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The classical dynamical theory of X-ray diffraction is expanded to the special

case of transversely restricted wavefronts of the incident and reflected waves.

This approach allows one to simulate the two-dimensional coherently scattered

intensity distribution centred around a particular reciprocal lattice vector in the

so-called triple-crystal diffraction scheme. The effect of the diffractometer’s

instrumental function on X-ray diffraction data was studied.

1. Introduction

Recently, triple-crystal X-ray diffraction (Iida & Kohra, 1979;

Zaumseil & Winter, 1982) has been successfully applied to

investigate a variety of crystalline structures (Bhagavannar-

ayana & Zaumseil, 1997; Kazimirov et al., 1990; Faleev et al.,

2013; Lomov et al., 2014; Punegov, 2015) and X-ray optical

elements (Jergel et al., 1999; Irzhak et al., 2015). Despite the

fact that diffracted waves contain both coherent and diffuse

scattered components, typically only the latter, caused by

scattering on defects, is analysed, often only qualitatively.

However, if one wants to quantitatively analyse the scattered

intensity distribution (i.e. reciprocal space map) near a parti-

cular reciprocal lattice vector where the coherent scattering is

strong, some approximations of coherent scattering (Punegov,

2012) have to be used. These approximations are used because

the current dynamical diffraction approach (Authier, 2001)

assumes that the incident wave is a plane wave. Such an

assumption results in the Dirac delta function intensity

distribution (Kaganer et al., 1997) for the coherent scattering

component, which makes impossible quantitative analysis of a

diffraction pattern near the particular reciprocal lattice vector

(Fig. 1).

It should be noted that quantitative analysis of coherently

scattered waves was recently performed for crystals having a

finite length in the lateral direction (Punegov et al., 2014, 2016;

Pavlov et al., 2017). In this case the limited lateral size of such

crystals restricts the illuminated area and, therefore, the

diffracted intensity distribution is not a Dirac delta function

anymore.

The diffraction of transversely restricted X-ray beams was

considered (Berenson, 1989; Bushuev, 1998; Bushuev &

Oreshko, 2007) in the case of the so-called double-crystal

diffraction scheme. In particular, an approach using Green
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functions was employed by Bushuev (1998) and Bushuev &

Oreshko (2007) to describe the spatially inhomogeneous

Bragg diffraction by an ideal crystal. However, the results of

Bushuev (1998) and Bushuev & Oreshko (2007) cannot be

directly applied for the triple-crystal diffraction scheme

because their approach integrates the angular distribution of

the reflected wave, which can be resolved in the triple-crystal

diffraction scheme because of the presence of the analyser

crystal.

This paper aims to provide a quantitative analysis of two-

dimensional diffraction intensity distributions of coherently

scattered waves within the framework of dynamical diffraction

theory in the case of transversely restricted wavefronts of the

incident and diffracted waves.

2. Diffraction theory for transversely restricted X-ray
waves

Let us consider dynamical X-ray diffraction by a perfect

crystal in a Cartesian system of coordinates where the x and y

axes are parallel to the top crystal surface, and the z axis is

directed inside the crystal (Fig. 2). Thus, the xOz plane is the

plane of diffraction. The angle between the wavevector of an

incident monochromatic plane wave (of unit intensity) and the

positive x direction is � ¼ �B þ !, where ! is the angular

deviation from the Bragg diffraction angle �B (Fig. 2). The

entrance slit S1 determines the wave’s transverse width w.

Thus, the illuminated area of the top surface of the crystal is

lðinÞx ’ w= sin �B. The transverse size of the reflected (scattered)

wave is limited by the exit slit S2, which defines a lateral size of

lðexÞ
x (Fig. 2) at the crystal surface. We also assume that the

propagation distance between the particular slit and the

crystal surface is small enough to satisfy the geometrical optics

approximation.

For the sake of simplicity, we consider a symmetrical

diffraction case in Bragg geometry (Fig. 2). The dynamical

diffraction by an ideal crystal can be described by Takagi’s

equations (Takagi, 1962) as follows:

cot �B

@

@x
þ
@

@z

� �
E0ð�; x; zÞ ¼ ia0E0ð�; x; zÞ

þ iah Ehð�; x; zÞ;

cot �B

@

@x
�
@

@z

� �
Ehð�; x; zÞ ¼ iða0 þ �ÞEhð�; x; zÞ

þ iahE0ð�; x; zÞ;

8>>>>>><
>>>>>>:

ð1Þ

where E0;hð�; x; zÞ are the complex amplitudes of the trans-

mitted and reflected electric field waves, respectively,

� ¼ 4� cos �B !=� is the angular parameter used in the

double-crystal diffraction in the !–2� mode, a0 ¼ ��0=ð��0Þ,

ah;h ¼ C��h;h=ð��h;0Þ, � is the X-ray wavelength in a vacuum,

�0;h ¼ sin �B, C is the polarization factor, and �g ¼

�r0�
2Fg=ð�VcÞ are the Fourier components of polarizability,

with g ¼ 0, h, h. Here Vc is the volume of the unit cell,

r0 ¼ e2=ðmc2Þ is the classical electron radius, e and m are the

electric charge and mass of an electron, c is the speed of light,

and Fg is the structure factor. More information about Taka-

gi’s equations and approximations used in them is given by

Authier (2001) and Härtwig (2001).

