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The new dynamical diffraction approach to X-ray diffraction on lateral

crystalline structures has been developed to investigate the angular and spatial

distribution of wavefields in the case of the Bragg–Laue geometry in non-perfect

lateral structures. This approach allows one to calculate reciprocal space maps

for deformed lateral crystals having rectangular cross sections for both the

transmitted and reflected wavefields. Numerical modelling is performed for

crystals with different lateral sizes, thicknesses and deformations. The approach

can be used in coherent diffraction imaging to simulate Fraunhofer diffraction

patterns produced by relatively large deformed crystals.

1. Introduction

Lateral (having a finite length in the lateral direction) crys-

talline structures (e.g. nanowires) are widely used in opto- and

nanoelectronics. For instance, core–shell nanowires, having a

high surface-to-volume ratio, are promising candidates for

light emitting diodes (Yan et al., 2009), solar cells (Krogstrup et

al., 2013), transistors (Colinge et al., 2010) and other devices

(Li et al., 2006; Dasgupta et al., 2014). In recent years there has

been a renewed interest in using X-ray diffraction as a char-

acterization technique on such lateral structures (see e.g.

Kaganer & Belov, 2012; Minkevich et al., 2011; Lee et al., 2006;

Stankevič et al., 2015, and references therein). Lateral struc-

tures are also often the objects of interest (see e.g. Cha et al.,

2010; Köhl et al., 2013; Yang et al., 2013) in applications of

coherent diffraction imaging (CDI) [see a recent review of

Bragg CDI by Vartanyants & Yefanov (2015) and references

therein].

Some dynamical diffraction approaches (Olekhnovich &

Olekhnovich, 1978; Thorkildsen & Larsen, 1999a; Kolosov &

Punegov, 2005; Yan & Li, 2014) based on Takagi’s equations

(Takagi, 1962, 1969) have been employed to calculate rocking

curves from ideal (i.e. non-deformed) crystals with a rectan-

gular cross section. A simpler kinematical diffraction theory

was used to simulate X-ray diffraction on deformed crystals

having a trapezium cross-sectional shape (Punegov et al., 2006;

Punegov & Kolosov, 2007) or an arbitrary cross-sectional

shape (Punegov et al., 2007). However, this does not take into

account dynamical diffraction effects, which become evident

even for relatively small crystals (Punegov et al., 2014).

Usually, Takagi’s equations are used to simulate dynamical

X-ray diffraction on lateral crystalline structures (Becker,

1977; Becker & Dunstetter, 1984; Olekhnovich & Olekhno-

vich, 1980; Saldin, 1982; Chukhovskii et al., 1998; Thorkildsen

& Larsen, 1999b). However, these approaches do not allow
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one to simulate reciprocal space maps (RSMs). Recently, we

applied (Punegov et al., 2014) Darwin’s recurrence relations to

calculate the crystal rocking curves and RSMs in Bragg

geometry for X-ray diffraction on non-deformed lateral crys-

tals. However, a simultaneous Bragg and Laue or a mixed

Laue–Bragg geometry is a more realistic variant for lateral

crystals.

Lehmann & Borrmann (1967, and references therein)

observed, explained and later numerically modelled inter-

ference fringes appearing in Laue–Bragg geometry. The

experiment and calculations were done by Lehmann &

Borrmann for a point source placed at the crystal surface. The

partial reflection at one of the crystal sides (which is parallel to

the crystal reflection plane) produces an additional ‘virtual’

source, shifted with respect to the real one. Such a ‘virtual’

source, caused by reflection, is often used in optics, for

instance as Lloyd’s mirror (Born & Wolf, 1999; Jesson et al.,

2007), to produce interference fringes.

Saka and co-workers generalized the approach presented

by Lehmann & Borrmann (1967) and discussed the theory of

X-ray diffraction for finite polyhedral crystals in the Laue–

Bragg (Saka et al., 1972a), Laue–(Bragg)m (Saka et al., 1972b,

1973) and Bragg–(Bragg)m (Saka et al., 1973) cases. In parti-

cular, Kato’s dynamical diffraction theory (Kato, 1961a,b) for

spherical waves (represented as a superposition of plane

waves) was employed. Saka et al. (1972a) also defined four

special cases – Laue–Laue, Bragg–Bragg, Laue–Bragg and

Bragg–Laue – for different configurations for incident and exit

waves with respect to the entrance and exit surfaces of a

crystal. For instance, they said (Saka et al., 1972a, p. 103) that

‘when the Bragg reflected waves emerge from the entrance

surface, we shall call this the ‘Bragg case on the entrance

surface’, whereas when they all propagate through the crystal,

the case is called the ‘Laue case on the entrance surface’’. It

should be noted that Saka et al. (1972a) did not consider the

case of a lateral crystal which we discuss in this paper. For a

lateral crystal it is possible (see x3 below) to have simulta-

neously both the above-mentioned cases (namely, Laue and

Bragg cases) for the entrance surface. Similarly, both Laue and

Bragg cases can be observed for the exit surface in lateral

crystals (see x3 below). Saka and co-workers also considered a

finite polyhedral crystal (Saka et al., 1972b, 1973), but only for

the case of a spherical incident wave, having a limited wave-

front at the entrance surface. This differs significantly from the

configuration discussed in this paper, where we deal with

deformed lateral crystals ‘bathing’ in the incident plane wave

and calculate the distribution of diffracted intensity in reci-

procal space.

While in their original study Lehmann and Borrmann

considered the strong absorption case (�t > 18), where � is the

normal X-ray linear absorption coefficient and t the crystal

thickness, Mai & Zhao (1989) discussed in detail Borrmann–

Lehmann interference in the moderate absorption case (�t =

1.6). In particular, they noted that the observed fringe spacing

in the case of low or moderate absorption is not described by

formulae originally obtained for the case of strong absorption.

Mai & Zhao (1989) derived a general formula of the observed

fringe spacing which is valid for high, moderate and low

absorption. Their computer simulation was in good agreement

with the experimental topographs.

