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In this work, the effects of background noises on nonlinear dynamics of a modelled standing-wave

thermoacoustic system with subcritical Hopf bifurcation behaviors are studied. These noises

include (1) pressure-coupled (acoustic), (2) velocity-coupled (flow), and (3) external combustion

noise. It is found that these three types of background noises play important, but different roles in

changing the hysteresis width and stability boundary. In addition, the stochastic transition from sta-

bility to instability is investigated, as the noise intensity is varied. Two different stochastic P-bifur-

cations are identified. One is related to a craterlike probability density distribution. The other is

associated with a probability density distribution characterized with two peaks and one trough.

With each type of noise affecting the system’s stochastic behaviors being evaluated, the effect of

two different types of noises is then studied. It is shown that the combined noises (types 1 and 2)

cannot only destabilize global stable thermoacoustic system, but also stabilize linearly unstable sys-

tem. This depends strongly on the superimposition form of the two types of noises. In addition,

when the thermoacoustic system is disturbed by the combined noise (types 3 and 1 or types 3 and

2), the transition process is dominated by the combustion noise.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5020059

[JFL] Pages: 60–70

I. INTRODUCTION

Self-sustained thermoacoustic instabilities may occur in

different types of propulsion systems, such as liquid-fuel/

solid rocket motors, aero-engines, and augmenters. Such

instabilities also take place in land-based industrial gas tur-

bines,1 furnaces, and boilers. In order to meet the increas-

ingly stringent requirement of low NOx emission, lean-

premixed prevaporized techniques are preferred in industrial

combustion systems. This combustion technology makes the

industrial combustors more susceptible to thermoacoustic

instabilities. Thus, thermoacoustic oscillations occur more

frequently in the new generation of gas turbines and aero-

engines. Thermoacoustic instabilities are typically character-

ized by large-amplitude pressure or velocity oscillations. It

is generally caused2 by the dynamic coupling process

between unsteady heat release and acoustic disturbances.

Unsteady combustion responds dynamically to oncoming

acoustic waves, which propagate within the combustor. To

describe the coupling, Rayleigh3 proposed a well-known cri-

terion, which reveals the generation mechanism of thermo-

acoustic instabilities. It is stated that when the unsteady heat

release and the acoustic pressure are in phase, the acoustic

wave will gain energy from the heat source. Moreover, if the

energy gained from the heat source exceeds the acoustic loss

due to acoustic damping, the small amplitude acoustic

perturbation will grow into large-amplitude limit cycle oscil-

lations. Such oscillations are known as thermoacoustic

instabilities.

Large-amplitude limit cycle oscillations may lead to

many unwanted outcomes, such as unacceptable noise and

structural vibrations. It may also lead to overheating and

high-cycle mechanical fatigue problems. In order to elimi-

nate the unfavorable thermoacoustic oscillations, two main

approaches are proposed and tested. One is passive control4,5

and the other is active control. To design a stable combustor

and to prevent the onset of such damaging oscillations, an

accurate prediction of stability boundary and behaviors of a

given combustion system is needed. Two main approaches

are generally used to study the stability of thermoacoustic

system, linear modal analysis and nonlinear analysis.

Conventional modal analysis can provide insightful informa-

tion about the growth rate and eigen-frequency of thermo-

acoustic modes. This information is important for acoustic

dampers’ design. However, it cannot predict the amplitude

of self-excited thermoacoustic oscillations. In addition, such

modal analysis fails to predict the instability, if the thermo-

acoustic system is in the hysteresis loop, where a stable sta-

tus and a stable limit cycle coexist. Hysteresis is a typical

characteristic of subcritical Hopf bifurcations. In fact,

thermoacoustic systems can lose stability via a subcritical6

or supercritical bifurcation,7,8 which depends strongly on the

specific operation condition.9 Compared with supercritical

Hopf bifurcation, subcritical bifurcation is more damaging toa)Electronic mail: dan.zhao@canterbury.ac.nz
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the combustor, as a sudden transition to large amplitude

oscillations may occur, due to a small change in some impor-

tant system parameters, such as (1) heating power,10 (2) inlet

flow velocity,11 and (3) equivalent ratio.6,12 Considering the

great potential to cause damages to the engine systems, non-

linear dynamics analysis of a thermoacoustic combustor

with a subcritical Hopf bifurcation are needed. This partially

motivated the present work.

In practice, predicting the stability behaviors of a ther-

moacoustic system in the deterministic aspect is not enough.

A number of experimental tests13 reveal that self-sustained

thermoacoustic oscillations involve random features. For

example, the amplitude and phase of limit cycle oscillations

are varying from cycle to cycle.9 And the parameters defin-

ing the combustor stability boundaries are changing from

one test to another test.13 Although the deterministic system

can also manifest itself in a form of “random” motion, if the

strange attractor “chaos” occurs. Culick et al.14 applied the

fraction dimension to examine the possibility of the chaotic

behavior in the thermoacoustic system and denied this expla-

nation. Therefore, the thermoacoustic system with stochastic

driving/forcing will be more appropriate to characterize its

response. Actually, research interests in combustion noises

were initially raised in solid propellant rockets and ramjet

engines.15 Poinsot et al.16 conducted an experimental study

of a dump combustor in 1990s. They confirmed the presence

of stochastic noises in the combustor by spatial maps of

coherence function. By taking the effect of turbulent flow

into account, Culick et al.14 performed an excellent stochas-

tic modelling study, when stochastic noises and combustion

instability were coupled. Lieuwen17 studied the statistical

characteristics of pressure oscillations in a premixed com-

bustor. A good prediction in probability density function

(PDF) of the amplitude of the oscillations was obtained.

