patterns and �ow distributions
are of interest since they play a major role in the damage process of the lung tissue. It is
expected that stress concentrations occur at �ow peaks with high secondary �ow intensities.
The secondary �ow intensity ξ at certain cross-sections can be evaluated by

ξ =

∫
A

v̄s dA∫
A

v̄p dA
(17)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1�6
Prepared using �dauth.cls

Page 9 of 26

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

10 W. A. WALL AND T. RABCZUK

Dean flow pattern

A

A

B

B

parabolic axial velocity profile

velocity profile
skewed axial M−shaped axial velocity profile

A−A

B−B

swirl pattern

Figure 4. Typical axial and secondary air�ow patterns in the lung

where A is the cross-sectional area, v̄s =
√

v1
s1 + v2

s2 is the mean secondary velocity, vs1 and vs2

are the velocity components perpendicular to the axial �ow direction, and v̄p is the amplitude
of the axial velocity.

Numerical studies on the bifurcation �ow of lung models consistently identi�ed di�erent
types of secondary �ow pattern such as Dean �ow or swirl �ow pattern, �gure 4. Parabolic,
skewed and M-shaped �ow patterns were typically observed in the axial direction depending
on the Reynolds number. While parabolic �ow patterns characterize low-Reynolds number
�ows, M-shaped axial �ow patterns were observed for high-Reynolds number-�ows. Studies on
symmetrical Weibel models revealed a Dean-�ow pattern in the daughter tube while a skewed
swirl pattern was observed in the grandchild tube, see e.g. Comer et al. [9, 10], Nowak et al.
[43], though we know that the �ow patterns in real lungs are more complex.

It is well known that the �ow distribution in the healthy human lung is uniform and it is
obvious that the �ow distribution for diseased and damaged lungs become non-uniform. The
in�uence of the �ow distribution on the �ow patterns and stress transmission is not clear. In
our computations we will refer to the normalized mass �ow [ml/mm2] which is measured at
every outlet and then divided by the cross sectional area at the corresponding outlet.

4.2. Normal breathing
At inspiration, the trachea exhibits a strong primary �ow in axial direction. There is barely
secondary �ow present and there is strong o�-axis �ow due to the geometric asymmetry. The
�ow is nearly parabolic up to the primary bronchi. After the �rst �ow divider, a secondary
Dean �ow is observed in the right main bronchus that is strongly asymmetric, �gure 6a. In the
left main bronchus the secondary �ow is skewed towards the bottom wall, �gure 6b; for the
tube de�nitions, see �gure 5. While the axial �ow in the left bronchus exhibits a skew pattern
towards the inner wall close to the next �ow divider, the right main bronchus shows an M-
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(a) (b)

(c)

G0

G1.1

G1.2G2.1

G2.2

G2.4

G2.3

G2.5

G3.2

G3.3

G3.1

(d)

Figure 5. Tube de�nitions for the human bronchial tree (only tubes that will be considered are
numerated)
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shape, �gure 8. The right main bronchus is shorter than the left main bronchus and bifurcates
into two secondary bronchi. The right main bronchus bifurcates into three secondary bronchi.
In the airways G2.3, G2.4, G2.5, a secondary �ow swirl pattern is present, �gure 6c,d. The
"total" �ow pattern at peak �ow rate in the bronchial tree is shown in �gure 9 for two di�erent
point of views. As can be seen, the �ow distribution looks relatively homogenous.

(a) G1.1 (b) G1.2

(c) G2.3 (d) G2.5

Figure 6. Secondary air�ow pattern in the human lung under normal breathing at inspiration, FSI
simulation

The expiratory �ow di�ers from the inspiratory �ow. The �ow does not split at the �ow
divider, but the streams join from the daughter tubes, so that near the �ow divider the velocity
pro�les in the bifurcation plane have indentations at the center. Generally, in contrast to
inhalation �ow, expiratory �ow features vary only slowly with axial distance. We also note that
the �ow pattern is similar almost in the entire breathing cycle. Three to four vortices occur in
the secondary �ow pattern in all tubes. Changes occur at the transition from inspiration and
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Figure 7. Secondary air�ow pattern in the human lung under normal breathing at inspiration, CFD
simulation

expiration.
In �gure 10, variations of the secondary �ow intensity during the inspiration and expiration

cycle are illustrated for tubes up to the third generation. Exemplarily, we only show the
results of the left bronchial tree. Except at the transition between inspiration and expiration,
the secondary �ow intensity is more or less uniform. Also the course of the secondary �ow
intensity over time is similar.