Lang et al. (1986, 1990) used synchrotron radiation to study

the Borrmann–Lehmann interference effect. They observed a

high sensitivity of the interference fringes to lattice distortion.

Such a high sensitivity can be qualitatively explained by

analogy with X-ray interferometry. Their modelling (Lang et

al., 1990) was based on Kato’s ray-optical diffraction theory

for a mildly distorted crystal (Kato, 1963, 1964a,b) with the

assumption of a constant strain gradient.

Uragami (1983) numerically simulated the intensity distri-

bution of the wavefield, caused by a very narrow incident

wave, in an ideal rectangular-shaped crystal, using the Takagi

equations (Takagi, 1962, 1969) in the Laue geometry case. The

result of the numerical simulation was compared with an

analytical solution (Uragami, 1971) using a Green’s function

approach (Uragami, 1969, 1970; Afanas’ev & Kohn, 1971). It

was demonstrated that the transmitted wave, upon hitting a

side face of the rectangular-shaped crystal, is reflected back

inside the crystal and then interferes with the Bragg diffracted

wave already propagating in the crystal. However, the distri-

bution of intensity in reciprocal space, discussed in this paper,

was not investigated. Also, in addition to a different calcula-

tion algorithm, we consider an incident plane wave instead of

a delta function like the narrow incident wave used by

Uragami (1983).

Yan & Noyan (2005) investigated an effect of dynamical

diffraction for a spatially limited and slightly divergent (i.e.

non-parallel) beam by a plane-parallel Si crystal in the Bragg–

Laue, Bragg–Bragg–Laue and multiple Bragg–Bragg cases. In

particular, they observed fictitious double spots at the spatial

detector caused by back-surface diffraction. Additionally, they

provided a set of equations that can be used to calculate the

separation of such peak pairs. Such double peaks in Laue

diffraction patterns may cause difficulties in the strain analysis,

as shown in their subsequent paper (Yan & Noyan, 2006). To

avoid such a problem, an additional (analyser) crystal in the

diffracted beam can be used (Yan & Noyan, 2006). This

analyser crystal allows one to distinguish spatial and angular

shifts of the diffracted beam.

It should be noted that the method first proposed by us in

2014 (Punegov et al., 2014) and further developed in this paper

might seem similar to the numerical calculations of images in

X-ray topography (see e.g. Authier et al., 1968; Taupin, 1967;

Bowen & Tanner, 1998; Authier, 2001; Epelboin, 1985).

However, our method differs from the above in that it deals

with lateral crystals ‘bathing’ in the incident plane wave and

allows one to calculate the distribution of diffracted intensity

in reciprocal space.

Currently, the kinematical diffraction approach is used to

simulate a far-field diffraction pattern in CDI (see Vartanyants

& Yefanov, 2015, and references therein). However, as

correctly mentioned by Vartanyants & Yefanov (2015, p. 346),

‘if crystalline particles reach micron size, multiple scattering,

or dynamical effects . . . could become important . . . ’. Modern

synchrotron sources are already able to achieve a coherence
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volume of the order of several micrometres (Pellegrini &

Stöhr, 2003). If the illuminated object, having a size of several

micrometres, matches the coherence volume, the dynamical

diffraction effects (Authier, 2001) start to be observable. For

instance, the Pendellösung oscillations in the Laue diffraction

geometry (see x3 below) cannot be simulated or reconstructed

using kinematical diffraction theory. However, the current

variants of dynamical diffraction on lateral crystalline struc-

tures (exclusive of Punegov et al., 2014) do not allow the

simulation of RSMs, which are required in CDI for the

reconstruction of the electron density and deformation field in

the sample. Also, the variant of dynamical diffraction theory

developed by Punegov et al. (2014) did not take into account

the deformation field in the lateral crystal, which is often the

most important part of the information to be reconstructed by

CDI. Therefore, it is timely to explore the possibilities offered

by dynamical diffraction on deformed lateral crystals in

application to CDI. This will make it possible to employ the

new capabilities (e.g. large coherence volume) offered by

modern synchrotron sources.

The purpose of the current paper is to present a new

approach to dynamical diffraction theory based on Takagi’s

equations in the case of Bragg–Laue geometry for deformed

lateral crystals. This approach allows one to effectively

calculate RSMs for deformed lateral crystals having rectan-

gular cross sections for both the transmitted and reflected

wavefields along with the intensity distribution within the

crystal.

2. Dynamical diffraction on lateral crystalline
structures with a rectangular cross section

The current variants of X-ray dynamical diffraction theory

(Authier, 2001) usually consider crystals with the shapes of

plane-parallel slabs (see Fig. 1 and Appendix A for details)

having finite thickness only in one direction. In this paper we

consider lateral crystalline structures with a rectangular cross

section (see Fig. 2) having a finite width of Lx and thickness of

Lz.

We consider simultaneously both geometries, namely the

Bragg and Laue geometries (see Fig. 2). Therefore, this case

can be classified as mixed Bragg–Laue diffraction, and we

calculate both the transmitted and diffracted wavefields taking

into account their appropriate boundary conditions at all four

external surfaces of a lateral crystal. Fig. 2 demonstrates the

local areas of either Bragg or Laue diffraction on such a lateral

crystal.

Let us introduce a dynamical extension of the kinematical

approach, previously reported by Kirste et al. (2005). We

consider two-beam diffraction in the coplanar geometry,

where the x0y plane is the top surface of a lateral crystal and

the x0z plane is the plane of diffraction (see Fig. 2). The

incident wave is assumed to be a plane monochromatic wave.

A solution of Maxwell’s equations (see e.g. Afanas’ev & Kohn,

1971) within the crystal is sought in the following form:

EðrÞ ¼ E0ðrÞ expðikB
0 � rÞ þ EhðrÞ exp½iðkB

0 þ hÞ � r�; ð1Þ

where, following Takagi (see e.g. Takagi, 1969), we assume that

the amplitudes of the transmitted and diffracted waves E0;hðrÞ

are slowly varying functions. The vector kB
0 can be chosen

arbitrarily. In our case this vector is defined as always satis-

fying the Bragg conditions and its magnitude is 2�/�, where �
is the X-ray wavelength in vacuum. The vector h is the

appropriate vector of the reciprocal lattice (see Fig. 2).
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Figure 1
A schematic of the symmetrical Bragg (a) and Laue (b) X-ray diffraction
by a crystal having the same family of reflecting atomic planes (hkl),
corresponding to the reciprocal lattice vector h.