Equation (1) can be simplified if both the incident plane

wave and the crystal are homogeneous in the x direction, in

which case there is no dependency on the x coordinate:

@

@z
E0ð�; zÞ ¼ ia0E0ð�; zÞ þ iah Ehð�; zÞ;

�
@

@z
Ehð�; zÞ ¼ iða0 þ �ÞEhð�; zÞ þ iahE0ð�; zÞ;

8><
>: ð2Þ

which solution is well known in the case of Bragg geometry for

an ideal crystal of thickness lz (see e.g. Punegov, 1993; Punegov

et al., 2010). Taking into account the boundary conditions at

the top [E0ð�; z ¼ 0Þ ¼ 1] and the bottom [Ehð�; z ¼ lzÞ ¼ 0]

surfaces of the crystal, the amplitude transmission coefficient

Tð�Þ ¼ E0ð�; z ¼ lzÞ and the amplitude reflection coefficient

Rð�Þ ¼ Ehð�; z ¼ 0Þ are as follows:

Tð�Þ ¼ exp½iða0 þ �1Þlz�ð�=QÞ; ð3Þ

Rð�Þ ¼ ah ½expði�lzÞ � 1�=Q; ð4Þ

where � ¼ ð 2 � 4ahahÞ
1=2, �1;2 ¼ ð� � �Þ=2, Q ¼

�1 expði�lzÞ � �2 and  ¼ �þ 2a0.

However, if the incident wave is transversely restricted,

then one cannot use equation (2) and has to employ the more
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Figure 2
A diffraction scheme for the case of dynamical diffraction by a crystal of
thickness lz when the incident and the diffracted waves are transversely
limited by slits S1 and S2, respectively.

Figure 1
Reciprocal space map of diffracted intensity distribution near the 111
reflection of a semi-infinite Si perfect crystal in the case on an incident
plane wave. The intensity distribution along the qx direction is described
by a Dirac 	 function, while the intensity distribution along the qz

direction (blue curve), i.e. along the diffraction vector, is the well
recognized Darwin curve.



general equation (1), because the wave amplitudes will be

functions of the x coordinate.

We will use the following definitions of the inverse and

direct Fourier transforms:

E0;hð�; x; zÞ ¼
1

2�

Zþ1

�1

d
 exp i
xð ÞÊE0;hð
; �; zÞ; ð5Þ

ÊE0;hð
; �; zÞ ¼

Zþ1

�1

dx exp �i
xð ÞE0;hð�; x; zÞ; ð6Þ

where 
 is the coordinate in Fourier space which corresponds

to the x coordinate in real space. If we substitute equations (5)

and (6) into equation (1), we obtain

@ÊE0ð
; �; zÞ

@z
¼ iða0 � 
 cot �BÞÊE0ð
; �; zÞ þ iah ÊEhð
; �; zÞ;

�
@ÊEhð
; �; zÞ

@z
¼ iða0 þ �� 
 cot �BÞÊEhð
; �; zÞ

þ iahÊE0ð
; �; zÞ:

8>>>><
>>>>:

ð7Þ

Fourier transforms of the wave amplitudes in equation (7)

allows us to transform the two-dimensional system of equa-

tions (1) to the one-dimensional system of equations (7) in

real space, which has analytical solutions. Note that the

structure of equation (7) is similar to that of equation (2),

exclusive of different coefficients.

To solve equations (7) we need to define their boundary

conditions. Let us assume that the amplitude of the restricted

incident wave at the top crystal surface is defined by

f ðx; lðinÞx Þ ¼
1 �lðinÞx =2 � x � lðinÞx =2;
0 otherwise:

�
ð8Þ

This function is shown in Fig. 3(a), where lðinÞx is 300 and

900 mm. The function f ðx; lðinÞx Þ can be also represented as a

Fourier integral:

f ðx; lðinÞx Þ ¼
1

2�

Z1

�1

f̂f ð
; lðinÞx Þ exp i
xð Þ d
: ð9Þ

In Fourier space this function has the following analytical

expression:

f̂f 
; lðinÞx

� �
¼

sinð
 lðinÞx =2Þ


=2
: ð10Þ

The function f̂f ð
; lðinÞx Þ for 300 and 900 mm widths of the inci-

dent beam on the crystal surface is shown in Fig. 3(b).

If the amplitude of the incident wave at the crystal surface is

described by equation (8), this corresponds to the following

boundary condition in real space: E0ð�; x; 0Þ ¼ f ðx; lðinÞx Þ.

Using equations (6) and (10), we can also define the boundary

condition for the mixed representation ÊE0ð
; �; 0Þ ¼ f̂f ð
; lðinÞx Þ

at the top crystal surface (z = 0). The boundary condition for

the diffracted wave (in the mixed representation) at the

bottom surface of the crystal (z = lz) is ÊEhð
; �; lzÞ ¼ 0.

