
1.1	Introduction
Wood	is	a	renewable	natural	material	and	used	for	many	purposes	ranging	from	general	construction	work	to	reconstituted	products.	However,	 like	for	all	natural	materials,	 its	properties	are	highly	variable	even	within	a

species.	A	successful	timber	industry	relies	on	good	and	uniform	wood	quality.	This	can	be	achieved	by	segregation	inand	tree	breeding	programs.	Both	approaches	require	rapid	and	cost	effective	methods	to	measure	large	numbers	of

samples.	This	is	not	trivial	for	many	wood	properties,	but	near	infrared	(NIR)	and	infrared	(IR)	spectroscopy	have	been	shown	potential	as	rapid,	low-cost,	non-destructive	measurement	techniques	of	various	wood	properties	[1–3].	NIR

spectra	are	typically	acquired	in	reflection,	reducing	the	demand	on	sample	preparation.	Reflection	spectra	can	also	be	obtained	directly	from	powders	without	sample	preparation	in	the	IR	range	with	attenuated	total	reflectance

(ATR)	IR	spectroscopy.

Multivariate	data	analysis,	especially	partial	least	square	regression	(PLSR),	is	typically	used	to	obtain	quantitative	information	from	NIR	and	IR	spectra	[4].	This	calibration	process	is	dependent	on	spectra	pre-processing	[5]

and	variable	selection	[6].	Spectra	modifications	and	variable	selection	attempt	to	minimise	the	effects	of	noise,	baseline	variation	and	additive	effects	arising	from	interfering	physical	and	chemical	factors	[7].	To	obtain	a	reliable

calibration	model,	 the	samples	should	be	split	 in	calibration	and	validation	data	sets.	This	 is	often	done	by	Kennard-Stone	sampling,	which	samples	based	on	Euclidian	distances	[8],	 for	spectroscopy	data	as	random	selection	can

results	in	less	accurate	models	[9].	In	addition,	IR	spectra	contain	not	only	informative	but	also	uninformative	variables.	Those	uninformative	variables	can	influence	the	robustness	of	the	calibration	models.	Variable	selection	can

improve	the	performance	of	calibration	models	by	only	selecting	those	wavelengths,	which	explain	variation	in	the	target	variable	[6].	Of	the	many	methods,	which	have	been	developed	for	variable	selection,	filter	methods	can	be

easily	combined	with	PLSR	calibration	models	because	variable	selection	is	performed	independently	of	model	fitting	[6].	The	significance	multivariate	correlation	(sMC)	filter	method	not	only	reduces	the	effect	of	unrelated	variables

but	concurrently	aids	spectra	interpretation	as	it	highlights	the	variables	that	are	most	correlated	to	the	response	[10].

This	study	focuses	on	the	quantification	of	the	extractive	content	(EC)	in	heartwood	of	Eucalyptus	bosistoana,	which	is	fast-growing	in	New	Zealand’'s	climate	and	produces	class	1	durable	timber	(class	1)	[11].	E.	bosistoana

hasve	been	selected	by	the	New	Zealand	Dryland	Forests	Initiative	(NZDFI),	which	aims	to	establish	a	sustainable	supply	of	ground	durable	timber	for	local	and	international	markets	[12,13].	The	EC	is	the	key	factor	for	the	natural

durability	of	wood	[14,15],	which	is	very	time	consuming	to	measure	directly	[16,17].	Therefore,	rapid	assessment	of	EC	can	be	a	quick	indirect	assessment	of	durability	allowing	quantification	of	heartwood	quality	for	genetic	selection

in	tree	breeding,	which	benefits	form	large	numbers	of	individual	tree	samples.	Both,	NIR	[18–20]	and	IR	[21]	were	reported	suitable	for	assessing	EC	in	wood.	Predictions	of	mass	loss	caused	by	fungi	based	by	IR	spectroscopy	was
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were	not	always	accurate	[22,23].	Depending	on	 the	application,	either	NIR	or	 IR	spectroscopy	have	been	reported	 to	be	more	accurate.	For	example,	while	 IR	spectroscopy	outperformed	NIR	 for	 the	determination	of	β-carotene

content	in	tomato	fruits	[24],	the	opposite	was	reported	for	chemical	features	of	hardwoods	[25].