Figure 2
A schematic of the Bragg–Laue diffraction on a lateral crystal of a
rectangular cross section. The reciprocal vector h corresponds to the
family (hkl) of reflection planes.



Inside the crystal the X-ray wavefield is described by a

system of equations of the dynamical diffraction based on

Takagi’s equations (Takagi, 1969; Afanas’ev & Kohn, 1971):

@E0ðrÞ

@s0

¼ i
��0ðrÞ

�
E0ðrÞ þ i

�� �hhðrÞC

�
EhðrÞ exp½ih � uðrÞ�;

@EhðrÞ

@sh

¼ i
��0ðrÞ

�
EhðrÞ þ i

��hðrÞC

�
E0ðrÞ exp½�ih � uðrÞ�:

ð2Þ

Here �0;h; �hh are the Fourier components of the susceptibility, C

is the polarization factor and u is the atomic displacement

vector. The functions �0;h; �hh depend on r owing to the variation

in the chemical composition. It should be noted that in (2) we

use the expressions for �0;h; �hh obtained for an infinitely large

crystal, which is, obviously, an approximation for a lateral

crystal. The s0 coordinate axis is directed along the vector kB
0

and the sh coordinate axis is directed along the vector kB
0 þ h.

Although (2) describes a general case of asymmetrical

diffraction and arbitrary polarization, in this paper, for the

sake of simplicity, we consider only the symmetrical coplanar

diffraction of �-polarized waves by a lateral crystal of

rectangular shape. Such a shape belongs to the so-called

convex polygons that contain all the line segments connecting

any pair of its points.

The wavefield EvðrÞ just outside the crystal volume can be

represented as a combination of the incident, diffracted and

transmitted waves, respectively:

Ev
ðrÞ ¼ Ev

0ðrÞ expðikv
0 � rÞ þ Ev

hðrÞ expðikv
h � rÞ

þ Ev
trðrÞ expðikv

tr � rÞ: ð3Þ

Here kv
0 is the average wavevector of the incident wave,

formed by the X-ray source and optical system before the

lateral crystal, and kv
h;tr are the average wavevectors of the

diffracted and transmitted waves selected either spatially (e.g.

by a two-dimensional detector placed at a large distance after

the lateral crystal) or angularly by an analyser crystal. We

consider a lateral crystal which is ‘bathing’ in the incident

plane wave. Thus, the incident wave consists of two parts. The

first interacts with the lateral crystal and the second does not.

The latter can be excluded from the registration process, for

instance, by slits, which will cut off the part of the incident

wave that does not interact with the crystal. Then the wave-

fields Ev
0ðrÞ and Ev

trðrÞ are spatially separated. The first is

located at the vertical left face and top surface of the crystal

(i.e. in the space before the interaction with the lateral crystal

occurs), and the second exists in the crystal ‘shadow’: at the

right vertical face and the bottom surface of the crystal (i.e.

after the propagated wavefield has interacted with the crystal)

(see Fig. 2).

In this paper we assume that the incident wave can be

approximated by a monochromatic plane wave, which is a

reasonable approximation for modern synchrotron sources if

monochromator crystals are used and the distance between

the source and the sample is relatively large. Then Ev
0ðrÞ is a

constant. However, this is not true for the transmitted and

diffracted amplitudes. The amplitudes Ev
hðrÞ and Ev

trðrÞ are a

position-dependent function and can be calculated using

recurrence relations, which will be introduced below. Along

with the traditionally used scattering vector Q ¼ kv
h � kv

0,

usually used to describe the distribution of the diffracted

intensity in reciprocal space, we can also define a ‘transmis-

sion’ scattering vector Qtr ¼ kv
tr � kv

0 to describe the deviation

of the transmitted wavefield from the original direction, kv
0, of

the incident wave.

Let us assume that the experimental setup uses an analyser

crystal with a very narrow (like a delta function) rocking curve

to select a particular direction in reciprocal (Fourier) space,

defined by either kv
h (diffracted wave) or kv

tr (transmitted

wave). The wave reflected by such an analyser crystal is then

integrated by a point detector. It was shown by Pavlov et al.

(2001, see equation 2 therein) that the intensity registered by

such a point detector is proportional to the integral over the

beam cross section for the propagating wavefield just after the

object. In our experimental setup this integral can be

approximated by the absolute square of a sum over the crystal

surface for either Ev
hðrÞ or Ev

trðrÞ for the diffracted and trans-

mitted waves, respectively. The same approximation can be

used for a typical CDI experimental setup, which usually uses

a two-dimensional position-sensitive detector placed in the

far-field zone.

The information about the deviation, q (or qtr), of the

scattering vector, Q (or Qtr), from the vector h (or zero for the

transmitted beam) consists of the boundary conditions at the

external surfaces of the lateral crystal [see (4a), (4b), (4c), (4d)

below].