The results obtained from a pure CFD simulations are quite di�erent. The secondary air�ow
patterns of the CFD simulations in the tubes G1.1, G1.2, G2.3 and G2.5 are shown in �gure
7. They are quite di�erent from the air�ow patterns of the FSI simulation. For example,
while tube G2.3 exhibits a clear secondary swirl �ow pattern in the FSI simulation, a Dean
�ow is present in the CFD simulation. The secondary air�ow intensities of the CFD and FSI
simulations are slightly di�erent, compare �gure 10a/b with 10c/d. The deviations become
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(a) (b)

Figure 8. Air�ow pattern under normal breathing conditions at inspiratory peak �ow rate for the FSI
simulation at a) G1.1, b) G1.2

more pronounced with distance from the inlets. For example, we observe up to 20% deviations
in the secondary air�ow intensities at tube G2.5 under inspiration, the di�erences in the main
bronchi and the trachea are rather marginal.

The maximum mean Reynoldsnumber Re = % u D/ν, where % is the density of air, D
the tube diameter† and ν the dynamic viscosity, at peak �ow rate under inspiratory �ow in
the trachea is 4042. The corresponding maximum mean Reynoldsnumbers in the subsequent
bifurcations were: Main bronchus 3007, Secondary bronchi 2111, Tertiary bronchi 1496. The
Wommersley number α = 0.5D

√
ω/ν, where ω is the angular frequency, is often used as

measure for the quasi steadiness of a �ow. It is assumed that the �ow is quasi steady for low
Wommersley numbers, e.g. α < 1, see Zhang and Kleinstreuer [60]. Jan et al. [29] even reported
that oscillatory �ow at peak �ow rate can be assumed as quasi steady for aWommersley number
α < 16. ? ] reported about quasi steady �ow conditions in a symmetric model for Wommersley
numbers α < 4.3. The Wommersley number in the initial con�guration does not exceed a value
of 2.5 in the trachea and is below a value of 1 in the last generation.

The distribution of the principal tensile stresses in the airway model under inspiratory peak
�ow rate are shown in �gure 11a. The largest stresses occur close to the outlets and in the
trachea, especially close to the inlet where the trachea shows a slight curvature. The stresses
are also largest at bifurcation points, e.g. the carina, �gure 5. At expiratory �ow, the stresses
are slightly higher in the lower part of the lung. Figure 11b shows the stress distribution at
expiratory peak �ow. The stresses are higher as compared to inspiratory peak �ow. We also
note that stress concentrations occur where streams are joining. The magnitude of the stresses

†We note that the cross section is not a circle and D is an "approximated" diameter
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(a) (b)

Figure 9. Air�ow in the human lung under normal breathing at inspiratory peak �ow rate for two
di�erent view points

in the left and right lobe of the lung is similar at same generations for both inspiration and
expiration.

The �ow distribution is relatively balanced under normal breathing as shown in �gure 12a.
The outlets are numerated arbitrarily in the model in ascending order.

4.3. Mechanical Ventilation
4.3.1. Healthy lung The air�ow patterns during mechanical ventilation at inspiration are
similar to those at normal breathing. The �ow quantitatively di�ers from normal breathing
because of the shorter inspiration time, the di�erent pressure/�ow time history curve and the
smaller tidal volume. The Reynolds number in the entire bronchial tree is lower as under normal
breathing. Despite the di�erent breathing patterns, the principal �ow pattern is qualitatively
quite similar up to generation 2, i.e. in the trachea and in the main bronchi. After the �rst �ow
divider, a skew pattern in the secondary �ow is present in the two main bronchi, �gure 13a,b;
we note that the right main bronchus exhibits a Dean �ow pattern under normal breathing.
The axial velocities show an M-shape in tube G1.1 and a skew pattern towards the inner
wall in tube G1.2 as under normal breathing. The �ow patterns after generation 2 di�er from
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(a) FSI simulation (b) FSI simulation

