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Abstract

The proliferation of new operators, innovative services and wireless technologies has

caused radio spectrum resources to become scarce. This scarcity has led to the con-

cept of cognitive radio (CR) communication. Spectrum sensing is a critical component

of CR networks for spectrum utilization. It is the process in which the CR users or

the secondary users (SUs) exploit unused licensed or unlicensed frequency bands pro-

viding minimal interference to the primary users (PUs). Spectrum sensing can be

categorized into two types : out-of-band sensing and in-band sensing. Out-of-band

sensing searches for an idle channel by sensing multiple channels sequentially until

an available channel is found. In-band sensing monitors a channel periodically while

using it, in order to detect the return of PUs, so that SUs can vacate the channel

immediately upon detection of returning PUs. This periodic spectrum sensing causes

SUs to halt its communication frequently. This causes a tradeoff between maintaining

high communications efficiency in the secondary network and avoiding disruption to

the primary network.

In this thesis, we use error vector magnitude (EVM) to develop a novel in-band

sensing technique that allows SUs to perform spectrum monitoring during transmis-

sion. EVM is being increasingly employed in the wireless industry and has already

become part of several wireless standards. However, this metric has been overlooked

in the context of CR despite having significant advantages. One advantage is that the

SU transmitted signal gets canceled out during EVM calculation, therefore we do not

require a sophisticated self-interference cancellation (SIC) technique as required by

full duplex (FD) techniques. The other advantage is that the EVM technique utilizes

fewer symbols, does not require any subcarriers to be reserved, provides results much

before demodulation and decoding thus giving us real time results. This monitoring

method differs from a spectrum sensing method in that the monitoring is applied dur-

ing reception of packets. It involves detecting the emergence of PUs during periods in
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Abstract ii

which the SUs are communicating. This method doesn’t halt the SU communication,

hence a significant gain in SU throughput is obtained. This spectrum monitoring

technique supplements the traditional spectrum sensing and provides enhanced com-

munications efficiency.

In the first part of this thesis, we study the performance of the EVM based PU

monitoring technique in orthogonal frequency division multiplexing (OFDM) based

CR networks. We utilize the pilot tones that are inherent to many OFDM based

standards to measure the EVM as the difference between the received and trans-

mitted pilot tones. We show that a step change in the EVM curve is sufficient to

detect a PU during ongoing SU transmission. The technique also allows us to locate

the bits corrupted by the PU’s arrival by looking at the EVM values of the pilot tones.

In the second part of this thesis we analytically characterize the performance of the

proposed method. We derive the probability density function (PDF) of the EVM

based statistic. We then analyze the detection performance with the complementary

receiver operating characteristics (CROC) curve in terms of type I and type II error

probabilities. In order to simplify the analytical expression, a Laplacian approxima-

tion method is also provided. We also present the joint PDF of the test statistic

towards the detection of the reappearing PU. A throughput performance of the pro-

posed detector is also analyzed. Simulation results illustrate that the EVM based

detection performs better than the energy detection (ED) method.

In a later part of the thesis, we show the application of the sequential change de-

tection also known as the quickest detection method to the EVM based detector.

Motivated by the results from CROC analysis and considering the importance of de-

tection delay in spectrum sensing, we develop an exact quickest detection scheme by

using a traditional cumulative sum (CUSUM) test. Simulation results show that the

quickest EVM detection significantly outperforms the quickest ED.
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Chapter 1

Introduction

1.1 Cognitive Radio Concept

Over the last decade, there has been a tremendous growth in wireless communication

technologies. Starting from first generation (1G) to currently being developed fifth

generation (5G) and Internet of Things (IoT) systems, we have witnessed a rapid

growth in the number of devices like smart phones, ipads, tablets, TVs, computers,

smart watches, global positioning system (GPS) devices etc. It is predicted that by

2021, there will be 16 billion devices connected [4]. As a result, a significant amount

of wireless data traffic is expected. Fig. 1.1 shows the wireless data traffic which

is expected to reach about 49 exabytes per month by the year 2021 [1]. A similar

trend is shown for mobile video traffic in Fig. 1.2 [1]. These trends clearly indi-

cate that there will be huge demand for radio spectrum in the future. Therefore,

for 5G networks, researchers are exploring the possibilities to use idle spectrum in

the millimeter wave range of 30 ∼ 300 GHz to improve bandwidth [5]. However, the

available frequency resources are becoming scarce due in part to the current fixed

spectrum allocation policy. These policies are governed by regulatory bodies, such

as Federal Communications Commission (FCC) in the United States and Office of

Communications (OFCOM) in the United Kingdom who allocates frequency bands

to particular licensed users for a specified period of time and no interruption from

unlicensed users is allowed [6–8].

This fixed spectrum allocation policy cannot fulfill the demand from users who are

always expecting better broadband services and higher data rates. On the other

hand, several studies and reports have indicated large portions of the allocated spec-
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trum are under-utilized and are idle over a wide range of frequencies in the spatial

and temporal domains [6, 9, 10]. It is found that high utilization is common in the

cellular and FM radio bands. It has been reported by the FCC that many licensed

frequency bands remain unused nearly ninety percent of the time [9,11,12]. Records

show that the spectrum utilization ranges from 15% to 85%, where it is found that

the utilization is more intense below 3 GHz and spectrum is under-utilized in the 3-6

GHz bands [9, 12]. The fixed spectrum allocation policy does not allow provision for

using these under-utilized spectral resources allocated to licensed users by unlicensed

users. This policy has led us to a situation where there would be no more frequencies

to license out for new and innovative wireless applications. As a result, the develop-

ment and implementation of new radio-based services would be more difficult all over

the world. Therefore, dynamic spectrum allocation and management are essential for

future wireless networks [13].

In this regard, CR has emerged as a technique to overcome this spectrum scarcity.

Figure 1.1: Global mobile traffic growth rate [1].

CR dynamically manages and shares unoccupied spectrum with secondary users (SUs)

with minimal interference to primary users (PUs). It was first proposed by J. Mi-

tola [14] as an intelligent radio transmitter/receiver which is aware of its surrounding

radio frequency (RF) environment and can adjust its operating parameters such as
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Figure 1.2: Application wise growth of mobile data traffic [1].

transmit power, modulation and coding scheme etc., dynamically. A CR cycle is

presented in Fig. 1.3. It consists of the four main functions which are spectrum sens-

ing, spectrum management, spectrum sharing and spectrum mobility [2]. Spectrum

sensing is done to find the spectrum holes and spectrum management is executed to

utilize these holes without causing interference to the PU. Spectrum sharing allows

the SU to share the spectrum with the PU. Finally, spectrum mobility allows the SUs

to move into an empty channel after vacating the current operating channel.

The CR improves the spectrum utilization by allowing SUs to access the licensed

channel opportunistically when the PU is absent. The process of detecting the pres-

ence or absence of the PU is called spectrum sensing [9] and is explained in detail in

chapter 2. Spectrum sensing is used for a fraction of the time and if the channel is

determined to be unoccupied, then the SU is allowed to transmit for the remaining

fraction of time. A CR enabled SU has to continuously sense the channel to avoid

interference with the PU and if the PU is detected, the SU has to immediately stop

operating within the specified channel and has to find new free channel space for

continuing the current operation. This continuous sensing process, called periodic

spectrum sensing, suspends SU transmission periodically to sense for reappearing PU

causing frequent halts in SU transmission [15]. This leads to an inefficient usage of
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Figure 1.3: Cognitive Radio Cycle [2].

the available spectrum and consequently to a reduction in the CR network capacity.

With this periodic spectrum sensing, there exists an inherent tradeoff which results

in either compromising SU throughput or PU quality of service (QoS) [16–19]. This

necessitates a new communication method which would monitor the frequency band

without interrupting the SU communications.

This thesis contains a new frequency domain based spectrum monitoring method

that detects the reappearing PU during ongoing SU transmission. An OFDM system

is considered for SU transmission. This method doesn’t halt the SU communication,

hence a significant gain in SU throughput can be obtained. This monitoring technique

supplements the traditional spectrum sensing and provides enhanced communications

efficiency.

1.2 Motivation

As discussed in Section 1.1, traditional spectrum sensing techniques rely on periodic

spectrum sensing, which reduces the CR network throughput as it frequently inter-

rupts the SU transmission. In this regard, several research efforts have been made

on spectrum monitoring which does not halt SU ongoing communication [15,20–27].
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A detailed schematic diagram is presented in Section 2.2 of chapter 2. The spectrum

monitoring method differs from a conventional spectrum sensing method in that the

monitoring is applied during reception. It involves detecting the emergence of PUs

during periods in which the SUs are communicating.

The techniques mentioned in [15, 20–27] have their own merits and drawbacks. The

method in [18, 24] has a complex SU decoder which strips-off the SUs transmitted

signal from the received signal and carries out energy detection spectrum sensing in

the remaining signal. However, this method only works under the ideal assumption of

perfect signal decoding which is very difficult to achieve in practice. In [22], a spec-

trum monitoring method is proposed for OFDM based CR by observing a change

in the number of reserved subcarriers. This method sacrifices its throughput as a

certain number of subcarriers are always reserved. The method in [26] requires an

SU transmitter to periodically insert zero-energy intervals in selected subcarriers and

as a result this method suffers from low throughput performance. Hence, increas-

ing the CR throughput under the constraint of reducing interference to the PU is a

real challenge. Apart from these techniques, there are FD (Full duplex) techniques

which are extensively used in CR to assist SUs in simultaneous sensing and transmis-

sion [28–32]. With FD radios equipped at the SUs, it can simultaneously sense and

access the vacant spectrum and thus significantly improves sensing performance and

data transmission efficiency. However, the performance of these techniques [28–32]

solely depends on the self-interference cancellation (SIC) capability of the system.

Hence, we believe that simpler and more practically implementable spectrum sensing

and monitoring techniques are lacking in the literature.

Different from these techniques, in this thesis, we consider an error vector magni-

tude (EVM) technique suitable for OFDM based CR. EVM measures the square root

of the error vector power, which is defined as the mean squared error (MSE) nor-

malized by the mean squared signal power. EVM is being increasingly employed in

the wireless industry and has already become part of several wireless standards like
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W-CDMA and the IEEE 802.11 family of WLAN, LTE, 5G etc [33, 34]. These stan-

dards use EVM to measure the inband error of digitally modulated signals. EVM

has been defined originally as a performance metric for transmitters, but now it is

used in receiver design and for more general signal analysis [35]. However, this metric

has been overlooked in the context of CR despite having significant advantages. One

advantage is that the SU transmitted signal gets canceled out during EVM calcula-

tion, therefore we do not require any sophisticated SIC method as required by FD

techniques. The other advantage is that the EVM technique utilizes fewer symbols,

does not require any subcarriers to be reserved and provides results much before de-

modulation and decoding thus gives us real time results. The focus of this thesis is

on developing a new spectrum monitoring method using EVM technique for OFDM

based CR networks. The primary objectives are to increase the detection performance

and throughput enhancement of the CR enabled SUs.

1.3 Thesis Contributions

This thesis explores and evaluates the application of EVM to detect the PU during

ongoing SU communication and develops a new inband sensing scheme for OFDM

based CR system. Previously spectrum monitoring techniques have been explored

for CR systems that resulted in low throughput performance and high computational

complexity. Moreover, the EVM metric has not been used either for spectrum sens-

ing or monitoring purpose in OFDM based CR system. Our method is generic and

can measure EVM using any embedded pilot tone pattern. Throughout the thesis,

we have followed the IEEE 802.11 ac pilot structure by way of practical example

although the analysis done in this thesis is general and may apply to any pilot tone

pattern.

The novel contribution of this thesis can be summarized as follows.

• The thesis addresses the problem of reduced throughput due to the periodic

spectrum sensing and monitoring in CR networks. The problem is approached
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by proposing a novel algorithm using the EVM metric which has not been

exploited for such purposes in the context of CR. The proposed method

(a) exploits the pilot tones that are inherent to many OFDM based standards

which are typically used for channel estimation and synchronization pur-

poses,

(b) utilizes fewer symbols and performs spectrum observation at the SU re-

ceiver,

(c) is direct and gives us real time results as the EVM metric can be obtained

much before demodulation and decoding of the received packets.

• A new quickest spectrum sensing technique is proposed based on the EVM

based change detection to analyze the detection delay performance.

• The performance of the proposed method is evaluated both analytically and via

simulations. These evaluations

(a) reveal the CROC performance of the proposed detection method in AWGN

channel. The results show that EVM based detector performs better than

the conventional energy detector.

(b) show that the throughput performance of EVM based detection is signifi-

cantly higher than energy based detection.

(c) show that CUSUM EVM performs better than CUSUM energy detection.

(d) reveal that for lower false alarm rates quickest EVM always outperforms

the quickest energy detection method.

(e) shows that the asymptotic approximation provided for the Bessel function

over-estimates CUSUM, particularly at lower values of interference to noise

ratio (INR).

1.4 Thesis Organization

The rest of this thesis is organized as follows:
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Chapter 2

This chapter presents a short summary of the different spectrum access techniques.

This is followed by a review of the different types of spectrum sensing methods for CR

networks that are in use today. Next, an overview of OFDM based CR is presented

along with the spectrum monitoring method used in this thesis.

Chapter 3

In this chapter the EVM based PU monitoring technique is described and its analyt-

ical and simulated performance are presented. The proposed technique detects the

reappearing PU during ongoing SU transmission. This technique also has the ability

to find the location of the bits corrupted by the PU’s arrival by looking at the EVM

values of the pilot symbols.

Chapter 4

The focus of this chapter is to analytically characterize the performance of the EVM

based detector proposed in chapter 3. First the PDF of the EVM test statistic is

presented. Next, the detection performance is analyzed with the CROC curves in

terms of type I and type II error probabilities. Then, the joint PDF of the test

statistic towards the detection of the reappearing PU is presented. Two types of PU

are considered in this chapter. In order to simplify the analytic results on detection

performance, the exact distribution of the EVM test statistic is approximated by a

Laplacian approximation. Finally, system performance is evaluated by simulation

primarily for the additive white Gaussian noise (AWGN) channel.

Chapter 5

This chapter shows the application of the sequential change detection also known as

the quickest detection method to the EVM based detector discussed in chapter 4. The

aim of this chapter is to develop a statistical framework to analyze detection delay,
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subject to certain false alarm constraints and more importantly to design a scheme

that can minimize the detection delay. To analyze the quickest detection, Page’s

CUSUM algorithm which is optimal by Lorden’s minimax formulation is described.

An asymptotic analysis of the CUSUM EVM algorithm is also provided.

Chapter 6

Finally, this chapter summarizes our novel contributions of the thesis and outlines

possible directions for future research
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Chapter 2

Background and Literature Review

This chapter provides the relevant background information required for the subse-

quent chapters. Section 2.1 presents CR network paradigms with their underlying

assumptions about network side information and the practicality of obtaining this

information. In Section 2.2, an overview of different types of spectrum sensing meth-

ods are given. Section 2.3 discusses OFDM based CR systems. A brief overview of

spectrum monitoring approach in OFDM based CR is also discussed. Finally, Section

2.4 concludes the chapter with a short summary.

