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Abstract

We investigate a streamlined method for compression, approximation
and fast interpolation of gait analysis data using Catmull-Rom Splines.
We are interested not only in raw compression, but also extracting the
most useful data from an animation for subsequent manipulation. Our
method allows compression approaching 85 percent while the resulting
animation remains indistinguishable by humans from the original anima-
tion, resulting in significant memory savings, while the untransformed
compressed animation has possible usefulness in gait retargeting.
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1 Background and Related Work

1.1 Three-dimensional Character Animation

The vastly reduced cost and increased power of graphics hardware has lead to
a proliferation of animated media. Consumer grades graphics cards now fea-
ture real-time graphics pipelines allowing the rendering of increasingly detailed
three-dimensional scenes, allowing the creation of many three-dimensional video
games featuring realistic characters. Corresponding advances in non-real-time
graphics rendering have allowed the creation of movies with incredible detail
to the extent that computer-generated animation can be convincingly com-
bined with photographic imagery to produce photorealistic films with computer-
rendered characters. Jurassic Park is often considered the pioneer of such ad-
vancement, and prominent recent examples include Gollum in the Lord of the
Rings, and the eponymous characters in Transformers.

It is instructive to note, however, that the computer-generated characters
in the aforementioned examples, and in fully animated motion pictures such as
those produced by Pixar, invariably feature non-human characters. Attempts to
produce computer-generated photorealistic human motion have met with little
success.

This is due to humans having a far great sensitivity towards the motion,
expression and body language of other humans, as opposed to other characters
such as animals, monsters and robots.

This is because physical human motion and expression plays an important
part in communication and more broadly our wellbeing and success as a species.

It has been suggested[13] that our ability to detect subtle changes in gait
serves an evolutionary purpose. Their study determined that males generally
found the walking motion of women in one particular stage of the menstrual
cycle more attractive than in another stage. This suggests that the ability to
distinguish subtle changes in gait is a contributor to evolutionary reproductive
success.

1.2 Human Motion Perception

Reitsma and Pollard[14] assessed the ability of human perception to detect
errors in jumping motion, assessing error by magnitude, variety (horizontal or
vertical) and acceleration (negative or positive). They found that errors in
horizontal velocity were more readily detectable by human vision than vertical
velocity, and added acceleration was easier to detect than deceleration.

1.3 Catmull-Rom Splines

Splines are piecewise-defined polynomial curves. They are typically utilized for
interpolation and smoothing. There are many different types of splines, each
utilized for a variety of purposes. Cubic Hermite Splines are a type of spline
utilizing two control points and two control tangents to derive each piecewise



parametric function. The function derived from these control points consists
of four cubic polynomials in Hermite form. If the control points and tangents
corresponding to each piecewise parametric curve are chosen sensibly, then these
curves may be combined to form an aggregate curve that passes through any
arbitrary set of points and remains smooth (that is, continuously differentiable)
throughout the path of the curve.

1.3.1 Derivation

To derive the form of a Catmull-Rom spline[4], we begin with the aim of devising
a parametric curve whose path crosses one point at t = 0, and another point at t
= 1, and whose slope has the desired values when crossing through these points.
If we take this curve to be a cubic polynomial, then the resulting parametric
equation must be of the form

P(t) = Qo + alt —+ a2t2 —+ a3t3

(If we define P(0) as the point the curve passes though at ¢t = 0, and P’(0) as
the slope of the curve at that point, then it follows that:

P(O) = Qaop, P/(O) = a1
Likewise with P(1) and P’(1) as the point and slope respectively at ¢ = 1:

P(1) =ap+ a1 +as +asz, P'(1) =ag+ 2a; + 3as

If we solve simultaneously for ag, a1, a2, and as, substitute these back into
equation 1, and arrange in terms of P(0), P’(0), P(1), and P’(1), we are left
with the following:

P(t) = (2t> =32+ 1) P(0) + (—2t> +3t*) P(1) + (t> — 2t +£) P’ (0) + (£* = t*) P' (1)

Catmull-Rom splines are calculated from this, with the additional proviso
that the required slopes, P’(0) and P’(1), are calculated from the points before
and after the point in question, as follows:

P11 —-P 1 Poa—F;
2 ’ 2

This definition means that for any given sequence of points, the points slope
of the curve entering and exiting a point is the same, making such a curve
smoothly continuous. Expressed in matrix terms, we can calculate P(t) from
the following:

1 0 0 0 P;

0 0 1 0 Py
P(t) = [ 1t 2 ] 3 3 _9 1 Pi+1;Pi,—1

2 -2 1 1 Pipo—Ps
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Which can be simplified as:

0 2 0 0 P4
P(t)_§[1 t ot 3] 9 5 4 -1 P
-1 3 -3 1 Piyo

1.4 Animation Methods
1.4.1 Keyframes

Existing approaches to character animation can be broadly classified into two
contrasting approaches. The more traditional of these is keyframe animation.
This entails an animator creating the important frames of an animation and then
producing the “in-between” frames necessary to produce a smooth animation.
Pioneering animators illustrated key frames by hand, delegating the arduous
illustration of the required illustration of the inbetween frames (often called
“tweening”) to subordinate illustrators.