Lieuwen and Banaszuk18 then studied the effects of the

background noises on the combustion stability from the lin-

ear aspect. The random features of the combustors were

explained by considering external noise perturbations, such

as cyclic variability and noise-induced transition. Noise-

induced transition and stochastic bifurcations are two impor-

tant and interesting noise-induced phenomena. As for the

noise-induced transition, it was found that additive stochastic

perturbations/disturbances could trigger the linear stable sys-

tem to jump into large amplitude oscillations.19 In addition,

Waugh et al.20 theoretically showed that pink noise (higher

amplitude at lower frequency) was more effective in causing

triggering in comparison with white or blue noises.

Stochastic bifurcation is mainly used to characterize the

instability in a stochastic dynamic system. And there are mainly

two different criterions. One is related with stochastic D-bifur-

cation. The other is with stochastic P-bifurcation. Stochastic

D-bifurcation is characterized by the sign change of the maxi-

mum Lyapunov exponent, while stochastic P-bifurcation is

characterized by a qualitative change in the probability distribu-

tion of the system response. Gopalakrishnan et al.21 observed

the stochastic P-bifurcation in a prototypical thermoacoustic

system driven by an external white noise. They22 also studied

the effect of the external noise on the hysteresis region in a sub-

critical thermoacoustic system. It was found that increased

noise can lead to a decrease in the hysteresis region. Steinert23

experimentally investigated the effects of external noises on a

combustor’s response. Both the transition process of stochastic

P-bifurcation and noise-induced coherence resonance were

experimentally observed. In summary, these previous works

did not consider other types of noises, such as pressure-, veloc-

ity-, or combustion-related noises. The effect of combined or

superimposed types of background noises resulting from acous-

tic, flow, and random combustion disturbances on the stochastic

bifurcation and the hysteresis region is not studied. Lack of

such investigations partially motivated the present work.

In this work, a noisy nonlinear model of open-ended

standing-wave thermoacoustic system is proposed to study its

stochastic behaviors. This is described in Sec. II. Coupling the

unsteady heat release with Galerkin series expansion of the

acoustic disturbances24 provides a platform to extract time

series information of the nonlinear thermoacoustic oscilla-

tions. Following the previous studies,6,11,17,21 the limit cycle

oscillations in the thermoacoustic combustors can be proc-

essed by a weakly nonlinear theory. Three different types of

background noises are then introduced to the system to exam-

ine its nonlinear dynamic response. In the absence of these

noises, the one dimensional (1D) open-ended thermoacoustic

system we modeled is found to be associated with subcritical

behaviors. By using stochastic averaging,25 the stochastic sys-

tem response is approximated into a joint Markov process.

And the Fokker–Planck–Kolmogorov (FPK) equation is

obtained, which governs the transition amplitude density func-

tion of the Markov process. The effect of the noise intensity

on the stochastic P-bifurcation of the modelled thermoacous-

tic system26 and hysteresis are systematically studied. The

results are discussed in Sec. III. The key findings are summa-

rized in Sec. IV.

II. THE NONLINEAR THERMOACOUSTIC MODEL

In the present work, a 1D Rijke-type thermoacoustic

system with a flame confined inside27 is considered, as

shown in Fig. 1. L denotes the length of the tube and ~xf is the

location of the heat source, i.e., the flame from the upstream

open end. The flame is assumed to be acoustically compact.

And both combustor ends are assumed to be acoustically

open. It has been shown28 that the dimensionless heat-driven

acoustics equation along the axial direction is given as

@2p0

@t2
� @

2p0

@x2
¼ c� 1ð ÞK @Q0

@t
d x� xfð Þ; (1)

where p0 and Q0 denote the acoustic pressure and the unsteady

heat release. K denotes the normalized heat power, c is the

ratio of specific heat, and d(�) is the Dirac delta function. xf

denotes the nondimensional axial location of the heat source

from the upstream open end, which is normalized by the total

length L. Here it is assumed that the unsteady pressure oscilla-

tion is dominated by a single mode. This assumption is widely

applied in previous experimental and theoretical investiga-

tions,23,24,29 especially on simplifed combustors such as Rijke

tube. Note that this assumption is inappropriate for studying

other complicated geometric propulsion systems, such as
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rocket motors, ramjets, and augmentors, where multiple

modes oscillations are present simultaneously. The pressure

fluctuation is expanded as p0ðx; tÞ ¼ uðkxÞgðtÞ. Here gðtÞ
denotes the time-dependent variable. uðkxÞ is kth acoustic

mode function. The specific form of uðkxÞ is determined by

the boundary conditions. Substituting the Galerkin expansion

of p0 into Eq. (1) and applying the orthogonality of the basis

functions lead to

€g þ k2g ¼ 2Kðc� 1Þ _Q
0
f uðkxf Þ; (2)

where the overdot denotes time derivative.

