
 

Paper 105 

2019 Pacific Conference on Earthquake Engineering and Annual NZSEE Conference 1 

 

A Preliminary Study on Cyclic 
Behaviour of SFS Dowelled 
Connections in Glulam Frames 

W. Dong & M. Li 
University of Canterbury, Christchurch.  

ABSTRACT 

SFS self-drilling dowels are a special type of metal fasteners in timber construction which can go 

through relatively thin steel plates and timber members without pre-drilling. The application of SFS 

dowels makes wood-steel connection assembling more efficient and accurate. Due to tight fitting 

between holes and fasteners, initial slips in SFS dowelled connections are much smaller than that in 

conventional dowelled or bolted connections which have predrilled holes typically oversized with 

1~2mm. So far, design of SFS dowelled connections in New Zealand mainly follows European 

practice and very limited experimental testing has been done to validate the SFS dowelled 

connection strength and stiffness with NZ Radiata Pine (RP). This paper presents a preliminary 

experimental study to investigate cyclic performance of SFS dowelled connections in RP glulam 

that are designed to connect diagonal braces with glulam beams and columns. Connection 

properties in terms of strength, stiffness, ductility and overstrength were derived from the force-

displacement curves. The test results showed that the SFS connections performed well with high 

ductility. The design equations in Eurocode 5 also provided reasonably accurate ultimate strength, 

initial stiffness and ultimate stiffness predictions. 

1 INTRODUCTION 

Dowel-type connections with slotted-in steel plates provide multiple shear planes of fasteners and are one of 

the most efficient joint types for heavy timber structures (Figure 1). Common wood-steel-wood (WSW) 

dowelled or bolted connections require considerable manufacturing efforts including accurate drilling 

because fabrication tolerances can affect the performance of the connections (Mischler, et al.2000). 

However, to easily assemble dowels into steel plates and timber members, oversized holes are usually 

predrilled and often cause significant initial slip with reduced stiffness of the connections.  
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Figure 1 Beatrice Tinsley Building at University 

of Canterbury 

 

Figure 2 Building scenario for specimen design 

SFS self-drilling dowels are a type of special fasteners which can go through timber members and relatively 

thin steel plates without pre-drilling. SFS dowels are commercially available in 7mm diameters and are 

considered as slender fasteners manufactured by high strength steel. As a proprietary product, very limited 

research on SFS dowels has been reported in literature. Mischler (2001) conducted axial monotonic tests of 

SFS dowelled connections in Norway spruce and observed high load-carrying capacity and ductile 

behaviour. Schreyer et al. (2004) conducted a series of dowelled connection tests in Parallel Strand Lumber 

(PSL) and compared test results between slender common dowels and SFS dowels and concluded that SFS 

dowels had overall comparable performance to common slender dowels with slightly improved monotonic 

stiffness and strength. Lau (2006) carried out compressive tests of SFS dowelled connections in Laminated 

Veneered Lumber (LVL) and found the connections performed better than bolted connections in terms of 

strength and stiffness. In New Zealand, SFS dowelled connections have been applied in timber construction 

and the design method mainly follows European Yield Models (EYMs) in Eurocode 5 (2004) since Timber 

Structures Standard NZS3603(1993) does not include this specific type of fasteners. Although generally 

treated as a slender dowel fastener, there is limited knowledge of the cyclic behaviour of SFS dowels with 

New Zealand RP glulam structure. Therefore, this study aims to understand the behaviour of the SFS 

dowelled connections under cyclic loading and the results are used to check against the prediction accuracy 

of the design equations. 

2 EXPERIMENTAL PROGRAMME 

2.1 Specimen design and material property 

As shown in Figure 2, a six-storey glulam frame structure with K braces was used as the design scenario. 

