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Abstract

Distributed stochastic simulations has become a popular tool for evaluating and
testing complex stochastic dynamic systems. However there is some concern about the
credibility of the final results of such simulation studies [11]. One of the important
issues which need to be properly addressed for ensuring validity of the final results
from any simulation study is application of an appropriate source of randomness. In
the case of distributed stochastic simulation, the quality of the final results is highly
dependent on the underlying parallel Pseudo-Random Number Generator (PRNG).

Parallel PRNGs (PPRNGs) with the required empirical, analytical and determin-
istic properties are not trivial to find [9, 23, 10]. However, much research has resulted
in several generators which we consider to be of high quality [6, 23, 24, 28, 32]. The
effectiveness of simulations however depends not only on their accuracy but also on
their efficiency and so simulations are also reliant on the speed and flexibility of these
PPRNGsS.

In this paper, without a loss of generality, we examine the required features of
modern PPRNGs from the point of view of their possible applications in Multiple
Replications in Parallel (MRIP) paradigm of stochastic simulation. Having surveyed
the most recommended generators of this class, we test their implementations in C and
C++4. The generators considered include: the combined multiple recursive generator
MRG32k3a [6, 31], dynamic creation of Mersene Twisters [28] and the SPRNG Multi-
plicative Lagged-Fibonacci Generator (MLFG) [24]. For the purpose of comparison we



also test a pLab combined Explicit Inverse Congruential Generator (cEICG) [9, 10].
Their performance is compared from the point of view of their initialization and gen-
eration times. Our tests show that initialization can be completed most quickly by
MLFG and most slowly by Dynamic Creation. Generation of random numbers was
done most quickly by Dynamic Creation’s Mersenne Twisters and most slowly by the
cEICG.

1 Introduction

Distributed stochastic simulations has become a popular tool for evaluating and testing
complex stochastic dynamic systems. However there is some concern about the cred-
ibility of the final results of such simulation studies [11]. One of the important issues
which need to be properly addressed for ensuring validity of the final results from any
simulation study is application of an appropriate source of randomness. In the case of
distributed stochastic simulation, the quality of the final results is highly dependent
on the underlying parallel Pseudo-Random Number Generator (PRNG).

Parallel PRNGs (PPRNGs) with the required empirical, analytical and determinis-
tic properties are not trivial to find [9, 23, 10]. However, recent research activities have
resulted in several generators which we consider to be of high quality [6, 23, 24, 28, 32].
The effectiveness of simulations depends not only on their accuracy but also on their
efficiency and so they are also reliant on the speed and flexibility of these PPRNGs.

In this paper, we will examine the required features of modern PPRNGs, from the
point of view of their possible applications in Multiple Replications in Parallel (MRIP)
paradigm of stochastic simulation [5], in which each processor (as a simulation engine)
runs an independent version of the simulation and submits results of measurements
(observations) regularly to a central processor for analysis. The MRIP paradigm of
simulation has become more popular with emergence of such packages as Akaroa2! [4],
which supports automatic parallelization of simulated processes.

As MRIP distributes identical replications of a given simulation over different simu-
lation engines, each engine requires an independent sequence of Pseudo-Random Num-
bers (PRNSs) [4].The success of such a simulation is highly dependent on the quality of
these multiple independent streams and the efficiency of their generation. This requires
that the following properties are observed:

P1. Intra-stream uniformity and independence: It should be impossible to
show that the generated numbers x1, x2 ...z, cannot be considered as realizations
of independent and identically uniformly distributed random variables.

P2. Inter-stream independence: It should be impossible to show that numbers
generated by the i'" stream {z;1,2;0,...} are not independent from those gener-
ated in the j'* stream {x;1,2;2,...} for any i and j.

P3. Satisfactorily many satisfactorily long streams of PRNs: The cycle of
each generator used in a given simulation should be sufficiently large to ensure

! Akaroa2 [4] is a fully automated simulation tool for running stochastic simulation in MRIP paradigm,
developed at the University of Canterbury in Christchurch, New Zealand.



that not whole cycle of PRNs is exhausted within a single application. Further-
more one should be able to generate sufficiently many streams of PRNs (one
stream per simulation engine).