Generally, the damping effect needs to be considered,

due to the heat conduction and viscosity in the boundary

layer and sound radication across the boundary open

ends.30,31 Previous studies19,32 have confirmed that the

damping effect played a significant role in determining the

amplitude of thermoacoustic oscillations. Thus the present

model considers the damping effect by including a damping/

loss term. This enables Eq. (2) being rewritten as

€g þ k2g ¼ 2Kðc� 1Þ _Q
0
f uðkxf Þ � 2nk _g; (3)

where n denotes the overall damping coefficient. Here it is

assumed that the term on the right hand side of Eq. (3) is

“small” (the extent of “small” is given in Refs.14 and 18).

This may be due to two reasons. First, only a little amount

of unsteady heat release is used to generate acoustic waves

and the damping effect is limited. Second, a number of

experimental and theoretical studies33,34 show that the limit

cycles can be described by a weakly nonlinear theory. Such

theory is also applicable on studying Rijke-type thermo-

acoustic combustor.35 Therefore, a small factor � is intro-

duced to Eq. (3), as given as

€g þ k2g ¼ 2�Kðc� 1Þ _Q
0
f uðkxf Þ � 2�nk _g: (4)

In thermoacoustic combustors, random noise n3(t) due to

entropy fluctuations36,37 unsteady combustion such as

combustion-driven oscillations38–40 or is present. Thus the

noisy thermoacoustic model is described by

€g þ k2g ¼ 2�Kðc� 1Þ _Q
0
f uðkxf Þ � 2�nk _g þ n3ðtÞ: (5)

There may be other types of background noises, such as

pressure- and velocity-coupled disturbances. To make our

analysis more generalized, the noisy model can be further

improved by including all three types of background noises as

€g þ k2g ¼ 2�Kðc� 1Þ _Q
0
f uðkxf Þ � 2�nk _g þ n3ðtÞ

� n1ðtÞg� n2ðtÞ _g; (6)

where �n1(t)g and �n2(t) _g denote the pressure- and

velocity-related noise.

Following the previous work41 in which a third-order

polynomial model is used to characterize the unsteady heat-

ing release rate Q0, a higher-order polynomial is proposed in

this work shown as

Q0 ¼ b1p0 þ b2p0
3 þ b3p0

5
; (7)

where the coefficients b1, b2, and b3 are constant. It is worth

noting that unsteady heat release Q0 predicted by using Eq.

(7) is in good agreement with the experimental measure-

ments.41,42 Thus it is used in the following discussion.21

Substituting Eq. (7) into Eq. (6), and taking the effect of sto-

chastic perturbations, i.e., n1ðtÞ, n2ðtÞ, and n3ðtÞ (Ref. 14)

into account leads to

€g þ � _gða1 þ a2g
2 þ a3g

4Þ þ k2gþ n1ðtÞgþ n2ðtÞ _g
¼ n3ðtÞ; (8)

where a1¼ 2nk�2b1K(c�1)u2(kxf ), a2¼�6b2K(c�1)u4(kxf ),

and a3¼�10b3K(c�1)u6(kxf ). n1ðtÞ;n2ðtÞ, and n3ðtÞ describe

the stochastic perturbations. n1ðtÞ denotes pressure-coupled

noisy excitation. It is acoustics-related. n2ðtÞ is stochastic

velocity-coupled noisy perturbation and it is flow (vorticity)-

coupled. n3ðtÞ denotes an external stochastic forcing, which

can characterize random disturbances from unsteady combus-

tion. The stochastic sources n1ðtÞ, n2ðtÞ, and n3ðtÞ are

assumed to be independent of the amplitude of gðtÞ. The three

noisy terms are assumed to be uncorrelated. Furthermore,

they are assumed to involve the stochastic properties as

follows:

hn1ðtÞi ¼ 0; hn2ðtÞi ¼ 0; hn3ðtÞi ¼ 0;

hn1ðtÞn1ðtþ sÞi ¼ D1dðsÞ;
hn2ðtÞn2ðtþ sÞi ¼ D2dðsÞ;
hn3ðtÞn3ðtþ sÞi ¼ D3dðsÞ
hn1ðtÞn2ðtþ sÞi ¼ dðsÞ; (9)

h�i is the expectation operator and D1, D2, D3 are the noise’s

intensity. Clearly the noise n1ðtÞ and n2ðtÞ are multiplicative

and the external combustion noise n3ðtÞ is additive.