The SFS dowelled connections were designed to connect the braces to the beams and columns. The layout of 

the connection specimen is shown in Figure 3. The component B-1 and C-1 were used to simulate the beam 

and column in the design building. GL10 RP glulam was used for B-1 and C-1 and the design properties are 

specified by NZS3603. The average moisture content of the glulam members was 14% and the average 

density was 478 kg/m3
. The cross sections of B-1 and C-1 were 270mm x 225mm and 225mm x 225mm 

respectively. Two 8 mm wide slots were cut in B-1 and C-1 by a Computer Numerical Control (CNC) 

machine and two 6 mm thick steel gusset plates (S-1) were inserted into B-1 and C-1. One Φ60 mm hole was 
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drilled on each gusset plate to connect the actuator with a pinned connection. 6mm ring pads were welded 

around the hole to avoid any potential for local yielding around the holes. The steel plates had Grade 300 

according to AS/NZS 3678 (2016).  

Nine Φ7x173mm SFS dowels were used to fix S-1 to B-1 and C-1. The characteristic yield moment of SFS 

dowels is 31.93 kN·mm based on the supplier’s document (Rothoblaas, 2017), which corresponds to a 

characteristic ultimate tensile strength of 675MPa according to Eurocode 5. Because B-1 and C-1 were 

225mm thick, the SFS dowels were overdriven 20mm into the surface of B-1 and C-1. This centred the SFS 

dowels in the connection. The actuator applied the axial loading action from the braces in the design building 

and transferred the loads to the joints via the gusset plates. 

 

Figure 3 Specimen design 

The test setup is shown in Figure 4 and three specimens (Specimen I, II and III) were tested. One side of the 

actuator was connected to the reaction wall and the other side was connected to the steel gusset plates of 

specimen. The beam part B-1 was restrained in tension and compression through UCFT1.2 fitting by Grade 

300 dowels for specimen I or 4140 high strength dowels for specimen II and III. The UCFT1.2 was 

restrained by two Φ36 round steel bars in tension and two Φ70x6 steel tubes in compression. The column 

part C-1 was restrained by UCFT1.1 fittings. A 15mm gap was left under the column to minimize the 

amount of vertical load it would carry. In this way, C-1 would carry most of the horizontal force component 

from the actuator and B-1 would carry most of the vertical force component. This is consistent with the 

design assumption of the connection as a hinged one. 

2.2 Loading protocol 

The cyclic tests followed the loading protocol in EN12512 (2001) and the loading protocol is shown in 

Figure 5. The yield displacement used to define the loading protocol was assumed as 1.8mm conservatively 

according to the monotonic test results by Schreyer (2002). 
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Figure 4 Test setup 

 

Figure 5 Loading protocol from EN12512 

(2001)

2.3 Instrumentation by potentiometers and PTV technique 

Instruments were installed to measure the displacements of members and the connections. In addition to this, 

Particle tracking velocimetry (PTV) technique was also applied to capture the displacement and/or rotations. 

PTV is a quantitative field measuring technique originally designed to track individual particles in fluid 

flows. In timber connection testing, PTV is able to capture crack growth of exposed timber surfaces in 

dowelled connections and also compute the resulting displacement field in the connection area (Ottenhaus, et 

al. 2018). Figure 6 shows the small particles (white and yellow dots) painted on the surface of C-1 and S-1 

during the tests. Potentiometers were also installed for the comparison. Because the SFS dowelled 

connection area in B-1 was covered by the steel tubes as part of the reaction frame, the movement could only 

be captured by potentiometers. Since the gusset plates were inserted into the timber, the displacement of the 

part covered by timber could only be tracked by the movement of particles outside the timber with PTV. 

Therefore, in this testing, the potentiometers and PTV complemented each other and helped to extract as 

much information as possible from the tests. 

            

Figure 6 Particles on the timber and gusset plates 

3 EXPERIMENTAL RESULTS 

3.1 Failure mode 

The tests were stopped when the strength decreased to 80% of the maximum load, which provides required 

data to derive connection strength, stiffness and ductility. During the tests, rotations of B-1, C-1 and S-1 

were observed but no cracks in the glulam components were observed. To investigate the failure mechanism 

in the joints, specimens were cut open, as shown in Figure 7. Significant bending yielding deformation of the 