P4. Efficient implementation: Initialization of each parallel stream and the sub-
sequent generation of numbers should be efficient in both space(memory) and
time.

Given a single stream of PRNs we can apply tests such as those described by Knuth
[12] and Marsaglia [20] to ascertain if we are confident that property P1 is satisfied.
Being satisfied that we have a generator that is able to produce a single stream of i.i.d
random variables which satisfy P1, two paradigms exist for generating parallel i.i.d.
streams.

Cycle Splitting is the method of taking a single stream {z} of PRNs produced by a
single generator and splitting this stream into P sub-streams {{z'}, {z?},...,{z"}},
where P is the number of processors/engines used in a given simulation. There are
two main variations on this paradigm possible. In Blocking we determine a block
size B and assign to the i processor the stream {z'} = {x;p, Tip41,. .. s TiB4+(B—1) -
Alternatively, in Leap-Frog, if P is the number of processors, we produce the stream for
the *" processor as {x'} = {z;, xi1p,Tir2p,...}. Both methods involve distributing
the finite sequence produced by one generator to P processors. A potential problem
is that PRNs generated by linear generators can experience long range correlations
[30, 24]. Under cycle splitting such long range correlations can introduce short range
inter-stream correlations when using Blocking, or short range intra-stream correlations
when using Leap-Frog [24].

An alternative to Cycle-Splitting is Parameterization, the method of creating a new,
full cycle, independent generator for each processor from a family of generators. Seed
Parameterization is used with generators that produce independent full length cycles
depending on the seed value. That is, we give each processor the same generator
but initialized with different seeds so that each processor has access to a different
independent stream. Iteration Function Parameterization modifies some value within
the iteration function so that each processor uses a different generator. The limiting
factor here is how many independent streams the parameterization method can produce
for a particular generator and how quickly it can produce them.

The required minimum cycle lengths of PRNGs which can satisfy property P3,
regardless of computing technology in which they would be implemented, have been
considered in [33]. Namely, assuming that (i) Moore’s law remains applicable also in
post-electronic computers and the frequencies of CPU clocks will continue to double
each 1.5 year (or each 2 years, or each 2.5 years, respectively), (ii) in 2000, popular
computers were equipped in the CPU operating at 800 MHZ, one can see that clocks
of typical CPUs would operate with 100 THz in 2025 (or 2034 or 2042, respectively),
see Figure 1. This means that we would use multiple processor computers in all-optical
technology, then.

According to recently established theoretical restrictions on the number of pseudo-
random numbers, a PRNG generating numbers in a cycle of length L should be used
in a single simulation as a source of not more 16v/L numbers in the case of linear
generators [11], and of not more than L numbers in the case of non-linear generators.
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Figure 1: Effect of Moore’s Law on CPU’s clock frequency

Assuming that only 1% of whole simulation time is spent on generating pseudo-random
numbers, an all-optical computer with a CPU clock running at 100THz would need a
linear PRNG with the cycle length of about 20, for executing a simulation lasting
one hour, or about 2'4° for executing a week long simulation; see Figure 2. In the same
situations, non-linear PRNGs could generate numbers in cycles of length 243 or 252,
respectively.

If a generator’s cycle is split in substreams, needed by multiple simulation engines
which operate on, say, run on 24 = 16384 all-optical processors, then such a linear
PRNG should have the cycle length of about 2'%0 for executing a simulation lasting
one hour, or about 2'%? for executing a week long simulation, see Figure 3. Then,
a non-linear PRNGs would need to generate numbers in cycles of length 257 or 26,
respectively.

A modern PPRNG must satisfy all the properties described above and several have
been proposed that can do so. However, further to being of long period and statistically
robust, there must exist its efficient implementation both in terms of memory and
speed. It is the purpose of this research to survey modern PPRNGs proposed and
test their implementations. In section 2 we introduce the generators that we consider.
Section 3 describes our experiments and the results.