The	objectives	of	this	work	were	1)	to	investigate	the	potential	of	NIR	and	ATR-IR	spectra	to	quantify	the	EC	in	E.	bosistoana	heartwood,	2)	optimise	the	PLSR	models	based	on	NIR	and	ATR-IR	spectra	and	3)	obtain	information

on	the	chemical	structure	of	heartwood	compounds	in	E.	bosistoana.

2.2	Methods	and	Materials
2.1.2.1	Materials

E.	bosistoana	trees	were	planted	in	2009	by	the	New	Zealand	Dryland	Forests	Initiative	(NZDFI)	in	Marlborough,	New	Zealand.	Discs	with	a	length	of	~10 cm	were	cut	in	May	2016	from	the	bottom	of	the	tree	trunk	in	two

different	sites	(41	°	26′	S,	173	°	56′	E	and	41	°	43'	S,	174	°	02′	E).	In	total,	100	E.	bosistoana	wood	disc	samples	were	collected.	Each	disc	was	air-dried	(25 °C,	60%	RH)	for	one	month.	The	heartwood	was	isolated	from	all	wood	discs	by

drilling	into	the	transverse	face	with	a	12 mm	diameter	drill.	Sapwood	from	ten	randomly	selected	discs	was	collected	in	the	same	way.	The	drill	‘dust’	was	ground	in	a	Wiley	mill	fitted	with	a	20	mesh	(0.85 mm)	screen.	The	powdered

samples	were	then	oven	dried	at	60 °C	to	a	stable	moisture	content	(MC)	of	~2%.

2.2.2.2	NIR	and	ATR-IR	sSpectroscopy
NIR	and	IR	spectra	were	collected	with	a	Bruker	Tensor	37	spectrometer	controlled	with	OPUS_7.5.18	software	(Bruker	Optik	GmbH,	Germany).	NIR	spectra	of	wood	powder	were	taken	with	a	fibre-optics	probe	(Model	N-500,

Bruker	Optik	GmbH,	Germany)	at	wavelength	ranging	from	9000	to	4000 cm−1	at	4 cm−1	intervals	averaging	32	scans.	IR	spectra	were	obtained	with	an	ATR	accessory	in	combination	with	a	RT-DLaTGS	detector	(Bruker	Optik	GmbH,

Germany)	in	the	range	from	4000	to	800 cm−1	at	4 cm−1	intervals	averaging	32	scans.	Three	spectra	were	taken	from	each	wood	powder	in	both	regions,	and	the	corresponding	spectra	were	averaged.

2.3.2.3	Extractive	cContent
Approximately	 5‐–8 g	 of	 oven	 dry	 wood	 powder	 was	 precisely	 weighted	 into	 a	 stainless-steel	 cell	 and	 extracted	with	 ethanol	 in	 an	 Accelerated	 Solvent	 Extractor	 (ASE)	 (Thermo	 Scientific)	 using	 the	 following	 extraction

conditions:	static	time	of	15	mins,	temperature	of	70 °C,	100%	rinse	volume	and	2	extraction	cycles.

Dry	aluminium	foil	trays	of	known	mass	were	used	to	hold	the	extractive	solutions	and	left	in	a	fume	hood	overnight	to	evaporate	the	ethanol.	The	extracts	were	subsequently	oven	dried	at	105 °C.	The	dry	mass	of	each	extract

was	measured	and	the	EC	was	calculated	on	a	dry	mass	basis.

NIR	and	ATR-IR	spectra	were	collected	of	dry	ethanol	heartwood	and	sapwood	extracts	from	ten	selected	trees	and	averaged.

2.4.2.4	Data	pProcessing
The	Kennard-Stone	sampling	method	was	used	to	divide	the	data	into	two	subsets:	80	samples	were	selected	for	a	calibration	data	set,	and	the	remaining	20	samples	were	used	as	validation	data	set.	The	R	software	(version