Using these boundary conditions, we can write down

analytical solutions to the system of equations (7) in the mixed

(in real and Fourier space coordinates) form for 0 < z < lz:

ÊE0ð
; �; zÞ ¼
~��1 expði ~��lzÞ �

~��2 expði ~��zÞ
~QQ

f̂f ð
; lðinÞx Þ

� exp½ið�0 þ
~��2Þz�;

ÊEhð
; �; zÞ ¼ ah

expði ~��lzÞ � expði ~��zÞ

~QQ
f̂f ð
; lðinÞx Þ

� exp½ið�0 þ
~��2Þz�;

ð11Þ

where �0 ¼ ða0 � 
 cot �BÞ, ~QQ ¼ ~��1 expði ~��lzÞ �
~��2, ~��1;2 ¼

ð� ~  � ~��Þ=2, ~�� ¼ ð ~  
2
� 4ahahÞ

1=2 and ~  ¼ �þ 2a0 � 2
 cot �B.

This mixed form solution (11) can be used to obtain [after

substitution into equation (5)] the amplitudes of the reflected

and transmitted waves as functions of the x and z coordinates

and the angular parameter �:

E0ð�; x; zÞ ¼
1

2�

Zþ1

�1

d

~��1 expði ~�� lzÞ �

~��2 expði�zÞ

~QQ
f̂f ð
; lðinÞx Þ

� expfi½ð�0 þ
~��2Þzþ 
x�g; ð12Þ
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Figure 3
The boundary functions in direct (a) and Fourier (b) space for 300 and
900 mm wave width on the top crystal surface.



Ehð�; x; zÞ ¼
ah

2�

Zþ1

�1

d

expði ~�� lzÞ � expði ~�� zÞ

~QQ
f̂f ð
; lðinÞx Þ

� expfi½ð�0 þ
~��2Þzþ 
x�g: ð13Þ

These integral solutions (12) and (13) to Takagi’s equations (1)

were obtained for particular boundary conditions (8) and (10).

At the bottom of the crystal (z = lz) the amplitude of the

transmitted wave can be obtained from equation (12) as a

function of the x coordinate and the angular parameter �:

Tð�; xÞ ¼
1

2�

Zþ1

�1

d

~��

~QQ
f̂f ð
; lðinÞx Þ expfi½ð�0 þ

~��1Þlz þ 
x�g:

ð14Þ

By substituting z = 0 in equation (13) we obtain the amplitude

of the reflected wave at the top surface of the crystal:

Rð�; xÞ ¼
ah

2�

Zþ1

�1

d

expði ~��lzÞ � 1

~QQ
f̂f ð
; lðinÞx Þ expði
xÞ: ð15Þ

The wider the incident X-ray wave, the narrower the function

f̂f ð
; lðinÞx Þ is in Fourier space (Fig. 3). In the case of the incident

plane wave the function f̂f ð
; lðinÞx Þ transforms into the Dirac

delta function [see equations 21.9-18c and 21.9-11 of Korn &

Korn (1968) and also Wei et al. (2002)]:

lim
l
ðinÞ
x !1

f̂f 
; lðinÞx

� �
¼ lim

l
ðinÞ
x !1

sinð
lðinÞx =2Þ


=2
¼ 2�	ð
Þ: ð16Þ

Then, in the case of the plane incident wave [see equation

(16)], solutions (14) and (15) transform into the well known

amplitude transmission [equation (3)] and reflection [equation

(4)] coefficients, respectively.

3. Reflection and transmission X-ray intensity
distribution maps inside a crystal

Let us consider an incident plane monochromatic X-ray wave

having � polarization and unit intensity. This wave illuminates

a crystal, and the angle between the wavevector of the incident

wave and the X axis is �0 ¼ �B þ !0. Then the transmitted

ITð�0; x; zÞ and reflected IRð�0; x; zÞ intensities inside the

crystal are defined as follows:

ITð�0; x; zÞ ¼ jE0ð�0; x; zÞj2;

IRð�0; x; zÞ ¼ jEhð�0; x; zÞj2;
ð17Þ

where the amplitudes E0;hð�0; x; zÞ are given in equations (12)

and (13), �0 ¼ 4� cos �B !0=�, and ! ¼ !0 is a small deviation

from the exact Bragg angle.

The numerical modelling is performed for a transversely

restricted X-ray wave having the wavelength � ¼ 0:154056 nm

(Cu K�1 radiation) in the case of an Si(111) reflection. The

angular position was corrected on the refraction shift

proportional to the real component of a0 in equation (1). The

Fourier components of polarizability, �g, where, g ¼ 0; h; h,

were obtained from Sergey Stepanov’s X-Ray Server

(Stepanov & Forrest, 2008). The primary Bragg extinction

length (Authier, 2001) for the Si(111) reflection is

l
ðzÞ
ext ¼ �jsin �Bj=ðC�j�hjÞ = 1.51 mm. The Bragg angle for this

reflection is 14.221� and the interplanar distance

d111 ¼ 3:1355 Å. The thickness of the crystal is lz = 100 mm.

Fig. 4 shows the reflection and transmission X-ray intensity

distribution maps at different �0 inside a crystal for lðinÞx =

300 mm. These maps were calculated using equations (12), (13)

and (17). The contours of equal intensity are shown on a

logarithmic scale with a step size of 0.58 for intensity. Note

that, although the thickness of the silicon crystal is 100 mm,

Fig. 4 shows only the upper part of the crystal, for the z

coordinate varying from 0 to 5 mm. At the larger depth both

the transmitted and reflected intensities become negligible (in

the vicinity of the Bragg diffraction angle) owing to primary

extinction effects (Authier, 2001).

