Introduction	Electronic structure	PES construction	PES validation	Outlook

A transformative approach for constructing anharmonic force fields

Marat Sibaev and Deborah Crittenden*

University of Canterbury, Christchurch, New Zealand

* deborah.crittenden@canterbury.ac.nz

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Electronic structure	PES construction	PES validation	Outlook
Primary go	bal			

Routine, black-box calculation of anharmonic vibrational frequencies for semi-rigid molecules, extensible to selected vibrational modes of larger systems (clusters, materials).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction	Electronic structure	PES construction	PES validation	Outlook		
Computational considerations						

Overall trade-offs between accuracy and computational cost:

Electronic structure methods for vibrational frequencies

- Weak coupling between electronic and nuclear degrees of freedom in wavefunction
- Harmonic contribution to fundamentals >> anharmonic contribution

₩

Use harmonic frequencies for benchmarking the performance of different electronic structure methods

Electronic structure methods for vibrational frequencies

Benchmark data set

- Spectroscopically accurate potential energy surfaces for 50 small molecules (3-6 atoms) implemented from the literature
 - Ground and excited states
 - Anionic, cationic and uncharged
 - Organic and inorganic
- At least CCSD(T)/aug-cc-pVQZ quality
- Expanded in symmetry-adapted internal coordinates
- Anharmonic fundamentals within 5 cm^{-1} of experiment
- Harmonic frequencies calculated from anharmonic PES

Electronic structure methods for vibrational frequencies

Approximate electronic structure methods

- B3LYP/6-31G(d,p), B3PW91/6-31G(d,p), PBE0/6-311G(d,p)
- EDF2/(aug-)cc-pVTZ
- M05/6-311+G(2df,2p), M06/6-311+G(2df,2p)
- MP2/(aug-)cc-pVTZ

* All DFT calculations performed using ultra-fine grids and tight SCF convergence thresholds.

and the second s	ables.	
introdu	CLIOI	

PES construction

PES validation

・ロト・日本・モート モー うへぐ

Outlook

Electronic structure methods for vibrational frequencies

	Errors (cm ⁻¹)		
Method	Mean	Max	
B3LYP	28	223	
B3PW91	25	245	
PBE0	27	228	
EDF	27	238	

Mean anharmonicity = 47 cm⁻¹ Max. anharmonicity = 237 cm⁻¹

and the second s	ables.	
introdu	CLIOI	

PES construction

PES validation

・ロト・日本・モート モー うへぐ

Outlook

Electronic structure methods for vibrational frequencies

	Errors	(cm^{-1})
Method	Mean	Max
B3LYP	28	223
B3PW91	25	245
PBE0	27	228
EDF	27	238
M05	36	204
M06	32	178

Mean anharmonicity = 47 cm⁻¹ Max. anharmonicity = 237 cm⁻¹

and the second s	ables.	
introdu	CLIOI	

PES construction

PES validation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outlook

Electronic structure methods for vibrational frequencies

	Errors (cm ⁻¹)	
Method	Mean	Max
B3LYP	28	223
B3PW91	25	245
PBE0	27	228
EDF	27	238
M05	36	204
M06	32	178
MP2	23	128

Mean anharmonicity = 47 cm⁻¹ Max. anharmonicity = 237 cm⁻¹

Electronic structure methods for vibrational frequencies

Take-home messages

- Don't use DFT for anharmonic frequency calculations
- Don't even use MP2
- Coupled-cluster models with at least at TZ basis required
- May be able to get away with a lower level of theory for the anharmonic part of the potential?
- If you can only afford a poor electronic structure model, you may as well use a poor anharmonicity model*

^{*} M. Sibaev & D. L. Crittenden, J. Phys. Chem. A, 2015, doi:10.1021/acs.jpca.5b11386 < 🖹 + 📢 🚊 🚽 🖓 🔍 🕐

The importance of coordinate choice

Describing the potential energy surface

- Force field coordinates required for concise PES expansion
- Curvilinear internal coordinates bond lengths, bond angles, dihedral angle, out-of-plane angles
- Redundant set

Solving the nuclear Schrödinger equation

- Normal mode coordinates diagonalize kinetic energy operator
- Rectilinear coordinates Cartesian displacement vectors
- Non-redundant set

You can't have your cake and eat it too

Two possible solutions:

Transform coordinates in which PES is expanded

- low order expansion in internal coordinates \rightarrow higher order expansions in Cartesian normal mode coordinates
- describes curvature of potential energy surface

Transform coordinates in which kinetic energy operator is expressed

- express KE operator in same non-redundant set of internal coordinates as PES
- describes curvature of internal coordinate set

You can't have your cake and eat it too

Two possible solutions:

Transform coordinates in which PES is expanded

- low order expansion in internal coordinates \rightarrow higher order expansions in Cartesian normal mode coordinates
- describes curvature of potential energy surface

Transform coordinates in which kinetic energy operator is expressed

- express KE operator in same non-redundant set of internal coordinates as PES
- describes curvature of internal coordinate set

Int	rn			~ 1	- 11	0	n
	10	u	u			U	

PES construction

PES validation

Outlook

PES expansions for HCl

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Introduction	Electronic	

PES construction

PES validation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook

n	$V_n(r - r_e)$	$V_n(\frac{r-r_e}{r})$
2	2990.9	2927.8

ln+	rod	1.1.01	Lio.	
ΠIL	100	luc	LIU	

PES construction

PES validation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outlook

п	$V_n(r-r_e)$	$V_n(\frac{r-r_e}{r})$
2	2990.9	2927.8
3	2730.5	2911.8

5.2 2885.2	2885.2
5.2 2885.	2885.2

In	+ "				C 1	0	
		U	u	u	<u> </u>	 U	ш

PES construction

PES validation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outlook

n	$V_n(r-r_e)$	$V_n(\frac{r-r_e}{r})$
2	2990.9	2927.8
3	2730.5	2911.8
4	2901.6	2886.1

∞	2885.2	2885.2
∞	2005.2	2005.2

In	+ "				C 1	0	
		U	u	u		 U	ш

PES construction

PES validation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook

п	$V_n(r-r_e)$	$V_n(\frac{r-r_e}{r})$
2	2990.9	2927.8
3	2730.5	2911.8
4	2901.6	2886.1
5	2881.8	2885.2
6	2885.6	2885.2
∞	2885.2	2885.2

Moving on to molecules

- Define redundant internal coordinate set, Z_r
 - Simon-Parr-Finlan for stretches
 - Polynomial for bond angles, torsion angles, out-of-plane angles
- Onstruct non-redundant internal coordinate set, Z
 - Can use symmetry-adapted internal coordinates for simple, small, symmetrical molecules
 - Otherwise, how best to define appropriate linear combinations?

- **③** Generate concise PES in internal coordinates, $V_n(Z)$
- Transform into higher order expansion in normal mode coordinates, e.g. V₆(Q)
- **Solve nuclear vibrational Schrödinger equation**

Defining non-redundant internal coordinates

The simplest approach

- Use Wilson G matrix method:
 - $\mathbf{G} = \mathbf{B_r} \mathbf{B_r}^{\mathrm{T}}$, $N_{\mathrm{int}} \times N_{\mathrm{int}}$ matrix
 - $\mathbf{B_r} = \frac{d\mathbf{Z_r}}{d\mathbf{X}}$, $N_{\mathrm{int}} \times 3N_{\mathrm{atom}}$ matrix
 - diagonalize G
 - $\mathbf{U} = N_{\mathrm{mode}} \times N_{\mathrm{int}}$ transformation matrix comprising N_{mode} eigenvectors with non-zero eigenvalues
 - $\mathbf{Z} = \mathbf{U}\mathbf{Z}_{\mathbf{r}}$
- Calculate energy derivatives by numerical differentiation:
 - with respect to displacements along Z_i
 - analytic second derivatives derived from *ab initio* Hessian data
 - but what step sizes to take along each coordinate, Z_i?
 - and what order of expansion will be required?