3.1.2)	[26]	was	used	 for	data	processing.	The	prospectr	package	 [27]	was	used	 for	NIR	 spectra	manipulation	and	Kennard-Stone	 sampling.	Three	 spectral	 pre-processing	methods	were	 tested:	 standard	normal	 variate	 (SNV),	 1st

derivative	and	2nd	derivative.	The	Savitzky-Golay	algorithm	with	a	second-order	polynomial	and	a	window	size	of	15	was	used	to	calculate	the	1st	and	2nd	derivatives.	The	pls	package	[28]	was	used	for	developing	the	PLSR	calibration

models	and	optimal	components	selection	with	leave-one-out	cross-validation.	The	sMC	(alpha = 0.05)	algorithm	implemented	byin	the	plsVarSel	package	[6]	was	applied	to	both	the	NIR	and	ATR-IR	spectra	to	a)	study	the	effect	of

spectra	pre-processing	on	the	most	important	variables	for	PLSR	models	for	heartwood	EC	and	b)	variable	selection.

3.3	Results	and	dDiscussion
3.1.3.1	Preliminary	dData	aAnalysis

The	EC	ranged	between	0.96%	and	14.67%	in	the	calibration	data	set	with	an	average	of	5.64%	(Table	1).	The	range	was	with	2.08%	to	7.19%	smaller	for	the	validation	data	set.

Table	1	Summary	statistics	of	ethanol	soluble	extractive	content	(EC)	in	heartwood	of	7 year-old	E.	bosistoana	for	the	used	datasets;	CV:	Coefficient	of	variation;	n:	number	of	selected	samples.

alt-text:	Table	1
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(n = 80) (n = 20)

EC Max	(%) 14.67 7.19

Mean	(%) 5.64 4.53

Min	(%) 0.96 2.08

CV 0.61 0.41

NIR	and	ATR-IR	spectra	of	E.	bosistoana	are	dominated	by	cell	walls	and	extractives	are	only	a	minor	component.	To	 identify	characteristic	signals	 for	heartwood	extractives	 the	averaged	NIR	and	ATR-IR	spectra	of	wood

powders	were	compared	to	those	of	dry	extractives	(Fig.	1).	To	resolve	some	signal	overlap,	the	NIR	spectra	were	converted	into	their	2nd	derivatives	[29].	The	heartwood	extractives	showed	unique	signals	at	~6900,	6017	and	4659 cm
−1	in	the	2nd	derivative	NIR	spectra.	These	were	close	to	signals	assigned	to	the	1st	overtones	of	stretching	vibrations	of	phenolic	O

H	[30]	and	Car-H	groups	as	well	as	combinations	of	vibrations	Car-H	and	C

O	 groups	 related	 to	 extractives	 in	 E.	 globulus	 [31],	 respectively.	 In	 the	 ATR-IR	 spectra,	 the	 heartwood	 extractives	 showed	 characteristic	 signals	 at	 1712,	 1330‐–1300,	 ~1174	 and	 860 cm−1.	 Signals	 ~1712 cm−1	 were	 assigned	 to

stretching	vibrations	of	C

O	groups	of	ketones,	esters	and	conjugated	aldehydes	[32],	while	a	signal	at	~1330‐–1300 cm−1	was	likely	to	be	related	to	phenolic	O

H	groups	[33].	Two	broader	peaks	at	around	1350 cm−1	and	between	1290	and	1150 cm−1	were	reported	to	arise	from	combinations	of	C

O	stretching	and	O

H	deformation	vibrations	of	hydrolysable	and	condensed	tannins,	respectively	[34].	Vibrations	from	C

H	 groups	 were	 reported	 at	 860 cm−1	 [33].	 These	 assignments	 fit	 well	 to	 what	 is	 known	 on	 the	 chemical	 components	 in	 heartwood	 extracts	 of	 eucalypts,	 which	 were	 generally	 termed	 as	 polyphenol	 compounds	 including

hydrolysable	and	condensed	tannins	[14,35].	Sapwood	of	E.	nitens	was	shown	to	contain	only	small	amounts	of	extractable	phenolic	compounds	[36,37].



As	the	characteristic	heartwood	signals	overlapped	with	peaks	from	the	cell	wall	polymers,	it	was	difficult	to	quantify	the	extractive	content	directly	from	the	spectra.	PLSR	methods	are	typically	used	for	quantitative	analysis	of

IR	spectra	[4].