While computer-based animation now usually involves three-dimensional
digitally-rendered models rather than two-dimensional illustrations, and utlizes
automated “tweening” algorithms,the essence of the process remains very sim-
ilar: A digital animator animating a character model must specify key frames
(or poses) for the model, as a basis for the interpolation which generates the
final animation. While computing power has greatly streamlined this process,
the inherent realities of the process have not changed.

Keyframing allows virtually unlimited flexibility: Anything that can be
drawn or modeled can consequently be animated. However, the drawbacks
of keyframing are the high requirements for talent and time required. In par-
ticular, the creation of highly life-like animation is extremely time-consuming,
due not only to the exacting attention to detail required, but to the need for a
higher raw quantity of keyframes to be used in order to illustrate more of the
subtleties of the motion.

1.4.2 Motion Capture

Motion capture is a comparatively new technique for generating animations,
having only become practical after the advent of digital photography. A variety
of techniques exist, but typically markers are attached to the actor. The position
of these markers is then calculated from video from multiple camera angles
(using computer vision techniques and manual correction if necessary) or other
recording from other sensors. Other techniques include analysis of markerless
motion, and the use of inertial measurement systems. The advantages and
disadvantages of this system are immediately apparent. These techniques allow
for the recording and generation of extremely realistic and detailed animation.

The realism of the resulting animation becomes dependent on the quality
of the processing of the motion capture data rather than more fickle human
qualities such as artistic talent. However motion capture remains a field in



comparative infancy, and generating motion capture data requires a live actor
capable of acting out the motion required. For many motions (such as elite
gymnastics) a suitable actor may be difficult to find. Motion capture data can
be edited to some extent, often by extracting suitable frames from the original
motion for use as keyframes (see Keyframe Extraction, below). However, exten-
sive editing invariably degrades realism as intricacies captured in the original
recording are modified and lost.

Motion capture also has use in diagnosing and monitoring the movement of
those with physical injuries. However the utility and availability of such facilities
is limited by the complexity and expense of the motion capture process, and
also by the need for subjects to wear specialized markers or suits: this can be
particularly inconvenient or even impossible for those with physical disabilities.
This is discussed further in section 1.7.1, below.

1.5 Forward Kinematics

The complexity of animation of detailed objects or scenes with multiple moving
parts is typically managed by dividing the subject into a tree of components,
with the position of each item in the tree being relative to the position of its
tree parent. For instance, a car can be drawn by first drawing the body of the
car, and then drawing the wheels in a position relative to the car. Similarly,
human motion is stored and modeled as a tree hierarchy, with the center of the
body at the base of the tree, with branches for each bodily extremity such as
limbs and head.[1]

1.5.1 Skeletons as Joint Hierarchies

Human motion could be stored by recording the position of many points on the
body surface. However, this approach generates an excess of data, and makes
reuse and adjustment of the motion extremely cumbersome. Invariably then,
motion data is stored using a skeletal hierarchy, which is then “skinned” or
“meshed” to provide the correct look. This allows the motion and aesthetics to
be manipulated largely independently.

1.5.2 Forward and Inverse Kinematics

The motion of the skeleton can be generated either of two broad methods. For-
ward kinematics defines an angular position for every joint (and a translational
position for the root joint) for each time instance. The figure is then drawn by
simply traversing the tree, drawing each limb as it is traversed. Inverse kinemat-
ics is also known as goal-directed motion. Accordingly, the angles of each joint
are not stored, but rather are derived from “goals”, or points towards which
parts of the figure must move.

A number of hybrid approaches have been developed attempting to combine
the advantages of each method. Such methods[18] typically provide movement



constraints from the forward kinematic data within which inverse kinematic
algorithms can operate.

1.6 Motion Capture Data Storage

The usual output of the raw motion capture is simply marker positions. This
data is unsuitable for the modelling and skinning process, so more usable motion
capture formats provide data in terms of a joint hierarchy (skeleton), along
with joint angle information for each frame for each instance. For example the
popular “.bvh file” format specifies motion in terms of a skeleton, along with
multiple lists of angles in “channels”; each channel specifies the angle changes
for each axis of a movable joint in the skeleton. Three channels also exist to
specify the overall position of the skeleton in terms of translations on each axis.

