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Introduction

Primary goal

Routine, black-box calculation of anharmonic vibrational
frequencies for semi-rigid molecules, extensible to selected
vibrational modes of larger systems (clusters, materials).
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Introduction

Computational considerations

Overall trade-offs between accuracy and computational cost:

High accuracy
high cost

Electronic
structure /
method

Nuclear
vibrational
method

Lowaccuracy
low cost

PES
representation
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Electronic structure methods for vibrational frequencies

@ Weak coupling between electronic and nuclear degrees of
freedom in wavefunction

@ Harmonic contribution to fundamentals >> anharmonic
contribution

Y

Use harmonic frequencies for benchmarking the performance of
different electronic structure methods
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Electronic structure methods for vibrational frequencies

Benchmark data set

@ Spectroscopically accurate potential energy surfaces for 50
small molecules (3-6 atoms) implemented from the literature

o Ground and excited states
e Anionic, cationic and uncharged
e Organic and inorganic

At least CCSD(T)/aug-cc-pVQZ quality
Expanded in symmetry-adapted internal coordinates

Anharmonic fundamentals within 5 cm™! of experiment

Harmonic frequencies calculated from anharmonic PES
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Electronic structure methods for vibrational frequencies

Approximate electronic structure methods
e B3LYP/6-31G(d,p), B3PW91/6-31G(d,p), PBE0/6-311G(d,p)
e EDF2/(aug-)cc-pVTZ
e M05/6-311+G(2df,2p), M06/6-311+4G(2df,2p)
e MP2/(aug-)cc-pVTZ

* All DFT calculations performed using ultra-fine grids and tight
SCF convergence thresholds.
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Electronic structure methods for vibrational frequencies

Errors (cm™1)
Method | Mean  Max

B3LYP 28 223
B3PW9I1 25 245
PBEO 27 228
EDF 27 238

1
1

Mean anharmonicity = 47 cm™
Max. anharmonicity = 237 cm™
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Electronic structure methods for vibrational frequencies

Errors (cm™1)
Method | Mean  Max

B3LYP 28 223
B3PW9I1 25 245
PBEO 27 228
EDF 27 238

MO05 36 204
MO06 32 178

1
1

Mean anharmonicity = 47 cm™
Max. anharmonicity = 237 cm™
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Electronic structure methods for vibrational frequencies

Errors (cm™1)
Method | Mean  Max

B3LYP 28 223
B3PW9I1 25 245
PBEO 27 228
EDF 27 238

MO05 36 204
MO06 32 178

MP2 23 128

1
1

Mean anharmonicity = 47 cm™
Max. anharmonicity = 237 cm™
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Electronic structure methods for vibrational frequencies

Take-home messages
@ Don't use DFT for anharmonic frequency calculations
@ Don't even use MP2
@ Coupled-cluster models with at least at TZ basis required
°

May be able to get away with a lower level of theory for the
anharmonic part of the potential?

@ If you can only afford a poor electronic structure model, you
may as well use a poor anharmonicity model*

*M. Sibaev & D. L. Crittenden, J. Phys. Chem. A, 2015, doi:10.1021/acs.jpca.5b11386
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The importance of coordinate choice

Describing the potential energy surface
@ Force field coordinates required for concise PES expansion

@ Curvilinear internal coordinates - bond lengths, bond angles,
dihedral angle, out-of-plane angles

@ Redundant set

Solving the nuclear Schrodinger equation
@ Normal mode coordinates diagonalize kinetic energy operator
@ Rectilinear coordinates - Cartesian displacement vectors

@ Non-redundant set
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You can't have your cake and eat it too

Two possible solutions:

Transform coordinates in which PES is expanded

@ low order expansion in internal coordinates — higher order
expansions in Cartesian normal mode coordinates

@ describes curvature of potential energy surface

Transform coordinates in which kinetic energy operator is expressed

o express KE operator in same non-redundant set of internal
coordinates as PES

@ describes curvature of internal coordinate set
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You can't have your cake and eat it too

Two possible solutions:

Transform coordinates in which PES is expanded

@ low order expansion in internal coordinates — higher order
expansions in Cartesian normal mode coordinates

@ describes curvature of potential energy surface
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PES expansions for HCI
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Fundamental vibrational frequency of HCl (cm™!)

n Vp(r—r) Vu(=5)

r

2 2990.9 2927.8

00 2885.2 2885.2
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Fundamental vibrational frequency of HCl (cm™!)

n Vp(r—r) Vu(=5)

r

2 2990.9 2927.8
3 2730.5 2911.8

00 2885.2 2885.2
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Fundamental vibrational frequency of HCl (cm™!)

Va(r—re) V(=)

r

2990.9 2927.8
2730.5 2911.8
2901.6 2886.1
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00 2885.2 2885.2
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Fundamental vibrational frequency of HCl (cm™!)