SFS dowels and timber embedment crushing (Figure 7a) were observed in the joint connecting the gusset 
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plates with the C-1 member. Fastener bending yielding and wood embedment crushing is typically observed 

in ductile dowelled connections. Under the cyclic loading, low-cycle fatigue failure of the dowels were also 

observed, as shown in Figure 7b. However, no significant residual bending deformation of SFS dowels and 

timber crushing were observed in the joint in B-1, as shown in Figure 7c. It indicated that C-1 carried much 

higher load than B-1 and the joint in C-1 experienced more nonlinear deformation and dissipated more 

energy. One reasons was that UCFT1.1 fitting provided more restraints to restrict the horizontal and 

rotational movement of C-1 than the UCFT1.2 fitting on B-1. Another reason might be due to the loading 

eccentricity from the gusset plates S-1. Therefore, the failure of this connection was due to the failure of SFS 

dowels in C-1 because of uneven load distribution between the joints in C-1 and B-1.  

     

a) Timber embedment failure             b) SFS dowel fatigue rupture in C-1          c) SFS dowels in B-1 

Figure 7 The cut-open specimen after failure 

3.2 Connection properties 

Figure 7a also shows that the load carried by C-1 was oriented at angle about 20° with respect to the 

horizontal direction. It was consistent with the trajectory recorded from PTV. B-1 was restrained only in the 

vertical direction, thus it only carried forces vertically. Thus, the total applied load by the actuator can be 

distributed to C-1 and B-1 according to the fastener deformation angle and the restraint conditions of C-1 and 

B-1. Figure 8a and 8b show the force-displacement hysteresis curves of the joints in C-1 and B-1, 

respectively. Based on Figure 8b, it can be seen that the joint in B-1 had much smaller slips and the load 

level was much lower than the joint in C-1. This is consistent with the negligible damage observed, as shown 

in Figure 7c. Figure 9 shows the envelop curves of Figure 8a of the joint in C-1. The average of the positive 

and negative curves was used to derive the connection properties. Table 1 lists the summary of the properties 

of the joint in C-1 of the three specimens in terms of yield force Fy, maximum strength Fmax, ultimate 

strength Fu, yield displacement Δy, ultimate displacement Δu, initial stiffness K and ductility μ. The 

definitions of yield displacement Δy and ultimate displacement Δu are followed EN12512. The ductility factor 

μ is defined as: 

𝜇 =
𝑉𝑢

𝑉𝑦
  (1) 
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a) C-1 connection for three specimens                                              b) B-1 connection for specimen III 

Figure 8 Force-displacement curve of the specimens 

 

Figure 9 Envelope force-displacement cycle curves 

Table 1 The specimens test results 

Specimen No. Specimen I Specimen II Specimen III Average 

Fy (kN) 147.5 154.3 158.0 153.3 

Fmax(kN) 204.5 209.0 212.9 208.8 

Fu(kN) 163.6 167.2 170.3 167.0 

Δy(mm) 1.3 1.6 0.9 1.31 

Δu(mm) 14.3 13.5 12.4 13.4 

K(kN/mm) 119.5 90.8 169.5 126.6 

μ 10.8 8.3 13.1 10.8 
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3.2.1 Stiffness degradation 

Stiffness degradation is an important parameter to estimate the performance of the connections under cyclic 

loading. The secant stiffness of each loading cycle was calculated by Equation 2: 

𝐾𝑖 =
|𝐹𝑖𝑝|+|𝐹𝑖𝑛|

|∆𝑖𝑝|+|∆𝑖𝑛|
 (2) 

where 𝐹𝑖𝑝= the maximum positive load of cycle i; 𝐹𝑖𝑛= the maximum negative load of cycle i; ∆𝑖𝑝= the 

displacement corresponding to 𝐹𝑖𝑝; ∆𝑖𝑛= the displacement corresponding to 𝐹𝑖𝑛 

Figure 10 shows the decrease of the stiffness with the increase of the displacement. As illustrated, the initial 

stiffness was high due to the tight fit of the SFS dowels. It decreased to half of the initial stiffness at around 

3mm because the wood embedment started to crush and the fasteners started to yield. However, From Figure 

8b, the joint in B-1 did not show much yielding and stiffness degradation after 3mm’s displacement. The 

reason is that the displacement contains the fastener slip in UCFT1.2 fitting which has oversized holes as 

well. Also the displacement of SFS dowel group was recorded by potentiometers which included horizontal 

displacement component as well. 