By applying stochastic averaging43 to approximate the

nonlinear stochastic response, a pair of a slowly varying pro-

cess is needed. A suitable transformation is implemented as

gðtÞ¼AðtÞcosh; _gðtÞ¼�kAðtÞsinh; h¼ ktþ/ðtÞ; (10)

where A(t) denotes the amplitude of the system response and

/(t) is the phase. Then Eq. (8) can be rewritten into the fol-

lowing pair of ODE (ordinary differential equation) equa-

tions in term of A and / as

FIG. 1. (Color online) Schematic of a modelled standing-wave thermo-

acoustic system with both ends acoustically open and an acoustically com-

pact heat source confined.
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_A ¼ ��A sin2h a1 þ a2A2cos2hþ a3A4cos4h
� �

þ A sin h cos h
k

n1 tð Þ � A sin2hn2 tð Þ � sin h
k

n3 tð Þ;

(11)

_/ ¼ �� sin h cos h a1 þ a2A2 cos2hþ a3A4 cos4h
� �

þ cos2h
k

n1 tð Þ � sin h cos h n2 tð Þ � cos h
Ak

n3 tð Þ: (12)

Due to the assumption that � is small, ðA; /Þ can be approxi-

mated as a joint Markov process.44–46 By using stochastic aver-

aging, the corresponding Itô equation can be obtained as47

dA¼ ��a3A5

16
��a2A3

8
��a1A

2
þ5k2D2þ3D1

16k2
Aþ D3

4k2A

� �
dt

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2D1þ3A2k2D2þ4D3

8k2

s
dW1; (13)

d/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3A2D1 þ A2k2D2 þ 4D3

8k2A2

r
dW2; (14)

where dW1 and dW2 denote two independent Wiener pro-

cesses (Brownian motion).48

It is worth noting that the amplitude A(t) does not

depend on / as shown in Eq. (13), so it will be convenient to

develop a 1D probability density for A, rather than a joint

density for A and /. The transition density function P(A, t)
of the 1D Markov process A is governed49 by the following

Fokker–Planck–Kolmogorov (FPK) equation as

@P A; tð Þ
@t

¼ @

@A

�a3A5

16
þ�a2A3

8
þ�a1A

2

��

�5k2D2þ3D1

16k2
A� D3

4k2A

�
P A;tð Þ

�

þ @2

@A2

A2D1þ3A2k2D2þ4D3

16k2

� �
P A; tð Þ

� �
:

(15)

Then the drift coefficient m(A) and the diffusion coefficient

b(A) can be obtained as

m Að Þ ¼ � �a3A5

16
� �a2A3

8
� �a1A

2

þ 5k2D2 þ 3D1

16k2
Aþ D3

4k2A
;

b Að Þ ¼ A2D1 þ 3A2k2D2 þ 4D3

8k2
: (16)

The stationary probability density function can be obtained

by setting @PðA; tÞ=@t ¼ 0; as shown as

P Að Þ ¼ N exp

ð
2m Að Þ � b0 Að Þ

b Að Þ
dA

 !
; (17)

where N is a normalization constant so that
Ð1

0
PðAÞdA ¼ 1.

In addition, the peaks of the distribution P(A) is determined

by finding the roots of the equation below:

f Aeð Þ¼ �a3A5
eþ2�a2A3

eþ 8�a1þD2�
D1

k2

� �
Ae

� 4D3

Aek2
¼0; (18)

where Ae is the amplitude corresponding to the extreme of

the amplitude density distribution.

III. RESULTS AND DISCUSSION

The stochastic behaviors of the modelled open-ended

standing-wave thermoacoustic system in the presence of three

types of background noises are discussed and summarized.

Before we discuss the noise effect, the nonlinear behaviors of

the deterministic thermoacoustic system are studied, i.e.,

D1¼ 0, D2¼ 0, D3¼ 0. Figure 2 shows the bifurcation dia-

gram with respect to the oscillations amplitude A and the heat-

ing power K. In the absence of stochasticity, the distinguished

hysteresis zone (denoted by the shaded cyan) is clearly

observed. It indicates that the thermoacoustic system we stud-

ied is subcritical. Furthermore, an Andronov–Hopf bifurcation

point is identified and denoted by P1 and a fold bifurcation

point is denoted by P2. When the heating power K is less than

2.94 (or larger than 3.12), the system is globally stable (unsta-

ble). Otherwise, a stable steady state and a stable limit cycle

coexist. In the following studies, the heating power K is cho-

sen to be the only variable to define the operation condition of

the thermoacoustic system.

A. Effect of each type of background noises

The background noise effect can be studied in different

combinations. However, it would be reasonable to study the

effect of each type of background noise on the hysteresis and

stochastic behaviors of the system first. The combination of

each of the two types of background noises will be discussed

in Sec. III B. Figure 3 shows the effect of the pressure-

coupled noise n1 on the hysteresis region and the stochastic

transition, as D2¼ 0 and D3¼ 0.

It is obtained by evaluating the dependence of the roots

number of Eq. (16) on the heating power K and the noise

intensity D1 we consider. Curve l1 and l2 denote the critical

boundary about the presence of the peak of P(A) with differ-

ent amplitudes. The rectangular cyan shaded region denotes

the hysteresis region with bi-stable status in the absence of

these noises, i.e., D1¼ 0, D2¼ 0, D3¼ 0. The pink shaded

region denotes the hysteresis region with bimodal stationary

probability density with D1 6¼ 0. It is obvious that the pink

shaded hysteresis region for D1 6¼ 0 and the cyan shaded hys-

teresis for D1¼ 0 are not overlapped as shown in Fig. 3(a).

With the increase of the pressure-coupled noise intensity D1,

the width of the hysteresis region is decreased. In addition,

the pink shaded region is shifted to a decreased heating

power K. Thus the stable region is decreased too.