If the angle of incidence is exactly the Bragg angle (i.e.

�0 ¼ !0 ¼ 0, �0 ¼ �B), then the intensity of the transmitted

and reflected waves exponentially decreases with the crystal

depth: IT;Rð0; x; zÞ / expð�2z=l
ðzÞ
extÞ (Authier, 2001) due to

primary extinction. Some intensity oscillations are observed

on the left side of the transmission and reflection intensity

distribution maps in Figs. 4(a) and 4(b). There the area of the

maximum transmitted intensity corresponds to the area of the

minimum reflected intensity. These oscillations can be

described as pseudo-Pendellösung oscillations, well known for

the Laue diffraction case (Authier, 2001). Evidently, the

transverse limitation of the incident beam shapes the area of

the crystal where the diffraction occurs.
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Figure 4
The transmission (a), (c) and reflection (b), (d) X-ray intensity
distribution maps (on a logarithmic scale with a step size of 0.58 for
intensity, where red and blue correspond to the highest and lowest
intensity, respectively) at !0 = 0 (a), (b) and !0 = 0.30 0 (c), (d) inside a
crystal for the case of the illuminated area lðinÞx = 300 mm.



To the left of the line AC (Fig. 5) the lattice planes do not

participate in the X-ray diffraction. Therefore, the scattering

crystal volume is limited by the top surface ABY and bottom

surface CDY planes as well as by the ACY plane. Conse-

quently, along the line AC, for example, at the point L (see

Fig. 5, where T is the transmitted wave and R is the reflected

wave), the X-ray wave is incident to the scattering atomic

planes in Laue geometry.

Note that the intensity of the transmitted wave decreases

with depth (i.e. in the positive z direction) owing to primary

extinction. The period of the pseudo-Pendellösung oscillations

(in the x direction) is l
ðxÞ
ext ¼ �jcos �Bj=ðCj�hjÞ ¼ � l

ðzÞ
ext cot �B.

Bushuev (1998) introduced a longitudinal extinction length

�x ¼ l
ðzÞ
ext cot �B, which differs only by a coefficient � from the

period of the pseudo-Pendellösung oscillations shown above.

Moving to the right from the line AC in the positive x

direction, X-ray diffraction predominantly transfers into the

Bragg diffraction case, and, hence, the amplitude of the

pseudo-Pendellösung oscillations reduces (Fig. 4). This

physical phenomenon resembles the Bragg–Laue diffraction

case in lateral (having a finite length in the lateral direction)

crystals (Punegov et al., 2016).

For the angular deviation !0 = 0.300 (Figs. 4c and 4d) the

extinction length increases, while the intensity of the trans-

mitted and reflected waves now decreases with the depth more

slowly: IT;Rð�0; x; zÞ / exp½�2zð1� �2
0=4ahahÞ

1=2=l
ðzÞ
ext�.

Whereas the left boundary (AC) of the transmitted and

reflected waves is well defined, the right boundary (near the

BD line) is more blurred owing to the dynamic interaction of

X-ray waves inside the crystal (Fig. 4). This effect becomes

more evident with the increase of the angular deviation from

the exact Bragg condition (Figs. 4c and 4d), which is consistent

with the conclusions of Berenson (1989).

Thus, a transversely limited incident X-ray wave ‘cuts’ in a

plane parallel crystal slab a laterally limited volume with a

cross section shaped as a parallelogram, the right-hand side of

which is diffused.

4. The triple-crystal diffraction scheme

The triple-crystal X-ray diffraction scheme allows one to

register two-dimensional maps of the diffracted intensity

distribution in reciprocal space. These two-dimensional maps

are dependent on two angular parameters, ! and ", which

specify the angular positions of the investigated sample and

the analyser crystal (Iida & Kohra, 1979), respectively. In the

symmetrical Bragg geometry these two angular parameters

are related to the projections qx;y of the deviation of the

diffraction vector from the reciprocal lattice point:

qx ¼ k sin �Bð2!� "Þ;

qz ¼ �k cos �B ";
ð18Þ

where k ¼ 2�=�. In the case of the triple-crystal diffraction

scheme [the detailed geometry of this scheme is shown by

Nesterets & Punegov (2000)] the angular variable � can be

written as

� ¼ qx cot �B � qz: ð19Þ

To proceed from the double-crystal to the triple-crystal

diffraction scheme in the case of spatially restricted waves, the

amplitudes E0;hð�; x; zÞ in equations (12) and (13) must be

Fourier transformed with respect to the qx variable. Then, the

intensity of the reflected X-ray wave at the top surface of the

crystal is written as

IRðqx; qzÞ ¼
1

lnorm

ZlðexÞ
x =2

�l
ðexÞ
x =2

dx exp �iqxxð ÞEhð�; x; 0Þ

�������

�������

2

: ð20Þ

In equation (20) we took into account that the X-ray wave

reflected by the sample is incident on the analyser crystal (or a

two-dimensional detector) as a transversely restricted wave

with a lateral width of lðexÞ
x . After some algebra, equation (20)

can be represented in the following (cross-correlation) form:

IRðqx; qzÞ ¼

ah

2� lnorm

Zþ1

�1

expði ~��lzÞ � 1

~QQ
f̂f ð
; lðinÞx Þ f̂f ð
� qx; lðexÞ

x Þ d


������
������

2

: ð21Þ

Here lnorm is equal to the smaller of lðinÞx and lðexÞ
x ;

~�� ¼ ð ~  
2
� 4ahahÞ

1=2, ~  ¼ 2a0 � qz þ ðqx � 2
Þ cot �B and

f̂f ð
� qx; lðexÞ
x Þ ¼ sin½ð
� qxÞ l

ðexÞ
x =2�=½ð
� qxÞ=2�.