Defining non-redundant internal coordinates

An extra step

- Define curvilinear normal mode coordinates, $\tilde{\mathbf{Q}}$, as a linear combination of non-redundant internal coordinates, \mathbf{Z} , such that $\frac{d\tilde{\mathbf{Q}}}{d\mathbf{X}} = \frac{d\mathbf{Q}}{d\mathbf{X}}$
 - $\mathbf{L} = \frac{d\mathbf{X}}{d\mathbf{Q}}$ transforms between Cartesian and normal mode coordinates, derived from normal mode analysis

•
$$\tilde{\mathbf{L}} = \frac{d\mathbf{X}}{d\tilde{\mathbf{Q}}} = \frac{d\mathbf{X}}{d\mathbf{Q}} = \mathbf{L}$$
, by definition

• $\mathbf{B} = \frac{d\mathbf{\hat{z}}}{d\mathbf{X}} \rightarrow$ Wilson B-matrix for non-redundant coordinate set

•
$$\tilde{\mathbf{Q}} = (\mathbf{B}\tilde{\mathbf{L}})^{-1}\mathbf{Z}$$

• Calculate energy derivatives by numerical differentiation:

- with respect to displacements along \tilde{Q}_i
- analytic second derivatives derived from ab initio Hessian data
- step size inversely proportional to frequency
- can tailor order of expansion to character of vibrational mode

Introduction	Electronic structure	PES construction	PES validation	Outlook
PES expan	sions			

Concise expansion in curvilinear normal mode coordinates

$$\mathsf{V}_4(\tilde{\mathbf{Q}}) = \frac{1}{2!} \sum_{i,j} \tilde{F}_{i,j} \tilde{Q}_i \tilde{Q}_j + \frac{1}{3!} \sum_{i,j,k} \tilde{F}_{i,j,k} \tilde{Q}_i \tilde{Q}_j \tilde{Q}_k + \frac{1}{4!} \sum_{i,j,k,l} \tilde{F}_{i,j,k,l} \tilde{Q}_i \tilde{Q}_j \tilde{Q}_k \tilde{Q}_l$$

 \Downarrow Coordinate transformation*

Higher order expansion in rectilinear normal mode coordinates

$$V_{6}(\mathbf{Q}) = \frac{1}{2!} \sum_{i,j} F_{i,j} Q_{i} Q_{j} + \frac{1}{3!} \sum_{i,j,k} F_{i,j,k} Q_{i} Q_{j} Q_{k} + \frac{1}{4!} \sum_{i,j,k,l} F_{i,j,k,l} Q_{i} Q_{j} Q_{k} Q_{l} + \frac{1}{5!} \sum_{i,j,k,l,m} F_{i,j,k,l,m} Q_{i} Q_{j} Q_{k} Q_{l} Q_{m} + \frac{1}{6!} \sum_{i,j,k,l,m,n} F_{i,j,k,l,m,n} Q_{i} Q_{j} Q_{k} Q_{l} Q_{m} Q_{n}$$

^{*}W. D. Allen, A. G. Császár, V. Szalay, I. M. Mills, *Mol. Phys.*, 1996, doi:10.1080/002689796173138 🖉 🗐 🔍 🔍

l m	tr.	0		\sim		0	m
			u.		υı		

PES construction

PES validation

Outlook

Coordinate transformation procedure

$$\begin{cases} \tilde{F}_{i} = \frac{dV}{d\tilde{Q}_{i}} = 0\\ \tilde{F}_{i,j} = \frac{d^{2}V}{d\tilde{Q}_{i}d\tilde{Q}_{j}}\\ \tilde{F}_{i,j,k} = \frac{d^{3}V}{d\tilde{Q}_{i}d\tilde{Q}_{j}d\tilde{Q}_{k}}\\ \tilde{F}_{i,j,k,l} = \frac{d^{4}V}{d\tilde{Q}_{i}d\tilde{Q}_{j}d\tilde{Q}_{k}\tilde{Q}_{l}} \end{cases} \Rightarrow \begin{cases} F_{i,j,k} \in \mathcal{F}_{i,j,k} \\ F_{i,j,k,l} \in \mathcal{F}_{i,j,k} \\ F_{i,j,k,l} \in \mathcal{F}_{i,j,k} \\ F_{i,j,k,l} \in \mathcal{F}_{i,j,k,l} \end{cases}$$

$$F_{i} = \frac{dV}{dQ_{i}} = 0$$

$$F_{i,j} = \frac{d^{2}V}{dQ_{i}dQ_{j}}$$

$$F_{i,j,k} = \frac{d^{3}V}{dQ_{i}dQ_{j}dQ_{k}}$$

$$F_{i,j,k,l} = \frac{d^{4}V}{dQ_{i}dQ_{j}dQ_{k}Q_{l}}$$

$$F_{i,j,k,l,m} = \frac{d^{5}V}{dQ_{i}dQ_{j}dQ_{k}Q_{l}Q_{m}}$$

$$J_{j,k,l,m,n} = \frac{d^{6}V}{dQ_{i}dQ_{j}dQ_{k}Q_{l}Q_{m}Q_{n}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Int	roc	111CT	ion
1110	IUU	lucu	IOH