We assume that the crystal has a rectangular shape (see

Fig. 2); then we can write four boundary conditions at the

following external surfaces:

(a) At the top surface and left vertical face of the crystal

(for the incoming incident wave)

Ev
0ðreÞ expðikv

0 � reÞ ¼ E0ðreÞ expðikB
0 � reÞ: ð4aÞ

(b) At the top surface and right vertical face of the crystal

(for the leaving diffracted wave)

Ev
hðreÞ expðikv

h � reÞ ¼ EhðreÞ exp½iðkB
0 þ hÞ � re�: ð4bÞ

(c) At the bottom surface and right vertical face of the

crystal (for the leaving transmitted wave)

Ev
trðreÞ expðikv

tr � reÞ ¼ E0ðreÞ expðikB
0 � reÞ: ð4cÞ

(d) At the left vertical face and bottom surface of the crystal

(to indicate the absence of the incoming diffracted wave from

this particular direction)

0 ¼ EhðreÞ exp½iðkB
0 þ hÞ � re�: ð4dÞ

Here re is the vector defining a position at the crystal

surface. Because of the coplanar diffraction case, the y

component for all wavevectors in (4a), (4b), (4c), (4d) is equal

to 0. The projections of the wavevectors kv
0;h;tr are as follows:
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kv
0;x ¼ k cosð�1Þ ¼ k cosð�B þ��1Þ;

kv
0;z ¼ k sinð�1Þ ¼ k sinð�B þ��1Þ;

kv
h;x ¼ k cosð�2Þ ¼ k cosð�B þ��2Þ;

kv
h;z ¼ �k sinð�2Þ ¼ �k sinð�B þ��2Þ;

kv
tr;x ¼ k cosð�2;trÞ ¼ k cosð�B þ��2;trÞ;

kv
tr;z ¼ k sinð�2;trÞ ¼ k sinð�B þ��2;trÞ:

ð5Þ

Here ��1, ��2 and ��2;tr are small deviations from the exact

Bragg angular position determined by �B. Their positive/

negative directions are defined to increase/decrease the

appropriate glancing angles �1, �2 and �2;tr between the posi-

tive x axis and the wavevectors kv
0, kv

h and kv
tr, respectively (see

Fig. 2).

Let us describe a two-dimensional rectangular lattice as

shown in Fig. 3. We assume that d is the distance between the

atomic planes (hkl), so their vertical positions are zn ¼ nd (n is

an integer). Then, following Punegov et al. (2014), we can

choose �x ¼ d cot �B as a step size along the x axis to indicate

the positions xm ¼ m�x (m is an integer) where this beam [in

a finite difference form of Takagi’s equations (2)] will be

partially transmitted to the next atomic plane or partially

reflected. This defines a two-dimensional rectangular lattice

with step sizes d and �x along the z and x directions,

respectively. Note that the positions of nodes (n, m) (see Fig. 3)

in this lattice are fixed and do not depend on either �1 or �2, or

�2;tr. Now we can rewrite (2) in the finite difference form on

the two-dimensional rectangular lattice shown in Fig. 3:

Tm
nþ1 ¼ tTm�1

n þ �rrSm�1
n ;

Sm
n ¼ �ttSm�1

nþ1 þ rTm�1
nþ1 ;

ð6Þ

where Tm
n and Sm

n are the amplitudes of the transmitted, E0,

and reflected, Eh, waves, respectively, at the (m; n) node of a

two-dimensional rectangular lattice (see Fig. 3);

t ¼ �tt ¼ ð1þ r0Þ, �rr ¼ r �hh exp½ih � uðrÞ�, r ¼ rh exp½�ih � uðrÞ�,

rg ¼ i�g�d=ðsin �B�Þ (g ¼ 0; h; �hh). Equations (6) are similar to

the ones we obtained previously (Punegov et al., 2014) for the

Bragg geometry diffraction case using Darwin’s approach. The

difference is in the absence of the phase terms, which are now

included in the boundary conditions [see (4a), (4b), (4c), (4d)],

and in the presence of terms exp½�ih � uðrÞ� describing the

deformation field. Now these equations can be employed in

the case of the Bragg–Laue geometry, where an extended set

of boundary conditions [see (4a), (4b), (4c), (4d)] will be used.

In the Bragg geometry the diffracted wave S(B) and the

transmitted wave T(B) are registered on the top surface and

bottom surface, respectively. In the Laue geometry both

waves, S(L) and T(L), are registered at the right vertical face of

the crystal (see Fig. 2).

It should also be noted that a common multiplicative

coefficient can be used to increase the step sizes d and �x.

This will speed up the simulation process. For instance, if one

uses 20d as the vertical step size instead of d and 20�x as the

horizontal step size instead of �x, the simulation time

decreases by 400 times. However, such an increase should be

implemented cautiously, to avoid artefacts.

The number of periods of the two-dimensional rectangular

lattice, Mx and Nz, along the x and z axes, respectively, is

determined by the structure width, Lx ¼ Mx�x, and thickness,

Lz ¼ Nzd.

We can now rewrite the four boundary conditions given in

(4a), (4b), (4c) and (4d) in a scalar form to simplify their use in

recurrence relations (6):

(a) For the transmitted waves inside the crystal: at the top

surface, Tm
0 , and left vertical face, T0

n , of the crystal

Tm
0 ¼ expði’m

x;inÞ ¼ exp½ið2�=�Þm�xðcos �1 � cos �BÞ�;

T0
n ¼ expði’n

z;inÞ ¼ exp½ið2�=�Þndðsin �1 � sin �BÞ�:
ð7aÞ

(b) For the diffracted waves just outside the crystal: at the

top surface, Ev
hðm�x; 0Þ, and right vertical face, Ev

hðMx�x; ndÞ,

of the crystal

Ev
hðm�x; 0Þ ¼ Sm

0 expði’m
x;SÞ

¼ Sm
0 exp½ið2�=�Þm�xðcos �B � cos �2Þ�;

Ev
hðMx�x; ndÞ ¼ SMx

n expði’n
z;SÞ

¼ SMx
n expfið2�=�Þ½Mx�xðcos �B � cos �2Þ

� ndðsin �B � sin �2Þ�g:

ð7bÞ

(c) For the transmitted waves just outside the crystal: at the

bottom surface, Ev
trðm�x;NzdÞ, and right vertical face,

Ev
trðMx�x; ndÞ, of the crystal
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Figure 3
A schematic of dynamical diffraction on a lateral crystal, where the (n, m)
nodes approximately indicate where the beam will be partially
transmitted to the next atomic plane or partially reflected.