3.2.3.2	Effects	of	sSpectra	pPre-pProcessing	on	PLSR	mModels
The	spectra	can	be	negatively	influenced	by	noise	and	baseline	shifts.	Spectral	pre-processing	methods	are	often	used	to	reduce	these	effects	on	PLSR	models	[5].	Four	pre-processing	methods	were	applied	to	both	NIR	and

ATR-IR	spectra	of	E.	bosistoana	wood	powder	and	their	effect	on	PLSR	models	for	EC	were	assessed	(Fig.	2).	Regardless	of	the	pre-processing	method,	the	PLSR	models	based	on	the	NIR	spectra	performed	better,	with	the	residual

mean	square	error	(RMSECV)	ranging	between	0.99	to	and	1.25%,	than	those	based	on	ATR-IR	spectra	(RMSECV	1.67	to	1.74%).	This	effect	was	consistent	with	earlier	reports	showing	that	NIR	spectra	allowed	more	accurate	prediction

of	wood	properties	than	ATR-IR	[25,38,39].	SNV	and	2nd	derivative	transformations	did	not	improve	model	accuracy.	For	NIR	spectra	the	models	based	on	raw	spectra	and	their	1st	derivative	performed	best,	however	more	components

were	needed	using	the	raw	spectra	(Table	2).	The	applied	spectra	pre-processing	methods	had	no	effect	on	the	performance	of	the	ATR-IR	models.	The	accuracy	of	the	models	were	was	comparable	to	those	reported	for	quantification	of

several	chemical	wood	features	bybased	on	NIR	and	ATR-IR	spectra	[25].

Fig.	1.Fig.	1	2nd	derivate-NIR	(top)	and	ATR-IR	(bottom)	spectra	of	heartwood	(HW)	and	sapwood	(SW)	extractives	as	well	as	wood	powders	of	E.	bosistoana;	AU:	arbitrary	units.

alt-text:	Fig.	1



Table	2	Characteristics	of	PLSR	regression	models	for	NIR	and	ATR-IR	spectra	for	EC	in	E.	bosistoana	heartwood	for	different	spectra	pre-processing	spectra	methods.	R2:	coefficient	of	determination	and	RMSE:

root-mean-square	error.	The	subscripts	CV	and	P	denote	models	based	on	a	calibration	data	set	using	leave-one-out	cross-validation	and	the	predictions	when	the	model	was	applied	to	the	validation	data	set,

respectively.	SNV:	standard	normal	variate,	Raw:	spectra	without	pre-processing.

alt-text:	Table	2

Pre-treatment	spectra Calibration Validation

R2
CV RMSECV Ncomp R2

P RMSEP

NIR Raw	(None) 0.92 0.99 5 0.83 0.8

SNV 0.90 1.25 3 0.88 1.28

1st	derivative 0.91 1.06 2 0.79 0.89

2nd	derivative 0.87 1.24 3 0.68 1.08

ATR-IR Raw	(NO) 0.72 1.67 3 0.72 1.38

SNV 0.70 1.71 2 0.67 1.52

1st	derivative 0.71 1.70 3 0.70 1.43

2nd	derivative 0.71 1.70 3 0.70 1.44

3.3.3.3	Interpretation	of	PLSR	mModels	bBased	on	dDifferent	pPre-pProcessing	mMethods
Interpretation	of	PLSR	models	is	difficult	as	the	model	algorithms	can	interfere	with	the	correlation	between	the	spectra	frequency	toand	the	target	variable	[10].	The	sMC	algorithm	has	been	developed	to	facilitate	PLSR	model

interpretation.	The	sMC	method	was	used	to	investigate	the	effect	of	4	different	spectra	pre-processing	on	the	significant	variables	to	predict	EC	in	E.	bosistoana,	for	both,	the	NIR	and	ATR-IR	region.

Spectra	pre-processing	influenced	the	variables,	which	correlated	to	the	EC	(Figs.	3	and	4).	The	figures	show	the	average	spectra	after	signal	processing	as	well	as	the	explained	variance	of	the	individual	frequencies	(blue	solid

line).	Compared	to	the	unmodified	spectra	similar	frequencies	but	with	different	relative	importance	were	identified	by	sMC	after	SNV	normalisation.	These	signals	also	appeared	sharper.	An	exception	was	observed	for	the	region	from

4785	to	4485 cm−1,	which	was	not	contributing	after	SNV	normalisation.	Water	has	a	strong	signal	at	~5000 cm−1	and	wood	is	hygroscopic.	It	might	be	that	the	SNV	normalisation	of	this	variable	region	affected	the	neighbouring	signal

Fig.	2.Fig.	2	Residual	mean	square	error	of	calibration	using	leave-one-out	cross	validation	(RMSECV)	for	PLSR	models	predicting	EC	in	E.	bosistoana	heartwood	for	different	spectra	pre-processing	methods	of	NIR	spectra	(left)	and	ATR-IR	spectra	(right).	SNV:	standard	normal

variate,	Raw:	spectra	without	pre-processing.

alt-text:	Fig.	2



at	4785‐–4485 cm−1.