PES construction

PES validation

Outlook

Coordinate transformation procedure

Shorthand notation: {

$$\left\{\frac{d\mathbf{V}}{d\mathbf{\tilde{Q}}}\right\}^{4} \xrightarrow{\left\{\frac{d\mathbf{\tilde{Q}}}{d\mathbf{Q}}\right\}^{5}} \left\{\frac{d\mathbf{V}}{d\mathbf{Q}}\right\}^{6}$$

Requires:

- repeated application of chain rule*
- derivatives of $\tilde{\mathbf{Q}}$ with respect to \mathbf{Q} , to 5th order, themselves formed through a sequence of coordinate transformations:

$$\left\{\frac{d\mathbf{Z}}{d\mathbf{X}}\right\}^{5} \stackrel{d\mathbf{X}}{\Longrightarrow} \left\{\frac{d\mathbf{Z}}{d\mathbf{Q}}\right\}^{5} \stackrel{d\mathbf{\tilde{Q}}}{\Longrightarrow} \left\{\frac{d\mathbf{\tilde{Q}}}{d\mathbf{Q}}\right\}^{5}$$

 \bullet required transformation matrices defined during normal mode analysis, construction of $\tilde{\mathbf{Q}}$

^{*}W. D. Allen, A. G. Császár, V. Szalay, I. M. Mills, Mol. Phys., 1996, doi:10.1080/002689796173138 👘 🚊 🛷 🛇

Coordinate transformation procedure

Reduced mode-representation variants:

• Restrict number of independent indices in \tilde{F} :

•
$$V_4^{3MR}(\mathbf{\tilde{Q}}) \rightarrow V_6(\mathbf{Q})$$

• $V_4^{2MR}(\mathbf{\tilde{Q}}) \rightarrow V_6(\mathbf{Q})$

• Restrict number of independent indices in F:

•
$$\mathrm{V}_4(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6^{\mathrm{5MR}}(\mathbf{Q})$$

•
$$\mathrm{V}_4(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6^{4\mathrm{MR}}(\mathbf{Q})$$

•
$$\mathrm{V}_4(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6^{3\mathrm{MR}}(\mathbf{Q})$$

• Both:

- Sensible combinations of the above
- $\tilde{m} =$ mode-coupling in curvilinear normal mode potential
- m = mode-coupling in rectilinear normal mode potential

Introduction	Electronic 00000	PES con	struction	PES validatio	Outlook	
6						

Computational scaling

Step	Scaling law	Example: $V(\tilde{0}) \rightarrow V_{1}(0)$
	0()	$V_4(\mathbf{Q}) \rightarrow V_6(\mathbf{Q})$
ab initio calculations	$N_{ m basis}^7 \ N_{ m mode}^{\tilde{m}-2}$	$N_{ m basis}^7 \ N_{ m mode}^2$
construction of $rac{d ilde{f Q}}{df Q}$	$N_{ m mode}^{m-1}N_{ m int}$	$N_{ m mode}^5 N_{ m int}$
coordinate transformation	$N_{ m mode}^{ ilde{m}+m}$	$N_{ m mode}^{ m 10}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\tilde{m} =$ mode-coupling in curvilinear normal mode potential
- m = mode-coupling in rectilinear normal mode potential

lı	ntroduction	Electronic structure	PES constr 0000000	ruction 000000	PES validatio	on Outlook				
	Implementation details									
	• $\left\{\frac{d\mathbf{Z}}{d\mathbf{X}}\right\}^5$ matrix elements obtained via:									
			stretching	bending	torsional	out-of-plane				
	hard-coded	expressions	r	$\cos \theta$	$\sin\phi$	au				
	coordinate tra	ansformation	$1 - e^{-\alpha(r-r_e)}$	θ	ϕ	$\sin au$				
			1							

	$(r-r_e)/r$			
symbolic differentiation	other	other	other	other

- All transformation formulae hard-coded
- Enables general non-linear transformations between any defined coordinate systems
- Interfaces with GAMESS and CFOUR program packages
- Code available on sourceforge: PyPES extensible library