1.6.1 Mathematical Transformations

To render the character in a 3D graphics library such as OpenGL, we translate
to the correct position using the positional channels. We then begin at the root
of the skeleton, and traverse the skeletal tree recursively, applying rotations
as specified by the channels. Rotations are specified independently for each
rotation axis, and are applied in the following order:

Protated = P [Yrotation] [Xrotation] [Zrotation]

1.7 Gait Analysis

Gait analysis is the study of animal movement, particularly humans. Quantifi-
able gait analysis is used in physiotherapy and rehabilitation monitoring. It is
also used for sports performance evaluation. The advent of motion capture has
meant renewed interest in the field as this new source of gait analysis data has
the potential for usefulness in several fields.

1.7.1 Medical Applications

One hindrance to the usefulness of motion capture is the need for markers. These
markers can hinder natural movement, and the precision configuration involved
means that marker-based systems cannot be used for real-time applications. To
remedy this, markerless methods have been developed. The method developed
by Saboune et al.[16] attempts to convert a two-dimensional camera image of an
actor to a 3D hierarchical model of a generic human, by using particle filtering
on a foreground image and best-fitting the foreground to various orientations of
the figure.

Noble and White[11] implemented a pilot system which potentially aids the
clinical diagnosis of joint movement abnormalities. It uses the graph of joint
movement on a particular axis, plotted against regular movement, to detect
differences and discrepancies. For instance, any movement greater than +4or- 2
standard deviations from typical movement is highlighted. Slope, peaks, and



total range are also used to display pertinent information to the health profes-
sional.

1.7.2 Redundant Data

As per-axis gait analysis data is merely a waveform, usual waveform compres-
sion techniques can be applied, particularly as most human motion (excluding
environmental interactions) exhibits an inherent smoothness. This makes the
data particularly amenable to compression.

1.7.3 Motion Capture Data Compression

Compression of motion capture data is useful for saving memory space while
rendering, and for minimizing the size of motion capture databases, particularly
for organisations with large collections of such data such as animation studios.

In terms of compression ratio, the technique developed by Arikan[2] is ex-
cellent. Motion capture files can be compressed to less than 5% of their original
size: Arikan’s test motion database was compressed from 180 megabytes to 5.5
megabytes. This uses a technique whereby joint angles are transformed into
positional markers, making them much more amenable to compression using
Bezier curves. Environmental interactions are compressed differently, as the
positional information must be more precise. The technique also examines simi-
larities between clips. In this way, clips are compressed as a group. This reduces
information redundancy, as many clips contain very similar motions, but also
reduces flexibility, as many clips must be compressed and stored together. The
compression used is also complex, resulting in computation time during decom-
pression.

A different approach[17] applies compression by identifying parts of the skele-
ton which remain consistent over time.

1.7.4 Environmental Interactions

The accuracy of motion data is most important at the points in the motion where
parts of the character interact with their environment. This can include impacts
from other moving objects and the character picking up and using objects, but
often occurs during footsteps, which are almost universally present in character
motion. When motion capture data is modified, imperfections are most often
noticable as “footskate”, where the feet relative to the ground during contact,
instead of being correctly fixed on the surface.

Footskate occurs because forward kinematic motion is not goal-directed:
movements are defined only with respect to other parts of the hierarchical skele-
ton, not the ground.

Footskate must be fixed either by manual adjustment, or using a more au-
tomated cleanup technique[8].
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1.8 Keyframe Extraction

This is the process of choosing the most “representative” poses of a motion
sequence from continuous frames contained in motion capture.

Keyframe extraction has origins in traditional video manipulation. The abil-
ity to browse a large set of efficiently video and examine the contents of a clip
without watching the full video is important to those working with large col-
lections of video, and increasingly relevant for ordinary consumers with large
collections of video media.

Similarly, for those working with large motion capture databases, the abil-
ity to quickly search for and review suitable motion capture sequences quickly
means much greater efficiency and productivity.

Motion capture keyframe extraction is also useful for provision of suitable
keyframes for use in modification of the motion capture data[12]. While this
is at a cost of at least some degree of realism, techniques exist for minimizing
obvious unrealistic movement such as footskate, as discussed above.