Now we consider some special cases.

4.1. Unrestricted reflected X-ray wave (absence of slit S2)

Consider the case where slit S2 is absent, and the analyser

crystal and detector collect the entire reflected wave. Mathe-

matically, this means that lðexÞ
x !1. Then, the function

f̂f ð
� qx; lðexÞ
x Þ ¼ 2�	ð
� qxÞ, which can be substituted into

equation (21) to obtain the solution for the reflected wave

intensity distribution in reciprocal space:
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Figure 5
A schematic representation of dynamical diffraction of the spatially
limited X-ray wave inside a crystal. Here T is the transmitted wave and R
is the reflected wave. AB and CD are the top and bottom surfaces,
respectively. AC defines a boundary of the incident wave.



IRðqx; qzÞ ¼ ah

expði�lzÞ � 1

Q
sincðqxlðinÞx =2Þ

����
����

2

; ð22Þ

where � ¼ ð 
2
� 4ahahÞ

1=2, �1;2 ¼ ð� � �Þ=2, Q ¼

�1 expði�lzÞ � �2,  ¼ 2a0 � qx cot �B � qz and sincðxÞ ¼

sinðxÞ=x.

Note that in the expression for  the term qx cot �B is taken

with a minus sign. The intensity in equation (22) depends on

the lateral size lðinÞx of the incident X ray wave. In the case of an

!–2� scan (an analogy of the double-crystal diffraction

scheme) the result shown in equation (22) coincides with the

conclusions of Bushuev (1998) and Bushuev & Oreshko

(2007) obtained for the double-crystal diffraction scheme.

Fig. 6 demonstrates how the reciprocal space maps (RSMs)

near the Si(111) reciprocal lattice vector depend (in the

absence of slit S2) on the lateral width, lðinÞx , of the incident

X-ray wave, defined by slit S1. In the case of a wide

(lðinÞx ¼ 900 mm) incident beam, an inclined oscillating streak,

related to the width of the incident beam, and a narrow

vertical streak of the so-called main peak (see Fig. 6a) appear

on the RSM. The angle between the main streak and the

oscillating streak is equal to the Bragg angle. In the triple-

crystal diffraction scheme this oscillating streak is usually

called the analyser pseudo-peak. The length and width of this

inclined oscillating streak increase while the lateral width of

the incident wave decreases (Fig. 6b and 6c).

4.2. Unrestricted incident plane wave (absence of slit S1)

Consider the case when a laterally unrestricted plane X-ray

wave is incident on the top surface of the crystal. This means

that lðinÞx !1 and, as shown above [see equation (16)],

f̂f ð
; lðinÞx Þ ¼ 2�	ð
Þ, which can be substituted into equation

(21):

IRðqx; qzÞ ¼ ah

expði�lzÞ � 1

Q
sincðqxlðexÞ

x =2Þ

����
����

2

; ð23Þ

where � ¼ ð 
2
� 4ahahÞ

1=2, �1;2 ¼ ð� � �Þ=2, Q ¼

�1 expði�lzÞ � �2 and  ¼ 2a0 þ qx cot �B � qz.

Equation (23) demonstrates that the intensity of the

reflected (scattered) wave depends on the lateral width lðexÞ
x . In

addition, the term qx cot �B, present in equation (23) through

the angular parameter  , has a positive sign in contrast to

equation (22). Also note that expressions (22) and (23) have a

very similar form. The difference is only in parameters

lðinÞx $ lðexÞ
x in the sinc function and�qx cot �B $ qx cot �B in .

Fig. 7 demonstrates the calculated RSMs for the laterally

unrestricted incident X-ray wave while the lateral size of the

reflected wave is either 900 or 300 or 30 mm. Comparison of

Figs. 6 and 7 shows that the RSMs for the same size of the

incident and reflected beams have a mirror symmetry with

respect to the vertical axis. This directly follows from
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Figure 6
Calculated RSMs (on a logarithmic scale with a step size of 0.18 for intensity, where red and blue correspond to the highest and lowest intensity,
respectively) near the Si(111) reciprocal space vector for different lateral widths, lðinÞx , of the incident wave: (a) 900 mm, (b) 300 mm, (c) 30 mm. The lateral
width of the reflected wave is unrestricted.

Figure 7
Calculated RSMs (on a logarithmic scale with a step size of 0.18 for intensity, where red and blue correspond to the highest and lowest intensity,
respectively) near the Si(111) reciprocal space vector for different lateral widths, lðexÞ

x , of the reflected wave: (a) 900 mm, (b) 300 mm, (c) 30 mm. The width
of the incident wave is unrestricted.



equations (22) and (23), where the terms qx cot �B in the

expressions for the angular parameter  have opposite signs.