2.1 Cognitive Radio Network Paradigms

Based on the spectrum access techniques, CR networks can be broadly categorized

using underlay, overlay and interweave paradigms [13]. There are diverse opinions

available in the literature about the use of the terms underlay, overlay and interweave

[13, 36]. In this thesis, we follow the classification provided by A. Goldsmith et al

in [13]. These network models basically differ depending on the knowledge that is

needed to coexist with the primary network. The knowledge may include information

regarding the activity, channel, encoding strategies and transmitted data sequences of

the PUs with which the SUs share the spectrum. Apart from this, a hybrid paradigm

which uses the combination of these three paradigms is considered as a potential

spectrum access technique in CR [37], [38], [39]. Fig. 2.1 graphically illustrates these

paradigms which are briefly discussed in the following paragraphs.

11
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2.1.1 Underlay Paradigm

Under the underlay paradigm, simultaneous transmission of the primary and the sec-

ondary users are allowed as long as the interference level at the PU side remains

acceptable. The maximum allowable interference level at the PU is measured by an

interference threshold that guarantees the reliable operation of the PUs regardless of

the SUs spectrum utilization [13, 40–43]. Beamforming techniques with the help of

multiple antennas can be used to maintain the interference at the PU within tolerable

limits [44]. In many cases, the SU transmitter spreads its power across wider bands

so that the transmission does not exceed an acceptable level of interference to the

PU receiver [36]. This technique can be used in ultra-wide-band (UWB) or spread

spectrum communication [13,41–43]. Restricting transmit power leads to a significant

reduction in channel capacity and radio coverage in the secondary network. Based

on the worst case assumption that PU transmits all the time, this approach does not

rely on detection and exploitation of spectrum white space.

Although, SUs can obtain the spectrum opportunities in the presence of PUs by

underlay access, the available spectrum is not fully utilized in idle states because the

transmit power is always restricted by the interference threshold regardless of the

PU’s state. The possibility of transmitting without interruption is an advantage that

underlay access offers, but this mode can transmit with maximum rate only when

the PU is silent. Transmission is also restricted to short-range communications due

to the strict transmission power limitations [13, 41,44].

2.1.2 Overlay Paradigm

Like the underlay approach, the overlay paradigm also allows concurrent primary

and secondary transmissions [40]. This paradigm assumes the SU to have adequate

knowledge of the PU codebooks and messages, and that channel gains mitigate the

interference at the secondary receiver. The interference mitigation technique can be

carried out with the help of advanced sophisticated signal processing techniques such
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as dirty paper coding (DPC) or SIC [13, 41, 43, 45]. The codebook information can

be obtained if the PUs follow a uniform standard for communication based on a

publicized codebook or they could broadcast their codebooks periodically [46]. A PU

message might be obtained by decoding the message at the secondary receiver.

The overlay model assumes that the PU message is known at the secondary transmit-

ter when the PU begins its transmission. The SUs utilize this knowledge and assign

part of their power to assist (relay) the PU transmissions. A two user interference

channel where the secondary transmitter has knowledge of the PU’s message can be

considered as a simplistic example of an overlay CR network. By careful choice of the

power split, the increase in the PUs SNR due to assistance from cognitive relaying

is exactly offset by the decrease in the PUs SNR due to the interference caused by

the remainder of SUs transmit power used for its own communication [13,43,45]. Im-

plementing DPC is highly complex [47] and is feasible only when perfect non-causal

knowledge of PU channel state information (CSI) is available [45]. Concurrent pri-

mary and secondary transmissions in the overlay technique can potentially provide

higher throughputs but this improvement quickly disappears as the distance between

the primary and secondary transmitters increases [36]. In practice, this approach is

difficult to implement due to the high level of cognition and cooperation required

between primary and secondary systems.

2.1.3 Interweave Paradigm

The interweave approach is the original approach to CR [14]. It is the first concept

evolved with CR communication. It encompasses interference avoidance or oppor-

tunistic techniques which require SUs to communicate opportunistically using spec-

tral holes in space, time and frequency which are not occupied by the PUs [13, 41].

SUs opportunistically using these spectrum holes without affecting the PUs is a tech-

nique called interweave communication [41, 43, 48]. The SU is permitted to utilize

the spectrum when the PU is inactive. In this case, the SU transmission power is

not restrained as the PU interference tolerance level is no longer an operational con-
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dition but is limited by the range and duration of available spectral holes [49]. This

intermittent nature of interweave communication may delay some application flows

significantly (eg, transmitting a short file, fetching a web page etc.) if the PU happens

to arrive while the SU is scanning for a new available channel.

Under this paradigm, an accurate spectrum sensing mechanism is required to find

the spectrum holes so that the SU does not cause any harmful interference to the PU.

It should also be noted that when the PU reappears in a certain licensed channel, the

SU should immediately vacate the channel and be switched to another unoccupied

channel. We have considered interweave network paradigm throughout the thesis.

2.1.4 Hybrid Paradigm

Hybrid paradigms using a combination of the aforementioned paradigms have great

potential to improve the efficiency of spectrum sharing [37], [38], [39]. Fig. 2.1 il-

lustrates the idea of hybrid access method. Under interweave spectrum access, SUs

are not allowed to cause any interference to the primary network. Therefore, the SU

must periodically monitor the radio spectrum to detect spectrum occupancy and only

opportunistically communicate over spectrum holes. This approach may reduce effec-

tiveness of spectrum utilization. On the other hand, interweave spectrum access may

offer superior system performance, such as outage probability and error probability

as compared to underlay and overlay networks given the same propagation environ-

ment [50]. In underlay spectrum access the SUs and PUs can simultaneously share

the same licensed spectrum provided that the secondary transmit power is adjusted

to meet the interference power constraint imposed by the PU. The spectrum utiliza-

tion is improved effectively in underlay spectrum access compared to the interweave

scheme as spectrum can be utilized at any time.

Different from the traditional three spectrum access modes, in a hybrid interweave-

underlay CR system, the SU adaptively switches between interweave and underlay

approaches according to the state of the spatial spectrum [51]. In particular, one
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transmission slot of the hybrid cognitive transmission always consists of two phases,

a sensing phase and a data transmission phase as in [52]. In the first phase, the

SU, listens to the spectrum allocated to the PU to detect the state of the PU. In

the second phase, the SU adapts its transmit power based on the sensing results. If

the spectrum is sensed idle in the first phase, taking advantage of not requiring the

interference constraint, the SU operates in interweave mode with maximum transmit

power. In contrast, if the PU is active, the SU must switch to underlay mode under

the interference power constraint imposed by the PU.

The throughput performance of an interweave system is seriously affected by the

quality of spectrum sensing, while underlay CR systems manipulate their transmis-

sion strategy according to a fixed interference temperature constraint, without ex-

ploiting the traffic pattern (or activity profile) of the PU. Hence, through combining

interweave and underlay spectrum schemes, the spectrum utilization can be improved.

The interweave approach ignores the interference tolerance capability of the PUs and

focuses only on the bursty PU traffic. The possibility of having secondary transmis-

sion with full power is neglected in the underlay based approach. In this context, the

interweave-underlay hybrid spectrum can overcome the aforementioned drawbacks

and achieve higher secondary throughput while protecting the PUs [53–57].

2.2 Overview of Spectrum Sensing for Cognitive

Radio

Spectrum sensing refers to the process of sensing a channel for a fixed amount of

time called sensing time to detect PU signals in order to determine its availability to

SUs [58, 59]. Once a channel is sensed idle, it can be utilized by SUs until its PU’s

return to the channel [9]. Spectrum sensing can be categorized into two types [59]:

out-of-band sensing and in-band sensing. Out-of-band sensing is searching for an idle

channel by sensing multiple channels sequentially until an available channel is found.
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Figure 2.1: CR network paradigms.

In-band sensing monitors a channel periodically while using it, in order to prevent

interference with the PU. Since the PUs are given priority in accessing their own

channel, SUs must vacate the channel as soon as they detect the PUs. It is desirable

to perform in-band sensing as frequently as possible for fast detection of the returning

PUs. However, such in-band sensing incurs significant overhead and requires the SU

to stop its transmission periodically. This periodic spectrum sensing requires tradeoff
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between maintaining high communications efficiency in the secondary network and

avoiding disruption to the primary network.

In this thesis, we propose a novel in-band sensing technique that permits SUs to

perform spectrum monitoring during transmission. Generally, spectrum sensing tech-

niques can be classified as primary transmitter detection, primary receiver detection

and interference management [58]. Primary transmitter detection is based on detect-

ing the primary user transmission using local observations at the SU [59]. Primary

receiver detection aims at finding the PUs that are receiving data within the communi-

cation range of a SU [9,58,59]. Interference temperature is an interference assessment

metric proposed by the FCC which aims to measure the interference experienced by

the PU [48]. Based on the difficulties that lie in employing primary receiver detection

and interference temperature management, most of the literature on spectrum sensing

focuses on primary transmitter detection to identify the presence or absence of the
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PU signal transmission [6,9,59]. A detailed survey of various spectrum sensing tech-

niques for primary transmitter detection are presented in [6, 58–66]. These different

spectrum sensing techniques for primary transmitter detection are listed in Figure

2.2. They have their own operational requirements, advantages and disadvantages

from the practical perspectives which are discussed below.

2.2.1 Energy Detection Based Spectrum Sensing

Energy detection is the most commonly used sensing technique because of its low

computational and implementation complexities [6, 41, 60, 67–72]. It is known as a

blind detection technique as it does not require any information about the PU sig-

nals [41,60,67]. In this method, the energy in the signal, received by the SU is used to

determine the presence or absence of the PU. Primarily, the decision statistic of the

energy detector, which is defined as the average or total energy of a certain number of

observed samples, is compared with a predetermined threshold in order to ascertain

the presence or absence of the PU [6, 9, 41, 58, 60, 69, 70, 73]. The performance of the

energy detector is evaluated with two parameters: probability of detection (PD) and

probability of false alarm (PF ) [6,9,60,69]. PD is defined as the probability of detect-

ing the PU correctly while PF is deciding that the PU is present while it is actually

absent. The goal of energy detection is to maximize the probability of detection sub-

ject to a predefined probability of false alarm [6,67].

Energy detection can be formulated as a binary hypothesis testing problem [6, 41,

60,67–70],

H0 : y(l) = w(l)

H1 : y(l) =

s(l)︷ ︸︸ ︷
x(l) ∗ h(l) +w(l). (2.1)

Here, y(l) is the received signal with x(l) and w(l) denoting the PU signal and the

zero mean, additive white Gaussian noise (AWGN). The channel impulse response is

denoted by h(l) and s(l) is the received PU signal with channel effects. In the absence
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of the PU, hypothesis H0 is true and y(l) consists only of noise i.e., w(l) whereas the

PU signal s(l) is present along with w(l) under hypothesis H1. The corresponding

test statistic is obtained as,

Z(y) =
1

L

L−1∑
l=0

|y(l)|2, (2.2)

where L is the length of the observation sequence. Furthermore, the test statistic

Z has a central chi-square square distribution with 2L degrees of freedom for H0

hypothesis, while it has a non-central chi square distribution with 2L degrees of

freedom for H1 hypothesis [74]. Based on the central limit theorem, when the number

of samples is large (L > 250), Z can be accurately approximated by a Gaussian

distribution [75, 76]. The corresponding approximated expressions of PF and PD for

AWGN channel can be expressed as

PF = Pr(Z(y) > λ|H0) = Q

(
λ− σ2

w

σ2
w/
√
L

)
(2.3)

PD = Pr(Z(y) > λ|H1) = Q

(
λ− σ2

w(1 + γ)

σ2
w(1 + γ)/

√
L

)
, (2.4)

where γ = σ2
s

σ2
w

is the instantaneous signal to noise ratio (SNR) and σ2
s and σ2

w denote

the variance of the received PU signal with channel effects and noise, respectively.

Q(.) is the standard Gaussian complementary cumulative distribution function and

λ is the predefined threshold. In general, the variance of the PU signal is unknown

to the CR, and hence λ is calculated by the assumed noise variance and desired PF .

As it is impossible to know the exact noise variance in practice, the PF and PD re-

sults are highly dependent upon the accuracy of noise variance estimate. Therefore, a

small variation in noise variance estimation can cause significant loss in the detection

performance.

Although energy detection is easy to implement, it suffers from different drawbacks

such as noise variance uncertainty, inability to differentiate interference from PUs and
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the noise, and poor performance under low SNR values [77].

2.2.2 Matched Filtering Based Detection

Matched filtering based detection is the optimal detection technique in stationary

Gaussian noise channels when the information about the PU signal is known to the

SU as it maximizes the received signal-to-noise ratio (SNR) [9,78]. The matched filter

output is compared with the threshold in order to verify the existence of the PU. This

detection scheme requires less time to achieve high processing gain, but it requires a

priori knowledge of the PU signal such as modulation type, frame format, pulse shape

as well as accurate synchronization at the SU [69, 72, 79]. In CR, such knowledge is

not readily available to an SU, thus making it a highly complex detection scheme to

implement [6,59,72]. Because of these drawbacks, the match filtering based detection

technique is not practical in the context of spectrum sensing [80].

2.2.3 Cyclostationary Feature Based Sensing

Cyclostationary based detectors exploit the cyclostationary features of the received

signals to detect the presence of the PU in a given spectrum [48,60,72,73]. Cyclosta-

tionary features of a signal may be related to its carrier frequency, symbol structure

such as cyclic prefix, chip, code or hop rates, as well as their harmonics, sums and

differences [81]. As different transmission systems have different cyclostationary fea-

tures; therefore with sufficient knowledge the detector can distinguish different types

of PUs. Detection is based on the cyclic spectral density and is able to separate the

PU signal from noise due to the fact that white noise has little correlation hence

its cyclic spectral density is weak. Therefore, a cyclostationary feature detector can

perform better than an energy detector in discriminating against noise due to its re-

silience to the uncertainty in noise power [82]. However, it is computationally complex

and requires very long observation times [73,83]. Moreover, it requires the knowledge

of the cyclic frequencies of the PUs, which may not be available to the SUs. Also,

cyclostationarity can be destroyed by channel fading and is susceptible to sampling
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clock offset [84].

2.2.4 Eigenvalue Based Sensing

Eigenvalue based sensing utilizes functions of the eigenvalues of the sample covariance

matrix as test statistics. The main idea behind eigenvalue based sensing is to exploit

correlation in the received signal if a PU is present. The eigenvalue distributions of

the sample covariance matrices differ under the H0 and H1 hypotheses. By exploiting

this difference, eigenvalue based techniques make decisions about the presence or the

absence of the PU signal. This sensing scheme does not require knowledge of the

noise variance information in the observation. Thus, it is considered as a potential

solution to the challenging and problematic noise uncertainty conditions [85–87]. As

noise variance has no use in eigenvalue based sensing, changes or uncertainty of noise

variance have only a minor effect on sensing performance. However, this sensing

method still has the drawback of high implementation complexity.

2.2.5 Waveform Based Sensing

Waveform based detectors are a simplified version of the matched filtering detection

method, where the exact signal transmitted by the PU is required for optimum de-

tection. These detectors aim to detect a prior known signal or sequence expected

within the PU signal through correlation detection [69,77,88]. Most existing wireless

communication systems introduce pre-known patterns such as pilot signal, preamble,

etc. to assist synchronisation, signal detection and other purposes [72]. The detec-

tion of the PU signal is carried out by performing correlation between the received

signal and a known copy of the pattern. Waveform detectors have little implemen-

tation complexity as knowledge available to the SU detector is restricted to signals

known through standards and specifications. The waveform detector assumes that

a pattern exists in the PU signal that is perfectly known to the SU and detectable.