1.8.1 Existing Approaches

The simplest method of keyframe extraction is by regular sampling. This usually
provides acceptable results, but is less than optimal as often the important
parts of a motion are contained in certain concentrated blocks in the motion.
For instance, if the motion capture records the actor waiting for a period of
time before beginning acting out a jump or other brief motion, consequent
keyframe extraction will feature disproportionate keyframes of the character
merely standing still. For better results, less naive methods are required.

Many techniques exist for intelligent keyframe extraction of video, also known
as static video summarization. An early effort used a variety of methods to
measure entropy changes between frames, thus dividing a video clip roughly
into scenes|[5, 6, 9]. Excess keyframes chosen by the entropy metric were then
filtered out on the basis of colour uniformity and repetition. A more recent
method uses a k-medoid fuzzy clustering algorithm on the luminance channel of
video to determine the most central frame for each cluster[7]. Keyframe extrac-
tion for motion capture data can take advantage of the richer semantic detail
of the motion format, and use this to choose the most significant stages of the
motion[3, 12].

1.9 Motion Retargeting

Motion capture records one specific motion, with one specific actor. Motion
retargeting techniques attempt to allow recorded motion to be transformed to
other characters with different shapes and proportions, thus increasing reusabil-
ity. One recent technique[10] uses grammatical evolution through a number of
intermediate “hybrid models” to translate motion from gradually from one char-
acter shape to another.
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2 Implementation

2.1 Aim

Our general intention is to determine the most semantically rich data points in
forward kinematic joint angle data.

This allows for the most optimal reduction in data set size if we eliminate
certain points and subsequently interpolate them. Also, we can simplify manip-
ulations of such data if we have a smaller set of important points with which to
represent the characteristics of a motion, rather than a larger volume of largely
redundant data.

Existing methods of motion capture data compression rely on extensive
transformations of data. This results in very aggressive compression, but means
real-time usage of the compressed data is comparatively computationally ex-
pensive.

We instead seek to eliminate points which can be considered irrelevant and
unnecessary to the overall essence of the motion. The resulting data should
then allow computationally simple interpolation.

Our method merely eliminates unnecessary points. This results in a set of
remaining points which can be interpolated to form a close approximation of
the original motion.

We examined four point elimination techniques which rely on approxima-
tions, and two methods which eliminate points by attempting to minimize the
value of an error metric. We also tested three interpolation techniques. Catmull-
Rom interpolation uses Catmull-Rom splines to interpolate the required values.
This results in mathematical and perceptual smoothness of movements, but
is computationally difficult. Linear interpolation is the most computationally
simple, but the interpolated motion will lack smoothness for long sequences of
interpolated data points. Finally, we test an approximation of the Catmull-Rom
algorithm which provides some level of smoothness while remaining relatively
computationally straightforward.

The key advantage of an interpolation-based approach is flexibility in com-
pression: Because the compression is carried out point by point, a motion cap-
ture animation can be compressed to any given requirements: an acceptable
quality of animation, or a particular percentage of compression. The resulting
data representation should be suitable for storage of any forward-kinematics-
based data, since full uncompressed motion capture files can be stored in the
same format as compressed data, or data stored as keyframes (in this case, only
the angles from each keyframe would be stored.

The locations of missing eliminated data points would be marked in such a
storage file and then compressed with run-length encoding.
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Figure 1: A typical screenshot of the software we used to visualize and examine
the gait analysis data of motion sequences.
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2.2 Interpolation Methods
2.2.1 Catmull-Rom Interpolation

Interpolation of time-dependendent angle data requires determining a value for
fixed values of time. As a Catmull-Rom spline is determined by parametric
equation, we must solve a cubic equation in order to determine the correct
value for the parameter t.

2.2.2 Approximation Interpolation

In order to avoid the necessity of solving a cubic for interpolation, we can ap-
proximate the value of t. We have made this approximation as follows, assuming
interpolation of a point p between pgand p;:

Pz — Pox
Piz — Pox

t=

This means the Catmull-Rom interpolation effectively disregards the position
of the outer points along the time axis. This means the differentiable smoothness
property no longer holds, but an approximately smooth curve is still produced.

2.2.3 Linear Interpolation

We used linear interpolation as a baseline, to determine the increase in interpo-
lation accuracy provided by the above two techniques.

2.2.4 Time Performance

Our implementation of these interpolation techniques in python reported the
following average times for a single interpolation. It is apparent that the ap-
proximation allows much faster interpolation than the strict Catmull-Rom tech-
nique.

2.3 Decimation Criteria

We evaluated several techniques for deciding between points to remove and
points to retain, in order to retain the most important and informative data for
a given compression percentage.