Va(r—re) V(=)

r

2990.9 2927.8
2730.5 2911.8
2901.6 2886.1
2881.8 2885.2
2885.6 2885.2

2885.2 2885.2
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Moving on to molecules

@ Define redundant internal coordinate set, Z,

e Simon-Parr-Finlan for stretches
e Polynomial for bond angles, torsion angles, out-of-plane angles

@ Construct non-redundant internal coordinate set, Z

o Can use symmetry-adapted internal coordinates for simple,
small, symmetrical molecules
o Otherwise, how best to define appropriate linear combinations?

© Generate concise PES in internal coordinates, V,(Z)

@ Transform into higher order expansion in normal mode
coordinates, e.g. Ve(Q)

© Solve nuclear vibrational Schrodinger equation
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Defining non-redundant internal coordinates

The simplest approach

@ Use Wilson G matrix method:
o G=B,B,", Ny x Ny, matrix
B, = 9%, Niye X 3Nagom matrix
diagonalize G
U = NMuode X Nipt transformation matrix comprising Nyode
eigenvectors with non-zero eigenvalues
o Z=UZ,
@ Calculate energy derivatives by numerical differentiation:
with respect to displacements along Z;
analytic second derivatives derived from ab initio Hessian data
but what step sizes to take along each coordinate, Z;?
and what order of expansion will be required?
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Defining non-redundant internal coordinates

An extra step

@ Define curvilinear normal mode coordinates, Q, as a linear
combination of non-redundant internal coordinates, Z, such

dQ _ d4Q

o L= % transforms between Cartesian and normal mode

coordinates, derived from normal mode analysis
o L=9%=9X _ | by definition

dQ — dQ
e B= % — Wilson B-matrix for non-redundant coordinate set
e Q= (BL)_lz

@ Calculate energy derivatives by numerical differentiation:

e with respect to displacements along Qi

e analytic second derivatives derived from ab initio Hessian data
e step size inversely proportional to frequency

e can tailor order of expansion to character of vibrational mode
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PES expansions

Concise expansion in curvilinear normal mode coordinates

Va@Q) =2 X Fi0Q+ 3 X FinQQ+ 4 Y Fir@QQd
1)

iJk ikl

|l Coordinate transformation*

Higher order expansion in rectilinear normal mode coordinates

V6(Q) = 5 ZF,JQ,QJ—F 3 Z FijnQQQu+ 2 > FijkiQQQuQ+

ik NN

> F,J,k,/,mQ,QijQ/Qm & Y FijkimnQiQQuQQmQn

ij,k,l,m ij,k,l,m,n

u'\‘,_.

*W. D. Allen, A. G. Csészér, V. Szalay, I. M. Mills, Mol. Phys., 1996, doi:10.1080/002689796173138
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Coordinate transformation procedure

dv
FF=— =
"dQ; 0
. 2
FodV g oY
dQ, Y dQidQ;
d? 3
Fij= IV Fijx = LA
dQ;de N ’ dQ:deko
. d3V d*v
Fl',j,k - ——=——=——=" Ff,j,k,/ = —_—
dQ;dQ;dQx dQ;dQ;dQx Q
- d*v d5V
Fijki = 55 Fijkgm =
dQ;dQ;d Q@ dQidQ;dQx Q;Qm
d®v
Fijtmn = =377
dQ/ dQJ ko QI Qm Qn
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Coordinate transformation procedure

)

4+ Y 7A 6

Shorthand notation: {dY} ,d—_Q_> {dV}
dQ dQ

Requires:
@ repeated application of chain rule*

o derivatives of Q with respect to Q, to 5 order, themselves

formed through a sequence of coordinate transformations:
dX dQ
dz\® 4dQ (dz\°® 4z (d4a)°
txr =) 2%
@ required transformation matrices defined during normal mode
analysis, construction of Q

*W. D. Allen, A. G. Csészér, V. Szalay, I. M. Mills, Mol. Phys., 1996, doi:10.1080/002689796173138
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Coordinate transformation procedure

Reduced mode-representation variants:

@ Restrict number of independent indices in F:
o ViMH(Q) — Vs(Q)
o VIVH(Q) = Ve(Q)

@ Restrict number of independent indices in F:
o Va(Q) » VE'(Q)
o V4(Q) = VEMR(Q)
° V4(Q) = V{'(Q)

e Both:

e Sensible combinations of the above
e /M = mode-coupling in curvilinear normal mode potential
e m = mode-coupling in rectilinear normal mode potential



PES construction
0000000000080

Computational scaling

Step Scaling law Example:
O(--) | Va(Q)= Vs(Q)
i : 7 —2 7 2
ab initio caIcuIat|oPs M asis Novode N osis N2 ode
. d m—1 5
construction of PTe) i ode Mint N2 o g Mint
. . m+m 10
coordinate transformation N N2 de

@ m

e m

mode-coupling in curvilinear normal mode potential

mode-coupling in rectilinear normal mode potential
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Implementation details

dz )\’
° {} matrix elements obtained via:

dX
‘ stretching bending torsional out-of-plane
hard-coded expressions r cos 6 sin ¢ T
coordinate transformation | 1 — e~ @(r—") 0 10) sinT
(r—re)/r

symbolic differentiation other other other other

@ All transformation formulae hard-coded

@ Enables general non-linear transformations between any

defined coordinate systems
@ Interfaces with GAMESS and CFOUR program packages
@ Code available on sourceforge: PyPES extensible library
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PES validation