Fig.	3.Fig.	3	Influence	of	pre-processing	on	NIR	spectra,	the	correlation	to	EC	of	E.	bosistoana,	and	the	variables	selected	by	the	sMC	algorithm	(upper	left:	raw	spectra,	upper	right:	1st	derivative,	bottom	left:	SNV,	bottom	right:	2nd	derivative).	Dashed	lines:	average	NIR	spectra;

blue	solid	lines:	sMC	-	explained	variance;	red	points:	variables	selected	by	the	sMC	algorithm;	SNV:	standard	normal	variate;	Raw:	spectra	without	pre-processing.	AU:	arbitrary	unit.	(For	interpretation	of	the	references	to	colour	in	this	figure	legend,	the	reader	is	referred	to	the

web	version	of	this	article.)

alt-text:	Fig.	3

Fig.	4.Fig.	4	Influence	of	pre-processing	on	ATR-IR	spectra,	the	correlation	to	EC	of	E.	bosistoana,	and	the	variable	selected	by	the	sMC	algorithm	(upper	left:	raw	spectra,	upper	right:	1st	derivative,	bottom	left:	SNV,	bottom	right:	2nd	derivative).	Dashed	lines:	average	ATR-IR



Transformation	of	spectra	into	their	1st	derivative	results	in	a	single	band	being	converted	into	a	split	peak	with	extremes	at	the	flanks	of	the	original	signal	[40].	This	was	reflected	in	the	explained	variance	identified	with	the

sMC	algorithm.	For	example,	the	identified	region	around	1174 cm−1	in	the	unmodified	and	SNV	spectra	was	represented	by	a	double	peak	at	1226	and	1161 cm−1	or	the	region	4785‐–4485 cm−1	as	a	double	peak	at	4724	and	4520 cm−1.

For	NIR	 spectra,	 the	 spectral	 regions	 explaining	 the	 variance	 after	 conversion	 into	 the	 1st	 derivate	 spectra	were	more	 similar	 to	 the	 unmodified	 than	 the	 SNV	normalised	 spectra.	 As	 expected,	 the	 signals	 appeared	 sharper	 as

derivatives	are	a	common	means	of	resolving	signal	overlap.

2nd	derivative	spectra	are	often	used	to	resolve	signal	overlap	and	positive	signals	are	converted	into	negative	peaks.	The	spectral	regions	identified	by	the	sMC	mirrored	those	of	the	unmodified	spectra	but	with	sharper	and

more	numerous	peaks.

In	general,	the	signals	identified	by	the	PLSR/sMC	models	included	those,	which	were	characteristic	for	heartwood	extract	(Fig.	1).	These	include	~6900,	6017,	4659,	1712,	1330‐–1300	and	~1174 cm−1,	which	were	associated

to	the	phenolic	O

H,	Car-H	groups,	ketones,	esters,	conjugated	aldehydes	and	condensed	tannins	that	occur	in	heartwood	extractives.

In	the	region	from	9000	to	7000 cm−1	numerous	signals	have	been	reported,	for	example	the	1st	overtones	and	2nd	overtones	of	O

H	and	N

H	stretching	vibrations	as	well	as	the	1st	overtones	of	C

H	combination	bands.	For	example	signals	at	8650	to	8450 cm−1	were	assigned	to	the	1st	and	2nd	overtone	of	C

H	stretching	vibrations	form	methyl	groups	[29].