Ev
trðm�x;NzdÞ ¼ Tm

Nz
expði’m

x;TÞ

¼ Tm
Nz

expfið2�=�Þ½m�xðcos �B � cos �2;trÞ

þ Nzdðsin �B � sin �2;trÞ�g;

Ev
trðMx�x; ndÞ ¼ TMx

n expði’n
z;TÞ

¼ TMx
n expfið2�=�Þ½Mx�xðcos �B � cos �2;trÞ

þ ndðsin �B � sin �2;trÞ�g:

ð7cÞ

(d) For the diffracted waves inside the crystal: at the left

vertical face, S0
n, and bottom surface, Sm

Nz
, of the crystal (to

indicate the absence of the incoming diffracted wave from this

particular direction)

S0
n ¼ Sm

Nz
¼ 0: ð7dÞ

The simulation procedure based on (6) is described in detail

by Punegov et al. (2014). The difference is only in the

requirement to use the boundary conditions at all external

surfaces of the lateral crystal.

The amplitude reflection Sðqx; qzÞ and transmission

Tðqtr;x; qtr;zÞ coefficients of the lateral plane-parallel crystal-

line structure are the following sums:

Sðqx; qzÞ ¼ SðBÞð�1; �2Þ þ SðLÞð�1; �2Þ; ð8Þ

Tðqtr;x; qtr;zÞ ¼ TðBÞð�1; �2;trÞ þ TðLÞð�1; �2;trÞ: ð9Þ

Here we distinguish the coefficients relating to the local Bragg

geometry diffraction (see Fig. 2),

SðBÞð�1; �2Þ ¼
PMx

m¼0

Sm
0 expði’m

x;SÞ;

TðBÞð�1; �2;trÞ ¼
PMx

m¼0

Tm
Nz

expði’m
x;TÞ;

and the coefficients relating to the local Laue geometry

diffraction (see Fig. 2),

SðLÞð�1; �2Þ ¼
PNz

n¼1

S
Mx
n expði’n

z;SÞ;

TðLÞð�1; �2;trÞ ¼
PNz

n¼1

T
Mx
n expði’n

z;TÞ:

The connection between the angular parameters

�1;2 ¼ �B þ��1;2 and the projections of the reciprocal space

vectors qx, qz is as follows (cf. Iida & Kohra, 1979):

qx ¼ k sin �Bð��1 ���2Þ;

qz ¼ �k cos �Bð��1 þ��2Þ: ð10Þ

The components of the newly introduced vector qtr depend on

�1;2;tr ¼ �B þ��1;2;tr:

qtr;x ¼ k sin �Bð��1 ���2;trÞ;

qtr;z ¼ k cos �Bð��2;tr ���1Þ: ð11Þ
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Figure 4
(a) The reflection rocking curve, (b) the transmission rocking curve and (c) the normalized diffracted RSM for a lateral crystal with thickness Lz = 3 mm
and width Lx = 5 mm. Red lines (2) in (a) and (b) show simulations for a crystal with width Lx =1. The RSM is shown in logarithmic scale.
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Figure 5
(a) The reflection rocking curve, (b) the transmission rocking curve and (c) the normalized diffracted RSM for a lateral crystal with thickness Lz = 3 mm
and width Lx = 37.4 mm. Red lines (2) in (a) and (b) show simulations for a crystal with width Lx =1. Points 1 and 2 correspond to the minimum and
maximum diffracted intensity, respectively, near the node (111) in reciprocal space. The RSM is shown in logarithmic scale.

Figure 6
(a) The reflection rocking curve, (b) the transmission rocking curve and (c) the normalized diffracted RSM for a lateral crystal with thickness Lz = 13 mm
and width Lx = 18.7 mm. Red lines (2) in (a) and (b) show simulations for a crystal with thickness Lz = 1. The blue dashed line (3) in (a) shows
simulations using kinematical diffraction theory. The RSM is shown in logarithmic scale.



In the so-called !–2! (or �–2�) scanning mode there is the

following connection between the angular deviations for the

registered diffracted beam in the Bragg geometry: ��1 ¼

��2 ¼ !. Then qx ¼ 0 and qz ¼ �k cos �Bð2��1Þ ¼

�2k cos �B !. This scanning mode condition ��1 ¼ ��2 ¼ !
also satisfies the so-called lateral (for the top surface of the

lateral crystal) diffraction condition [see e.g. ch. 4 in Pietsch et

al. (2004)] and corresponds to a crystal truncation rod (CTR)

scan along the qz direction.

The CTR scan in the Laue geometry is performed along the

qx direction. Then, for the registered diffracted beam ��1 ¼

���2 ¼ !, qx ¼ k sin �Bð2��1Þ ¼ 2k! sin �B and qz ¼ 0.

To follow the direction of the transmitted wave for both the

Laue and Bragg geometries, the condition ��2;tr ¼ ��1 ¼ !
must be satisfied to enable the comparison with the traditional

dynamical diffraction approaches (16) and (17). This makes

qtr;x ¼ qtr;z ¼ 0.

The above-mentioned conditions (��1 ¼ ��2 ¼ ! for the

qz scan, ��1 ¼ ���2 ¼ ! for the qx scan and ��2;tr ¼

��1 ¼ ! for the transmitted beam) will be used in x3 to

compare the simulations done using (6), (8) and (9) and the

traditional dynamical diffraction approaches (13), (14), (16)

and (17).

3. Numerical modelling

The numerical modelling of RSMs and directional scans in

reciprocal space for the transmitted and diffracted waves, in

the case of the lateral crystal, is performed using (6), (8) and

(9). For comparison, the modelling of Bragg or Laue diffrac-

tion for a crystal having an infinite extent in one direction was

done using (13) and (14) or (16) and (17), respectively. In our

simulations we use Cu K�1 radiation (the wavelength is

0.154056 nm) for the (111) reflection of an Si crystalline

structure. The appropriate Bragg angle is �B ¼ 14.22�. The

primary extinction length (Authier, 2001) for the Si(111)

Bragg diffraction case is 1.506 mm (Stepanov & Forrest, 2008);

the Pendellösung distance for the Laue diffraction case is

18.67 mm (Stepanov & Forrest, 2008).