Three points, i.e., P1, P2, P3 in the bifurcation diagram as

shown in Fig. 3(a) are selected to evaluate the corresponding

stationary probability distributions (PDFs) at three representa-

tive regions. Here the same thermoacoustic system is chosen

by setting K¼ 2.8 and the intensity of the pressure-coupled
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noise (acoustics-related) to three different values. The corre-

sponding PDFs for the amplitude A are given in Fig. 3(b). The

analytical solutions in Fig. 3(b) are denoted by the brown lines

and obtained directly by discretizing Eq. (17). The dotted lines

are obtained by Monte Carlo simulations. The number of inte-

gral path is 500 and each path is obtained50,51 by integrating

Eq. (8). It can be seen from Fig. 3(b) that the brown solid lines

agree well with the dotted lines. These excellent agreements

confirm that the approximated analytical prediction is applica-

ble to study the stochastic behaviors of the thermoacoustic

system in the presence of pressure-coupled noises we are

interested in. Such an approach is applied to analyze the fol-

lowing cases to validate the analytical prediction for other

types of background noises.

When the pressure-coupled noise n1 is small (e.g., P1), it

can be seen from Fig. 3(b) that the blue-circled line has a

Dirac function like distribution. The stationary amplitude

distribution P(A) is more close to zero, if the intensity of D1

is constrained in the lower triangular region of Fig. 3(a).

That is to say, the thermoacoustic system will arrive at a

steady state, if the pressure-coupled perturbation is small.

However, if the intensity of the pressure-coupled perturba-

tions is increased further so that D1 is within the shaded pink

region of Fig. 3(a), the Dirac function like P(A) is turn to be

like a crater, which is denoted by the green triangular dotted

curve (P2). In this case, the probability density P(A) has a

minimum and a maximum peak, and such craterlike PDF has

been experimentally observed in Ref. 52. Further increasing

the noise intensity D1 to the upper trapezoid regions results

in a Gaussian-type distribution P(A) for a larger amplitude,

which can be seen by the red square dots (P3) as shown

in Fig. 3(b). Under this condition, large amplitude thermo-

acoustic oscillations are triggered by large-amplitude pres-

sure-coupled perturbations, when the thermoacoustic system

is at the global stable region. Therefore, the pressure-

coupled perturbations change the combustor’s dynamic

behavior in a qualitative way: large-amplitude pressure-

coupled noise can destabilize the linear stable system quali-

tatively, even when the thermoacoustic system is far away

from the critical bifurcation points. In addition, two differ-

ent transition processes are identified and stochastic P-

bifurcation is observed. One is from a Dirac function-like

FIG. 2. (Color online) Calculated bifurcation diagram of the modelled deter-

ministic thermoacoustic system in the phase plane of the heating power K
and the oscillation amplitude A. s-s: steady state, l-c: limit cycle, as c¼ 1.4,
�u¼ 0.5 m/s, �p¼ 1 atm, xf¼ 0.25, n¼ 0.1.

FIG. 3. (Color online) (a) Calculated stochastic bifurcation diagram in the phase plane of (K, D1) for the simplified 1D Rijke-type thermoacoustic system; (b)

variation of the probability density distribution P(A) with the oscillation amplitude A at different noise intensities D1, as b1¼ 1, b2¼ 1.2, b3¼�3, k¼p,

xf¼ 1/4, D2¼ 0, D3¼ 0; P1 (2.80, 0.20), P2 (2.80, 0.88), P3 (2.8, 3).
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distribution to a craterlike distribution. The other is from

the craterlike distribution to a Gaussian-type distribution.

Considering that both transitions are associated with crater-

like PDF, we define it as the first type of stochastic P-

bifurcation.

Figure 4 illustrates the effect of the velocity-coupled

noise n2 on the modelled standing-wave thermoacoustic sys-

tem, as D1¼ 0 and D3¼ 0. The calculated stochastic bifurca-

tion diagram in the phase plane of (K, D2) is shown in Fig.

4(a). Now the pink shaded region denotes the hysteresis for

the stochastic system, as D1¼ 0, D2 6¼ 0, D3¼ 0. Different

from the effect of the pressure-coupled noise n1 as shown in

Fig. 3(a), increased velocity-coupled noise n2 cannot only

increase the width of the pink shaded hysteresis region, but

also shift the hysteresis region to the linearly unstable

region. This is clearly shown in Fig. 4(a).

Similarly, three representative points, i.e., P1, P2, P3 are

selected, as K¼ 3.5. Under this operating condition, the ther-

moacoustic system is globally unstable from the determinis-

tic aspect. Their corresponding PDFs for the amplitude A are

shown in Fig. 4(b). When the velocity-coupled noise n2 is

small, the blue circle dotted line P1 exhibits a Gaussian-type

probability density distribution with a large amplitude,

which means that the small-amplitude velocity-coupled

noise n2 does not affect the system response significantly.