For	ATR-IR	spectroscopy,	without	any	pre-processing	method,	the	significant	variables	were	mainly	in	the	region	of	1800	to	1400 cm−1.	Several	peaks	on	the	ATR-IR	spectra	were	found,	including	the	peaks	at	1787,	1650,	1440,

1300,	1174	and	860 cm−1.	Peaks	at	1787 cm−1	were	associated	with	the	1st	overtone	of	C

H	stretching	of	CH2	groups	and	a	signal	at	1650 cm−1	was	reported	characteristic	of	aromatic	skeletal	C

C	stretching	in	extractives	compounds	[32].	C

H	bending	was	reported	at	around	1440 cm−1	while	the	CH3	stretching	vibrations	were	associated	with	peaks	at	1317	and	1174 cm−1	[41,42].

3.4.3.4	Variable	sSelection
Typically,	only	some	frequencies	of	IR	spectra	are	strongly	correlated	to	the	target	variable	[43].	Not	all	regions	of	the	spectra	contribute	to	the	prediction	models	and	some	frequencies	might	even	reduce	the	precision	of	the

models	[6].	Consequently	selecting	the	most	relevant	variables	can	improve	model	quality.	Table	3	presents	PLSR	model	characteristics	after	variable	selection	with	the	sMC	algorithm	[10],	one	of	the	numerous	algorithms	which	have

been	proposed	for	this	purpose	[6].	The	number	of	variables	was	significantly	reduced	by	the	sMC	algorithm	for	both,	NIR	and	ATR-IR	PLSR,	while	the	optimal	number	of	components	remained	the	same	as	for	the	models	based	on	the

full	spectra.	Considering	spectra	pre-processing	methods,	conversion	of	the	spectra	into	their	1st	or	2nd	derivative	resulted	in	more	selected	variables	compared	to	the	unmodified	or	baseline	(SNV)	corrected	spectra.	After	variable

selection,	the	RMSE	for	NIR	spectra	based	models	was	reduced	from	0.99‐	to	 (This	change	is	incorrect.	Prefer	not	to	replace	-	by	to)1.25%	to	0.91‐–1.16%	dependent	of	the	spectra	pre-processing.	The	largest	reductions	in	RMSE	were

observed	for	the	2nd	derivative	spectra	(Tables	2	and	3).	No	marked	improvement	of	the	RMSE	for	ATR-IR	spectra	based	models	was	achieved	by	variable	selection,	ranging	from	1.62	to	1.67%	after	variable	selection	compared	to	1.67

to	1.71%	for	the	full	models.

Table	3	NIR	and	ATR-IR	PLSR	regression	models	based	on	different	pre-processing	spectra	for	calibration	and	validation	of	EC	in	heartwood	of	E.	bosistoana	with	sMC	variable	selection.	R2CV:	coefficient	of

determination	using	cross-validation.	R2P:	coefficient	of	determination	of	predictions	when	the	model	was	applied	to	the	validation	data	set,	respectively;	RMSECV:	root-mean-square	error	of	cross-validation.	RMSEP:

root	mean-square	error	of	prediction	when	the	model	was	applied	to	the	validation	data	set.	SNV:	standard	normal	variate,	Raw:	spectra	without	any	pre-processing.

spectra;	blue	solid	lines:	sMC	–	explained	variance;	red	points:	variables	selected	by	the	sMC	algorithm;	SNV:	standard	normal	variate;	Raw:	spectra	without	pre-processing.	AU:	arbitrary	unit.	(For	interpretation	of	the	references	to	colour	in	this	figure	legend,	the	reader	is	referred

to	the	web	version	of	this	article.)
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Spectra Total	number	of	variables Pre-treatment Variables	selected	by	sMC
Calibration Validation

R2
CV RMSECV Ncomp R2

P RMSEP

NIR

1296 Raw	(NOnone) 37 0.93 0.91 5 0.82 0.81

1296 SNV 71 0.92 1.16 3 0.86 1.47

1282 1st	derivative 137 0.91 1.06 2 0.81 1.58

1282 2nd	derivative 84 0.91 1.03 3 0.82 0.84

ATR-IR

520 Raw	(NOnone) 64 0.72 1.65 3 0.71 1.42

520 SNV 23 0.72 1.66 2 0.7 1.43

506 1st	derivative 85 0.72 1.67 3 0.67 1.51

506 2nd	derivative 166 0.73 1.62 3 0.72 1.40

The	models	based	on	the	unmodified	NIR	spectra	showed	the	best	results	for	both,	the	calibration	and	validation	sets	but	also	needed	the	most	components	to	reach	this	level.	SNV	normalisation	reduced	the	model	accuracy

both	in	NIR	and	ATR-IR	spectra	(Table	3).	The	2nd	derivative	spectra	yielded	robust	and	more	accurate	prediction	results	compared	to	the	1st	derivative	spectra	for	both,	the	NIR	and	ATR-IR	technique.