If in equation (23) the lateral width of the reflected wave

lðexÞ
x !1, then f̂f ðqx; lðexÞ

x Þ ¼ 2�	ðqxÞ and the reflected wave

intensity (in the case of unrestricted incident and reflected

X-ray waves) is

IRðqx; qzÞ ¼ 2�	ðqxÞ ah

expði�lzÞ � 1

Q

����
����

2

: ð24Þ

4.3. Formation of RSMs in the general case of the transversely
restricted incident and reflected X-ray waves

In the general case when both the incident and reflected

waves are transversely restricted (by slits S1 and S2), the RSMs

can be calculated using equation (21), which provides a

general solution for transversely restricted waves. Fig. 8 shows

simulations of RSMs near the Si(111) reciprocal space vector

for a crystal having a thickness lz = 100 mm for three different

lateral sizes of the incident wave, lðinÞx , namely 900, 300 and

30 mm, while the lateral size of the reflected wave, lðexÞ
x =

300 mm, is still unchanged.

If both waves (transmitted and reflected) are spatially

restricted, a mirror symmetry of inclined streaks (with respect

to the vertical axis) is observed in the RSMs. The length of

these streaks depends on the size of slits S1 and S2: the

narrower the slit, the wider and longer the intensity streak in

the RSM. The direction of the streaks in reciprocal space

coincides with the direction of the monochromator and

analyser pseudo-peaks in the triple-crystal diffraction scheme.

If the lateral dimensions of the incident and diffracted beams

are equal, the RSM has a symmetrical shape (Fig. 8b). If one of

the slits, for instance, S1, is significantly narrower than the

other slit, S2, changes in the shape and size of the intensity

streaks are evident (Fig. 8c).

4.4. Cross-sectional analysis of RSMs

First we consider the situation when slit S2 is absent. Then

the RSMs’ cross sections can be calculated using equation

(22), which may be represented as a product of two functions:

IRðqx; qzÞ ¼ jR1ðqx; qzÞR2ðqxÞj
2, where R1ðqx; qzÞ ¼ ah �

½expði�lzÞ � 1�=Q and R2ðqxÞ ¼ sinðqxlðinÞx =2Þ=ðqxlðinÞx =2Þ. The

first function, R1ðqx; qzÞ, coincides (in its form) with the clas-

sical solution (4) and depends on the thickness of the crystal lz.

The second function, R2ðqxÞ, which squared equals the Laue
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Figure 8
Calculated RSMs (on a logarithmic scale with a step size of 0.18 for intensity, where red and blue correspond to the highest and lowest intensity,
respectively) near the Si(111) reciprocal space vector for different lateral widths of the incident beam: (a) 900 mm, (b) 300 mm, (c) 30 mm. The lateral size
of the reflected beam is 300 mm.

Figure 9
The calculated qz (a) and qx (b) (on a logarithmic scale) cross sections of
the Si(111) RSMs for different lateral widths of the incident beam: (1)
900 mm, (2) 300 mm, (3) 30 mm.



interference function, is determined by the width of the top

crystal surface illuminated by the incident X-ray wave.

Fig. 9 shows cross sections (along the qx and qz axes) of the

simulated RSMs near a (111) reciprocal space vector of a

perfect Si(111) crystal for three different lateral widths of the

incident beam. The !–2� diffraction curves or, in other words,

the qz cross section of the RSMs at qx = 0 for all three

presented RSMs are identical and represent the Darwin curve

(Fig. 9a). Thus, for a thick perfect crystal the lateral width of

the incident beam does not affect the profile of the qz cross

section of the RSM. The rocking curves (! curves) or, in other

words, the qx cross sections of Si(111) RSMs at qz = 0 show

dependency on the lateral width of the incident beam (see

Fig. 9b): the smaller the lateral width of the incident beam, the

wider the rocking curve.

Often the cross sections of experimental RSMs are

presented as functions of the angular deviation, !, from the

exact Bragg position. In the !–2� scanning mode or in the qz

cross-sectional scan, when for all angular positions ! ¼ "=2

(i.e. qx = 0), one obtains that  ¼ 2a0 þ 2k cos �B !. Taking

into account that R2ðqx ¼ 0Þ ¼ 1, the resulting expression for

the reflected intensity is IRðqx ¼ 0; !Þ ¼ jah½expði�lzÞ � 1�=Qj2,

where � ¼ ½ð2a0 þ 2k cos �B !Þ
2
� 4ahah�

1=2. This expression

shows that the cross section in the !–2� scanning mode does

not depend on the lateral width of the incident X-ray beam.

Fig. 10(a) shows a Darwin curve in the vicinity of the 111

reflection for a 100 mm thick Si(111) perfect crystal as a

function of the angular deviation !. The full width at half-

maximum (FWHM) of the diffraction curve is about 700.