Note that for the purposes of consistency, we shall exclude the two starting
and ending points in determination of compression percentage, as the values for
these four points are not able to be interpolated, and are thus irremovable. For
instance, an animation with 104 frames and 24 axes of rotation has a total of
(104 - 4) * 24 = 2400 removable data points. Removing 1200 of these points
would be considered 50% compression for the purposes of this document.

Several factors must be taken into account when choosing points to remove.
To measure and quantify these factors, we have formulated the following defi-
nitions.
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Figure 2: Comparative Time Performance of Interpolation Techniques for a
single interpolation

e Length Factor: To calculate this, we first take the length of the joint in
question added with the length of all child joints of that joint. This value
might be called “recursive length”. For instance, the “recursive length”
for a shoulder joint adds the length of the shoulder, plus the length of the
upper arm, lower arm, hand, and all fingers. The length factor then a
proportional measure: the recursive length of a joint, divided by the total
recursive length of all joints. Thus all length factors together add to one.
The length factor can be thought of as a proportional importance of each
joint.

o Amplitude Factor: The joint angles for each axis have a certain varia-
tion. For joints with large angular variation, approximations will result in
greater error. Amplitude factor is thus determined from the range of each
joint angle axis. This is also a proportional measure: each joint axis in the
skeleton is assigned an amplitude factor defined as its range divided by
the total range. The total range of the skeleton (one range for each of the
three axes for each joint), and each joint axis in the skeleton is assigned
an amplitude factor defined as its range divided by the total range.

2.4 Error Metrics

To evaluate the effectiveness of our various point removal algorithms, we for-
mulated two metrics.

2.4.1 Cumulative Angular Error

To calculate the cumulative angular error of any animation, we examine all
frames, and add together all the differences between interpolated and original
angles, for any interpolated point. Each of these differences is multiplied by the
Length Factor.
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2.4.2 Total Endpoint Error

The total endpoint error examines every frame, and for every endpoint (end
joint) on the articulated figure, determines the original position of each endpoint,
and its approximated position. The sum of these differences is the total endpoint
error.

2.5 Heuristic Point Removal
2.5.1 Periodic Sampling

Periodic sampling entails removal of all but every n-th data point, with n de-
pendent on the level of compression desired.

To determine the points assigned to each joint axis, we use a combination
of length factor and amplitude factor. For each axis of each joint, we multiply
Length Factor by Amplitude Factor to give each axis of the skeleton a value.
The number of points allocated to each axis is assigned in proportion to this
combined value.

2.5.2 Curvature Change

This is a heavily approximating metric. We earlier noted that a point in line with
surrounding points carries little information, and can be interpolated accurately,
in contrast to points which are inconsistent with the surrounding path and
curvature. Thus we can choose points to remove by calculating the resulting
change in slope for all points affected for each prospective point to be removed.
Specifically, we calculate the change in slope of the linear path entering and
exiting the prospective point, as well as for the proceeding and succeeding point.
We then interpolate between the slope changes of the proceeding and succeeding
point, and assess each point based on the extent to which the actual curvature
change of the the point matches the interpolated (expected) curvature change.
A greater match means a greater candidate for removal. Here too we multiply
the descrepency by the Length Factor to determine a final rating for each data
point. Amplitude factor is not used here, as this is taken into account by the
level of curvature change.

2.5.3 Maxima and Minima

This method involve retaining only points which are a local maximum or min-
imum. Unlike the other techniques, this does not in itself allow for a gradual
level of compression.

2.5.4 Curve Approximation (Lowe’s Algorithm)

With this heuristic method, points are assigned to the skeleton’s rotation axes
as with periodic sampling, however within each axis, points are distributed
using Lowe’s curve approximation algorithm[15], rather than being distributed
periodically. Lowe’s algorithm begins with a single linearly-interpolated line
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between the start and end points of a curve. Each step of the algorithm adds
a point, choosing the point to add based on the distance of that point from
the linearly-interpolated line. Once a point is added, the linearly-interpolated
line incorporates the new point, and distances are recalculated. The algorithm
continues until the desired number of points have been added.

2.6 Results-based Point Removal

These methods eliminate points one at a time, based on which point will increase
the error metric the least.

2.6.1 Angular Error Minimization

At each stage of the point elimination process, the change to the cumulative
angular error which would result from that removal is evaluated, and points are
ordered based on the resulting change. The point which least increases the error
is chosen as the point to remove.

2.6.2 Endpoint Error Minimization

This works the same fashion as the above technique, except the points are eval-
uated based on their change to the Total Endpoint Error of the approximated
figure.

2.7 Human Perception Test

In order to better determine the point beyond which point removal visibly de-
grades the quality of the resulting animation, we conducted a study of ten
people.