Transformed PES expansions validated by:

@ calculating anharmonic vibrational fundamental frequencies,
using VPT2-screened VCI algorithm

@ comparing results against benchmark literature values

@ internal comparison - choice of internal coordinate system,
completeness of internal coordinate PES

@ internal comparison - convergence with respect to expansion
order, mode-representation
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Nuclear vibrational structure method

VPT2-screened VCI

Construct harmonic oscillator basis states, according to
maximum “excitation level” (total vibrational quanta)

Choose states for inclusion in VC| matrix based on their VPT?2

corrections to harmonic frequencies, using loose screening
threshold

Diagonalize newly formed sparse VCI matrix

Choose more states based upon their VPT2 contribution to
new, anharmonic fundamentals, tightening screening threshold

Repeat steps (3) and (4) until no new states are selected, or
fundamental transition energies don't change
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Ethene

Redundant internal coordinates:
@ 5 X bond lengths
@ 6 X bond angles

H\ _ /H @ 4 x dihedral angles

Sextic force field in non-redundant set of
symmetry-adapted internal coordinates,
Ve6(Zyef), implemented from the literature!

1. T. Delahaye et al., J. Chem. Phys., 2014, 141, 104301
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Coordinate definition and PES truncation errors (cm™1)

30
20
ol | Reference:

e - ongengeeereene e V6(Zrer) = Vs(Q)
-10 | ” ] Approximation:
20 | ] Va(Q) — Ve(Q)
30
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Reduced mode representation in internal coordinates

. | Reference:
N 10} <>6 o ] V4(Q) N VG(Q)
(em™) g Lo oo 2. x5---
10 ¢ e ¢ Approximations:
VIR(Q) = Ve(Q)
N | VIMR@) - Ve(Q)
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Reduced mode representation in normal mode coordinates

3“ L
20 | OO ! Reference:
R 10 | V4(6) — Ve(R)
R o poB G- - - -1 Approximations:
—10 | | V4(6) N VZMR(Q)
0 | o | Va(Q) — VEME(Q)
-30 ® Va(Q) — VEMR(Q)

0 500 1000 1500 2000 2500 3000 3500

v (em™!)



PES validation
00000080000

Testing - molecules

A series of internal coordinate force fields and higher order
transformed normal mode force fields:

o V4(Q) = V(Q) (reference)

o V(@) - V(@)

o VIR(Q) — VIMH(Q)
were generated for:

@ 4 x 5-atom molecules

@ 8 x 6-atom molecules

@ 5 x 7-atom molecules

@ 6 x 8-atom molecules



2MR QFF in internal coordinates
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in internal coordinates
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Accuracy vs computational cost

Mean Scaling law, O(---)
Potential Absolute PES Coordinate
Error (cm~!) | construction transformation

ViMH(Q) = Vs(Q) 4.7 N asis Nriode
VMR(Q) — Ve(Q) 0.7 N asis Ninode Noode
Va(Q) —» VRME(Q) 4.7 N asis Nrode Nfode
Va(Q) — VEME(Q) 0.6 N asis Varode NG ode
Va(Q) — VgV(Q) 0.03 M asis Vhode Norode
VMR(Q) — VEMR(Q) 1.0 M asis Ninode N ode
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Summary

VIME(Q) — VEMR(Q) PES gives

@ maximum error < 12 cm™! and average error < 1 cm™

~

relative to V4(Q) — Vs(Q)

@ optimal tradeoff between accuracy and computational cost -
requires only O(Npyode) ab initio Hessian calculations

1

o first readily available numerically stable procedure for
generating sextic force fields in rectilinear normal mode
coordinates

@ ability to accurately model anharmonic fundamentals for
semi-rigid molecules with up to 15 atoms



Outlook

Where to from here?

@ Transform into localized modes
— lower order transformations, expansions required?

@ Transform kinetic energy operator rather than PES?

@ Provide ability to specify ‘spectator modes’' to be modelled
using second order expansion in curvilinear normal mode
coordinates

e only generate higher derivatives along ‘active modes’
o reduce computational cost to N, ;. Nactive
@ Improve stability of interpolated PES: transforming into high
order expansions in Cartesian space avoids singularities
associated with expanding PES in asymptotically-divergent
internal coordinates.
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Where to from here?

@ Transform between different internal coordinate systems to
exploit asymptotic behaviour

@ Construct and test hybrid force fields using different levels of
electronic structure theory

e Harder than it sounds to do rigorously and cheaply - complex
series of transformations required to find normal mode
coordinates and equilibrium geometry for hybrid force field
analytically from component parts

e Could cheat and assume geometry and normal mode
coordinates stay approximately constant and do literal
replacement of force constants
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