When the amplitude of n2 is increased to be in the shaded

region as shown in Fig. 4(a), a craterlike PDF is clearly

observed. Further increasing the amplitude of the velocity-

coupled noise n2 (e.g., P3) leads to small-amplitude oscilla-

tions, which can be seen by the red square dotted line. In this

case, the stabilizing effect of the velocity-coupled noise n2(t)

becomes obvious and large-amplitude oscillations are

suppressed to be small-amplitude perturbations. In addition,

although P(A) is maximized at zero, but it scatters more

widely than the Dirac-like distribution as shown in Fig. 3(b).

Therefore, the thermoacoustic system will not be in a steady

state, but oscillates with a small amplitude. Finally, the first

type stochastic P-bifurcation as we define before is observed,

as the noise intensity D2 is increased.

Figure 5 shows the effect of the additive combustion-

related noise n3 on the Rijke-type thermoacoustic system, as

D1¼ 0 and D2¼ 0. The calculated stochastic bifurcation dia-

gram in the phase plane of (K, D3) is illustrated in Fig. 5(a). It

can be seen that increasing the intensity of n3 leads to the

width of the pink shaded hysteresis region being decreased,

and shifts the pink shaded region to the linear stable region,

so that the stable region is decreased. Such analytical predic-

tion shows a qualitatively good agreement with the experi-

mental measurements.21,22 Although the external combustion-

related noise n3 exerts similar effects on the hysteresis width

and stable region with pressure-coupled noise D1, its destabi-

lizing effect is much limited than that of the pressure-coupled

noise D1, which can be seen from the small tilt and the exis-

tence of the absolute stable Region 1 in Fig. 5(a). It is worth

noting that the external combustion noise n3 does not affect

combustor’s dynamic behaviors, when the thermoacoustic

system is operated in Region 1.

Figure 5(b) shows the calculated PDF at three represen-

tative points (denoted by P1, P2, P3), when the thermoacous-

tic system is linearly stable, e.g., K¼ 2.923. The PDFs with

smaller peaks are depicted in the inner embedded figure for

better description. When the thermoacoustic system is per-

turbed by small-amplitude noises (see point P1), a Rayleigh

type distribution is observed. P(A) has only one local

FIG. 4. (Color online) (a) Calculated stochastic bifurcation diagram in the phase plane of (K, D2) for the simplified 1D Rijke-type thermoacoustic system; (b)

variation of stationary probability density distribution P(A) with the amplitude A at different damping noise intensity D2, as b1¼ 1, b2¼ 1.2, b3¼�3, k¼p,

xf¼ 1/4, D1¼ 0, D3¼ 0. P1 (3.5, 0.10), P2 (3.5, 0.18), P3 (3.5, 0.3).
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maximum in the vicinity of zero. When the noise intensity

D3 is increased further (see point P2), a new type of PDF

with two maximum peaks and one valley is obtained. Such

shape of PDF has already been observed in the experimental

measurements.11,23 Further increasing the noise intensity

(see point P3) leads to the thermoacoustic system being

“locked” in a large-amplitude limit cycle, and the peak at the

local small amplitude disappears. Now the amplitude distri-

bution becomes unimodal again. Thus two different transi-

tion processes are observed. One is from a Rayleigh-type

distribution for a smaller amplitude to bimodal distribution

with double maximum peaks. The other is from the bimodal

distribution with double peaks to unimodal distribution for a

larger amplitude. Clearly, the stochastic P-bifurcation

induced by the external combustion noise n3 is different

from that in the previous two cases (pressure- or velocity-

coupled noises). As for the transitions related to PDF with

two maximum peaks and one trough, we define it as the sec-

ond type of stochastic P-bifurcation in the present work. It is

worth noting that when the system undergoes periodic oscil-

lations with double stable peaks, it corresponds to the bi-

stable condition with a steady state and a stable limit cycle

oscillations in the deterministic system. Therefore, introduc-

ing the combustion-related noise such as n3(t) does not

change the system’s dynamic in qualitative ways, but exert

quantitative effects on the combustion responses.

B. Effect of two combined background noises

Figure 6 illustrates the statistical features of the thermo-

acoustic system by introducing both the pressure-coupled

noise n1(t) and the velocity-coupled noise n2(t)simultaneously,

as the additive external combustion noise is set to D3¼ 0. The

calculated 3D stochastic bifurcation diagram with respect the

heating power K and the noise intensity D1 and D2 Fig. 6(a).

The green plane is for K¼ 2.94 and the yellow is for

K¼ 3.12. These two vertical planes are the boundaries of the

hysteresis and the space between them is the hysteresis region

with bi-stable status for a deterministic case. The boundaries

of the hysteresis region with the bimodal PDF for the stochas-

tic system are denoted by the tilt planes in blue and red,

between which the space is a hysteresis region with the

bimodal PDF. Due to the effect of the combined noises, the

hysteresis region with the bimodal distribution as shown in

Fig. 6(a) is shifted into both the global stable region and the

global unstable region. Therefore, a proper combination of D1

and D2 can either stabilize the linearly unstable thermoacous-

tic system, or destabilize the linearly stable thermoacoustic

system. The two possibilities are mainly determined by the

specific combination of the pressure-coupled noise n1 and the

velocity-coupled noise n2. Figure 6(b) shows that there are

mainly three regions in the plane of (D1, D2): the upper color-

less Region 1, the lower colorless Region 2 and the middle

colored region. The pink shaded region denotes the hysteresis

with bimodal distribution when K¼ 2.94, and the cyan shaded

region is the hysteresis for K¼ 3.12. When the pressure-

coupled noise and the velocity-coupled noise are configured

within Region 1 (Region 2), the destabilizing (stabilizing)

effect plays a dominant role.