3.2.2 Energy dissipation 

The energy dissipation capacity of connection is critical for timber construction under severe earthquakes 

and it plays a key role for the structure to sustain the loads and prevent collapse. Figure 11 shows the 

accumulative energy dissipation curve by evaluating the enclosed area of the force-displacement hysteretic 

loops in Figure 8a. The hysteretic energy dissipation was small during the first eleven loading cycles with 

small displacement magnitude, indicating that the SFS dowels behaved approximately elastically up to a 

maximum deformation of 1.85mm. After that, the SFS dowels started to yield, the energy dissipation 

increased significantly. 

 

 

Figure 10 Stiffness degradation 

 

Figure 11 Energy dissipation curve 

3.3 Design predictions vs. test results 

The strength and stiffness of the connections can be predicted by Equation 3 to Equation 12 according to the 

Eurocode 5. For each SFS dowel, four shear planes are considered.  

𝑛𝑒𝑓 = min {𝑛, 𝑛
0.9√

𝑎1

13𝑑

4
} (3) 
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𝐹𝑣,𝑅𝑘 = min 

{
 
 

 
 

𝑓ℎ,𝛼,𝑘𝑡1𝑑

𝑓ℎ,𝛼,𝑘𝑡1𝑑 [√2 +
4𝑀𝑦,𝑅𝑘

𝑓ℎ,1,𝑘𝑑𝑡1
2 − 1] +

𝐹𝑎𝑥,𝑅𝑘

4

2.3√𝑀𝑦,𝑅𝑘𝑓ℎ,𝛼,𝑘𝑑 +
𝐹𝑎𝑥,𝑅𝑘

4

 (4) 

𝑓ℎ,0,𝑘 = 0.082 × (1 − 0.01𝑑)𝜌𝑘 (5) 

𝑓ℎ,𝛼,𝑘 =
𝑓ℎ,0,𝑘

𝑘90𝑠𝑖𝑛
2𝛼+𝑐𝑜𝑠2𝛼

 (6) 

𝐹𝑝𝑟𝑒𝑑 = 𝑛𝑒𝑓 ∙ 𝑛2𝐹𝑣,𝑅𝑘 (7) 

𝑘90 = 1.35 + 0.015𝑑 (8) 

𝐾𝑠𝑒𝑟 = 𝜌𝑚
1.5𝑑/23 (9) 

𝐾𝑢 =
2

3
𝐾𝑠𝑒𝑟 (10) 

𝐾𝑠𝑒𝑟,𝑠𝑢𝑚 = 𝑛 ∙ 𝑛2𝐾𝑠𝑒𝑟 (11) 

𝐾𝑢,𝑠𝑢𝑚 =
2

3
𝐾𝑠𝑒𝑟,𝑠𝑢𝑚 (12) 

Where, 𝑛= the number of dowels in the row, 𝑛𝑒𝑓= effective number of dowels for one row, 𝑎1= the spacing 

between dowels in the grain direction (mm), 𝑑= the dowel diameter (mm), 𝐹𝑣,𝑅𝑘  = load-carrying capacity for 

dowels per shear plane per fastener (N), 𝛼= the angle of the load to the grain (°), 𝜌𝑘= the characteristic 

timber density (kg/m3), 𝑓ℎ,0,𝑘= the characteristic embedment strength parallel to grain (N/mm2), 𝑓ℎ,𝛼,𝑘= the 

characteristic embedment strength at an angle of 𝛼 to the grain(N/mm2),  𝑡1 is the smaller of the thickness of 

the timber side member (mm), 𝑀𝑦,𝑅𝑘= the characteristic fastener yield moment (N·mm), 𝐹𝑎𝑥,𝑅𝑘= the 

characteristic withdrawal capacity of the fastener (N), 𝑛2= the number of rows, 𝐾𝑠𝑒𝑟= slip modulus per shear 

plane per fastener under service load (N/mm), 𝜌𝑚= the mean timber density (kg/m3), 𝐾𝑢= slip modulus per 

shear plane per fastener under ultimate limit state (N/mm), 𝐾𝑠𝑒𝑟,𝑠𝑢𝑚= slip modulus of the connection under 

service load (N/mm), 𝐾𝑢,𝑠𝑢𝑚= slip modulus of the connection under ultimate limit state (N/mm), 