However if the detector is required to detect the wide range of PU, the database of

known patterns may become large and complex to manage. In general, waveform
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detectors have better detection performance and require shorter time over the energy

detector [69,77].

2.2.6 Quickest Detection

Quickest detection is a form of sequential change detection, that differs fundamentally

from block detection and the sequential hypothesis testing method discussed above.

This detection scheme does not aim to decide between the hypotheses H0 and H1,

instead it tries to detect a change of the hypothesis with minimum delay [89,90]. The

block based detection approaches aim to maximize the detection probability subject

to constraints on the false alarm probability. In addition to the detection probability,

the detection delay is also an important performance metric in CR. If a PU stops

transmission, then a SU should detect this event quickly, in order to be able to start

its own transmission quickly. A small detection delay will allow SUs to take short

transmission opportunities. On the other hand, if the PU starts transmission, the SU

should detect this event as quickly as possible, in order to vacate the band for the

PU. A small detection delay will allow the design of the spectrum reuse scheme that

has minimal impact on the licensed users.

In quickest detection problems, samples are observed sequentially. Initially, the sam-

ples are drawn from a fixed distribution. At an unknown time, the distribution will

change if the PU becomes operational. The objective is to detect the occurrence of

the change with minimal delay, such that the delay between the point at which the

change actually occurs and the point at which the algorithm detects such a change

is minimized, subject to a certain false alarm rate [41,90,91]. Thus, agile and robust

detection can be obtained by utilizing the theory of quickest detection [6, 92].

2.2.7 Error Vector Magnitude (EVM) based Sensing

EVM based sensing, which is the focus of this thesis, utilizes the square root of the

ratio of the mean error vector power to the mean reference power [93]. In a perfect
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system, free of noise and non-linearities, the measured vector and the reference vector

would be identical, and the EVM would be zero. Conversely, a large EVM suggests

that the measured symbol is significantly displaced from the ideal reference vector

which can only be the result of noise, distortions and interference effects. EVM is

being increasingly employed in the wireless industry as well as in the research com-

munity [94]. It can easily identify the type and source of degradation in a wireless

communication system. It is considered as a more convenient symbol level perfor-

mance metric than bit error rate [95]. It differs from traditional spectrum sensing in

that, it doesn’t require a quiet period for spectrum sensing and allows simultaneous

sensing and transmission in CR. In this technique, spectrum sensing is performed at

the SU receiver.

EVM can be computed much before demodulation and decoding of the received pack-

ets, thus giving the real time result which is a strong requirement for detecting the

reappearing PU in CR [93, 96]. Between consecutive sensing intervals, traditional

spectrum sensing provides no information about the status of the frequency band. If

the duration of sensing is too large, then the SU network throughput becomes low

and if the duration of sensing is too small, then the interference to the PUs becomes

excessive. EVM based sensing helps to get rid of this kind of trade-off in CR since

the SU can monitor the frequency band without interrupting their communications.

The method supplements traditional spectrum sensing and provides enhanced com-

munications efficiency. Mainly, the decision statistic of the EVM detector, which is

defined as the root mean square (RMS) error between the transmitted symbol and

the received symbol measured over a certain number of observed samples, is com-

pared with a predetermined threshold in order to know the presence or absence of the

PU. The performance of the EVM detector is evaluated with two parameters : type

I and type II error probability which are often called probability of false alarm and

probability of missed detection.
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2.3 OFDM Based Cognitive Radio

OFDM is a multi-carrier modulation technique which has proven to be a reliable

and effective transmission method in many wireless systems including digital video

broadcasting (DVB-T/T2), LTE, IEEE 802.16d/e WiMAX, IEEE 802.11a/g wireless

LAN, and the first CR standard wireless regional area network, IEEE 802.22 WRAN.

It splits the data into blocks and every block is modulated using closely spaced or-

thogonal subcarriers. This splitting decreases the inter-symbol interference (ISI) by

making the symbol duration large enough so that the channel induced delay spread

are insignificant (< 10%) fraction of symbol duration. It has been recognized as a

potential transmission technology for CR systems due to its several advantages for

high bit-rate communications as well as its capability to dynamically allocate unused

spectrum among CR users [97]. This OFDM technique provides spectral efficiency,

which is most required for CR systems. It is very flexible and adaptive technology so

that the subcarriers can be turned on and off according to the environment and can

assist CR dynamically.

The need for complex equalizers at the receiver side is reduced while using OFDM.

Other advantages of OFDM include robustness against narrow band interference

(NBI), scalability and easy implementation using the fast Fourier transform (FFT) al-

gorithm [98]. On the other hand, OFDM systems have their own challenges [97]. The

OFDM signal has a noise like amplitude with a very large dynamic range referred

as peak to average power ratio (PAPR) which may result in inter-carrier interfer-

ence (ICI). Moreover, it is vulnerable to synchronization non-idealities, including the

symbol timing offset (STO), carrier frequency offset (CFO), and sampling frequency

offset(SFO) which needs special treatment [20, 99]. A typical block diagram of the

OFDM based CR transmitter and receiver is shown in Fig. 2.3. Let d = (d1, d2, .....dn)

be a data stream modulated to x = (x1, x2, ....xn) by an M-ary Phase Shift Keying

(MPSK) or an M-ary quadrature amplitude modulation (M–QAM) modulator. The

modulated data stream is then split into N slower data streams using a serial to
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Figure 2.3: Secondary user transmitter and receiver structures.

parallel (S/P ) converter. Each of these streams is transmitted on one of the N or-

thogonal subcarriers and then summed up to give a composite OFDM signal. We

assume a contiguous block of spectrum is available for SU data transmission which

allows the spectrum to be fully utilized. This decision is made by employing spec-

trum sensing and channel access techniques. We assume that the information from

spectrum sensing about the licensed users is available at the transmitter side. We

assume perfect spectrum sensing information at the start of monitoring [22, 27]. If

initial spectrum sensing is not perfect, then it will degrade the spectrum monitoring

performance. Based on the results of spectrum sensing we modulate data and pilot

symbols on the set of available subcarriers for SU transmission. The SU transmitter

that sends packets is referred to as the source and a SU receiver that receives the

packets is referred to as a sink. Our system model, shown in Fig. 2.3, starts commu-

nication after a secondary radio has gained access to a frequency band. After pilot

insertion, the modulated data X(k) is converted into a time domain signal by taking

the N -point IFFT. Thus the transmitted OFDM signal in the discrete-time domain,

excluding guard interval can be expressed as

x(n) = IFFT{X(k)} =
1

N

N−1∑
k=0

X(k)ej2πkn/N , n = 0, 1......N − 1, (2.5)
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where k is the subcarrier index (0, 1, .....N−1) with N being the total number of sub-

carriers. To prevent possible ISI in OFDM systems, a guard interval larger than the

expected delay spread is added. This guard interval includes the cyclically extended

part of OFDM symbols in order to eliminate inter-carrier interference (ICI).

At the receiver, the inverse blocks are applied. After timing synchronization and

frequency synchronization, the cyclic prefix is removed. Then the received OFDM

symbol is transformed again into the frequency domain through a N point DFT. The

channel is then estimated and the received data is equalized after which the spectrum

monitoring is done. The complex data output is then mapped to bits again through

the demodulator and applied later to the received block to recover the original source

bits.

2.3.1 Spectrum Monitoring in OFDM Based Cognitive Ra-

dio

In interweave CR networks, the SU must sense the spectrum to detect its availability

prior to communication. Moreover, the SU should be able to monitor the spectrum

in order to vacate quickly as soon as PU appears in the current operating channel.

During monitoring time, the SU does not access the spectrum and this period is

called the quiet period [21]. The traditional spectrum monitoring techniques rely on

periodic spectrum sensing during the quiet period. This periodic spectrum sensing

suspends SU transmission periodically leading to a significant reduction in CR net-

work throughput. In this periodic spectrum sensing an inherent tradeoff always exists

which results in either compromising SU throughput or PU quality of service (QoS).

Therefore, it is always desirable to search for a method by which SUs can moni-

tor the frequency band without interrupting their communications. Such methods

can detect the reappearance of the PU during SU transmission. This monitoring

technique supplements the traditional spectrum sensing and provides enhanced com-
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munications efficiency [22]. In fact, the signal construction for the SU can assist the

spectrum monitoring to happen without involving quiet periods. If OFDM is con-

sidered as a physical transmission technique for SU, then a frequency domain based

approach can be employed to monitor the spectrum during SU reception. One tech-

nique is to add either an additional feature to the ordinary SU OFDM signal or to

exploit the inherent features of the OFDM signal like cyclic prefix and pilot tones.

We are exploiting the inherent pilot tones in our monitoring system.

There have been several research efforts [68-75] into spectrum monitoring which does

not halt ongoing SU communication. These [68-75] spectrum monitoring method

differs from a conventional spectrum sensing method in that the monitoring method

is applied during reception without any scheduling for quiet periods. A detailed

schematic classification is provided in Fig. 2.2. In [23] a two stage approach for

concurrent spectrum sensing and data transmission is proposed. It requires a long

sensing duration, which degrades throughput and the delay. The algorithm in [24] has

a complex SU decoder which strips-off the SUs transmitted signal from the received

signal using successive interference cancellation (SIC) before performing sensing. The

method in [25] assumes the PU status remains unchanged during the current SU

frame, but in reality a PU may have short channel holding times, and the channel

status can change frequently [15]. In [26], a method is proposed that facilitates PU

detection while SU transmission is in progress. The proposed method requires a SU

transmitter to use OFDM to insert periodic zero-energy intervals in a selected sub-

carrier and to detect the energy during each interval to achieve PU detection.

In [22], a spectrum monitoring algorithm is proposed for OFDM based CR in which

PU reappearance can be detected during SU transmission. This is done by sens-

ing the change in the signal strength over a number of reserved OFDM subcarriers.

The assumption made is that the PU may have spectrum holes because it also uses

OFDM. However, if the reserved tones from the SU are synchronized with those spec-

trum holes on the PU side, this algorithm will fail. Also, it impacts SU throughput
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as some subcarriers will be used as reserved tones. Another spectrum monitoring

approach is proposed in [27] that counts the bit error for each received packet and

compares it to a threshold value. This technique is simple and adds little complex-

ity to the system, but the bit error counts are subject to change with different RF

impairments including phase noise, CFO and SFO. Hence, the bit error count will

depend not only on the presence of a PU signal, but also on the characteristics of

these impairments. In addition, bit error count requires demodulation and decoding

of the received signal and perfect decoding is usually hard to achieve.

EVM is an alternate performance metric that can offer insightful information con-

cerning these impairments [100]. It is evaluated during the process of demodulation

and decoding [96]. All these impairments will degrade the EVM and therefore EVM

provides a comprehensive measure of the quality of the radio receiver. Its charac-

teristics provide information about the nature of the problem or where the signal is

degraded [101], [102]. Calculation of bit error would require the received signal to go

through the entire receive chain, while computation of the EVM using the received

symbols would be quicker [102]. This is well suited for measuring the reappearance of

the PU in CR. Our work [93] is the first to use it for spectrum monitoring purposes

in CR.

2.4 Chapter Summary

This chapter has provided an overview of several concepts needed for the subsequent

chapters in this thesis. Firstly, several CR network paradigms were introduced. Sec-

ondly, a brief overview of different types of spectrum sensing for CR were discussed.

Furthermore, an OFDM based CR was discussed. Finally, an overview of spectrum

monitoring algorithms was presented.
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3.1 Introduction

A brief overview of the spectrum monitoring technique in OFDM based CR was

provided in the previous chapter. In this chapter, we present a spectrum monitor-

ing technique, namely the EVM based PU monitoring technique, that is suitable for

OFDM-based CRs. The channel monitoring scheme consists of a series of sensing

intervals which are also called quiet periods [21]. During quiet periods, the SU does

not utilize the spectrum. Once the PU is detected, the SU discards the channel for a

finite period of time and may select another channel to resume communication [18].

Although the quiet period is essential in the CR system, it causes performance degra-

dation which reduces throughput and increases latency. This frequent interruption of

SUs during sensing causes significant degradation in their spectral efficiency [27], [26].

In addition, even if the SU is willing to suffer a reduction in spectral efficiency by ceas-

ing communications periodically, it has no opportunity to detect PU activity that is

initiated between consecutive sensing periods. Thus, with traditional spectrum sens-

ing, SUs are very likely to interfere with a PU that begins transmitting while the

SUs are communicating. Also the interval between sensing periods can increase the

latency between the start of PU transmission and the end of the SU transmission,

which will be a concern for 5G systems where low latency is required [103].

29
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Unlike spectrum sensing, spectrum monitoring involves detecting the emergence of

PUs during periods in which the SUs are communicating. If spectrum monitoring

determines correctly that there is no PU in the band, then the time that would have

been spent performing spectrum sensing is used to deliver packets in the CR net-

work. If spectrum monitoring detects a PU in the band during a time period in

which spectrum sensing would not have been scheduled, then the disruption to the

PU can be terminated more quickly. Thus the spectrum efficiency of the CR network

is improved and the impact of SU communications on the PU is reduced. There are

several approaches [27], [26], [104], [22] designed for spectrum monitoring, with each

technique having its own merits and demerits. Different from these techniques, the

EVM technique utilizes fewer symbols, provides results much before demodulation

and decoding, thus giving us real-time results. Parts of this chapter have been pub-

lished in [93].

The remainder of this chapter is organized as follows. In Section 3.2, a basic EVM

model is described. Section 3.3 provides a system model for PU monitoring in OFDM

based cognitive radio. In Section 3.4, the IEEE 802.11ac pilot structure is described.

PU modelling and its detection mechanism is presented in Section 3.5. Simulation

results are provided in Section 3.6. Finally, Section 3.7 ends the chapter with some

concluding remarks.

3.2 Basic EVM Model

In this thesis, we use EVM as the primary figure of merit to measure the inband

performance at a system level. This thesis explores and evaluates the application of

EVM to detect the PU during ongoing SU communication and develops a new inband

sensing scheme. EVM measures the inband error which is defined as the deviation

of the estimated symbols X̂l from the true data symbols Xl. The estimate X̂l is

obtained from the received (erroneous) symbols Ŷl according to the standard, e.g.,

by applying equalization in WLAN. The EVM is the square root of the error vector
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Figure 3.1: Illustration of error vector [3].

power, which is defined as the mean squared error (MSE) normalized by the mean

squared signal power [105], [106]. As shown in Fig. 3.1 the resulting error (El) is the

difference between the measured X̂l and ideal symbol Xl, i.e El = Xl− X̂l. The EVM

is defined as [105]

EVMrms =

√√√√√ 1
L

L∑
l=1

|Xl − X̂l|
2

Es
, (3.1)

where L is the number of symbols over which the EVM is measured, X̂l is the normal-

ized received lth symbol as corrupted by Gaussian noise, Xl is the ideal/transmitted

value of the lth symbol Xl, and P0 is the average power of the chosen modulation.