2 Parallelizable Generators

As distributed (and parallel) computing has become more available and popular the
need for PPRNGs that satisfy the requirements described above has increased. Many
PRNGs with parallelization techniques have been proposed. Linear Congruential Gen-
erators (LCGs) and Feedback Shift Register Generators have received perhaps the
most attention and the mathematical theory and implementations of these generators
is subsequently highly developed. The history and properties of two such generators
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Figure 2: Cycle lengths of PRNGs required for simulations run on single processors

of particular interest to distributed applications are described in sections 2.1 and 2.2.
Many alternatives exist however.

Mascagni and Srinivasan[23] describe methods to parameterize the simple linear
congruential generator x, = ar,—1 +b (mod m) by way of varying a when m is
prime, or b when m is a power of 2. The period of such methods is limited by the mod-
ulus to m — 1 and m respectively. Several disadvantages including poor randomness
in the least significant bits make LCGs with m = 2* a poor choice[23]. The alterna-
tive, LCGs with prime moduli, are most often implemented with a Mersenne prime
modulus as a fast algorithm exists for modular multiplication with Mersenne primes
moduli. However, to find suitable values for a we must know all primitive roots of m,
a computationally complex task. To make the calculation of primitive roots trivial,
Mascagni and Chi proposed an LCG family with Sophie-Germain prime? moduli and
a fast modular multiplication algorithm for Sophie-Germain primes[22]. They imple-

2Sophie-Germain primes are of the for m = 2p 4+ 1 where m and p are prime,
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Figure 3: Cycle lengths of PRNGs required for simulations run on multiple processors

mented this method in the form of their Sophie-Germain Modulus Linear Congruential
Generator(SGMLCG), a 64-bit LCG family capable of producing up to 2% — 10509
independent full period generators with period 263 — 21016. SGMLCG has passed
Marsaglia’s Diehard tests [20] as well as the tests given as part of Mascagni’s SPRNG
package [23].

An interesting alternative to linear PRNGs are the Inversive Congruential Gener-
ators (ICGs) and Explicit Inversive Congruential Generators (EICGs) by Eichenauer
et al.[2, 3]. They have some similar properties to linear congruential generators but
have the distinct advantage of the absence of the lattice structure associated with lin-
ear generators; see Figure 4. However, a significant disadvantage that has resulted
in ICGs and EICGs not being used extensively is that both the recursion for ICGs
(tn, = aTp—1+b (mod p), n > 0) and EICGs (z, = a(n +ng) +b (mod p), n > 0)
require modular inversion, a costly process. That said the excellent properties of in-
verse generators suggests they would be very useful in applications where results based
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Figure 4: Lattice structure of LCG: z,, = 65539x,,_1 mod 23! (left), and EICG: x,, = 65539(n + 1) mod
231 — 1 (right).

on linear generators are in doubt. Further study on techniques to make ICGs and
EICGs more efficient would be very useful. For further discussion on the theoretical
and empirical properties of inverse generators as well as splitting techniques we refer
the reader to [10] and [8].

2.1 MRG32k3a - Combined Multiple Recursive Genera-
tor

Linear Congruential Generators, first put forward by Lehmer[16] in 1949, are based on
the following simple linear recurrence;

Tn = arp—1+b (mod m) (1)
Ln

n = 2

w = 2

such that wy, is a i.i.d random variable in the range [0, 1).

Early questions on the statistical robustness of LCGs as well their relatively small
maximum period of p =m (p =m — 1 for b = 0) prompted research into the multiple
recursive generator (MRG)[7], defined as follows;

Tpn = @1Tp—1+ a2Tp_2+ ...+ apTp_k (mod m) (3)
L

n = —_— 4

b m )

When the characteristic polynomial P(z) = 2* +a12* "1 +a92F"2 4+ .. .+ ay, is primi-
tive, the MRG achieves its maximum period of p = m” —1, a considerable improvement
on a LCG with equal modulus. To achieve a high quality in the sense of the spectral
test, the coefficients of recurrence 3 must be chosen such that S°F ; a? is large. However
for sake of efficiency we wish to keep these coefficients small. To manage this conflict,
L’Ecuyer [15] introduced the combined MRG (CMRG) which combines J MRGs as
follows;

Tjn = Gj1Tjn-1+ ...+ g, Tjnk, (modm;) (5)
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J
Up = (Z%”) (mod1) (j=1,2,...,J) (6)

m
j=1

L’Ecuyer et al.[15, 6] investigated many parameters to make up the components of
this CMRG and has published examples of the CMRGs that are statistically robust,
easy to implement, efficient to run and generate PRNs in very long cycles.