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

Introduction	Electronic structure	PES construction	PES validation •0000000000	Outlook
PES valida	tion			

Transformed PES expansions validated by:

- calculating anharmonic vibrational fundamental frequencies, using VPT2-screened VCI algorithm
- comparing results against benchmark literature values
- internal comparison choice of internal coordinate system, completeness of internal coordinate PES
- internal comparison convergence with respect to expansion order, mode-representation

Nuclear vibrational structure method

VPT2-screened VCI

- Construct harmonic oscillator basis states, according to maximum "excitation level" (total vibrational quanta)
- Choose states for inclusion in VCI matrix based on their VPT2 corrections to harmonic frequencies, using loose screening threshold
- Oiagonalize newly formed sparse VCI matrix
- Choose more states based upon their VPT2 contribution to new, anharmonic fundamentals, tightening screening threshold
- Repeat steps (3) and (4) until no new states are selected, or fundamental transition energies don't change

Introduction	Electronic structure	PES construction	PES validation	Outlook

Redundant internal coordinates:

- 5 \times bond lengths
- 6 \times bond angles
- 4 \times dihedral angles

Sextic force field in non-redundant set of symmetry-adapted internal coordinates, $V_6(\mathbf{Z_{ref}})$, implemented from the literature¹

Ethene

PES construction

PES validation

Outlook

Coordinate definition and PES truncation errors (cm^{-1})

Reference: $\mathrm{V}_6(\textbf{Z}_{ref}) \to \mathrm{V}_6(\textbf{Q})$

Approximation: $\mathrm{V}_4(\boldsymbol{\tilde{Q}}) \to \mathrm{V}_6(\boldsymbol{Q})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

PES construction

PES validation

Outlook

Reduced mode representation in internal coordinates

Reference: $\mathrm{V}_4(\boldsymbol{\tilde{Q}}) \to \mathrm{V}_6(\boldsymbol{Q})$

 $\begin{array}{l} \text{Approximations:} \\ \mathrm{V}_{4}^{3\mathrm{MR}}(\boldsymbol{\tilde{Q}}) \rightarrow \mathrm{V}_{6}(\boldsymbol{Q}) \\ \mathrm{V}_{4}^{2\mathrm{MR}}(\boldsymbol{\tilde{Q}}) \rightarrow \mathrm{V}_{6}(\boldsymbol{Q}) \end{array}$

PES construction

PES validation

Outlook

Reduced mode representation in normal mode coordinates

Reference: $\mathrm{V}_4(\boldsymbol{\tilde{Q}}) \to \mathrm{V}_6(\boldsymbol{\mathsf{R}})$

 $\begin{array}{l} \mbox{Approximations:} \\ {\rm V}_4(\tilde{\textbf{Q}}) \rightarrow {\rm V}_6^{\rm 5MR}(\textbf{Q}) \\ {\rm V}_4(\tilde{\textbf{Q}}) \rightarrow {\rm V}_6^{\rm 4MR}(\textbf{Q}) \\ {\rm V}_4(\tilde{\textbf{Q}}) \rightarrow {\rm V}_6^{\rm 3MR}(\textbf{Q}) \end{array}$

Introduction	Electronic structure	PES construction	PES validation	Outlook
Testing -	molecules			

A series of internal coordinate force fields and higher order transformed normal mode force fields:

 $\bullet \ \mathrm{V}_4(\boldsymbol{\tilde{Q}}) \to \mathrm{V}_6(\boldsymbol{Q}) \qquad \ (\text{reference})$

•
$$\mathrm{V}_4^{\mathrm{3MR}}(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6^{\mathrm{4MR}}(\mathbf{Q})$$

•
$$\mathrm{V}_4^{\mathrm{2MR}}(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6^{\mathrm{4MR}}(\mathbf{Q})$$

were generated for:

- 4 \times 5-atom molecules
- 8 \times 6-atom molecules
- 5 \times 7-atom molecules
- 6×8 -atom molecules

Introduction

Electronic structure

PES construction

PES validation

Outlook

2MR QFF in internal coordinates

Reference: $\mathrm{V}_4(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6(\mathbf{Q})$