Four representative points are selected in four different

regions, and their corresponding PDFs are illustrated in Figs.

6(c) and 6(d). As the noise intensity is increased, it can be

seen that the first type of stochastic P-bifurcation occurs in

Figs. 6(c) and 6(d). In addition, there is a large similarity in

the calculated PDFs, no matter whether the thermoacoustic

system is in the global stable region [Fig. 6(c)] or in the

global unstable region [Fig. 6(d)].

Figure 7 summarizes the statistical features of the mod-

elled Rijke-type thermoacoustic system, when it is perturbed

FIG. 5. (Color online) (a) Stochastic bifurcation diagram in the phase plane of (K, D3) for the simplified 1D Rijke-type thermoacoustic system; (b) Stationary

probability density distribution P(A) varied with the amplitude A at different external combustion-related noise intensities D3, as b1¼ 1, b2¼ 1.2, b3¼�3,

k¼p, xf¼ 1/4, D1¼ 0, D2¼ 0. P1 (2.923, 0.001), P2 (2.923, 0.011), P3 (2.923, 0.02).
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by the pressure-coupled noise n1 and the combustion-related

noise n3 simultaneously. Figure 7(a) shows a stochastic

bifurcation diagram with respect to the heating power K and

the pressure-coupled noise intensity D1 and the external

combustion noise intensity D3. Increasing either D1 or D3

shifts the hysteresis region to the decreased heating power,

as that the stable region is decreased. Figure 7(b) gives a

top-down view of Fig. 7(a). The red shaded hysteresis region

is induced by the external combustion noise, n3(t) and the

blue color denotes that by the pressure-coupled noise n1(t). It

is obvious that the pressure-coupled noise n1(t) plays a more

important role in determining the stability boundary of the

thermoacoustic system. In addition, a cyan shaded region,

where the stochastic thermoacoustic system is globally sta-

ble, is observed in Fig. 7(b).

It is interesting to note that this region as shown in Fig.

7(b) is not observed in Fig. 3(a), when the system is perturbed

by the pressure-coupled noise n1(t). Therefore, the occurrence

of the cyan shaded region confirms the contribution of the

addition of the external noise D3. So combining with the

pressure-coupled noise n1(t) makes the role of the external

combustion-related noise n3(t) more complicated.

The external noise can counteract the pressure-coupled

noise’s destabilizing effect, when the heating power K is

small. As D3¼ 0.001, the stochastic bifurcation diagram with

respect to the pressure-coupled noise and the heating power K
is illustrated in Fig. 7(c). The shaded pink region denotes the

bimodal distribution. It divides the whole region into a lower

triangular colorless region and upper trapezoid colorless

region. With the increase of the pressure-coupled noise inten-

sity D1, the hysteresis region moves to the left part. Similar

trend is observed, when only the pressure-coupled noise is

exerted on the thermoacoustic system. Similarly three repre-

sentative points P1, P2, and P3 are selected in three different

regions and their corresponding PDFs are calculated and

shown in Fig. 7(d). It can be seen that the second type of sto-

chastic P-bifurcation occurs. Such type of P-bifurcation is

also observed, when the thermoacoustic system is perturbed

FIG. 6. (Color online) Stochastic bifurcation diagram in the phase plane of (K, D1, D2) for the simplified 1D Rijke-type thermoacoustic system, as D3¼ 0; (b)

The top-down view of (a); The pink (cyan) shaded part is the deterministic boundary enclosed by the bimodal region when K¼ 2.94 (K¼ 3.12). P1(0.2, 1.0),

P2(0.2, 1.62), P3(0.2, 2.33), P4(0.2, 3); (c) Stationary probability density distribution P(A) varied with the amplitude A at different noise intensities D1 as

D2¼ 0, D3¼ 0, K¼ 3.13; (d) Stationary probability density distribution P(A) varied with the amplitude A at different noise intensities D1 as D2¼ 0.2, D3¼ 0,

K¼ 2.93.
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by the external combustion-related noise n3(t) only. This indi-

cates that the external noise n3(t) plays a dominant role in

determining the transition process.

Figure 8 illustrates the calculated statistical features of

the thermoacoustic system, when it is perturbed by the

velocity-coupled noise n2 and the external noise n3 simulta-

neously. It can be seen from Fig. 8(a) that the hysteresis

region with a bimodal distribution is shifted to the increased

heating power K. Figure 8(b) gives the top-down view of Fig.