An example of such a generator is the so called MRG32k3a which is defined by two
MRGs each with three terms as follows;

a1 = 0

als = 1403580
a3 = —810728
mi = 23 -209
as = 527612

ap = 0

ass = —1370589

me = 232922853

This MRG32k3a has been shown by L’Ecuyer et al.[6] to perform well in statistical
tests up to at least 45 dimensions. It has a period of p ~ 291, achievable with arbitrary
seed initialization with at least one non-zero element in each MRG.

Being satisfied that MRG32k3a is a strong single stream generator we turn to the
task of parallelizing MRG32k3a. An attractive feature of LCGs is that we can easily
fast forward the generator k steps as follows:

Tpyi = a'z, (mod m) (7)

This property allows us to easily perform a similar operation on the MRGs which
make up MRG32k3a and parallelize via the blocking paradigm|[31, 14]. Namely, if we
put s;.,, the n'* state of the j'* MRG, as the vector {n, ¥jn+1,Tjnt+3} then a 3 x 3
matrix A exists such that,

Sjnt1 = Ajsjn  (mod m;) (8)
And so the state s;,,; is given by,
Sjnti = Aésjm (mod m;) (9)

This approach is taken in the implementation given in [31]. The implementation takes
the full cycle and splits it into streams of length 2127 splitting each of those into 2°!
sub-streams of length 276, The values 51 and 76 were chosen as 51 + 76 = 127 and
Il = 51,76,127 produced particularly good results with respect to the spectral test
performed on numbers from streams starting 2! places apart.



2.2 Dynamic Creation of Mersenne Twisters

As an alternative to early weak LCGs, the theory of PRNGs based on Feedback Shift
Registers (FSRs) was developed. Such generators offered better randomness of numbers
than LCGs and, as they worked using only bitwise operations, were very fast. 1973
saw the introduction of the Generalized FSR (GFSR) PRNGs [17] which were based

on the following recurrence;
Tiin = Tom O T, (l :0,1,...) (10)

where 7; is the i word vector of size w and @ is binary addition (exclusive OR).
GFSRs were generalized in the sense that, with suitably chosen seed, the period 2" — 1
was not reliant on word size of the machine but on n, the number of words used to
store the state of the generator, which allowed for arbitrary long periods. Matsumoto
and Kurita[26] recognized the merits of GFSR but also identified four disadvantages:
1- selection of seed is difficult, 2- randomness qualities are questionable as it is based
on the trinomial t" + t™ + 1, 3- GFSRs period of 2" — 1 is much smaller than the
theoretical maximum of 2™, and 4- n words of memory are required to produce a
period of 2" — 1. To address these disadvantages Matsumoto and Kurita[26] developed
the Twisted GFSR (TGFSR) PRNG which introduced a twisting matrix A(w x w) into
the GFSR recurrence as follows:

Tian = Liam B LA, (l = 0,1,...) (11)

For appropriately chosen values of n, m and A, TGFSR achieves the maximal period
of 2" —1 and, due to the properties of the twisting matrix, achieves better randomness,
as the recurrence represents a primitive polynomial with many terms rather than a
trinomial. With these advantages such generators were able to be created with periods
never before seen, such as the popular T800 with period 28%°. Despite these successes,
the inclusion of the A matrix in TGFSR introduced a defect in k-distribution for k
larger than the order of the recurrence[27]. The difficulty stemmed from trying to set
A such that 7; A was fast to calculate and to have good k-distribution for large k. To
address this difficulty a tempering matrix T was introduced as follows;

Tion = Tiem B TA, (l =0,1,.. ) (12)
gl-i-n = fl-i—nT (13)

which, for appropriate values for T, is equivalent to using a more computationally
complex A. In Eq.12 x4, is the output which is used in further recursions whereas
Zl4n is the output random variable.