 $\begin{array}{l} \text{Approximations:} \\ \mathrm{V}_4^{\mathrm{2MR}}(\boldsymbol{\tilde{Q}}) \rightarrow \mathrm{V}_6^{\mathrm{4MR}}(\boldsymbol{Q}) \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

l m	tr.	0		\sim		0	m
			u.		υı		

PES construction

PES validation

Outlook

3MR QFF in internal coordinates

Reference: $V_4(\mathbf{\tilde{Q}}) \rightarrow V_6(\mathbf{Q})$

 $\begin{array}{l} \text{Approximations:} \\ \mathrm{V}_4^{3\mathrm{MR}}(\boldsymbol{\tilde{Q}}) \rightarrow \mathrm{V}_6^{4\mathrm{MR}}(\boldsymbol{Q}) \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Int	rn			~ 1	- 11	0	n
	10	u	u			U	

PES construction

PES validation

Outlook

Accuracy vs computational cost

	Mean	Scaling law, $O(\cdots)$		
Potential	Absolute	PES	Coordinate	
	Error (cm $^{-1}$)	construction	transformation	
$\mathrm{V}_4^{\mathrm{2MR}}(\mathbf{ ilde Q}) o \mathrm{V}_6(\mathbf{Q})$	4.7	$N_{\rm basis}^7$	$N_{ m mode}^{8}$	
$\mathrm{V}_4^{\mathrm{3MR}}(\mathbf{ ilde Q}) o \mathrm{V}_6(\mathbf{Q})$	0.7	$N_{ m basis}^7 N_{ m mode}$	$N_{ m mode}^9$	
$\mathrm{V_4}(\mathbf{ ilde Q}) ightarrow \mathrm{V_6^{3MR}}(\mathbf{Q})$	4.7	$N_{ m basis}^7 N_{ m mode}^2$	$N_{ m mode}^7$	
$\mathrm{V_4}(\mathbf{ ilde Q}) ightarrow \mathrm{V_6^{4MR}}(\mathbf{Q})$	0.6	$N_{ m basis}^7 N_{ m mode}^2$	$N_{ m mode}^{8}$	
$\mathrm{V_4}(\mathbf{ ilde Q}) ightarrow \mathrm{V_6^{5MR}}(\mathbf{Q})$	0.03	$N_{ m basis}^7 N_{ m mode}^2$	$N_{ m mode}^9$	
$\mathrm{V}_4^{\mathrm{3MR}}(\mathbf{ ilde Q}) ightarrow \mathrm{V}_6^{\mathrm{4MR}}(\mathbf{Q})$	1.0	$N_{ m basis}^7 N_{ m mode}$	$N_{ m mode}^7$	

Introduction	Electronic structure	PES construction	PES validation	Outlook
Summany				

 $\mathrm{V}_4^{\mathrm{3MR}}(\mathbf{ ilde Q})
ightarrow \mathrm{V}_6^{\mathrm{4MR}}(\mathbf{Q})$ PES gives

- maximum error $<12~cm^{-1}$ and average error $<1~cm^{-1}$ relative to ${\rm V}_4(\tilde{\bm{Q}})\to{\rm V}_6(\bm{Q})$
- optimal tradeoff between accuracy and computational cost requires only $O(N_{\rm mode})$ ab initio Hessian calculations
- first readily available numerically stable procedure for generating sextic force fields in rectilinear normal mode coordinates
- ability to accurately model anharmonic fundamentals for semi-rigid molecules with up to 15 atoms

Introduction	Electronic structure	PES construction	PES validation	Outlook
Where to f	rom here?			

- Transform into localized modes
 - \rightarrow lower order transformations, expansions required?
- Transform kinetic energy operator rather than PES?
- Provide ability to specify 'spectator modes' to be modelled using second order expansion in curvilinear normal mode coordinates
 - only generate higher derivatives along 'active modes'
 - reduce computational cost to $N_{\rm basis}^7 N_{\rm active}$
- Improve stability of interpolated PES: transforming into high order expansions in Cartesian space avoids singularities associated with expanding PES in asymptotically-divergent internal coordinates.

Introduction	Electronic structure	PES construction	PES validation	Outlook
Where to	o from here?			

- Transform between different internal coordinate systems to exploit asymptotic behaviour
- Construct and test hybrid force fields using different levels of electronic structure theory
 - Harder than it sounds to do rigorously and cheaply complex series of transformations required to find normal mode coordinates and equilibrium geometry for hybrid force field analytically from component parts

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Could cheat and assume geometry and normal mode coordinates stay approximately constant and do literal replacement of force constants