Participants were presented with two nearly identical animations displayed
concurrently on the screen. One of the two screen areas displayed the original
animation, whilst the other displayed a version of the same animation, with a
certain percentage of points removed.

The position of each animation on the screen was randomly chosen. Par-
ticipants were asked to carefully examine the animation, and then “choose the
fake”. Participants were allowed to play and pause the animation, and also
control the camera, such that the animation could be viewed from any angle.

A wireframe of the animation was used, as this makes the experiment more
stringent: It is easier to spot changes in motion when angles of joints are directly
visible, rather than hidden behind a “skin”.

Participants were presented with 20 tests: comparing the original animation
with compressed animations with qualities ranging from zero percent of the
removable data points remaining, to 95% of the original removable points still
existing, in five percent increments. Participants were presented with the test
in random order.

The metric used for compression was the Total Endpoint Error. We chose
the Walk animation as the candidate animation for this test as walking is a
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motion of universally high familiarity, and thus test candidates are likely to be
more discriminating when spotting subtle differences.

The nature of the test setup means that even if participants are unable to
determine the less realistic motion, they may still guess correctly 50% of the
time.

3 Results

3.1 Comparison of Point Removal Algorithms
3.1.1 Angular Error

Overall, point elimination affects animation quality very little until more than
half the available points have been removed. This is due to several factors: The
excess of points in unimportant joints, the accuracy of interpolation over small
ranges, and the presence of many joints with little movement.

Subsequent removals have an increasingly strong impact on animation qual-
ity, with the error increasing logarithmically as the final points are eliminated.

We evaluated each point removal algorithm on a motion capture file por-
traying an actor in a regular walk. We discuss the results in order of quality.
We consider Angular Error Minimization to be the benchmark as related to this
metric, and other results are judged in relation to this. Accompanying graphs
are shown in Figure 3.

e Maxima: While simply choosing local maxima and minima is very fast,
results were poor. 23% of data points were local maxima and minima, and
retaining these points results in as similar angular error as the retention
of only 5 percent of points using the benchmark Minimum Angular Error
Method.

e Curvature Change: This showed disappointing accuracy, exhibiting an
error of more than double the benchmark, particularly as error begins to
increase strongly at the 30% level and below.

e Regular Sampling: Regular sampling performs well, particularly given its
comparative simplicity to other methods. Error rates are generally around
double the benchmark level.

e Lowe’s Algorithm: This performs very similarly to the regular sampling
method. It performs slightly worse than regular sampling in the 12-34%
range, while outperforming it to a very small extent at high compres-
sion levels. Overall, it offers no improvement over regular sampling with
Catmull-Rom interpolation.

e Endpoint Error Minimization: This performs nearly as well as the bench-
mark. Both metrics show smooth, logarithmic increases, and even though
the benchmark is tailored to the Angular Error Metric, this result shows
Endpoint Error Minimization performing almost as strongly.
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e Angular Error Minimization: This metric demonstrates smooth perfor-
mance, allowing reduction to around 15% of the file size before quality
begins to rapidly degenerate.

3.1.2 Endpoint Error

Evaluation of the performance of each algorithm using the Total Endpoint Error
Metric gave similar results. The overall ranking and general performance of
each technique remained the same. The benchmark metric again showed little
increase until approximately 15% of points remained. Figure 4 shows the results
for this metric.

3.1.3 Results with other Motions

Due to the nature of the metrics, a direct comparison of errors between different
motions is not meaningful. So as to ensure that our evaluation results held more
generally, we repeated the point elimination tests with two other sequences
with very different animations. Results were proportionately similar, with each
method degrading logarithmically and performing similarly in comparison to
other metrics.

3.1.4 Lowe’s Algorithm Results

Of note here is the relatively poor performance of Lowe’s algorithm in subdivid-
ing a the path of each graph of rotation angles. We hypothesised that this was
due to the fact that Lowe’s algorithm is designed for linear interpolation, rather
than other techniques such as Catmull-Rom. We thus ran tests using linear
interpolation, to see how this affected the performance of Lowe’s algorithm.

The resulting data showed that for linear interpolation, Lowe’s algorithm
does indeed slightly outperform regular sampling, as expected. This is shown
in Figure 5.

3.2 Interpolation Comparison Results

The approximated method of interpolation showed very good performance, over
a variety of animations. We evaluated the resulting error for the range of com-
pression levels using each technique, and with each metric, and compared the
resultant error.