For large L, we can write [105], [106], [107]

EVMrms ≈
√
N0

Es
=

√
1

SNR
, (3.2)

where N0/2=σ2
w is the noise power spectral density (PSD). This direct relationship to

the effective inband SNR during regular operation is a major reason for the popularity

of EVM. However, it only holds for data-aided EVM analysis, i.e., the true symbol

locations must be known in the analysis, which is assumed throughout the thesis.
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Figure 3.2: Comb type pilot arrangement.

3.3 IEEE 802.11ac Pilot Structure

In this structure, the pilot subcarriers are inserted into each OFDM symbol with

equal spacing. It is assumed that the total number of pilot subcarriers is Np and

the insertion gap is R. Pilot symbols consume both power and spectrum and thus it

is desirable to keep the number of pilot symbols as small as possible. Each OFDM

symbol is composed of pilot and data subcarriers. Pilot subcarriers do not carry user

data and instead are used to measure the channel. It is assumed that the index of

the first pilot subcarriers η can be written as

η =

{
k|k = mR + k0,m = 0, 1, , ......Np − 1

}
, (3.3)

where k0 ∈ [0,R). Based on the principle of OFDM transmission, it is easy to assign

the pilot both in the time-domain and in the frequency-domain [108–110]. The pilot

signal that is assigned to a particular OFDM block in the time domain is known as

block-type pilot arrangement. This type of pilot arrangement is especially suitable for

slow fading radio channels and is relatively insensitive to frequency selectivity. The

pilot signals that are uniformly distributed within each OFDM block are known as

a comb-type pilot arrangement [111]. This arrangement is suitable for a fast-fading

channel where the channel condition changes between adjacent OFDM symbols. Here,

the pilot signals are spread on selected subcarriers and repeated over multiple sym-
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bols as shown in Fig. 3.2. The comb-type pilot arrangement is sensitive to frequency

selectivity when compared to the block-type pilot arrangement system, i.e., the pilot

spacing R must be much smaller than the coherence bandwidth of the channel. The

advantage of the comb-type arrangement is its ability to track the variation of the

channel caused by interference, noise and spurious signals [112]. As we are detecting

PU interference in the channel, this has motivated us to use a comb-type pilot ar-

rangement in our proposed system.

In an OFDM based CR system, the SU transmitter allocates the data transmission

rate to subcarriers adaptively according to the different channel conditions. These

channel conditions vary more when the assumption of constant PU occupancy state

is taken away by considering a more realistic case where the PU randomly departs

or arrives at the licensed channel during the secondary frame duration. Due to this,

the channel condition changes significantly at the time of frame reception on the SU

receiver. This makes the latter part of the frame considerably different from the one

experienced by the preamble. In other words, the uncertainty of the CSI obtained at

the preamble increases significantly with increase in the PU activities. These changes

in the channel condition during a frame reception cause poor throughput perfor-

mance of the SUs. When the channel is static throughout the frame, the channel can

be estimated at the first transmitted OFDM symbol and this estimation can be used

throughout the frame for equalization. However, when the channel is not static the

channel must be estimated or at least tracked at every OFDM symbol. This can be

achieved with the comb-type pilot arrangement [111].

3.4 System Model For PU Monitoring

We consider the CR system model shown in Fig. 3.3, where hs and hp denotes the

channel coefficients from the secondary transmitter (SU TX) to the secondary receiver

(SU RX) and from the primary transmitter (PU TX) to the SU RX respectively. The

channel coefficients hs and hp are assumed to be static, Rayleigh distributed and
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known at the SU RX. We assume initial spectrum sensing has been performed and

the SU transmits an OFDM packet after detecting idle spectrum. Furthermore, we

assume that SUs are capable of simultaneously transmitting and receiving on a given

frequency band by using external hardware [26]. The OFDM synchronization blocks

in the diagram are used to maintain frequency synchronization of the SU system. The

received signal is converted to the frequency domain by the fast Fourier transform

(FFT).

The pilots, spread over each OFDM symbol, are extracted and EVM is calculated

as a difference between the received and transmitted pilots. If there is no PU in the

band, then the calculated EVM involves only noise and receiver impairments such

as estimation errors. Therefore, the EVM remains static as the impairment variance

does not change significantly over time. As the PUs are oblivious to the SUs, they

transmit at any time causing interference to the SU receiver. Once the PU appears,

the EVM includes the PU interference and noise, which results in a step change in

EVM [93]. In a realistic system a range of imperfections such as carrier leakage, IQ

mismatch, non-linearity, local oscillator (LO) phase noise and frequency error are
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Figure 3.3: EVM-SNR estimator structure.
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imposed which are considered harmful and need special treatment [113]. EVM can

play a significant role in identifying and treating these impairments. We assume that

EVM includes all these receiver impairments equally with and without the presence

of the PU. In this case, the residual impairments, after best-effort correction, can be

treated as Gaussian and contributing to the signal to noise ratio (SNR). Hence the

step change in EVM from no PU to PU can equally well be detected with typical

receiver impairments as with the ideal, no impairments, case. We denote the nth

sample of the lth OFDM symbol in the time domain as x(n, l). It can be obtained by

taking the inverse FFT of the transmitted symbols X(k, l) as

x(n, l) =
1

N

N∑
k=0

X(k, l)e−
j2πkn
N , (3.4)

where k is the subcarrier index and N is the FFT size of the OFDM system. The

received time domain signal in the absence of the PU is given by

y(n, l) = hs(n, l) ∗ x(n, l) + w(n, l), (3.5)

where w(n, l) is a sample of complex AWGN with zero mean and variance of σ2
w, i.e

w(n, l) ∼ CN (0, σ2
w). The received signal in the frequency domain after the FFT can

be written as

Y (k, l) = Hs(k, l)X(k, l) +W (k, l), (3.6)

where Hs(k, l) is the equivalent channel frequency response at the kth subcarrier of

the lth OFDM symbol. X(k, l) is the transmitted symbol for the kth subcarrier of

the lth symbol and W (k, l) ∼ CN (0, σ2
w) is complex Gaussian noise. The frequency

domain received signal in the presence of the PU is given by

Y (k, l) = Hs(k, l)X(k, l) +Hp(k, l)Ip(k, l) +W (k, l), (3.7)

where I(k, l) is the PU interfering signal at the kth subcarrier of the lth symbol and

Hp(k, l) is the equivalent baseband channel frequency response at the kth subcarrier
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of the lth symbol. The EVM is defined as the root mean squared error between the

transmitted symbol and received symbol after equalization and is given by [114]

EVMRMS(k) =

√√√√ 1

EsL

L∑
l=0

∣∣∣∣ Y (k, l)

Hs(k, l)
−X(k, l)

∣∣∣∣2, (3.8)

where L is the number of symbols over which the EVM is measured and Es is the

average power for the chosen modulation. Since we are measuring the EVM using

pilot tones embedded in OFDM, we follow the 802.11ac pilot structure as described in

the previous section. Let Yp(k, l) be the received pilot symbols extracted from Y (k, l),

Xp(k, l) be the known pilot symbols and Hps(k, l) be the channel transfer function at

the ηth pilot subcarrier. Hence, (3.8) can be written as

EVMRMS(k) =

√√√√ 1

EsL

L∑
l=0

∣∣∣∣ Yp(k, l)Hps(k, l)
−Xp(k, l)

∣∣∣∣2. (3.9)

3.5 Hypothesis testing and test statistic

The conventional approach to spectrum sensing [21, 23–26] is to perform energy de-

tection through the evaluation of a test statistic for a single long sensing period. The

corresponding hypothesis test in AWGN can be written as

Yp(k, l) = Wp(k, l) : H0

Yp(k, l) = Hp(k, l)Ip(k, l) +Wp(k, l) : H1, (3.10)

where Yp(k, l), Ip(k, l), Hp(k, l) and Wp(k, l) are the received signal, transmitted PU

signal, channel coefficient and the noise contribution at the pilot subcarrier, respec-

tively. It performs periodic spectrum sensing and can’t detect the PU during ongoing

SU communication. The test statistic is given by

Z(k) =
1

L

L∑
l=1

|Yp(k, l)|2 (3.11)



Chapter 3. EVM Based Primary User Monitoring in OFDM based Cognitive Radio
Systems 37

and is compared with the preset decision threshold λ in order to decide whether a

signal is present or not in that frequency band as

Z
H1

≷
H0

λ. (3.12)

In the proposed EVM scheme the SU can simultaneously sense and transmit [93].

Equivalently, the corresponding hypothesis expressions are given by

Ŷp(k, l) = Hps(k, l)Xp(k, l) +Wp(k, l) : H0

Ŷp(k, l) = Hps(k, l)Xp(k, l) +Hp(k, l)Ip(k, l) +Wp(k, l) : H1, (3.13)

where Ŷp(k, l) is the received signal in the frequency domain when the SU is simulta-

neously sensing and transmitting.

3.5.1 EVM Test Statistic

Let Ep(k, l) denote the frequency domain error vector i.e.,

Ep(k, l) = Ŷp(k, l)−Hps(k, l)Xp(k, l). (3.14)

Substituting (3.13) into (3.14), the hypothesis test for the AWGN channel can be

written as

Ep(k, l) =


Wp(k, l), H0

Hp(k, l)Ip(k, l) +Wp(k, l), H1.

(3.15)

The EVM test statistic can therefore be expressed as

Zp(k) =

√√√√ 1

LEs|Hps(k, l)|2
L∑
l=0

∣∣∣∣Ep(k, l)∣∣∣∣2. (3.16)

The novelty is the inclusion of the square root in (3.16) which affects the threshold

λ1. The test statistic in (3.16) is compared with the threshold λ1 in order to decide
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the presence of the PU in a given frequency band as

Zp
H1

≷
H0

λ1. (3.17)

3.6 PU Detection

The traditional frame structure model for the SU [16], consists of sensing slots and

data transmission slots. The spectrum sensing is used for a fraction of the time and

if the channel is determined to be unoccupied, then the SU is permitted to transmit

during the remaining time. This suggests that the SUs must refrain from transmit-

ting data when sensing the PU signal. The SU transmits only when it detects an idle

spectrum. It is assumed that PU activity remains constant during a frame period.

In practice, either synchronization is required between primary and secondary trans-

missions or the SU frame must be much shorter than the PU frame for the above

assumption to be true. However, PUs can access the spectrum at any time, even

during SU transmission. In this case the PUs may suffer from severe interference

until the end of the SU transmission. The most stringent requirement for the SU is

to sense the channel periodically in order to detect the emergence of PUs. One of the

open spectrum sensing research challenges involves the adverse effect on spectrum

efficiency caused by the need for secondary radios to stop communicating while per-

forming spectrum sensing. Thus, with traditional spectrum sensing, the secondary

radios are very likely to interfere with a primary radio that begins transmitting while

the secondary users are communicating. More frequent spectrum sensing by sec-

ondary radios reduces the probability of interfering with the primary radios, but it

also reduces the throughput and increases the delay for traffic in the secondary net-

work.

Hence, we are interested in developing an algorithm that can detect the reappearance

of the PU during SU transmission for OFDM based CR networks. We assume that the

SUs use OFDM. We consider that the spectrum will be observed by the SU receiver
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while it is receiving a packet and therefore the SUs need not cease transmissions while

the frequency band is being examined. With this method the secondary radios can

continue their communications while simultaneously monitoring the band to detect

any transmissions that are initiated by the primary radios. The objective is to avoid

the SUs losing transmission time due to sensing periods. We propose a PU detection

technique in which the SU receiver performs spectrum observation while receiving

packets. Our PU detection mechanism is more direct and is based on a metric that

can be obtained immediately from the received packet, thus giving us results in real

time. Unlike spectrum sensing, our system involves the detection of the emergence

of PU signals during periods in which the SUs are communicating. Our proposed

technique for PU detection can be used for a rate adaptation mechanism to maximize

the spectral efficiency in the secondary system as well as to improve the throughput

performance of SUs. The idea is to measure the EVM of the pilot symbols. Our EVM

analysis is assumed for the data-aided receiver mentioned in Section 3.2, which can be

used to estimate the SNR. By utilizing the mathematical relationship between EVM

and SNR, the EVM estimator can reliably estimate the SNR of MPSK or MQAM

signals in complex AWGN or multipath channel. A sharp decrease in the estimated

SNR from one OFDM symbol to another will suggest that the channel has degraded

significantly, possibly as a result of PU signal emergence. We will measure the EVM

without considering the PU presence initially. However, due to PU arrival, the EVM

value will be increased. Based on this, observation, we suggest that the PU detection

can be determined by testing the SNR curve. If the estimated SNR decreases with the

increase of symbol index, we will conclude that the PU has appeared in the channel.

3.6.1 PU modelled as Two-state Markov Chain

The performance of the CR network is highly dependent upon the PU activities.

Hence, it is very important to model PU activity in CR networks. By keeping this in

mind, several models in the literature have been proposed for modeling PU activity.

Their purpose is to provide a realistic model of the PU activity pattern which is con-

sidered in the network by CR users in making spectrum decisions. In this regard, a
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two-state Markov chain has been widely used in the literature for modeling PU activ-

ity. In the PU activity modeling by a Markov process, there are two states, i.e. 0 and

1 [115]. The IDLE state is represented by 0, i.e. spectrum is not occupied by PU, thus

CR users can utilize it, while 1 shows BUSY state. Among many Markov models, the

two-state Markov chain model is widely used in order to model PU activity [116–119].

The two states in this model are the BUSY and IDLE states. BUSY state indicates

that a channel is currently occupied by the PU and is unavailable for CR, while the

IDLE state indicates that a channel is free and there is no PU activity on the channel.

Figure 3.4: Two-state Markov chain model.

Fig. 3.4 illustrates the two-state Markov chain model. In this figure, if the chan-

nel is currently in the BUSY state then the probability that the next state of the

channel will also be BUSY is p, while the probability of the next state being IDLE is

1-p. Similarly, if the channel’s current state is IDLE, then its probability of remain-

ing IDLE is 1-q, while the probability that the next state, will be the BUSY state

and occupied by PU is q. For channel holding time distributions, the exponential

distribution is a widely adopted model [120], [121]. In our work, we assume that both

the busy and idle channel holding time are exponentially distributed with parameters

λb and λe respectively. Therefore, at any time, the channel is busy with probability



Chapter 3. EVM Based Primary User Monitoring in OFDM based Cognitive Radio
Systems 41

given by

Pb =
λe

λb + λe

and the idle probability is given by Pe = 1 − Pb. The transition probability matrix

describing when the channel is in state ‘z’∈ (0, 1) given that Ts (duration of each

sample) seconds ago it was in state ‘x’∈ (0, 1) is given by [74, pp. 20-36]

Pxz(Ts;λb, λe) =

(
P00(Ts) P01(Ts)

P10(Ts) P11(Ts)

)
,

=
1

λb + λe

(
λb + λee

−(λb+λe)Ts λe − λee−(λb+λe)Ts

λb − λbe−(λb+λe)Ts λe + λbe
−(λb+λe)Ts

)
. (3.18)

We have assumed that the PU occupancy status transition occurs only once within

each frame. It is further assumed that the PU status transition can be completed

within one sample. The above probabilities depend on the parameters of the PU

traffic model. In some applications, such as the TV licensed spectrum, the state of

the licensed channel changes slowly, corresponding to small values of λb and λe. In

this case, the conventional model without considering the reappearing PU may give a

good approximation to the SU performance. However, in other applications, such as

public safety spectrum, cellular systems, WiMAX, WLAN, the state of the licensed

channel changes more frequently corresponding to large values of λb and λe.