Testing the characteristic polynomial of A for primitivity requires the complete
factorization of 2™ —1[35, 26]. For many large nw such decompositions are not known
and as such a limited number of large period TGFSRs were possible. To address this
limitation Matsumoto and Nishimura[29] invented the Mersenne Twister by adjusting
the recurrence 12 to allow for a Mersenne prime period as follows:

Ten = Tpom ® (T | Thr) 4 (R=0,1,..) (14)

gk+n = fk+nT (15)



such that nw — r is the size of the state array of the generator and 2™~ " is a
Mersenne prime. For a predetermined integer 7(0 < r < w — 1) the designation

(a‘t’}j | :fﬁcﬂ) means the concatenation of Z}' (the upper w — r bits of Zy) and #}_, (the

lower r bits of Zxy1).

In the same paper as the Mersenne Twister algorithm, code was released for MT19937,
a Mersenne Twister PRNG with a period of 2'9937 — 1 and 623-dimensional equidistri-
bution up to 32-bit accuracy. Such a massive period is possible as the prime decom-
position of a Mersenne prime is trivial and so the testing of primitivity of polynomials
becomes much faster[29]. MT19937 has passed empirical tests such as Marsaglia’s
Diehard tests[20] and Load and Ultimate Load Tests executed by the pLab group [34].

Again, having what we believe to be a high quality generator, we consider how to
apply it to create many parallel streams of independent PRNs. No algorithm is cur-
rently known for fast forwarding MT19937 in a similar way that exists for MRG32k3a,
so cycle splitting is not a good option. However, a Mersenne Twister is able to be paral-
lelized through a parameterization technique called Dynamic Creation as described and
implemented by Matsumoto and Nishimura in [28]. The implementation of dynamic
creation takes parameters such as a unique id (eg process, processor id etc.), word size
and a Mersenne prime, and creates a Mersenne twister based on those parameters.
The ID is encoded into the characteristic polynomial of the PRNG within the matrix
A. Independent IDs ensure relatively prime characteristic polynomials which implies
independent streams of parallel PRNs. The published implementation allows creation
of up to 2% parallel Mersenne twisters with periods including Mersenne primes from
2521 —1to 244497 —1.

Despite their advantages, Mersenne Twister PRNGs have one notable flaw. The
recurrence (14) modifies very few bits at each step and as such a poor distribution in the
state array will have long lasting affects in that the poor distribution will remain in the
state array for many subsequent states[32]. As such we must take care when initializing
the seed of Mersenne Twister as a poor seed may produce a long® non-random stream
of numbers. This is solved in the implementation of MT19937 and Dynamic Creation
by having a LCG to randomly initialize the seed. This is, however, a poor solution to
the problem for two reasons. One, we prefer generators that produce i.i.d numbers for
any arbitrary choice of seed (other than perhaps all 0’s). Two, the massive period of
Mersenne Twister is achieved as every permutation of the state array occurs somewhere
in the period. As such, even if the seed is not a poor state, the poor states will occur
somewhere in the period. Due to the super-astronomical period of Mersenne Twister
we are not likely to reach this poor state during any conceivable application so this is
a theoretical consideration only. To improve on this problem Panneton and L’Ecuyer
have developed WELL generators, an improved long-period generator class based on
linear recurrences modulo 2. While these WELL generators perform much better in
terms of recovering from a poor state[32], they will still produce a long? stream of
poorly distributed numbers given a bad state. As such initialization of seed should still

3MT19937 initialized with very few 1’s in its 19937 bit state array will produce states with significantly
less than half of the bits set to 1 for at least 700,000 steps[32]

4WELL19937a initialized with very few 1’s in its state array will produce states with significantly less
than half of the bits set to 1 for at least 700 steps[32]
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be done with care and further development of this class of generators to address this
problem is needed before arbitrary seed choice is a reality.