(c) pure CFD simulation (d) pure CFD simulation

Figure 10. Secondary air�ow intensity in the human lung under normal breathing at inspiration and
expiration

those of normal breathing. Figure 13c,d shows that the secondary �ow pattern in tubes G2.3
and G2.5 are di�erent as compared to their counterparts at normal breathing. The secondary
�ow intensity at selected cross sections in di�erent generations are shown in �gure 14. Under
inspiratory �ow, the secondary �ow intensity is similar as under normal breathing though the
breathing patterns are generally di�erent.

The �ow at mechanical ventilation during expiration di�ers signi�cantly from inspiratory
�ow as well as from expiratory �ow at normal breathing. At the end of the expiration, the
pressure is set almost instantaneously to the PEEP pressure of the ventilator that results in a
peak �ow rate right at the beginning of the expiration cycle. The peak �ow at this time is more
than twice as high as the maximum peak �ow under inspiration. Due to the sudden pressure
drop, the �ow deteriorates fast and at the middle of the expiration cycle, most of the air is
already expirated. The �ow at the beginning of the expiration is unsteady and �ow patterns
change in time. The secondary �ow intensity is signi�cantly higher at this time. Oscillations of
the airways can be observed caused probably by the large and sudden "applied" FSI forces at
the beginning of the expiration cycle. We expect that these initial oscillations will be reduced
when the surrounding tissue and potential di�erences in the pressure inside and outside the
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(a) inspiration-normal breathing (b) expiration-normal breathing

Figure 11. Stress distribution (principal tensile stress) in the airways of the lung under inspiratory
and expiratory peak �ow rate for normal breathing and the healthy human lung

(a) healthy lung (b) diseased lung

Figure 12. Normalized �ow distribution for the human lung at the outlets under normal breathing,
mechanical ventilation for the healthy and diseased human lung
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(a) G1.1 (b) G1.2

(c) G2.3 (d) G2.5

Figure 13. Secondary air�ow pattern in the healthy human lung under mechanical ventilation at
inspiration, FSI simulation

bronchial tree will be included in future simulations.
The magnitude of the stresses at the beginning of the expiration cycle are higher compared

to inspiration. At the middle of the expiration cycle, the �ow is quasi-steady and the stresses
in the airway walls as well as the secondary �ow intensity are signi�cantly decreased. The
magnitude of the stresses at (selected) certain times are similar at same generations. This was
also observed under normal breathing.

The �ow distribution remains relatively balanced also under mechanical ventilation and
is pretty similar to the �ow distribution for normal breathing, �gure 12a. Due to the
signi�cantly smaller tidal volume, the Reynolds numbers under mechanical ventilation are
smaller than under normal breathing conditions. At peak �ow rate and inspiratory �ow,
the mean Reynoldsnumbers at selected cross section are: Trachea 1823, main bronchus 1397,
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(a) FSI simulation (b) FSI simulation

(c) pure CFD simulation (d) pure CFD simulation

Figure 14. Secondary air�ow intensity in the human lung under mechanical ventilation at inspiration
and expiration for the healthy lung

secondary bronchi 1127 and tertiary bronchi 893.
The di�erences between pure CFD simulations and FSI simulations under mechanical

ventilation are very similar as under normal breathing and therefore not further discussed.

4.3.2. Diseased lung To model a diseased lung, non-uniform outlet boundary conditions are
assumed. Therefore, we set the pressure outlet boundary conditions consistently twice and
three-times higher on the right lobe of the lung as compared to the left lobe. This should model
a higher sti�ness that occurs when parts of the lung in the lower generations are collapsed or
highly damaged. We did not consider other con�gurations of lung damages in the lower parts
and leave this for future studies.

The air�ow patterns for diseased lungs di�er signi�cantly to the air�ow patterns for healthy
lungs in inspiration as well as in expiration. The �ow distribution is no longer uniform because
of the di�erent pressure outlet boundary conditions. Only 30% of the air enters the diseased
part of the lung, i.e. the right lobe. The normalized �ow measured at every outlet is shown in
�gure 12.