In the !-scan mode (qz = 0, qx ¼ 2k sin �B !,  ¼ 2a0�

2k cos �B !), the reflected intensity can be written as

IRð!; qz ¼ 0Þ ¼ jR1ð!; qz ¼ 0Þj2 ½R2ð!Þ�
2. Unlike the !–2�

scan, the reflected intensity depends on the product of two

functions. The first, jR1ð!; qz ¼ 0Þj2 ¼ jah½expði�lzÞ � 1�=Qj2,

represents the !–2� diffraction curve, while the second one,

½R2ð!Þ�
2
¼ f½sinðk sin �B ! lðinÞx Þ�=ðk sin �B ! lðinÞx Þg

2, depends on

the lateral width of the incident X-ray wave and is a narrow

function of the angle ! (see Fig. 10b, curve 2), where � ¼
½ð2a0 � 2k cos �B !Þ

2
� 4ahah�

1=2. Note that jR1ð!; qz ¼ 0Þj2 ¼

jR1ðqx ¼ 0;�!Þj2, that is the ! scans of the Darwin curves for

the vertical [jR1ðqx ¼ 0;�!Þj2] and lateral [jR1ð!; qz ¼ 0Þj2]

cross sections of the RSMs are mirrored.

Fig. 10(b) shows an ! scan (blue curve 1) for a 100 mm thick

Si crystal in the vicinity of the 111 reflection, where the lateral

width of the incident X-ray beam lðinÞx ¼ 300 mm. This !
rocking curve (blue curve, 1) is a product of the narrow Laue

interference function (red curve, 2) and a broad Darwin curve

(black curve, 3). Thus the narrow curve ½R2ð!Þ�
2 determines

the narrow shape of the ! scan, having an FWHM of less

than 100.

5. Instrumental function

To analyse real experimental data, the analytical results

obtained in previous sections should be complemented by an

instrumental function, which contains information about the

monochromator and analyser crystals used in the experiment.

There are numerous theoretical and experimental analyses of

instrumental functions for different types of diffractometers

(Zaumseil & Winter, 1982; Holý & Mikulı́k, 1996; Fewster,

1989; Gartstein et al., 2001; Boulle et al., 2002; Mikhalychev et

al., 2015). The first theoretical description of how different

configurations of collimator/monochromator and analyser

crystals in the triple-crystal diffractometer affect the regis-

tered intensity was published by Zaumseil & Winter (1982).

Recent modelling of instrumental functions based on semi-

analytical backward ray tracing for high-resolution X-ray

diffractometers was reported by Mikhalychev et al. (2015). If

the main X-ray optical elements (e.g. collimators/mono-

chromators and analyser crystals) employ multiple reflections

(Mikhalychev et al., 2015), the intensity of the monochromator

and analyser pseudo-peaks is significantly reduced and is

sometimes totally suppressed (Fewster, 1989). Therefore, an

investigation of the effects of the instrumental function on

RSM distortions is essential for the correct interpretation of

experimental RSMs.
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Figure 10
(a) The !–2� diffraction curve IRðqx ¼ 0; !Þ ¼ jR1ðqx ¼ 0; !Þj2 in the
vicinity of the 111 reflection for a 100 mm thick Si(111) crystal as a
function of the angular parameter !. (b) The blue curve 1 is the rocking
curve IRð!; 0Þ ¼ jR1ð!Þj

2
½R2ð!Þ�

2 for an incident X-ray beam with the
lateral width lðinÞx ¼ 300 mm; the red curve 2 is the function ½R2ð!Þ�

2; the
black curve 3 is the function jR1ð!Þj

2 (the Darwin curve).



In our analysis we suppose that the scattered intensity is

already integrated along the qy direction. In addition, we will

also neglect non-monochromaticity of the incident radiation,

because its impact is much smaller than that caused by the

resolution functions of the monochromator and analyser

crystals (Mikhalychev et al., 2015). Let us now consider the

angular distribution of the scattered intensity I
ðinsÞ
R ðqx; qzÞ that

is recorded in the triple-crystal diffraction scheme with slits S1

and S2, which spatially restrict the incident and the reflected

waves, respectively.

In the case of symmetrical diffraction the angular deviation

of the sample, !, and the analyser crystal, ", are connected

with projections qx;z (Nesterets & Punegov, 2000):

! ¼
qx cos �B � qz sin �B

h cos �B

; " ¼ �
qz

k cos �B

; ð25Þ

where h is the vector of the reciprocal lattice. In the experi-

ment the angular deviation of the investigated sample, !, is

related to the angular deviation of the monochromator crystal

by 	 = �! and to the angular deviation of the analyser crystal

by � = ! � ". The appropriate reflection coefficients of the

monochromator and analyser crystals are then RMð�!Þ and

RAð!� "Þ, respectively.

Thus, the normalized diffracted intensity distribution in

reciprocal space, corrected by the instrumental function, can

be represented in the following form:

I
ðinsÞ
R ðqx; qzÞ ¼

Rþ1
�1

Rþ1
�1

dq0x dq0z R
M
ðq0x; q0zÞR

A
ðq0x; q0zÞ IRðqx � q0x; qz � q0zÞ

Rþ1
�1

Rþ1
�1

dq0x dq0z RMðq0x; q0zÞR
Aðq0x; q0zÞ

; ð26Þ

where

R
M
ðq0x; q0zÞ ¼ RM

�
q0x cos �B � q0z sin �B

h cos �B

� �
;

R
A
ðq0x; q0zÞ ¼ RA q0x cos �B � q0z sin �B

h cos �B

þ
qz

k cos �B

� � ð27Þ

are the reflection coefficients for the monochromator and

analyser crystals, respectively; IRðqx; qzÞ is the scattering

intensity, calculated using equation (22).