We are most interested in the algorithm’s performance in the range where
10-20% of data points remain. Before this, all three methods perform virtually
identically, and after this, error rises rapidly for all three techniques. We first
examined the performance with angular error. Throughout this range, the ap-
proximation either matched, slightly outperformed, or remained much closer in
error rate to Catmull-Rom interpolation than Linear. It is evident that for those
animations for which Catmull-Rom interpolation decreases error, the approx-
imated version reduces the error nearly as effectively. For instance (as shown

19



2500000
2000000 I'
1500000 —— Maxima
Curvature Change
Regular
— Lowe
1000000
Endpoint
Angular
500000
0 T TR 1T
o ;m o ;Lo ;m o ;mnm o ;N o ;n ol o w;nm o n o mo
Smmmmhhlﬂlﬂmmq‘q’mmﬂﬁl-—!ﬂ
1200000
1000000
200000
—— Maxima
/ Curvature Change
600000 Regular
— Lowe
/ Endpoint
400000 ' Angular
200000
[ L e e
5048 464442403836343230282624222018161412108 6

Figure 3: Cumulative Angular Error for various point removal algorithms
(Catmull-Rom interpolation)

20



4500
4000
3500
3000
= Maxima
2500 Curvature Change
Regular
2000
— Lowe
Endpoint
1500
/ Angular
1000 = /
500
O e,
o n o m o wm oo o om o un o n o wnw o uw o owm
3 oo@m 0 WM~ M~ W W W g Mmom NN A
2000

1800 /

1600 /

1400 /

1200 / —— Maxima
1000 - I Regular
/ —— Lowe
800

600 / /
400 /

200 J /’

e

50484644 42403836 343230268262422201816141210 8 6

Curvature Change

Endpoint

Angular

Figure 4: Total Endpoint Error for each algorithm (Catmull-Rom interpolation)

21



2500000
2000000
—— Maxima
1500000
Regular
Curvature Change
— Lowe
1000000
Endpoint
Angular
500000
a
1600000
1400000 /‘
1200000

1000000 —— Maxima
/ Regular
800000 Curvature Change
— Lowe
600000 / // Endpoint
400000 /
T T T T T T T T T T T T T T T T T T T T T T T T T

50484644 4240383634 323028262422 2018161412108 6 4

Angular

200000

Figure 5: Total Angular Error for each algorithm (Linear Interpolation)

22




in Figure 6), with 15 percent of joint angle data remaining, linear interpolation
resulted in a cumulative angular error of 609073. Using Catmull-Rom interpo-
lation for compression and reconstruction reduces this error to 412153, while
the approximated interpolation is almost as effective, reducing error to 453851.

Results with the Total Endpoint Error metric also showed the algorithm
performing well (as seen in Figure 7), though this metric exhibits more noise
than total angular error, making it harder to draw firm conclusions.

3.3 Human Perception Test Results

Results from this test are promising. We can see from the data (in Figure 8)
that animation remains reasonably convincing at least until the the last 10-15
percent of points are removed. This is consistent with our error metric data,
which suggested that error begins to increase rapidly when around 15% of the
removable data remains.

4 Discussion

4.1 Error Metrics

Both of the error metrics used are reliable, and are consistent both with each
other, and with human perception. Minimizing one error metric also mimimizes
the other metric nearly optimally. Each demonstrates low levels of error un-
til approximately 15-20% of points remain, and rises rapidly thereafter. This
suggests that around 15% of the data points provide most of the data in an an-
imation, with returns rapidly diminishing as further points are added, or with
quality rapidly diminishing as further points are removed.

Total Angular Error is of greater practical use as a metric, as the changes in
error level exhibited by this metric were smoother. The metric was also faster
to calculate than Total Endpoint Error in our implementation.

4.2 Point Removal

Our results suggest that proportional allocation of data between joints and axes
is of greater importance than allocation of points within those axes. For in-
stance, Lowe’s Algorithm offered little improvement over the Regular Sampling
techniques, even though Lowe’s Algorithm is a much more advanced approxi-
mation technique, and even when using linear interpolation, to which Lowe’s
Algorithm is tailored.

This also stems from the fact that Lowe’s algorithm uses a linearly-interpolated
line to choose points to add. When non-linear interpolation methods are used,
it would be more appropriate to use a line between points interpolated with the
same interpolation technique.