The expiratory �ow is relatively similar to the expiratory �ow of the healthy lung under
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mechanical ventilation. The �ow is unsteady at the beginning of the expiration with varying
secondary �ow patterns. The main di�erence to the healthy lung occurs in the trachea where
the strong air�ow from the left main bronchus hits the relatively weak air�ow from the right
main bronchus. The secondary �ow intensity at expiration in the well ventilated left main
bronchus is surprisingly lower, �gure 15. We believe that the higher secondary �ow in the right
lobe of the lung, especially close to the airway walls, is responsible for the non-uniform stress
distribution, see �gure 16. Figure 16 also shows the non-uniform �ow distribution.

(a) FSI simulation (b) FSI simulation

Figure 15. Secondary air�ow intensity in the human lung under mechanical ventilation at inspiration
and expiration for the diseased lung

5. CONCLUSION AND FUTURE WORK

We have presented an approach and detailed simulation results of �uid-structure interaction
under transient incompressible �ow conditions in the lower airways of healthy and diseased
lungs based on CT-scan geometries for normal breathing conditions as well as for mechanical
ventilation. Therefore, we have considered a 4 generation model. For the �uid, we have used
Tetrahedra elements while shell elements were employed for the airway walls. Fluid-structure
interaction was realized based on an ALE formulation and a strongly coupled partitioned
approach. The healthy lung is modeled by imposing uniform outlet boundary conditions and
non-uniform outlet boundary conditions describe a diseased lung where non-resolved parts of
the lung are damaged and hence will have a higher sti�ness. Linear elastic material behavior
is assumed for the airway walls. This is de�nitely a simpli�cation since it is well known that
the components of the airway walls behave non-linear visco-elastic. Since the structure of the
airway wall is fairly complex and due to the lack of experimental data, this assumption seems
to be justi�able, also because only small changes in the cross-sectional area were observed in
the experiments. For patients with chronic obstructive lung disease (COPD), i.e. a disease in
the trachea, this assumption does not hold any more.

Moreover, we have neglected e�ects of the surrounding tissue and potential pressure changes
inside and outside the bronchial tree, e.g. under sneezing conditions. In other words, our
bronchial tree is able to move freely without any imposed constraints. This will be subject of
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future investigations.

(a) velocity (b) stress

Figure 16. Flow and stress distribution (principal tensile stress) in the airways of the diseased lung
under mechanical ventilation

We found that under inspiratory �ow, �ow patterns and secondary �ow intensities are similar
in healthy human lungs, no matter if we consider normal breathing or mechanical ventilation.
The �ow distribution remains also homogenous. Under expiratory �ow, �ow patterns and
secondary �ow intensities di�er between the mechanical ventilated lung and the lung under
normal breathing conditions. These di�erences occur probably due to the sudden pressure drop
of the respirator. The �ow of diseased lungs di�ers signi�cantly from the �ow of healthy lungs.
The �ow distribution is non-uniform. Secondary �ow intensities are higher in the diseased part
of the diseased lung. The magnitude of the stresses for the healthy lung in the left and the
right lobe was similar at same generations. This is de�nitely not the case for diseased lungs.

Compared to former CFD-studies of the same lung geometry, we found that the in�uence
of the �uid-structure interaction with respect to the normalized �ow distributions, see �gure
12, and secondary �ow intensities is moderate. Deviations of these results are within 15%.
However, air�ow patterns, both axial and in-plane, were quite di�erent between CFD and
FSI simulations, especially in lower generations, though the changes in the cross sections are
rather minor, i.e. around 2% for cross sections that we checked. The in�uence of deformable

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1�6
Prepared using �dauth.cls

Page 21 of 26

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

22 W. A. WALL AND T. RABCZUK

airways will even become more pronounced for COPD-patients. More importantly, pure CFD
simulations are not capable of capturing the stresses in the lung tissue necessary to assess the
damage state of the lung. The assessment and evaluation of damage states in the lung are
important in order to develop a patient-speci�c protective ventilation strategy. The maximum
stresses in these preliminary studies were below 300kPA. However, as mentioned before, for
COPD-patients or other patients with lung injuries, higher stresses and larger deformations
will occur.
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