2.3 Multiplicative Lagged-Fibonacci Generators

In an effort to achieve larger periods than offered by LCGs, researchers in the 1950s
considered recursions which based x,, not only on z,,_1 but also on z,_o as follows[12]:

Ty = aTp—1 + cTp—2 (mod 2b) (16)

The period of such a generator, for appropriate values of a, c and m = 2 is as high
as m? = (2°)(2"), a marked improvement over LCGs with maximum period m = 2°. In
the simplest case when a = ¢ = 1 the recurrence 16 represents the Fibonacci recurrence
which displays poor randomness qualities. To improve on this, a lag [ was added to
the Fibonacci recurrence as follows[1]:

Tpn = Tp—1 + Tn—y (mOd 2b) (17)

For large values of [ (I > 15), the recurrence (17) achieves much better randomness
than recurrence (16). Another advantage is that the period, p = (2! — 1)(2*71), is
dependent on [ as well as b. As such the period of such a generator can easily be
increased by choosing a larger lag .

Even better performance is achieved supplementing the lag [ in (17) with a short
lag, k, as follows,

Ty = Tp—f + Tp—y (mod 2b) (18)

such that k& < I. For appropriate values the maximum period of p = (2! — 1)(2*71) is
achieved. This recurrence (18) forms the so called additive lagged-Fibonacci generator
(ALFG). The ALFG has been used extensively though it is now recognized that it
performs poorly in some relative simple statistical tests for even relative large lags[12].
As such it is necessary to choose [ to be very large to ensure a robust generator[24]. An
alternative that performs much better is the multiplicative lagged-Fibonacci generator
(MLFG) defined by the following recurrence,

Ty = Tp_p X Tp_y (mod 2°) (19)

Such MLFG demonstrates better robustness than its cousin the ALFG [24], however
several features of this generator are noteworthy. Firstly, it has a slightly smaller period
that the ALFG, with a maximum period of p = (2! — 1)(2*~3), for appropriate values
of k and [ and seed (25,1 ...x,_;). Secondly, due to the multiplicative nature of the
generator and the fact that an odd number multiplied with an even number gives an
even number, the sequence produced by (19) will eventually become all even, if not all
seed values are even. To avoid this transient period at the beginning of the stream, it
is recommended to seed a MLFG with all odd values. Further to this, the user must
recognize that the least significant bit of all numbers produced by MLFGs seeded in
this way will always be 1[24].
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In terms of parallelization, cycle splitting and parameterization algorithms exist for
both the ALFGs and MLFGs. Efficient cycle splitting via blocking for both ALFGs
and MLFGs have been presented by Makino[19]. Mascagni et al.[18] proposed a par-
allelization of ALFGs based on seed parameterization capable of yielding 2(—1(=1)
distinct maximum period cycles. A similar technique for MLFGs was proposed by
Mascagni and Srinivasan[24] yielding 2(=3)(=1) uncorrelated cycles. The default lag
in Mascagni implementation is [ = 17 with b = 64, giving 2% streams, each of period
approximately 3 x 276, Similar to their sequential versions, the parameterized MLFGs
display better robustness than the parameterized ALFGs with the latter failing some
standard tests due to inter-stream and intra-stream correlations. The MLFGs perform
well in tests, however, even with small lags[24].

3 Empirical Comparison

We recognize that cycle splitting with MRG32k3a, Dynamic Creation of Mersenne
Twisters (if appropriately initialized) and seed parameterization with MLFGs produce
high quality parallel streams in terms of inter-stream and intra-stream independence,
period length and number of possible streams. However, we wish to consider the
efficiency of these generators’ published implementations with respect to their applica-
tions in MRIP paradigm of stochastic simulation. For this purpose we consider speed
of initialization and generation of PRNs in the case of these three methods.

3.1 Platform

Experiments were conducted on a Intel Pentium 4 CPU running at 2.4GHz with 512KB
of cache, a floating point unit and 512MB of RAM, running Linux version 2.4.20-24.9,
gee version 3.2.2 and Red Hat 9. As the generators were tested for their use in practical
applications, it is unrealistic to expect that the majority of users would re-implement
these generators themselves. As such published implementations of the generators
were used. A C++ object oriented implementation of MRG32k3a is made available
by L’Ecuyer at [13]. C implementation of Dynamic Creation is made available by
Matsumoto at [25]. SPRNG|21] (Scalable Pseudo-Random Number Generators) is a
library of tested parameterizable generators by Mascagni, which includes the MLFG
used here. For the purpose of comparison we include in our tests a combined EICG
(cEICG) consisting of three EICGs® with a total period of P = 2% and implemented
through the pLab’s PRNG library([34].