We can use for the functions RM;Að!Þ ¼ jrð!Þj2 the reflec-

tion coefficients for semi-infinite perfect crystals, where the

amplitude reflection coefficient, rð!Þ, is the well known func-

tion (Authier, 2001)

rð!Þ ¼
aM;A

h =�M;A
1 ð!Þ if Im½�M;Að!Þ�< 0;

aM;A
h =�M;A

2 ð!Þ if Im½�M;Að!Þ�> 0:

�
ð28Þ

The coefficients �M;Að!Þ and �M;A
1;2 ð!Þ depend on the para-

meters of the X-ray radiation, as well as on the structural
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Figure 11
(a) Rocking curves for the Ge(220) collimator/monochromator crystal in
the case of a single reflection (curve 1), a triple-bounce design (curve 2)
and a four-bounce design (curve 3). (b) RSM (on a logarithmic scale with
a step size of 0.18 for intensity, where red and blue correspond to the
highest and lowest intensity, respectively) of the instrumental function for
a four-bounce Ge(220) monochromator and a three-bounce Ge(220)
analyser crystal. M and A are the monochromator and analyser pseudo-
peaks, respectively.

Figure 12
The simulated RSMs (on a logarithmic scale with a step size of 0.18 for
intensity, where red and blue correspond to the highest and lowest
intensity, respectively) with the impact of the instrumental function for
different lðinÞx : (a) 30 mm, (b) 300 mm, (c) 900 mm, (d) lðinÞx =1.



parameters of the monochromator (M) and analyser (A)

crystals: �M;Að!Þ ¼ ½ð2aM;A
0 þ �Þ

2
� 4aM;A

h aM;A
�h �

1=2, �M;A
1;2 ð!Þ ¼

½��� �M;Að!Þ�=2 and � ¼ 4� cos �M;A
B !=�. Here ! is the

angular deviation from the appropriate Bragg angular posi-

tion, the coefficients aM;A

0;h;h
are equivalent to the coefficients

a0;h;h in equation (1), and �M;A
B are the Bragg angles for the

monochromator and the analyser crystals, respectively.

Using equation (26) we can analyse the impact of the

instrumental function on the formation of RSMs. In our

simulations we use a Ge(220) four-bounce monochromator

crystal and a Ge(220) triple-bounce analyser crystal. The

rocking curves for the Ge(220) triple-bounce and four-bounce

crystals and the RSM of the instrumental function are shown

in Fig. 11.

Fig. 12 shows RSMs, simulated with the impact of the

instrumental function, for the different lateral sizes of the

incident beam lðinÞx on the top surface of the investigated

crystal. Fig. 6 shows these RSMs simulated without the impact

of the instrumental function. The small lateral size of the

incident beam (Fig. 12a) causes a blurred intensity distribution

in the RSM.

An increase of the lateral width of the X-ray illuminated

area narrows the diffraction pattern (Figs. 12b and 12c). The

inclined strips on the RSMs are the result of the superposition

of two effects: the finite width of the incident beam (see Fig. 6)

and the analyser pseudo-peak. The four-bounce mono-

chromator pseudo-peak is practically non-observable on the

RSMs.

Fig. 12(d) shows the RSM simulated with the impact of the

instrumental function in the case of an indefinitely wide X-ray

incident beam. Short streaks of the monochromator and

analyser crystal pseudo-peaks are observed, due to the effect

of the instrumental function. Without the instrumental func-

tion effects, only the main peak would be observable (Punegov

et al., 2016).

The qx and qz cross sections of RSMs calculated for the

different lðinÞx while accounting for the instrumental function

are shown in Fig. 13.

The extent and intensity of the qx cross-section ‘tails’

depend on the lateral width of the incident radiation: the

wider the incident beam, the weaker the intensity of the ‘tails’.

In the case of the unrestricted plane incident wave the ‘tails’

are absent (Fig. 13a, curve 4). The instrumental function

extends the qz cross section and changes its shape [compare in

Fig. 13(b) curves 1 and 2 and the Darwin curve 3). Unlike the

qx cross section, the width of the incident beam does not affect

the shape of the qz cross section, with hardly noticeable

distinctions existing for the spatially unrestricted plane inci-

dent X-ray wave (Fig. 13b, curve 2).

6. Concluding remarks

The developed approach allows one to correctly simulate

RSMs and their cross sections for perfect crystals. Up to the

present only RSMs of diffuse scattering were usually simu-

lated, because the coherent component was typically calcu-

lated as a 	 function (Kaganer et al., 1997) in the case of the

laterally unrestricted incident plane wave. This prevented the

quantitative analysis of both the coherent and diffuse scat-

tering components. The developed approach will be applicable

for X-ray or neutron optics as well as for the optics of photonic

and liquid crystals. This approach will also be useful for

coherent diffraction imaging techniques (Pavlov et al., 2017).

It should be emphasized that the developed approach to the

theory of dynamical X-ray diffraction is more general than the

existing approaches because it takes into account the spatially

restricted X-ray beams that are used in all real experiments.

This approach may be developed further by extending the

statistical dynamical diffraction theory to the case of the

spatially restricted beams. This will allow one to correctly

calculate intensities of the coherent and diffuse scattered

waves.
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(curve 2); and for all lðinÞx (curve 3, curves are indistinguishable) without
taking into account the instrumental function.
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