3.7 Simulation Results

We have calculated the EVM for a M-QAM OFDM system as shown in Fig. 3.5. The

EVM values are plotted against SNR. It can be seen that there is little variation in

EVM for different modulation types [100]. The EVM values slightly decrease with an

increase of SNR. Note that, the lower the EVM, the better the system performance.

From (3.15) and (3.16) it is clear that the EVM value after PU arrival will be higher

than the value when SU transmits alone. This is the idea behind using EVM as a

metric for PU detection. Fig. 3.6 shows a comparison of the cumulative distribution
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function (CDF) of EVM for packets corrupted by PU arrival and PU absence. From

Fig. 3.6, we can see that the EVM values of packets affected by the PU are higher.

Similarly Fig. 3.7 shows that the EVM values are higher when the PU arrives during

SU transmission. The EVM is calculated over pilot groups of 3 OFDM symbols where

each OFDM symbol contains 4 pilots. The M blocks on the x-axis represent the time

series of such pilot groups. On detecting idle spectrum, the SU starts transmitting

in the idle band. It is assumed that the PU appears after some time during the

monitoring phase.

Simulations found that the EVM of the SU remains the same as we increase the

number of OFDM symbols in the absence of the PU. For simulation, we have consid-

ered a 3-tap Rayleigh fading multipath channel, 600 OFDM symbols, 52 subcarriers,

4 pilots and CP length of 16 which corresponds to the standard parameters for WLAN

802.11ac. The simulation results shown in Fig. 3.6 and Fig. 3.7 consider the EVM

when the PU is present or absent for the entire duration of the SU frame transmission.

However, in practice PUs can arrive at any time, so we now model PU arrival activity.

We adopt the two-state discrete time Markov chain model which has been exten-
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Figure 3.5: EVM vs SNR for M-QAM OFDM.
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Figure 3.6: CDF of error vector magnitude.
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Figure 3.7: EVM vs M blocks of OFDM symbols and INR= -10 dB.

sively used for modeling PU BUSY/IDLE activity [116]. In order to model a Markov

chain, we need to know the transition probability matrix P. In [116], a Markov-chain

based method was introduced to simulate PU and SU activity in a CR system. The

authors there performed an analysis of network traffic over an IEEE 802.11ac wireless

access-point to determine the transition probabilities for the model. For simulation,

we have chosen the same transition probability matrix from [116]. Thus we have
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P =

[
P00 P01

P10 P11

]
=

[
0.8866 0.1134

0.5309 0.4691

]
. (3.19)

Fig. 3.8 shows PU detection by the EVM when its BUSY/IDLE activity is mod-

elled as a two state discrete time Markov chain and INR of -10 dB. The traditional

constraint of the CR not being able to detect PU activity while the CR user is in

operation has been relaxed by the EVM based PU detection. The adopted method

requires a SU transmitter to use OFDM. Each OFDM symbol contains 4 pilots. At

the SU receiver, the pilots are extracted and divided into multiple groups. The EVM

is calculated for each block of pilot groups. We have simulated 600 OFDM symbols

which are grouped into 200 pilot groups. Therefore, each block contains only 3 OFDM

symbols. The blue curve indicates the EVM of the SU alone, i.e in the absence of PU

and the red curve indicates the EVM in the presence of PU. When PU appears at the

time instant 50, a step change is observed after the 50th block. We have assumed PU

occupancy status changes only once during the SU frame transmission, so the EVM

remains high over remaining pilot groups.
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Figure 3.8: EVM in the presence of PU modelled as an BUSY/IDLE Markov chain
for Ns=3 OFDM symbols and INR=-10 dB.
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Figure 3.9: EVM in the presence of PU modelled as an BUSY/IDLE Markov chain
for Ns=3 OFDM symbols and INR=-22dB.

In order to protect the primary incumbent users from interference, CR enabled SUs

are required to detect incumbent signals at very low SNR. In this regard, our pro-

posed EVM based detector can reliably detect the PU signals at a INR as low as -22

dB which is shown in Fig. 3.9.

3.8 Chapter Summary

From the preceding discussion we can deduce that there is a clear distinction in the

distribution of EVM under the two hypotheses H0 and H1 which is the basis for the

SU receiver to determine the PU arrival. The advantage of this proposed scheme is

its ability to find the location of the bits corrupted by the PU’s arrival by looking at

the EVM values of groups of pilot symbols. Based on this the SU receiver can ask its

transmitter to lower transmission rate and power, but continue to transmit data for

the remainder of the frame.

Our method does not require any subcarrier to be reserved nor do we need to insert a

periodic zero energy level as in [27], [26], [104] and [22]. Therefore, our proposed spec-
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trum monitoring algorithm can enhance the performance of OFDM-based cognitive

networks by improving PU detection performance. The conventional requirement of

quiet periods to detect the emergence of PUs has been relaxed by our EVM based PU

detection which gives us more time for data transmission. As a result, a significant

gain in throughput can be expected.

Detection theory provides some standard tools for presenting performance which are

probabilities of missed and false detection in the form of a receiver operating charac-

teristic (ROC) or its complement (CROC). So, in the next chapter, we will study the

performance evaluation of our proposed EVM detector.



Chapter 4

On the Performance of EVM based

Primary User Monitoring in

Cognitive Radio Systems

4.1 Introduction

In Chapter 3, we described how the EVM can detect the reappearing PU during

SU transmission by observing a step change of the EVM curve for the H0 and H1

hypotheses. This chapter analyses the performance of the EVM based detector and

then proposes an effective method for detecting a reappearing PU. We derive the joint

PDF of the exact distribution of the proposed test statistic. We investigate how to

simultaneously perform spectrum sensing and data transmission at the SU. We study

the performance of EVM based PU monitoring for OFDM based CR networks. Our

method exploits the pilot tones that are inherent in many OFDM based standards

and are typically used for channel estimation and synchronization purposes. Similar

to [24], our system performs spectrum observation at the SU receiver which we have

shown in [93]. Our mechanism is direct and is based on the EVM metric which can

be obtained immediately before demodulation and decoding of the received packets,

thus giving us real-time results. Our scheme does not require periodic zero-energy

intervals within a selected subcarrier as proposed in [26], nor do we require reserved

subcarriers as proposed in [22].

The rest of the chapter is organized as follows. Section 4.2 describes hypothesis

testing, test statistic and EVM operation mode. In Section, 4.3 we analyze the type

47
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I and type II error probabilities. Reappearing PU is described in Section 4.4. In

Section 4.5, we present simulation results and Section 4.7 concludes the chapter.

From the previous chapter we know that the frequency domain received signal in

the presence of the PU is given by

Y (k, l) = Hs(k, l)X(k, l) +Hp(k, l)Ip(k, l) +W (k, l), (4.1)

where Ip(k, l) is the PU interfering signal at the kth subcarrier of the lth symbol and

Hp(k, l) is the equivalent baseband channel frequency response at the kth subcarrier

of the lth symbol. We make the following two assumptions to model the PU signal.

• AS1 (Unknown deterministic signal): We assume that the PU signal is an un-

known deterministic signal whose symbol duration is longer than the sensing

interval. In this case, Ip(k, l) is treated as independent and non-identically

distributed Gaussian random signal with non-zero mean µI .

• AS2 (Gaussian random signal): We assume that the PU symbol period is shorter

than the SU symbol period, so Ip(k, l) is an independent Gaussian random signal

with zero mean and variance σ2
I .

4.2 Hypothesis Testing and Test Statistic

We now summarize the key results from chapter 3 needed to define the EVM test

statistic for both hypotheses H0 and H1. The conventional approach to spectrum

sensing [21]- [26] is to perform energy detection through the evaluation of test statistic

for one long sensing period. The corresponding hypothesis test in AWGN can be

written as

Yp(k, l) = Wp(k, l) : H0

Yp(k, l) = Hp(k, l)Ip(k, l) +Wp(k, l) : H1, (4.2)
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where Yp(k, l), Ip(k, l), Hp(k, l) and Wp(k, l) are the received signal, transmitted PU

signal, channel coefficient and the noise contribution at the pilot subcarrier, respec-

tively. This type of spectrum sensing is called half duplex (HD). It performs periodic

spectrum sensing and can’t detect the PU during ongoing SU communication. The

test statistic is given by

Z(k) =
1

L

L∑
l=1

|Yp(k, l)|2 (4.3)

and is compared with threshold λ in order to decide whether a signal is present or

not in that frequency band as

Z
H1

≷
H0

λ. (4.4)

In FD CR, the SUs are allowed to sense and transmit at the same time. Equivalently,

the corresponding hypothesis expressions are given by

Yp(k, l) = Hps(k, l)Xp(k, l) +Wp(k, l) : H0

Yp(k, l) = Hps(k, l)Xp(k, l) +Hp(k, l)Ip(k, l) +Wp(k, l) : H1, (4.5)

where Xp(k, l) represents the SU self interference signal. In such a scheme the idea is

to assume perfect SIC, then the SU applies a spectrum sensing technique to examine

the PU status. By applying SIC, CR can eliminate the transmitted SU signal from

the received mixed signal. Thus under perfect SIC, (4.5) converges to that of HD

case in (4.2).

4.2.1 EVM Test Statistic

We are interested in finding the EVM per subcarrier. We next introduce a random

variable Z defined as

Zp(k) =

√√√√ 1

LEs|Hps(k, l)|2
L∑
l=0

∣∣∣∣Ep(k, l)∣∣∣∣2, (4.6)
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where Ep(k, l) = Yp(k, l) −Hps(k, l)Xp(k, l). The EVM test statistic for the two hy-

potheses H0 and H1 can be obtained as

Z(k) =



√
1

LEs|Hps(k,l)|2
L∑
l=0

∣∣∣∣Wp(k, l)

∣∣∣∣2 : H0√
1

LEs|Hps(k,l)|2
L∑
l=0

∣∣∣∣Hp(k, l)Ip(k, l) +Wp(k, l)

∣∣∣∣2 : H1.

(4.7)

This converges to the HD result in (4.3). The novelty is the inclusion of the square

root in (4.6) which affects the threshold λ1. The test statistic in (4.6) is compared

with the threshold λ1 in order to decide the availability of the PU in a given frequency

band as

Z
H1

≷
H0

λ1. (4.8)

The threshold λ1 is parameterized according to the Neyman-Pearson (NP) criterion

whose objective is to maximize probability of detection subject to a constraint on the

false alarm probability. In fact, conventional energy detection can also be employed

to allow SU for simultaneous transmission and sensing as noted in [29–32, 122, 123]

in the form of FD spectrum sensing. The idea is to apply SIC to cancel the self

interfering signal, Hps(k, l)Xp(k, l) in (4.5) and perform energy detection spectrum

sensing on the remaining signal. In [29–32,122,123], the SU signal is typically treated

as unknown at the receiver, and the effectiveness of SIC is represented using a linear

“self-interference mitigation coefficient” which is applied to degrade the effectiveness

of spectrum sensing. However, these SIC analyses do not account for error propa-

gation from incorrect SU decisions feeding into the SIC process. In this thesis, we

assume that the received SU pilot symbols are perfectly removed for calculating the

EVM statistic, with remaining synchronization and channel estimation errors treated

as AWGN having identical variances for H0 and H1.
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Figure 4.1: EVM operation mode.

4.2.2 EVM Operation Mode

In Fig. 4.1, the EVM operation mode is illustrated. The first line shows the PU’s

state transition. We adopt the two-state discrete time Markov chain model which has

been extensively used for modeling the PU BUSY/IDLE activity [116]. The second

line indicates the SU TX frame period T and the EVM measurement is done on the

receiver side SU RX which is indicated in the third line.

Although, the SUs are sensing and transmitting simultaneously, some time after which

the SU determines to transmit its data or not needs to be determined. Hence, the

EVM based detection method is done over multiple (consecutive) short periods in-

stead of one long sensing period. The motivation for this approach is to account for

the tradeoff between the sensing efficiency and timeliness in detecting the PU activ-

ity. Increasing sensing duration improves sensing efficiency, however, such an increase

implies delaying the time to make a decision regarding the change in PU activity. In

order to sense all possible reappearances of the PU, we divide the SU’s frame into g

sensing durations for which we calculate g EVM values as shown in the fourth line of

Fig. 4.1. For simplicity, we assume that the intervals between each periods are equal.
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4.3 Type I and type II Errors

We assume that the channel fading coefficient Hp(k) is constant over the sensing in-

terval L and both the signal and noise are real valued Gaussian signals with variances

σ2
I and σ2

w, respectively, and both are independent signals [124–127]. We also assume

Es = 1 and establish Gaussian channel performance by assuming |Hps(k)|2 = 1. Since

the samples of the pilot tone follow N (0, σ2
w), Z2(k) will follow a chi-square distribu-

tion with 2L degrees of freedom (DOF) under H0 hypothesis, i.e., Z2(k) ∼ χ2(2L)

with PDF [70]

fZ2(z) =
LL

2Lσ2L
w Γ(L)

zL−1e
−Lz
2σ2w . (4.9)

We are interested in finding the PDF of our decision statistic Z which is the square

root of the chi-square (2L) random variable. The transformation Y = g(Z) =
√
Z

is a 1-1 transformation from χ = {z|z > 0} to Y = {y|y > 0} with inverse Z =

g−1(Y ) = Y 2 and Jacobian dZ
dY

= 2Y .

Therefore, according to the transformation technique, the PDF of Y is

fY (y) = fZ(g−1(y))

∣∣∣∣dzdy
∣∣∣∣

=
LL

2Lσ2L
w Γ(L)

(y2)L−1e
−Ly2

2σ2w |2y|

=
LL

2L−1σ2L
w Γ(L)

y2L−1e
−Ly2

2σ2w ,

fZ|H0(y) =
LLy2L−1e

−Ly2

2σ2w

2L−1σ2L
w Γ(L)

, y > 0. (4.10)

The performance of the detector is characterized in terms of the CROC curve, which

represents the type II (false negative) error as a function of type I (false positive)

error.
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Firstly, the type I error probability is given by

Prob[Z > λ1|H0] =

∫ +∞

y1=λ1

fZ|H0(y)dy

=
LL

2L−1σ2L
w Γ(L)

∫ ∞
λ1

y2L−1e
−Ly2

2σ2w dy

To solve this equation, we apply some variable conversion for t = Ly2

2σ2
w

.

dy =
1

2

√
2σ2

w

Lt
dt

Prob[Z > λ1|H0] =
LL

2L−1σ2L
w Γ(L)

∫ ∞
Lλ21
2σ2w

(√
2σ2

wt

L

)2L−1
1

2
e−t
√

2σ2
w

Lt
dt

=
LL

2L−1σ2L
w Γ(L)

1

2

√
2σ2

w

Lt

∫ ∞
Lλ21
2σ2w

(
2σ2

wt

L

) 1
2

(2L−1)

e−tdt

=
1

Γ(L)

∫ ∞
Lλ21
2σ2w

tL−1e−tdt (4.11)

In [128], the incomplete gamma function is written as

Γ(a, s) =

∫ ∞
s

ta−1e−tdt, (4.12)

Using (4.12), the type I error probability i.e., (4.11) can be written as

=

Γ

(
L,

Lλ21
2σ2
w

)
Γ(L)

, (4.13)

The same approach is applied when the PU signal I(k) is present, i.e., under hy-

pothesis H1. However, the PDF of the decision statistic will differ according to the

assumptions made for the PU signal in Section 4.1.
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4.3.1 Case A

According to the assumption AS1, Z follows a non-central chi distribution with non-

central parameter β =
√

2Lγ, where γ =
µ2I
σ2
w

is the interference to noise ratio (INR).