None of the approximated algorithms come close to the results gained when
directly attempting to minimize error levels. While these direct methods are
effective, their running time is slow (see below). This means more investigation

23



250000
200000 /,
150000 /
/ Linear
—Approx
100000 PP

Catmull

50000

aQ T T T T T T T T T T 1
20 1% 18 17 16 15 14 13 12 11 10

1400000

1200000

1000000 / /

800000 / / Linear

600000 ——Approx
/ Catmull

400000 %

200000

20 1% 18 17 16 15 14 13 12 11 10

5000000

4500000
4000000 %
3500000
3000000
Linear

2500000

—Approx
2000000 / pp

1500000 Catmull

1000000

500000

] T T T T T T T T T T 1
0 1% 18 17 16 15 14 13 12 11 10

Figure 6: Angular error for each interpolation technique, showing error with
between ten percent and 20% of points remaining. The animations tested were
(from top to bottom): Walk, Slam Dunk, and Gunshot.
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into good approximated metrics for determining comparative data importance
would be of use.

4.3 Speed of Algorithms

In general, reduction in error requires additional running time for each of the
point elimination algorithms we tested (at least in their unoptimized form).
Choosing the maxima and minima only is by far the fastest methods, but er-
ror results were disappointing. This poor performance is at partly due to the
fact that this technique does not place any additional importance on the more
“mission-critical” joints and points higher in the skeleton hierarchy tree.

The error resulting from the curvature change algorithm was also excessive,
especially given that it nevertheless requires quite a long running time, as for
every point removal iteration, all remaining points must be examined. The
predominant reason for the high error is an excessively simplified method for
calculating curvature change.

Regular sampling was very fast, and provided reasonable results. It simply
allocates a number of point to each “channel” or rotation axis, so has no time-
consuming repetitive iterations. Error was still much higher than the direct
methods, but this is probably the best choice of the existing algorithms for
carrying out point reduction if speed is desired at the expense of some accuracy.

Lowe’s algorithm is also fast, but the additional complexity lacks any addi-
tional usefulness or accuracy over regular sampling.

Both direct methods examine every possible removable point during each
iteration, making them very slow, particularly for long or complex motion se-
quences. However, the speed can be increased several orders of magnitude by
removing multiple points (a certain number, or proportion of the total remain-
ing points) every iteration, provided one ensures that the points removed in a
given iteration do not affect other points removed in that same iteration.
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4.4 Usage of Compressed/Condensed Motion Capture

Each approximated motion sequence produced from these techniques contains
a reduced number of information-rich points. The most clear application for
information in this form is gait retargeting. Gait retargeting can be thought
of as mapping motion from one character to another, differently-proportioned
character. Using a much smaller number of points which still retain most of the
motion has the potential to simplify, streamline, and speed up gait retargeting
algorithms, particularly those techniques which use joint angle data to perform
the remapping.

Additionally, the nature of error-minimization during point reduction means
that the points retained are likely to be a critical stages of the motion: Turns,
reversals, sudden accelerations will all be retained, as they are information-
rich. Consequently, the chosen retained points may be of use in identification
of equivalent movements between different motion sequences exhibiting similar
motions.

A related usage is motion summarization: Analysing which frames contain
the most retained points provides a means of determining the most important
frames to retain when compiling a summarized version.

4.5 Data Storage

The low overhead of interpolation, particularly with our approximation tech-
nique, makes these approximated motions potentially useful for storage where
memory is at a premium, but fast rendering performance is still required.

It also has potential for reducing storage space required in a database of
motion sequences, especially in the case of previewing. For instance, if an an-
imation professional wishes to browse a large set of motion capture sequences,
particularly over a low-bandwidth network connection, using small yet accurate
file sizes would be of value for performance and responsiveness.

5 Conclusion

We have demonstrated that retention of only 15% of motion data allows storage
and reproduction of an accurate approximation of a motion capture. Decreasing
detail to significantly below this level results in increased error, but an identifi-
able motion is still generated with only five percent of the original data present.

6 Future Work

6.1 Point Elimination Algorithm Improvements

Each of the algorithms could benefit from certain enhancements. Choosing
maxima and minima purely proved to be too blunt. The error could be reduced

27



here if one adopted a more flexible approach and added further data points to
joints weighted as important.

Likewise, the curvature change method is too blunt. There is less value
in attempting any optimization here as this algorithm is the slowest of the
approximations anyway.

Lowe’s algorithm could be enhanced for Catmull-Rom interpolation by mea-
suring error distances from a line that is interpolated more appropriately (rather
than merely linearly).

The weighting of allocations for Lowe’s algorithm could also be enhanced.
There is much room for improvement in refining the weighting methodology in
order to produce results closer to the direct error-reduction methods.

Optimizations may also exist for the direct methods. While these yield good
results, decreasing the running time would make them more useful.

6.2 Environmental Interactions

The error metrics used do not take into account environmental interactions.
If these could be incorporated into the point elimination process (possibly by
weighting the branches involved with the interaction accordingly), the percep-
tual and quantifiable accuracy could be further improved.
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