In Figs. 4–7 the rocking-curve simulations for a lateral

crystal, based on (8) and (9), are labelled 1, and the Bragg

[(13) and (14)] and Laue [(16) and (17)] diffraction case

simulations for a crystal having an infinite extent in one

direction are labelled 2. In an effort to apply proper normal-

ization, all simulated reflected/transmitted-wave intensities for

a lateral crystal were normalized on the maximum intensity of

the rocking curves for a plane-parallel crystal [(13), (14), (16)

and (17)] of the same thickness. We can say for a lateral crystal

that the Bragg–Laue diffraction case applies if Lx >Lz. Then,

if Lx <Lz, the Laue–Bragg diffraction case applies. All RSMs

in Figs. 4–7 are shown in a logarithmic scale. A step size of

0.178 for intensity maps was used in Figs. 8 and 9.

3.1. Bragg–Laue diffraction

First we consider the case Lx >Lz, where the major effect is

caused by Bragg diffraction and Laue diffraction plays a minor
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Figure 7
(a) The reflection rocking curve, (b) the transmission rocking curve and (c) the normalized diffracted RSM for a lateral crystal with thickness Lz = 63 mm
and width Lx = 18.7 mm. Red lines (2) in (a) and (b) show simulations for a crystal with thickness Lz =1. The RSM is shown in logarithmic scale.



role. For the same crystal thickness, Lz, of 3 mm, which is twice

the primary extinction length, we compare the simulation

results for two different crystal widths, namely a small lateral

width (Lx = 5 mm) and a large lateral width (Lx = 37.4 mm)

Fig. 4 shows simulations for the reflection rocking curve

(Fig. 4a, blue line 1), transmission rocking curve (Fig. 4b, blue

line 1) and diffracted RSM for a crystal width Lx of 5 mm. For

comparison, also shown are (red lines labelled 2) the reflection

(Fig. 4a) and transmission (Fig. 4b) rocking curves for a crystal

having an infinite extent in the x direction. Despite the crystal

thickness, Lz, still being the same, the simulation curves for a

lateral crystal (blue lines) and a plane-parallel crystal (red

lines) are markedly distinguished. For such a ‘narrow’ lateral

crystal, the dynamical interaction between the transmitted and

diffracted wave cannot properly occur, and the rocking curves

and RSM demonstrate the semi-dynamical character of such

an interaction.

For the case of a ‘wide’ lateral crystal with width Lx =

37.4 mm (see Figs. 5a and 5b) the difference between rocking

curves calculated for a lateral crystal (Lx = 37.4 mm) and a

plane-parallel crystal (Lx = 1) is markedly smaller. The

existing difference can be explained by the redirection of

intensity in the Laue diffraction channel. Fig. 5(c) shows the

diffracted intensity RSM for a ‘wide’ lateral crystal with width

Lx = 37.4 mm near the node (111) in reciprocal space, which

corresponds to the origin of Fig. 5(c). Points 1 and 2, shown in

Fig. 5, correspond to the minimum and maximum diffracted

intensity, respectively, near the node (111) in reciprocal space.

3.2. Laue–Bragg diffraction
Now we consider the case of Laue–Bragg diffraction, where

the major role is played by Laue diffraction. To analyse this

case, one needs to choose Lx <Lz for the lateral crystal. Our

simulations are done for two lateral crystals having the same

width Lx = 18.7 mm, which coincides with the Pendellösung

distance, and different thicknesses, Lz, namely 13 and 63 mm.

Fig. 6 shows the simulations for the reflection rocking curve

(Fig. 6a, blue line 1), transmission rocking curve (Fig. 6b, blue

line 1) and diffracted RSM (Fig. 6c) for a crystal thickness Lz

of 13 mm. The red line in Figs. 6(a) and 6(b) shows the simu-

lations [based on (16) and (17)] for a crystal having an infinite

thickness, i.e. Lz = 1. There is a substantial difference

between these simulation results. However, both demonstrate

typical characteristic features of Laue diffraction. The blue

dashed line in Fig. 6(a) shows the kinematical diffraction

simulation [based on equation 3.9 of Authier (2001)]. This

demonstrates that the kinematical theory cannot correctly

describe the dynamical character of interaction between the

transmitted and diffracted wave in the Laue diffraction case.

For the second crystal, having a thickness Lz of 63 mm, the

simulation results (see Fig. 7) are very similar to those [based

on (16) and (17)] for a crystal with thickness Lz = 1. The
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Figure 8
(a) The reflection and (b) the transmission X-ray intensity distribution
maps (in linear scale with a step size of 0.05 for intensity) at ! ¼ 0 inside a
crystal having width Lx = 37.4 mm and thickness Lz = 3 mm. The red and
blue colours correspond to 1 (maximum) and 0.05 (minimum),
respectively.

Figure 9
(a) The reflection and (b) the transmission X-ray intensity distribution
maps (in linear scale with a step size of 0.05 for intensity) at ! ¼ 500 inside
a crystal having width Lx = 37.4 mm and thickness Lz = 3 mm. The red and
blue colours correspond to 1 (maximum) and 0.05 (minimum),
respectively.



observed small difference between the red (Lz =1) and blue

(Lz = 63 mm) lines can be explained by the Bragg diffraction

channel, where a part of the intensity escapes through the top

and bottom surfaces of the lateral crystal.

3.3. X-ray wavefields inside the lateral crystal

Figs. 8 and 9 show the reflection and transmission X-ray

intensity distribution maps at points 1 and 2 shown in Fig. 5(a),

respectively, inside a crystal having width Lx = 37.4 mm and

thickness Lz = 3 mm. The maps are given using a linear scale

with a step size of 0.05 for intensity. Red and blue colours

correspond to 1 (maximum) and 0.05 (minimum) intensity,

respectively.

The crystal width corresponds to two of the Pendellösung

distances in the Laue geometry. The diffraction and trans-

mission rocking curves as well as RSMs for this crystal are

shown in Fig. 5. In particular, the angular positions ! ¼ 0 and

! ¼ 500 correspond to points 1 (qz = 0) and 2 (qz = �2 mm�1),

respectively. It should be noted that in this particular case

Bragg diffraction plays the major role.