The	chosen	variables	comprised	signals	(Figs.	3	and	4),	which	were	related	to	heartwood	extracts	(~6900,	6017,	4659,	1730	and	1174 cm−1)	(Fig.	1)	as	well	as	others	(8234	and	6541 cm−1)	which	might	be	associated	with	cell

wall	polymers.	For	example,	the	peaks	at	8234	and	6541 cm−1	were	associated	to	the	2nd	overtone	of	the	C

H	and	1st	overtone	of	the	O

H	stretching	vibrations	of	cellulose	in	wood	[30,44].	EC	 is	a	relative	measure	 in	respect	 to	the	cell	wall	material	 in	a	sample.	Therefore,	a	calibration	needs	also	to	consider	the	amount	of	cell	wall	material	present	 in	the	spectra

or	in	other	words,	the	spectra	need	to	be	normalised	for	the	absolute	amount	of	matter	in	the	light	beam.

For	the	NIR	spectra	the	sMC	algorithm	selected	all	three	major	extractive	signals	(~6900,	6017	and	4659 cm−1)	after	1st	and	2nd	derivative	conversion	(Fig.	3).	Interestingly	only	two	of	the	three	signals	were	selected	for	the

unmodified	(~6900	and	4659 cm−1)	and	SNV	normalised	spectra	(~6900	and	6017 cm−1).	For	ATR-IR	spectra,	extract	specific	signals	including	1730,	1174	and	860 cm−1	were	selected	by	the	sMC	algorithm.	However,	also	a	relatively

large	proportion	of	unidentified	signals	was	selected,	potentially	also	including	cell	wall	signals	(Fig.	4).

The	density	plots	of	 the	residuals	between	measured	and	predicted	EC	values	of	E.	bosistoana	heartwood	using	 the	sMC-PLSR	NIR	and	sMC-ATR-IR	models	are	displayed	 in	Fig.	5.	The	 residuals	of	 the	validation	data	 sets

visualise	the	accuracy	(bias)	and	precision	(deviation	around	the	mean).	Both,	the	NIR	and	ATR-IR	based	models	gave	accurate	predictions	with	no	obvious	bias.	The	NIR	models	were	more	precise	than	ATR-IR	model	having	residuals

closer	to	the	mean,	similar	results	were	found	by	Zhou	et	al.	[25].



4.4	Conclusions
NIR	and	ATR-IR	PLSR	regression	models	were	able	to	predict	the	EC	in	heartwood	of	E.	bosistoana	from	wood	powder	samples	and	can	serve	as	fast	and	non-destructive	methods	for	tree	breeders	to	screen	eucalyptus	for

heartwood	quality.	Both,	NIR	and	ATR-IR	based	models	were	accurate	with	no	bias	but	NIR	based	models	were	more	precise.	Variables	selection	with	the	sMC	algorithm	improved	the	precision	(RMSE)	of	the	NIR	based	models	to

0.9%,	a	useful	result	considering	the	EC	range	of	0.96%	to	14.67%	in	the	heartwood	of	7 year-old	E.	bosistoana.	Variable	selection	had	no	benefit	on	the	accuracy	of	models	based	on	ATR-IR	spectra.	Spectra	pre-processing	methods	did

not	offer	substantial	advantages	for	both	the	NIR	and	ATR-IR	spectra.	However,	2nd	derivative	transformation	of	NIR	spectra	combined	with	variable	selection	reduced	the	required	number	of	components	compared	to	unmodified

spectra.	The	PLSR	models	selected	extractive	signals	that	related	to	chemical	structures	known	of	heartwood	extracts	including	~6900	(phenolic	O

H	groups),	6017	(Car-H	groups),	4659	(Car-H	and	C

O	groups),	1330‐–1300	(phenolic	O

H	groups),	and	~1174 cm−1	(condensed	tannins).
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