The PDF under H1 can thus be expressed as

fZ|H1(y) =

e−
(

y2

σ2w
+β2

2

)
y2LβIL−1

(
βy
σw

)
σLw(βy)L

, (4.14)

where IL−1(.) is the (L−1)th order modified Bessel function of the first kind. Similarly,

the probability of detection is

PD = Prob[Z > λ1|H1] =

∫ +∞

λ1

fZ|H1(y)dy

=

∫ +∞

λ1

e−
(

y2

σ2w
+β2

2

)
y2LβIL−1

(
βy
σw

)
σLw(βy)L

dy (4.15)

Assume y = σwt
dy

dt
= σw =⇒ dy = σwdt

=

∫ +∞

λ1
σw

e−
(
t2+β2

2

)
(σwt)

2LβIL−1

(
βσwt
σw

)
σLw

(
βσwt

)L σwdt

=

∫ +∞

λ1
σw

t

(
t

β

)L−1

e−

(
t2+β2

)
2 IL−1

(
βt

)
dt. (4.16)

PD can be expressed in terms of the generalized Marcum Q-function, which is defined

as [129]

Qm(a, b) =

∫ ∞
b

x(
x

a
)m−1e−

x2 + a2

2
Im−1(ax)dx, (4.17)

where m is a non-negative integer, and a and b are non-negative real numbers. Com-
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paring (4.16) with (4.17), we have m = L,a = β, b = λ1
σw

. Thus, PD becomes

PD = QL

(
β,
λ1

σw

)
(4.18)

and the type II error probability is given by

Prob[Z < λ1|H1] = 1− PD = 1−QL

(
β,
λ1

σw

)
. (4.19)

4.3.2 Case B

According to the assumption AS2, Z follows a central chi distribution whose PDF

can be written as

fZ|H1(y) =
LL

2L−1(σ2
I + σ2

w)LΓ(L)
y2L−1e

−Ly2

2(σ2
I
+σ2w) . (4.20)

After applying a similar procedure as above, PD can be expressed as

PD =

Γ

(
L,

Lλ21
2(σ2

I+σ2
w)

)
Γ(L)

and the type II error probability is given by

Prob[Z < λ|H1] = 1− PD = 1−
Γ

(
L,

Lλ21
2(σ2

I+σ2
w)

)
Γ(L)

. (4.21)

4.4 Laplacian approximation

PD expressed in terms of the generalized Marcum Q-function in (4.18) is quite diffi-

cult to compute precisely. Therefore, in spectrum sensing the central limit theorem

(CLT) has been extensively used to approximate PD which yields PD in terms of the

well-known Gaussian function [18,67,130]. The CLT based approximation is accurate

only for large sample size (L > 250), but is not accurate for small sample sizes [75].
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In CR simple and accurate PD approximations valid for arbitrary sample size are

necessary. As our EVM based detector is designed to operate with a least number

of samples, it is important to apply such an approximation method that can simplify

(4.18). In [75] the authors have used a Laplacian approximation of a chi distribution

to achieve the Gaussian distribution. As our EVM test statistic also has a chi distri-

bution, we apply this Laplacian approximation to obtain PD in terms of a Gaussian

function.

We can rewrite (4.6) as

Z =
σy√
2L

√√√√ L∑
n=1

(
e2
real(n)
σ2
y

2

+
e2
imag(n)
σ2
y

2

)
=

σy√
2L
u. (4.22)

Here, σ2
y = σ2

I + σ2
w is the total variance of the received signal. We define u as the

second square-root summation term in (4.22). The variable u has a chi distribution

pU(u) with 2L DOF [75]. Then, Z has the distribution

Z ∼ p0(Z) =

√
2L

σy
pU

(√
2L

σy
Z

)
. (4.23)

In general, we can use (4.23) to determine the PU arrival. However, p0(Z) is some-

what complex for numerical inference. Thus, we make normal approximations to

p0(Z) using a Laplacian approximation. A normal approximation of p0(Z) can be de-

termined by approximating pU(u) with a Gaussian density qU(u) = N (µu, σ
2
u). The

Laplacian approximation achieves this by using the mode and the Hessian of the log

likelihood at the mode. It is highly accurate even at moderate sample sizes [75].

Therefore, Laplacian approximation consists of the following steps.

i. finding a local maximum umax of the given PDF pU(u).

ii. calculating the variance σ2
u = − 1

p′′(umax)
.

iii. approximating the PDF with qU(u) ≈ N (µu, σ
2
u).
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From (4.10)

pU(u) =
LL21−Lu2L−1e

−Lu2

2σ2w

σ2L
w Γ(L)

, u > 0

=
LLu2L−1e

−Lu2

2σ2w

2L−1σ2L
w Γ(L)

=
u2L−1e

−Lu2

2σ2w

t
LL

, t = 2L−1σ2L
w Γ(L). (4.24)

Here, t
LL

is a normalization constant that doesn’t depend on u. We will ignore t for

the sake of convenience. As we are working with the log-likelihood, so pU(u)=log(
pU(u)

)
= logu2L−1 + loge

−Lu2

2σ2w

d

du
log(pU(u)) =

d

du

[
logu2L−1 − Lu2

2σ2
w

]

=
1

u2L−1
(2L− 1)u2L−2 − Lu

σ2
w

=
2L− 1

u
− Lu

σ2
w

(4.25)

To find out the local maxima umax, we set (4.25) to zero, which gives

2L− 1

u
− Lu

σ2
w

= 0 =⇒ umax =

√
σ2
w(2L− 1)

L
. (4.26)

Using the local maximum umax, we compute the variance σ2
u = − 1

p′′(umax)
, where

p′′(umax) =
d2pU(u)

du2

∣∣∣∣
u=umax

= −2L− 1

u2
− L

σ2
w

∣∣∣∣
u=umax

= −2L

σ2
w

=⇒ σ2
u =

σ2
w

2L
. (4.27)

Thus, qU(u) ∼ N
(√

σ2
w(2L−1)

L
, σ

2
w

2L

)
. In turn, Z has the following Gaussian distribu-

tion

Z ∼ N
(√

σ2
w(2L− 1)

2

σy
L
,
σ2
wσ

2
y

8L

)
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When L � 1, we can write
√

2L−1
2
≈ 1 and ex ≈ 1 + x for x � 1. Using the

approximate density p0(Z) we have

Z ≈ σw
σy
L

+ σ2
w

σy√
8L
N (0, 1) ≈ σw

σy
L
e
σwN (0,1)√

8L .

Now, denoting H1 = log(Z), we can write

H1 = log(σw
σy
L
e
σwN (0,1)√

8L ).

Therefore, with the Laplacian approximation, the chi distribution of our decision

statistic can be approximated by the Gaussian distribution as follows

H1 ≈ p0(Z) ∼ N
(
log(σw

σy
L

),
σ2
w

8L

)
(4.28)

H0 ≈ p0(Z) ∼ N
(
logσw,

1

8L

)
. (4.29)

Following the above development, the type I and type II error probabilities may be

written directly as follows. The type I error probability for the Laplacian method is

approximated as

Prob[Z > λ|H0] =
1

2
erfc

(√
2L(λ− logσw)

)
(4.30)

and

PD =
1

2
erfc

(√
2L
(
λ− log(σw

σy
L

)
)

σw

)

=
1

2
erfc

(√
2L
(

1√
2L

(erfc)−1(2PF ) + logσw − log(σw
σy
L

)
)

σw

)

=
1

2
erfc

((erfc)−1(2PF )− log( L
σy

)
σw

)
(4.31)

where

λ =
1√
2L

(erfc)−1(2PF ) + logσw (4.32)
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where PF denotes the probability of false alarm. The type II error probability for

Laplacian method is given by

Prob[Z < λ|H1] = 1− PD. (4.33)

4.5 Reappearing PU

It is commonly assumed that the PU is either absent or active during the entire sens-

ing interval. However, in realistic cases, the PUs can change their states at any time.

Thus, when the PUs become active during the SU’s transmission period, the SUs

cause interference to the PUs. In addition, if the PUs cease being active during the

SU’s transmission period, it wastes idle spectrum.

Fig. 4.2 shows the EVM response when the PU is present throughout the SU trans-

mission and Fig. 4.3 shows the use of the EVM detecting the reappearing PU during

SU transmission when the PU arrives at the 100th time sample. Gains can be achieved

by allowing the SUs to transmit and sense simultaneously so that they can sense the

spectrum during the entire frame period. Our proposed EVM detector facilitates this

kind of spectrum sensing. We are interested in deriving the type I and type II error

probabilities for the proposed classifier. The type I error probability remains the same

as in (4.39). In order to calculate type II error probability we utilize the following

theorem 1.

Theorem 1. Given P samples of independent identically distributed Gaussian ran-

dom variables X ∼ N (0, σ2) with central chi-square distribution and R samples of

independent and non-identically distributed variable Y ∼ N (µ, σ2) with non-central

chi-square distribution, where x and y have identical variance σ2, then the sum Z =
P∑
n=1

x2
n +

R∑
n=1

y2
n is non-central chi-square distributed with probability density

p(z) =
1

2

(
z

βσ2

)P+R
4
− 1

2

e
−

(
z
σ2

+β

2

)
I (P+R)

2
−1

(√
βz

σ2

)
, (4.34)
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Figure 4.2: EVM response when PU is present throughout the SU transmission
(INR=-10 dB).
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Figure 4.3: EVM response when PU arrives at the 100th time sample (INR=-10 dB).
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for non-centrality parameter β = Rµ2/σ2 and Ir(.) the rth order Bessel function of

the first kind.

Proof. From P +R samples of independent identically distributed Gaussian random

variable u ∼ N (µ, σ2), without loss of generality transform to a standard variable v =

u/σ2. Then the joint distribution p(v1, ......, vP+R) is spherically symmetric except for

a shift in centre. The spherical symmetry implies that the distribution of w =
P+R∑
n=1

v2
n

depends on the means only through the squared length α =
P+R∑
n=1

µ2
n = (P + R)µ2.

Without loss of generality set µ1 =
√
α and set µ2 = µ3 = ...... = µP+R = 0. Applying

the standard derivation [131] for the non-central chi-square density of w produces

p(w) =
1

2

(
w

α

)P+R
4
− 1

2

e
−

(
w+α

2σ2

)
I (P+R)

2
−1

(√
αw

)
. (4.35)

For z as above, µP+1 = ......µP+R = µ and µ1 = .......µP = 0. Adjusting the non-

centrality parameter to the amended sum and reversing the variance transformation

for σ2 6= 1 results in the modified non-centrality parameter β = 2R|µ|2
σ2
w

and the desired

density (4.34) follows for variance σ2.

Now, using (4.34) the joint PDF of Z for (2P + 2R) degrees of freedom can be

written as

fZ(z) =
1

2

(
2z

βσ2
w

)P+R−1
2

e
−

(
2z
σ2w

+β

2

)
IP+R−1

(√
2βz

σ2
w

)
. (4.36)

As in (4.10), the PDF of the reappearing PU proposed by our test statistic is obtained

by taking the square root of (4.36) which can be written as

fZ(z) =

e
−

(
z2

σ2w
+β2

2

)
z2LβIL−1

(
βz
σw

)
σLw(βz)L

, (4.37)

where L = P + R and β =
√

2R|µ|2
σ2
w

is the non-centrality parameter. Now, the
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probability of detection can be expressed as

PD =

∫ +∞

λ1

fZ(z)dz

=

∫ +∞

z=λ1

e
−

(
z2

σ2w
+β2

2

)
z2LβIL−1

(
βz
σw

)
σLw(βz)L

dz

=

∫ +∞

λ1
σw

t

(
t

β

)L−1

e−

(
t2+β2

)
2 IL−1

(
βt

)
dt. (4.38)

Comparing (4.38) with (4.17), we have m = L, a = β, b = λ1
σw

. Thus, PD can be

expressed as

PD = QL

(
β,
λ1

σw

)
, (4.39)

and the type II error probability is given by

Prob[Z < λ1|H1] = 1− PD = 1−QL

(
β,
λ1

σw

)
. (4.40)

4.6 Throughput of CR networks

In this section we analyze the throughput performance of the CR networks by using

the proposed EVM based detection. The conventional frame structure of the CR sys-

tems consists of a sensing slot followed by a data transmission slot as shown in Fig.

4.4 [16,24]. A SU uses τ units of time for sensing and T −τ for data transmission. An

increase in the sensing time results in the higher detection probability however, the

increased sensing time results in a decrease of the data transmission time and hence

the throughput of the CR network. Therefore, a sensing-throughput tradeoff always

exists with this type of method.

As discussed in chapter 3, our proposed scheme allows simultaneous sensing and
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Figure 4.4: Conventional frame structure.

transmission for the SU, so it can overcome the sensing-throughput tradeoff. Under

the proposed method, both the sensing and the data transmission time are maximized

and their duration is equal to the frame duration T . Thus, EVM based CR system

exhibits the following advantages.

• The data transmission duration is equal to the frame duration, which results in

an increased throughput.

• The increased sensing time also leads to higher detection probability and there-

fore better protection of the PUs.

• It allows continuous spectrum sensing which ensures detection of the reappear-

ing PUs during ongoing SU communication.

The frame structure of the EVM based detection method is presented in Fig. 4.5

[18, 24]. It consists of the single slot in which sensing and data transmission are

performed at the same time using the receiver structure as presented in Fig. 3.3 in

chapter 3. In this frame structure, the sensing time slot τ in the conventional frame

structure is used for data transmission, which leads to an increase in the capacity of

the CR network as well as facilitates the continuity of data transmission.

The average achievable throughput of a CR network that operates using the frame

structure in Fig. 4.4 is given by [16,18,19,24]

R(τ) = R0(τ) +R1(τ) (4.41)
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Figure 4.5: New frame structure.

where R0(τ) and R1(τ) are given by

R0(τ) =
T − τ
T

P (H0)
(
1− PF (τ)

)
C0

R1(τ) =
T − τ
T

P (H1)
(
1− PD(τ)

)
C1 (4.42)

In the above equations, τ is the sensing duration and T is the frame duration. C0 is

the throughput of the SU when it operates in the absence of the PU and C1 is the

throughput when it operates in the presence of the PU. P (H0) and P (H1) denote the

probability that the frequency band is idle and active respectively in such way that

P (H0) + P (H1) = 1. From [16], C0 and C1 can be written as

C0 = log2

(
1 + SNRs

)
C1 = log2

(
1 +

SNRs

1 + SNRp

)
(4.43)

where SNRs is the SU SNR and SNRp is the PU SNR measured at the SU receiver.