First we consider the case when ! ¼ 0. As the Darwin curve

centre is shifted owing to refraction by about 700, the Bragg

diffraction intensity (see Fig. 8a) at this angular position is

small (see also Fig. 5). However, in the Laue geometry there is

no such refraction shift; therefore this angular position is

expected to have a high intensity for the Laue diffraction case

(see Fig. 8b) in a lateral crystal having thickness Lz = 3 mm. At

the same time, this Laue type of diffraction is relatively weak

since the left vertical face of the lateral crystal is only 3 mm.

Nevertheless, we observe the Pendellösung effects in the form

of ellipses in both the diffracted (Fig. 8a) and transmitted

(Fig. 8b) wavefields.

When ! ¼ 500 (or qz = �2 mm�1) (see Fig. 9), which corre-

sponds to point 2 in Fig. 5, we observe the maximum intensity

in the Bragg diffracted wavefield at the top surface of the

lateral crystal (see Fig. 9a). One can see two areas of such

strong intensity near the top surface. Such inhomogeneity is

caused by the Laue diffraction effects at the left and right

vertical faces of the lateral crystal.

The maximum value of transmitted intensity at the top left

corner of Fig. 9(b) is caused by the boundary conditions: in

particular, the X-ray wave is incident on the left vertical face

and top surface of the lateral crystal. The further propagation

inside the crystal diminishes the transmitted-wave intensity

owing to the primary extinction effects caused by interference.

Therewith its energy is transferred into the diffracted wave.

3.4. Effect of the deformation field

The approach presented in x2 allows one to simulate

dynamical diffraction RSMs for a deformed lateral crystal. To

illustrate this ability we use a model of the deformation field

reported by Cha et al. (2010). This parabolic displacement may

be associated (Cha et al., 2010) with the attachment of the

lateral crystal to a substrate and can be approximated as

exp½ih � uðrÞ� ¼ exp½i’ðrÞ� ¼ exp½i	ðx� Lx=2Þ2�, where 	 is a

constant inversely proportional to the radius of curvature and

’ðrÞ is the phase shift caused by the deformation field. In our

simulations we have chosen the values of the coefficient 	 to

have a maximum of the phase shift, ’ðrÞ, of either � or 2�
radians at the edges of the lateral crystal. Such a phase shift is

the so-called strong phase limit, which is extremely likely to

occur in practice (Cha et al., 2010). However, the support-

based phasing method, used in the iterative reconstruction

procedure reported by Cha et al. (2010), was not successful for

such large phase shifts.
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Figure 10
RSMs for a deformed lateral crystal with thickness Lz = 3 mm and width
Lx = 5 mm. The maximum phase shift, ’ðrÞ, caused by the deformation is
(a) � and (b) 2�. The RSMs are shown in logarithmic scale.

Figure 11
RSMs for a deformed lateral crystal with thickness Lz = 13 mm and width
Lx = 18.7 mm. The maximum phase shift, ’ðrÞ, caused by the deformation
is (a) � and (b) 2�. The RSMs are shown in logarithmic scale.



We applied this deformation field to two of the lateral

crystals considered in this paper, namely the lateral crystal

having thickness, Lz, of 3 mm and lateral width, Lx, of 5 mm

(see Fig. 10 and Figs. 12a and 12b) and the lateral crystal

having thickness, Lz, of 13 mm and lateral width, Lx, of 18.7 mm

(see Fig. 11 and Figs. 12c and 12d).

The simulated RSMs (Figs. 10 and 11) demonstrate broad-

ening in the qx direction in comparison with the RSMs from

non-deformed crystals (Figs. 4c and 6c). The deformation

producing the maximum phase shift, ’ðrÞ, of 2� radians causes

splitting of the diffraction patterns (see Figs. 10b and 11b).

Fig. 12 shows the qx scans (with qz = 0) for the diffracted

intensity (Figs. 12a and 12c) and the appropriate transmission

rocking curves (Figs. 12b and 12d). The qz scans do not

demonstrate sensitivity to this deformation field depending on

the x coordinate only. These qx scans allow one to see the fine

structure of the intensity distribution shown in RSMs (Figs. 10

and 11). In Fig. 12 the maximum phase shift, ’ðrÞ, caused by

the deformation is either zero (blue lines 1) or � (red lines 2),

or 2� (black lines 3).

4. Conclusions

We have demonstrated how the dynamical theory approach

for lateral crystals, first implemented in the case of non-

deformed crystals for Bragg geometry (Punegov et al., 2014)

using Darwin’s dynamical theory, can be extended to the case

of deformed crystals in mixed Bragg–Laue geometries using

Takagi’s equations. This approach allows calculations of RSMs

in both the directions of the transmitted and diffracted waves

for rectangular-shaped crystals of arbitrary sizes. This makes

easier the solution of X-ray diffraction inverse problems based

on minimization of the discrepancy between the simulated and

experimental data (Pavlov et al., 1995; Punegov et al., 1996;

Kirste et al., 2005; Vartanyants & Yefanov, 2015) in high-

resolution X-ray diffractometry and CDI. The approach can

be potentially extended to the three-dimensional case in both

the Fourier space and real space.

APPENDIX A
Here we provide a short review of some classical results

obtained for symmetrical Bragg and Laue X-ray diffraction on

plane-parallel non-deformed crystals of a finite thickness.

These results are used to simulate rocking curves in the Bragg

and Laue geometries in the main part of this paper. Here we

assume that the incident X-ray wave is a plane wave of unit

intensity and infinite extent. Also in this paper we consider

only a symmetrical coplanar diffraction case for � polariza-

tion.