8(a). The curves l1 and l2 denote the hysteresis boundary with

respect to the heating power K and the noise intensity D2, as

D3¼ 0. Curve l3 is obtained by mapping the peak of 3D graph

into the phase plane (K, D2). Compared with the external

combustion-related noise n3(t), the velocity-coupled noise

n2(t) plays a dominant role in determining the stability bound-

ary of the thermoacoustic systems. It also shifts the hysteresis

region towards the linearly unstable region, which expands

the stable region. The addition of the external noise n3(t)

counteracts the stabilizing effect of the velocity-coupled noise

n2(t)to certain extent, which is illustrated by the area enclosed

by l1 and l3. Figure 8(c) shows the stochastic diagram in the

plane of (K, D2), as the external noise intensity is set to

D3¼ 0.001. It has been seen that the external noise does not

affect the stochastic bifurcation diagram of (K, D2) qualita-

tively, but quantitatively decrease the width of the hysteresis.

Figure 8(d) shows the PDFs of three selected points, P1, P2,

and P3 as shown in Fig. 8(c). Clearly, the transition process is

found to be the second type of stochastic P-bifurcation as

defined before. Such type of P-bifurcation is observed in the

system when either only the external noise, or the external

noise with the pressure-coupled noise is present. Therefore,

the external combustion-related noise n3(t) is revealed to

determine the transition process of the stochastic thermo-

acoustic system.

IV. DISCUSSION AND CONCLUSIONS

The present work considers the effects of three different

types of background noises on the nonlinear dynamics of an

open�open standing wave thermoacoustic system. These

noises include (1) pressure-coupled noise, (2) velocity-

coupled noise, and (3) external combustion-related stochas-

tic noise. For this, a noisy thermoacoustic model with a pre-

mixed flame confined is developed first. A fifth-order

polynomial formulation is proposed to describe the unsteady

heat release rate from the flame. In the absence of these

noises, the thermoacoustic system is shown to be subcritical

and a hysteresis region is clearly observed. Acoustic distur-

bances in the modeled system are numerically expanded by

using Galerkin series. The coupling between the acoustic

disturbances and unsteady heat release thus provides a plat-

form to study the nonlinear dynamics of the thermoacoustic

system in time domain. The system’s random response is

approximated into Markov process via stochastic averaging.

FIG. 7. (Color online) (a) Stochastic bifurcation diagram in the phase plane of (K, D1, D3) for the simplified 1D Rijke-type thermoacoustic system, as D2¼ 0;

(b) The top-down view of (a); (c) Stochastic bifurcation diagram in the phase of (K, D1). P1¼ (2.85,0.2), P2(2.85,0.65), P3(2.85,1.5), as D2¼ 0, D3¼ 0.001;

(d) Stationary probability density distribution P(A) varied with the amplitude A at different noise intensities D1, as D2¼ 0, D3¼ 0.001.
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By solving the corresponding FPK equation, the stationary

PDF is analytically obtained to determine the system’s

response.

The effects of three different types of background noises

on the hysteresis, stable region, and transition processes are

then systematically studied. For this, the thermoacoustic sys-

tem is disturbed by adding these noises one type at a time. It

is found that the pressure-coupled noise and velocity-

coupled noise have dramatic different effects on the system’s

stability, but share the same transition process. However, the

pressure-coupled noise and the external noise are found to

have similar effects on the system’s stability, but have differ-

ent transition processes. Furthermore, increasing the inten-

sity of either the pressure-coupled noise or the external

combustion noise can decrease the hysteresis width and sta-

ble region. The external noise is shown to have negligible

effect on decreasing the stable boundary. On the contrary,

increasing the velocity-coupled noise leads to the width of

the hysteresis region being increased and the stable region

being expanded. As for the transition process, it is found that

stochastic P-bifurcation describes the process very well. And

two different types of stochastic P-bifurcations are observed

and identified. The first type of stochastic P-bifurcation is

characterized by a transition between a unimodal PDF and a

bimodal craterlike PDF. This type of P-bifurcation is identi-

fied, when the thermoacoustic system is forced by either the

pressure-coupled or the velocity-coupled noise. The second

type of P-bifurcation is characterized by a transition between

a unimodal PDF and a bimodal PDF with two peaks and one

trough. This bifurcation is observed, when the system is dis-

turbed by the external noise.

Finally, the effect of combined two types of background

noises on the thermoacoustic system’s stability is evaluated.

When the thermoacoustic system is disturbed by the two

multiplicative noises such as the pressure- or velocity-

coupled noises simultaneously, the combined noise can

either stabilize the globally unstable system, or destabilize

the globally stable system. It depends strongly on the specific

combination of the two types of the background noises. The

transition process is found to be the first type of stochastic P-

bifurcation. If the combined noises consist of a multiplica-

tive noise and an additive noise, such as (1) the pressure-

coupled noise with the external combustion noise, or (2) the

velocity-coupled noise with the external combustion noise,

then the multiplicative noise is found to play a dominant role

in determining the stability boundary. Furthermore, the

external combustion noise (chemical reaction) is shown to

determine the transition processes.

FIG. 8. (Color online) Stochastic bifurcation diagram in the phase plane of (K, D2, D3) for the simplified 1D Rijke-type thermoacoustic system, as D1¼ 0; (b)

The top-down view of (a); (c) stochastic bifurcation diagram in the phase of (K, D2). P1(3.3,0.05), P2(3.3,0.12), P3(3.3,0.2), as D1¼ 0, D3¼ 0.001; (d) station-

ary probability density distribution P(A) varied with the amplitude A at different noise intensities D1, as D2¼ 0, D3¼ 0.001.
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