EVM based sensing operates using the frame structure in Fig. 4.5, since it allows

simultaneous sensing and transmission. In this case, the sensing duration becomes T

instead of τ . Therefore, the throughput of the EVM based approach can be written

as

R(T ) = R0(T ) +R1(T ) (4.44)
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where the values of R0(T ) and R1(T ) can be calculated as

R0(T ) = P (H0)
(
1− PF (T )

)
C0

R1(T ) = P (H1)
(
1− PD(T )

)
C1 (4.45)

4.7 Simulation Results

In this section we describe the simulation model used to evaluate the proposed PU

monitoring mechanism. The transmitter and receiver models were designed according

to IEEE 802.11ac specifications. The channel we considered in the simulation is an

AWGN channel. OFDM is used at the physical layer. The simulation parameters are

given in Table 4.1. The distributions of the EVM for QPSK PU and OFDM SU signal

is analysed under both hypothesis H0 and H1 as shown in Fig. 4.6 and Fig. 4.7. The

PDFs of the decision variable Z under H0, i.e., when there is no PU in the band, are

shown in both Fig. 4.6 and Fig. 4.7. Under H1 the PDF depends on the value of

INR. The additional curves are also shown under H1 with different INR values (-15,

-13, -11, -9, -5 ) dB. The presence of the PU is strongly indicated by the shift in

the distributions even when the power of the PU’s signal is much weaker than the

power of the desired signal at the SU’s receiver. Fig. 4.8 shows the EVM response for

different values of INR. It is shown that the PU has arrived at the 100th time sample.

The PU presence is clearly indicated by a step change in the EVM curve for different

values of INR. As the INR values decreases, the step size becomes smaller and the

detection performance decreases.

The CROC of the EVM based detector for different values of INR is shown in Fig. 4.9

when 8 samples are used for EVM calculation. As expected, the detection probabil-

ity increases for higher values of INR. Furthermore, it is clear from Fig. 4.9 that our

Laplacian approximation agrees with the exact result. In Fig. 4.10 the CROC curve

is plotted for different number of samples L under fixed INR of -5 dB. Performance
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improves as the number of samples L collected increases. The CROC of the EVM

based detector for different values of INR is shown in Fig. 4.11 when the number

of samples in the sensing interval is L=12. As expected, the detection probability

increases with increasing values of INR. Furthermore, it is clear from Fig. 4.11 that

our analytical result well matches the simulated result. In Fig. 4.12 the CROC

curve is plotted for different numbers of samples L under fixed INR of -15 dB. It shows

the expected result that detection performance improves as the number of samples L

collected increases.

In Fig. 4.13 the CROC curve is plotted for a fixed INR of -15 dB as a function

of the number of active PU samples M in the sensing interval (L+M). As seen from

Fig. 4.13, the detection performance improves with an increasing number of active

PU samples M in the sensing interval. At M=12 and L=0, the detection performance

is equivalent to that of the case when PU is present for the whole sensing interval

as shown in Fig. 4.11 and Fig. 4.12. However, a PU can arrive at different time

Table 4.1: Simulation parameters

Parameter Value

No. of OFDM symbols 600

FFT length 64

Bandwidth 20 MHz

No. of data subcarriers 48

No. of pilot subcarriers 4

Total no. of subcarriers 48+4=52

Modulation 64-QAM

Symbol interval 4µs

PU modulation QPSK

SU SNR 6 dB
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the PU is present throughout the SU transmission.
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the PU arrives at the 100th time sample.

samples, which degrades detection performance. The reappearing PU scenario is the

subject of ongoing research.
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Figure 4.8: EVM response when PU arrives at the 100th time sample.
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Figure 4.9: CROC curves for different INR values when L=8.

In Fig. 4.14 we have compared the proposed PU monitoring algorithm with the

conventional energy detection technique. The simulated CROC curves are shown as
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Figure 4.10: CROC curves for different number of samples with INR value of -5 dB.
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dashed lines whereas the analytical CROC curves are shown as solid lines. For all

three instances of INRs, the EVM detector shows better performance in addition to
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Figure 4.13: CROC curves for INR =-15 dB for reappearing PU with different number
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having fast detection. Fig. 4.15 compares the EVM detector with energy detection

in terms of the number of samples used. It can be seen that EVM outperforms the

energy detector even at smaller sample size. In Fig. 4.16 we have compared the
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secondary throughput versus sensing time for conventional energy detector and EVM

detector with parameters (target probability of detection = 0.9, frame duration T=
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Figure 4.16: Comparison curve of the secondary throughput versus sensing time
between conventional energy detector and EVM detector.

100 ms, INR= -15 dB and secondary SNR = 20 dB). We have used the throughput

expressions which are derived in (4.41) and (4.44) for periodic sensing and simulta-

neous sensing and transmission respectively. We plug in our derived probability of

false alarm (4.13) and probability of detection (4.31). From the figure, we can see a

tradeoff between throughput and sensing time for the periodic sensing approach as

noted in [29]. It can be seen that the optimum sensing time for periodic sensing is 2.5

ms and the simultaneous sensing and transmission approach achieves higher through-

put in comparison to the periodic sensing approach for all the considered values of

sensing duration. Moreover, EVM detection approach achieves higher throughput in

comparison to energy detection for periodic sensing and simultaneous sensing and

transmission approaches i.e the EVM approach achieves 5.75 bits/s/Hz whereas en-

ergy detection with simultaneous sensing and transmission achieves 5.45 bits/s/Hz

which gives 0.3 bits/s/Hz increased throughput, which is a considerable gain. There-

fore, it can be concluded that the proposed EVM detector performs better than the

energy detection approach for both periodic sensing and simultaneous sensing and
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transmission.

4.8 Chapter Summary

We have studied the performance of an EVM based detector that monitors the reap-

pearing PUs during ongoing SU transmission. We have followed the widely used IEEE

802.11ac standards for the use of OFDM. The performance of the proposed algorithm

has been analysed by deriving probabilities of detection and false alarm for AWGN

channels. The proposed algorithm has low computational complexity compared to

[4], [8] and [10]. The sliding window method in [4] calculates the energy ratio between

two windows, meaning it has a complexity that is approximately twice that of the

energy detector. Perfect decoding is required in [8] which is hard to achieve and [10]

requires the SU to insert periodic zero-energy intervals which increases the overhead.

As our system uses only the inherent pilots of the OFDM systems, our system can

significantly enhance the performance of OFDM based CR networks without sacrific-

ing system throughput along with achieving improved detection performance. Exact

analyses were presented which determine the probabilities of type I and type II errors

both in the case where the PU is present throughout the sensing interval, and in

the case where the PU reappears during a sensing interval. A low complexity Lapla-

cian approximation for the type I and type II error probabilities was also presented.

Simulation results show the significant advantages of the proposed detection.





Chapter 5

Exact Quickest Spectrum Sensing

for EVM Based Change Detection

5.1 Introduction

In chapter 4, we analyzed EVM based detection for a fixed sample size. There, a block

of samples was taken, the EVM test statistic was calculated and subsequently a deci-

sion made by comparing the value of the test statistic to a predetermined threshold.

Although, we have used several small blocks instead of a single long sensing block,

there are two major concerns. One is that the decision is unreliable for small block

size and considerable detection delay occurs for a large block size. The other is that

the observations both before and after a change may appear in the same block, thus

the decision may be in error. A sensing decision will be reached only after receiving

all the samples as originally planned when defining the threshold. This may introduce

significant delays, which may either result in interference for the PUs or reduce the

data rate by shortening the transmission window of the SUs [132]. For these reasons,

sequential detectors are considered as the best alternative to fixed block length de-

tectors for the application of spectrum sensing [133].

In this chapter we apply the sequential change detection also known as the quickest

detection method to the EVM based detector for detecting the reappearing PU dur-

ing ongoing SU communication with the aim of minimum detection delay. Quickest

detection performs a statistical test to detect the change of distribution in observa-

tions in order to attain agile and robust spectrum sensing [91]. Our aim is to develop

a statistical framework to analyze detection delay, subject to certain false alarm con-

75
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straints, and more importantly to design a scheme that can minimize the detection

delay. The non-sequential spectrum monitoring methods mentioned in [27,70,93,134]

focus on maximizing probability of detection subject to a certain false alarm rate.

When the PU reappears, the SU needs to detect its transmission quickly to vacate

the channel and when the PU stops transmission, the SU must be able to detect

the absence of the PU quickly. Therefore, besides probability of detection, detec-

tion delay is an important performance metric in measuring the efficient utilization

of the spectrum. Quickest detection is used to obtain the minimal detection delay

subject to given false alarm constraints, and is more efficient for dynamic spectrum

access [91], [135].

The red dashed line in Fig. 5.1 is the EVM calculated during the whole sensing

interval. We can see PU change its status only once throughout the SU transmission

period, i.e., the PU arrives at the 100th block and persists for the remainder of the

sensing period. In Fig. 5.2, PU changes its status twice, i.e., it arrives at the 75th

block, remains active for 75 samples before disappearing at the 150th block. Recall

that, PU status change and its detection with EVM are all happening during SU
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Figure 5.1: EVM response when PU arrives at the 100th time sample (INR=-10 dB).
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Figure 5.2: EVM response when PU arrives at the 75th time sample (INR=-10 dB)
and departs at the 150th time sample.

transmission. When the PU starts using the channel, the SU needs to detect the

existence of the PU as quickly as possible in order to vacate the channel without

causing any significant interference to the transmission of the PU. In contrast, when

the PU stops transmission, the SU must be able to detect its absence as soon as

possible to enable the SU to fully utilize the unused spectrum for its transmission.

Fig. 5.2 reflects both conditions. Therefore, the entry and exit of the PU has to be

determined with minimum detection delay in order to overcome these issues. This

is only possible if we cast the hypothesis detection problem within the framework

of quickest detection. We now apply quickest detection to know as soon as possible

when the PU appears within the sensing interval to ensure that the SUs can vacate

the channel in time for the next SU slot.

Full-Duplex (FD) energy detection [29, 31, 32] also can be employed for the appli-

cation of quickest detection. The idea is to apply SIC to cancel the self interfering

signal, and to perform energy detection spectrum sensing on the remaining signal.

In [29, 31, 32], the SU signal is typically treated as unknown at the receiver, and the
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effectiveness of SIC is represented using a linear “self-interference mitigation coeffi-

cient” which is applied to degrade the effectiveness of spectrum sensing. However,

they do not account for error propagation from incorrect SU decisions feeding into

the SIC process. In this thesis, we assume that the received SU pilot symbols are

perfectly removed for calculating the EVM statistic, with remaining synchronization

and channel estimation errors treated as AWGN having identical variance for H0 and

H1.

The rest of the chapter is organized as follows. Section 5.2 describes the system

model and gives the PDF’s for the H0 (PU absent) and H1 (PU present) hypotheses.

In Section 5.3, quickest detection is discussed. The application of quickest detection

using EVM test statistic is presented in Section 5.4. Performance analysis and results

are presented in Section 5.5 and 5.6, respectively. Finally, Section 5.7 concludes the

chapter.

5.2 System model

We use the system model as described in chapter 3. The only difference here is the

application of the CUSUM algorithm after EVM calculation as shown in Fig. 5.3.

We consider that the channel is idle at the beginning and thus the SU can access the

channel and start transmitting. An SU needs to monitor the channel periodically,

and if the PU reappears, the SU needs to vacate the channel as quickly as possible

in order to minimize detection delay. Detection delay impacts the duration that the

SU may cause harmful interference to the PU. Since, it is clear from Fig. 5.1 and 5.2

that the PU can arrive and leave at anytime during SU transmission, we model the

PU reappearance problem as an EVM based change detection and study the quickest

spectrum sensing performance as shown in Fig. 5.4.
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Figure 5.3: Block diagram of EVM based CUSUM detector.

In chapter 4, (4.6), we derived the EVM test statistic per subcarrier as

Zp(k) =

√√√√ 1

LEs|Hps(k, l)|2
L∑
l=0

∣∣∣∣Ep(k, l)∣∣∣∣2, (5.1)

where

Ep(k, l) =


Wp(k, l), H0

Hp(k, l)Ip(k, l) +Wp(k, l), H1.

(5.2)
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Figure 5.4: EVM based change point detection of PU reappearance.
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We found that the PDF of the decision statistic Z in the absence of the PU is given

by

fZ|H0(y) =
LL21−Ly2L−1e

−Ly2

2σ2w

σ2L
w Γ(L)

, y > 0. (5.3)

We now consider two different types of PU as below:

Case I: We assume PU to be an independent Gaussian random signal with zero

mean and variance σ2
I . Accordingly, Z follows a central chi distribution whose PDF

can be written as

fZ|H1(y) =
LL

2L−1(σ2
I + σ2

w)LΓ(L)
y2L−1e

−Ly2

2(σ2
I
+σ2w) . (5.4)

Case II: We assume the PU signal to be an unknown deterministic signal whose

symbol duration is longer than the sensing interval. In this case, Z follows a non-

central chi-distribution with non-central parameter β =
√

2Lγ, where γ =
µ2I
σ2
w

is the

interference to noise ratio (INR). The PDF under H1 can thus be expressed as

fZ|H1(y) =

e
−

(
y2

σ2w
+β2

2

)
y2LβIL−1

(
βy
σw

)
σLw(βy)L

, (5.5)

5.3 Quickest detection

This section applies the results from Section 5.2 to introduce quickest detection based

on the EVM metric. In quickest detection it is assumed that it is known which hy-

pothesis is true and that a change to the other hypothesis will be detected with as

little detection delay as possible. Contrary to evaluating the probabilities of detection

PD and false alarm PF as in block detection, the design criteria for quickest detection

are the mean time to detection τD and the mean time to false alarm τF . A well known
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algorithm used in quickest detection is the cumulative sum (CUSUM) algorithm [136].

It evaluates recursively on a sample-by-sample basis, so we set the number of sensing

samples L to be 1 [91,132,137].

Without loss of generality, we assume in the following that before an unknown change

time τ , hypothesis H0 is true and at time τ transmission of the PU starts, i.e., hypoth-

esis H1 becomes true. Let Ut be a sequence of random variables with a probability

density f θ0(u). Before an unknown change time i.e. for t < τ , the parameter θ is

equal to θ0, and after the change time i.e. for t ≥ τ , it is equal to θ1. Samples u(t)

are taken in order to detect the change from H0 → H1. The SU observes the samples

sequentially and employs the CUSUM algorithm to detect the PU via a change in

the EVM distribution. The CUSUM algorithm relies on the log-likelihood ratio of

the received sample at time index t : lu(t) = ln

{
fθ1(u(t))
fθ0(u(t))

}
. The CUSUM algorithm

detects the abrupt change at sample

T = inf(t : Bu(t) ≥ ψ), (5.6)

where ψ is a threshold and B(t) is the CUSUM statistic defined as [91].