Let us start with Takagi’s equations (Takagi, 1969)

describing symmetrical Bragg diffraction by an ideal crystal

having thickness Lz (see Fig. 1a). Here the angle between the

wavevector of the incident plane wave and the top crystal

surface is �1 ¼ �B þ !, where ! ¼ �1 � �B is the angular

deviation from the Bragg angle �B for the family of reflecting

atomic planes (hkl).
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Figure 12
(a) The reflection rocking curve (a qx scan) and (b) the transmission rocking curve for a lateral crystal with thickness Lz = 3 mm and width Lx = 5 mm. (c)
The reflection rocking curve (a qx scan) and (d) the transmission rocking curve for a lateral crystal with thickness Lz = 13 mm and width Lx = 18.7 mm. The
maximum phase shift, ’ðrÞ, caused by the deformation is either zero (blue lines 1) or � (red lines 2), or 2� (black lines 3).
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where E0;hð
z; zÞ are the amplitudes of the transmitted and

diffracted waves, respectively, a
ðBÞ
0 ¼ ��0=ð�j sin �BjÞ, a

ðBÞ
h;�h ¼

C��h;�h=ð�j sin �BjÞ, 
z ¼ 2k cosð�BÞ! is the angular para-

meter used in the so-called !–2! scanning mode (the qz scan

in reciprocal space for the diffracted wave), � is the X-ray

wavelength in vacuum, k ¼ 2�=�, C is the polarization factor

(C = 1 for the �-polarization case considered in this paper),

�g ¼ �r0�
2Fg=ð�VcÞ are the Fourier coefficients of dielectric

susceptibility (polarizability) where g ¼ 0; h; �hh, Fg is the

structure factor, Vc is the volume of the elementary unit cell,

r0 ¼ e2=ðmc2Þ is the classical electron radius, c is the speed of

light in vacuum, and e and m are electron charge and electron

mass, respectively.

As the crystal and the incident wave are of infinite extent in

the x direction, the amplitudes of both the transmitted and

diffracted waves depend only on the z coordinate. We consider

the case when the angular deviation ! is small.

Using the following boundary conditions for the incident

E0ð
z; z ¼ 0Þ ¼ T ¼ 1 and the reflected Ehð
z; z ¼ LzÞ ¼ 0

waves as well as for the amplitude reflection S
ðBÞ
1 ð
zÞ ¼

Ehð
z; z ¼ 0Þ and amplitude transmission T
ðBÞ
1 ð
zÞ ¼

E0ð
z; z ¼ LzÞ coefficients, one can obtain (Punegov, 1991,

1993; Punegov et al., 2010), in the case of symmetrical Bragg

diffraction, the amplitude reflection coefficient at the top

surface and the amplitude transmission coefficient at the

bottom surface, respectively:

SðBÞ1 ð
zÞ ¼ a
ðBÞ
h fexp½i�ðBÞ Lz� � 1g=Q; ð13Þ

TðBÞ1 ð
zÞ ¼ expfi½a
ðBÞ
0 þ �

ðBÞ
1 �Lzg½�

ðBÞ=Q�; ð14Þ

where �ðBÞ ¼ f½2a
ðBÞ
0 þ 
z�

2
� 4a

ðBÞ
h a
ðBÞ
�hg

1=2, �ðBÞ1;2 ¼ f�½2a
ðBÞ
0 þ


z� � �
ðBÞg=2 and Q ¼ �ðBÞ1 exp½i�ðBÞLz� � �

ðBÞ
2 . The primary

extinction length (Authier, 2001) �ext ¼ �j sin �Bj=ðC�j�hjÞ is

one of the major characteristic parameters of dynamical

diffraction in the Bragg geometry. If the crystal thickness is

smaller than the primary extinction length, it is usually

assumed (Authier, 2001) that kinematical diffraction will

occur. This is not always correct for the lateral crystalline

structures (Punegov et al., 2014).

Let us now consider the case of symmetrical Laue diffrac-

tion on a plane-parallel crystal having thickness Lx (see

Fig. 1b). Note that we use the same family of reflecting planes

(hkl) as in the Bragg case considered above. As the crystal and

the incident wave are of infinite extent in the z direction, the

amplitudes of both the transmitted and diffracted waves

depend only on the x coordinate. Takagi’s equations (Takagi,

1969) for the transmitted and diffracted waves are as follows:

@

@x
E0ð
x; xÞ ¼ ia

ðLÞ
0 E0ð
x; xÞ þ ia

ðLÞ
�h Ehð
x; xÞ

�
@

@x
Ehð
x; xÞ ¼ i½a

ðLÞ
0 þ 
x�Ehð
x; xÞ þ ia

ðLÞ
h E0ð
x; xÞ

8><
>:

ð15Þ

where a
ðLÞ
0 ¼ ��0=ð�j cos �BjÞ and a

ðLÞ
h;�h ¼ C��h;�h=

ð�j cos �BjÞ. Here, 
x ¼ 2k sinð�BÞ! is the angular parameter

describing the qx scan in reciprocal space for the diffracted

wave.

The boundary conditions in the case of symmetrical Laue

diffraction are E0ð
x; x ¼ 0Þ ¼ T ¼ 1, Ehð
x; x ¼ 0Þ ¼ 0.

In this diffraction geometry, the amplitude reflection

S
ðLÞ
1 ð
xÞ ¼ Ehð
x; x ¼ LxÞ and the amplitude transmission

T
ðLÞ
1 ð
xÞ ¼ E0ð
x; x ¼ LxÞ coefficients are considered at a

distance Lx from the entrance surface (see Fig. 1b). The

analytical solutions for the amplitude reflection coefficient and

the amplitude transmission coefficients, respectively, are

(Punegov & Pavlov, 1992)

SðLÞ1 ð
xÞ ¼ 2ia
ðLÞ
h expfi½a

ðLÞ
0 þ 
x=2�Lxg sin½�ðLÞLx=2�=�ðLÞ; ð16Þ

TðLÞ1 ð
xÞ ¼ expfi½a
ðLÞ
0 þ 
x=2�Lxgfcos½�ðLÞLx=2�

� i
x sin½�ðLÞLx=2�=�ðLÞg; ð17Þ

where �ðLÞ ¼ ½
2
x þ 4a

ðLÞ
h a
ðLÞ
�h�

1=2. In the case of Laue diffraction

the major characteristic parameter is the Pendellösung

distance �0 ¼ �j cos �Bj=ðCj�hjÞ (Authier, 2001).
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