The 𝐹𝑎𝑥,𝑅𝑘 is considered as zero in these connections. The characteristic density is not offered because the 

low number of specimens was not statistically significant. The minimum density of all specimens was 

assumed as characteristic density to calculate 𝑓ℎ,0,𝑘. Franke and Quenneville (2010) found that Eurocode 5 

overestimated 𝑓ℎ,0,𝑘 for small diameter dowels. Therefore, this assumption will produce a relatively 

conservative strength prediction. The parameters for calculating the strength and stiffness are listed in Table 

2. 

To ensure a structural system can mobilise its ductile potential, design demand for the brittle components and 

failure modes needs to be increased by applying an overstrength factor γRd to the calculated ductile 

component strength as shown in Equation 13 (Ottenhaus, et al. 2017).  

𝐹𝐷𝑑 ∙ 𝛾𝑅𝑑 ≤ 𝑚𝑖𝑛{𝐹𝐵𝑑 , 𝐹𝑚𝑒𝑚𝑏𝑒𝑟,𝑑} (13) 

Where, 𝐹𝐷𝑑= design capacity of ductile components,  𝐹𝐵𝑑= design capacity of brittle components, 

𝐹𝑚𝑒𝑚𝑏𝑒𝑟,𝑑= design capacity of elastic members. 

Design codes specify the relationship of the design capacity and the characteristic value by γM, which 

depends on different materials. By assume that all components have the same γM, the characteristic values for 

each dowel group will be used to estimate the overstrength value. The results are listed in Table 3 and Fpred is 

the predicted characteristic load capacity based on Eurocode 5.  
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Figure 9 and Figure 10 shows the predicted strength and stiffness. From Figure 9-10, the predict strength is 

close to the maximum strength of the connection with an average overstrength value of 1.19. At the same 

time, the stiffness is around 65.9kN/mm, which is close to the Ku,sum. The Fpred  and Ku,sum can be considered 

as a reasonably prediction for ultimate strength and stiffness. In addition to that, Kser,sum is close to initial 

stiffness K and can be used as a prediction of K. 

Table 2 Parameters in Eurocode 5 

n nef a1 d α ρk ρm fh,0,k fh,α,k t1 Mv,Rk Fv,Rk Kser Ku 

3 2.3 50 7 20 463 478 34.3 32.6 71 31930 6296 3180 2120 

Table 3 Prediction based on Eurocode 5 and the overstrength value 

 Specimen I Specimen II Specimen III Average 

Fy (kN) 147.5 154.3 158.0 153.3 

Fmax(kN) 204.5 209.0 212.9 208.8 

Fpred(kN) 174.8 

γM (Fmax/ Fpred) 1.17 1.22 1.23 1.19 

K(kN/mm) 119.5 90.8 169.5 126.6 

Kser,sum(kN/mm) 114.5 

Ku,sum 76.3 

3.4 Potentiometers measurements vs. PTV 

In general, the displacement measurements between potentiometers and PTV agreed very well. As an 

example, Figure 12 shows the recorded time history of vertical displacement relative to the ground at centre 

of the SFS dowel group in C-1. Overall, the potentiometer measurement was slightly higher than the PTV 

measurement. The reason might be that the potentiometer actually recorded the total displacement between 

two measuring points, including both horizontal and vertical component. However, the PTV only recorded 

the vertical component. Therefore, slight rotation of the connection in this test led to the slight difference 

between the potentiometer measurement and the PTV measurement. 
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Figure 12 The comparison between potentiometers and PTV 

4 CONCLUSIONS 

This study presents a preliminary experimental study on cyclic performance of SFS dowelled connections in 

GL10 grade glulam. The following conclusions can be drawn: 

 The SFS dowel connections performed well with high strength, initial stiffness, ductility and good 

energy dissipation capacity based on the results of three connection specimens.  

 The predicted equation based on Eurocode 5 provided reasonably good predictions of the connection 

maximum strength and initial stiffness. 

 The PTV measurement matches the potentiometer measurement well and they can complement each 

other during the tests. 
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