Bu(t) = max
k≤t

t∑
i=k+1

lu(i). (5.7)

Intuitively, T is the first time that the metric Bu(t) passes the threshold ψ. The log

likelihood ratio in (5.7) is given by

lu(i) = ln

{
f θ1(u(i))

f θ0(u(i))

}
. (5.8)

A cumulative sum of the log-likelihood ratios of consecutive samples is formed by

the CUSUM algorithm. A convenient recursive formulation of the CUSUM statistic,

Bu(t), can be given as [89,136]

Bu(t+ 1) = {B(t) + lu(t)}+, (5.9)
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where x+ = max(x, 0). Therefore, the CUSUM statistic can be computed recursively

for t ≥ 0 by setting B(t) = 0. The Bu(t+ 1) statistic is compared to a threshold, ψ,

after each sample and the algorithm will raise an alarm when Bu(t + 1) ≥ ψ, which

decides that a change to H1 has happened or indicates the existence of the PU. We

now study the application of quickest detection using the EVM test statistic.

5.4 Application of quickest detection using the EVM

test statistic

To adapt the results from Section 5.3, we use the EVM test statistic from (5.1) and

use existing results from quickest detection. Depending on whether H0 or H1 is true,

Z(k) in (5.1) is distributed according to fZ|H0(z) or fZ|H1(z), respectively.

Thus, the log-likelihood ratio can be found for the two different cases above by in-

serting (5.4) and (5.5) into its definition as

Case I:

l(z) = ln

{
fZ|H1(z)

fZ|H0(z)

}
= ln

{ LL21−Lz2L−1e
− Lz2

2(σ2
I
+σ2w)

(σ2
I+σ2

w)LΓ(L)

LL21−Lz2L−1e

−Lz2
2σ2w

σ2L
w Γ(L)

}
(5.10)

= ln

{
LL21−Lz2L−1e

−Lz2

2(σ2
I
+σ2w)

(σ2
I + σ2

w)LΓ(L)
× (σ2

w)LΓ(L)

LL21−Lz2L−1e
− Lz2

2σ2w

}

= ln

{
e
−Lz2

2(σ2
I
+σ2w)

(σ2
I + σ2

w)
× σ2

w

e
− Lz2

2σ2w

}

= ln
{
e

Lz2σ2I
2σ2w(σ2

I
+σ2w)

}
+ L ln

{ σ2
w

σ2
I + σ2

w

}
=

Lz2σ2
I

2σ2
w(σ2

I + σ2
w)

+ L ln

{
σ2
w

σ2
w + σ2

I

}

=
z2σ2

I

2σ2
w(σ2

I + σ2
w)

+ ln

{
σ2
w

σ2
w + σ2

I

}
. (5.11)
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Case II:

l(z) = ln

{
fZ|H1(z)

fZ|H0(z)

}
= ln

{ e−

(
z2

σ2w
+β2

2

)
z2LβIL−1

(
βz
σw

)
σLw(βz)L

LL21−Lz2L−1e

−Lz2
2σ2w

σ2L
w Γ(L)

}
(5.12)

which contains the PDF of the chi and noncentral chi distribution. Note L=1 and

Γ(L) = (L − 1)! is the Gamma function, where L is an integer. Thus, (5.12) can be

re-written as

l(z) = ln

{
e

(
β2

2

)
I0

(
βz

σw

)}
, (5.13)

where I0 is the zero order modified Bessel function of the first kind.

In order to achieve further simplification, we know that a zero order modified Bessel

function of the first kind can be approximately replaced by an exponential function

when the term
(
βz
σw

)
is large [138]. Then (5.13) can be rewritten as

l(z) = ln

{
e

(
β2

2

)
e

(
βz
σw

)}

= ln

{
e

(
β2

2
+ βz
σw

)}

=
β(βσw + 2z)

2σw
(5.14)

Using the log-likelihood ratios in (5.11) or (5.13), we can write the CUSUM algorithm

for our model as:

g(z + 1) = [g(z) + l(z)]+. (5.15)

Hence, we can compute g(z) recursively, by setting g(0) = 0. In summary, the

algorithm works as follows: the SU computes l(z) using (5.11) or (5.13) after each
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sample, computes the statistic g(m) using (5.15), and compares this statistic with a

threshold ψ. If g(z) is larger than ψ, the algorithm declares that the PU is present.

5.5 Performance analysis

Let T denote the sample number at which the change is detected and τ be the sample

number when the change actually occurs. If T > τ , then the detection delay is T − τ .

On the other hand, the event T < τ is a false alarm event and T̄0 = Ef 0[T ] is the

mean time to false alarm which is measured when there is no change in the EVM

distribution. The false alarm rate is then defined as PFA(T ) = 1
Ef 0[T ]

. The CUSUM

algorithm is asymptotically minimax optimal with respect to Lorden’s measure of the

worst-case detection delay. Based on Lorden’s formulation, the worst-case detection

delay is denoted by [89,91,139].

Td = sup
τ≥1

ess sup Ef1 [T − τ |T ≥ τ ], (5.16)

where Ef1 denotes the expectation operator when the change occurs at sample number

τ . Thus, the quickest detection problem for CR is to obtain a strategy that can

minimize Td, while fulfilling the given false alarm constraint. The threshold ψ can be

set based on the lower bound on T̄0, where the bound can be expressed as [89,91]

T̄0 ≥ eψ. (5.17)

Alternatively, the threshold values can be set in an arbitrary way to give a desired

range of detection delay or false alarm rate.

5.6 Results

In this section we present some simulation results to evaluate the quickest sensing

performance for EVM based change detection in the Gaussian channel. Fig. 5.5

shows a typical realization of the CUSUM EVM and CUSUM ED statistics, when
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the PU starts transmission at τ=100. We have set SU SNR = 6 dB. As expected, the

CUSUM test statistic tends to reset to a value of zero prior to the PU transmission

and grows continuously after the change time τ . We have simulated for both cases of

PU as considered in Section 5.2. The CUSUM algorithm is sensitive to uncertainty in

parameters [91]. Therefore, the cumulative sum for an unknown deterministic signal

does not increase much which is the price we have to pay for the signal not being

known. However, for a known Gaussian random signal the cumulative sum of the

CUSUM increases more rapidly after m=100 than the CUSUM ED, thus a large dif-

ference is observed before and after the PU appearing. Thus, it is very easy to detect

the change of spectrum activities by using an appropriate threshold with CUSUM

EVM. This is because the CUSUM algorithm entirely relies on the instantaneous

log-likelihood ratio l(m) defined by (5.11) and (5.13) which depends on the PDF of

the signal samples, and thus on its different parameters. Figs. 5.6 and 5.7 show the

characteristics of the proposed quickest EVM by varying PFA for the average detec-

tion delay in comparison to that of the quickest ED in [135]. Simulations use 5000

trials, where each trial has 200 samples. PU begins transmission at τ= 100. We have

set the threshold values to ψ=3, 3.5, 4, 4.5, 5, 6, 6.5, 7 to give a reasonable range of

average detection delay or PFA values as mentioned in [135]. We measure the average

detection delay and PFA based on the pre-determined threshold values. It is clear

from Fig. 5.6 that for both quickest EVM and quickest ED, the stricter PFA is, the

greater detection delay we have. We can see that if we constrain ourselves to a small

rate of false alarm for assuring the efficiency of opportunistic accessing, the proposed

EVM based quickest sensing algorithms perform better than the energy detection for

all instances of considered INR. This reinforces the results of chapter 4 which show

that EVM spectrum sensing performs better than energy detection spectrum sensing

for a fixed number of samples.

Since, the modified Bessel function is computationally complex we have provided

a low complexity approximate solution in (5.14). Fig. 5.8 shows the simulated re-

sults. It provides the asymptotic results of the CUSUM algorithm. Fig. 5.8 shows
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Figure 5.6: Comparison between the performance of the quickest EVM and quickest
ED for INR= 5 dB.

that the approximation over-estimates CUSUM, particularly at lower values of INR.

However, this approximation is useful for realizing the performance of the proposed

quickest EVM detection over practical wireless fading channels like Nakagami-m fad-

ing that contains I0(z) term in the PDF expression [140].
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5.7 Chapter Summary

We have studied the effectiveness of exact quickest EVM based spectrum sensing.

Detection theory is applied to EVM spectrum sensing to achieve agile and robust

performance. The proposed system has been designed to detect the reappearing

PU during ongoing SU transmission so that the SU can stop interfering as quickly

as possible. Simulation results show that quickest EVM detection outperforms the

quickest ED scheme. These results reinforce the results of chapter 4 which show

that EVM spectrum sensing performs better than energy detection based spectrum

sensing.



Chapter 6

Conclusions and future works

In this chapter we summarize the novel contributions of this thesis and highlight

several possible directions for future work.

6.1 Conclusions

The current fixed spectrum allocation policies and the increasing demand for wire-

less services and applications have led to the problem of spectrum scarcity. In this

regard, CR has emerged as a potential solution to efficiently utilize the unused spec-

trum. The thesis has primarily focused on the interweave paradigm among the three

CR paradigms considered in the literature. Under this paradigm, the SUs are allowed

to opportunistically utilize a frequency band when it is not being used. This is ac-

companied by the process of spectrum sensing. Spectrum sensing can be categorized

into two types [59] : out-of-band sensing and in-band sensing. Out-of-band sensing

searches for an idle channel by sensing multiple channels sequentially until an avail-

able channel is found. Once the channel is utilized, in-band sensing must promptly

detect the return of PUs so that SUs can vacate the channel immediately upon de-

tection of returning PUs. It is desirable to perform in-band sensing as frequently as

possible for fast detection of the returning PUs. However, such sensing incurs signif-

icant overhead and requires the SU to stop its transmission periodically. Therefore

it is desirable to search for a method by which SUs can monitor the frequency band

without interrupting their communications.

In this thesis, we propose an in-band sensing scheme suitable for an OFDM based CR

network that permits SUs to perform spectrum monitoring during transmission. This

89
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monitoring technique supplements the traditional spectrum sensing and provides en-

hanced communications efficiency. We have considered the use of the EVM metric for

monitoring the reappearing PU during the reception of packets. EVM is measured as

a difference between the received and known transmitted pilots. Throughout the the-

sis, we have followed the IEEE 802.11 ac pilot structure by way of practical example

although the analysis presented in the thesis is general and may apply to any pilot

tone pattern. EVM has several advantages which are extremely useful for developing

practical CR. Firstly, it facilitates simultaneous sensing and transmission by the SU.

Secondly, it removes the need for the sophisticated SIC method as required by FD

spectrum sensing techniques since the SU transmitted signal gets canceled out during

EVM calculation. Thirdly, it utilizes fewer symbols and provides results well before

demodulation and decoding and gives us real time results.

The main focus of the thesis was to develop an EVM based spectrum monitoring

technique for OFDM based CR networks. The primary objectives are to increase the

detection performance and enhance throughput of the CR enabled SUs. The objec-

tives have been achieved successfully. As common in the research area of spectrum

monitoring, theoretical analytical performance of the proposed solution is evaluated.

The main contributions of this thesis are

• In Chapter 3, we proposed an EVM based PU monitoring technique. We utilized

the inherent pilot tones embedded in OFDM to measure the EVM. The EVM

is calculated as a difference between the received and transmitted pilot tones.

The results show that a step change in the EVM curve is sufficient to clearly

distinguish between the two hypotheses H0 and H1. In the absence of the PU

in the band, the calculated EVM involves only noise and receiver impairments

such as estimation errors. Therefore, the EVM remains static as the impairment

variance does not change significantly over time. However, once the PU appears,

the EVM additionally includes the PU interference, which results in a step

change in EVM when the PU is detected.



Chapter 6. Conclusion and future works 91

• In Chapter 4, we studied the performance of the EVM detector in an AWGN

channel. We derived an analytical form of the PDF of the EVM based detector

based on the exact representation of chi distributions. We analyzed the per-

formance by deriving the type I and type II error probabilities. Furthermore,

from the fundamental theorem of central and non-central chi distributions, we

derived a novel analytic expression for type I and type II error probabilities

accounting for the specific scenario of detecting a reappearing PU during sec-

ondary transmission. In addition, we provided a simple analytic expression for

type I and type II error probabilities by making use of Laplacian approxima-

tion for a chi random variable. This approximation facilitates spectrum sensing

even with a small number of samples unlike the Gaussian approximation which

requires a large number of sensing samples. We also analysed the throughput

performance of the EVM detector.

The CROC performance analysis showed that our method outperformed the

energy detection method. The throughput performance of our system was en-

hanced in comparison to energy detection.

• We studied the effectiveness of exact quickest EVM based spectrum sensing.

The theory of detection was applied to spectrum sensing to achieve agile and

robust performance. The proposed system was designed to detect the reappear-

ing PU during ongoing SU transmission so that the SU can avoid the interference

as quickly as possible. Simulation results showed that quickest EVM detection

outperforms the quickest energy detection scheme. These results reinforced the

results of Chapter 4 which showed that EVM based spectrum sensing performs

better than energy detection based spectrum sensing.

To conclude, this thesis has shown the benefits of EVM based detection solutions

for OFDM based CR networks. Two types of detection methods viz. block based

and quickest detection were described and simulated. The results from both methods

showed significant advantages over energy detection methods. Our results showed
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that the EVM based PU monitoring approach is potentially more suitable for CR

technology than the energy detection approach.

6.2 Future works

In this section we indicate some possible future research directions which should be

considered to further enhance the performance of the systems we have developed in

this thesis.

• In our thesis, our EVM calculation assumes that the channel is both known and

static. In practice, neither is true. Analyzing the impact of an unknown and

estimated channel on our detection performance would be useful and interesting.

• We have used EVM to detect the reappearance of the PU by utilizing the inher-

ent pilot tones of the OFDM system. The system has been investigated without

any RF impairments. However, several RF impairments like IQ mismatch, phase

noise, PA nonlinearity, carrier frequency offset (CFO) and sampling frequency

offset (SFO) degrade the performance of EVM. This will affect the detection

performance. It would be interesting to study the combined effect of these RF

impairments on EVM and analyse the detection performance accordingly.

• The system model in this thesis has been considered in the framework of single

input single output (SISO) systems. However, it would be interesting to analyse

our system in the context of multiple input multiple output (MIMO). Further-

more, we have assumed an AWGN channel throughout the thesis, however this

can be extended to other practical fading channels such as Rayleigh, Rician ,

Nakagami, η − µ and k − µ channels.

• In Chapter 4, we have done a preliminary analysis of throughput performance

using an EVM based block detection approach. It could be interesting to con-

duct a throughput analysis using EVM based quickest spectrum sensing and

compare the achievable throughput and efficiency of these two approaches.
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• Another possible extension of our work could be to rate adaptation. The tra-

ditional rate adaptation algorithms in CR try to cope with fading and PU

interference by varying the transmission rate in response to either packet losses

or SNR variations. However, these are not done at a per symbol level that

explains the bursty nature of the PU, which can arrive at anytime within the

SU frame transmission. The same PHY rate is used over an entire duration of

frame transmission which causes significant performance degradation when the

channel quality changes within a frame transmission. Such channel changes can

cause consecutive transmission errors leading to severe inefficiencies in symbol

retransmissions. To improve performance, the SU transmitter should adaptively

change its PHY rate at the symbol level. As EVM detection allows the SU re-

ceiver to detect PU emergence mid packet, it can be considered as a convenient

symbol level performance metric. We can use the EVM as the CSI feedback from

the receiver, for the transmitter to perform power and rate selection. Thus, we

can achieve a reliable frame transmission using an EVM based symbol-level rate

adaptation according to the PU traffic. In doing so, we can expect a significant

gain in throughput performance.
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