3.2 Initialization

Before taking part in a simulation each engine must be assigned an independent stream
of PRNs. We consider initialization to be this process of assigning a stream to an engine,
including any calculation of parameters, initialization of seeds etc. Initialization is the

°The cEICG used in tests was made up of eicg(2147483647,7,1,0), eicg(2147483629,11,1,0),
eicg(2147483587,13,1,0) where these definitions are of the form eicg(p, a, b, ng)
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time taken from the instant when an engine is requesting a stream of PRNs to the
point at which it is able to start generating PRNs. The upper plot of Figure (5)
shows a comparison between the four generators we consider. Due to the fast constant
initialization time of the MLFG a detail of it is shown in the right plot. For each
generator we initialize n streams, for various m, and plot the average initialization
time for that n. For example if n = 3 and a given PPRNG finishes initializing the
first stream after 2 seconds, the second after 4 seconds and the third after 6 seconds,
the mean initialization time for that generator at n = 3 would equal 4. As each
engine may begin simulation as soon as its stream is initialized, the mean time is most
appropriate for comparison. Initialization of streams for cEICG and MRG32k3a is done

6
‘ ‘ MRG32k3a
Mersenne Twister - Dynamic Creation -------
MLFG --------
EICG

5 - .
(o3
£
=
c
S
T 3r 1
@
s
E
§
o 2 B
=

1 - .

0 L ) \ e B R

0 10000 20000 30000 40000 50000 60000 70000
Number of parallel streams required (n)
0.001 T
MLFG ——

0.0008 B
o
[}
L
£ 00006 [ g
E
c
S
©
@
s
£ 0.0004 - B
c
[
[}
=

0.0002 - i

0 L L L L L L
0 10000 20000 30000 40000 50000 60000 70000

Number of parallel streams required (n)

Figure 5: Mean waiting time for stream initialization

using a technique of fast forward and as such is sequential. This means as n becomes
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large the average time needed to initialize a stream increases linearly. While both
processes are linear, we see the initialization by cEICG is slower than MRG32k3a. The
implementation of MRG32k3a assumes fixed stream sizes and as such has precomputed
the matrix required to move from one stream to the next. The pLab’s cEICG allows
for arbitrary stream sizes so no precomputation is possible and so initialization is much
slower. Both Dynamic Creation and the SPRNG MLFG follow the parameterization
paradigm and both implementations have initialization routines that accept an ID and
return independent streams for independent IDs. Working on the assumption that each
engine has access to a unique ID, this allows the initialization of Dynamic Creation and
SPRNG MLFG to be parallelized in such a way that each engine may initialize it’s own
generator concurrently without any inter-engine or engine-control unit communication
and without fear of loss of independence. As such the average initialization time of
these generators is constant as n increases. To reach a figure for these constants 100
Mersenne Twisters and 100,000 MFLG streams were created and the mean time was
taken.

MRG32k3a stream were initialized to be the default length of 2'27. Dynamic Cre-
ation was asked to create Mersenne Twisters with 32 bit word length and period 252!,
an implementation minimum. SPRNG created MLFGs with the default lag of | = 17
and b = 64, yielding generators of period p ~ 3 x 276, PLab’s PRNG library was passed
the parameters in Footnote (5) and asked to construct streams of length p ~ 262.

3.3 Generation

We have assumed that once initialization is complete each engine will have access to an
independent stream of PRNs of at least 276 numbers in length. As such it is practically®
impossible for an engine to exhaust its allocated stream and require another. So having
looked at initialization speed we need only still look at the speed at which the respective
PRNGs generate numbers.

All four generators were required to generate n numbers. To encourage an even
playing field, all generators were expected to generate numbers in the range [0,1). The
upper plot of Figure (6) shows generation times for all four generators tested. Due
to the bunching of the fastest three generators caused by the slowness of the cEICG,
a detail of only MRG32k3a, Dynamic Creation and MLFG is shown in the right plot
of Figure (6). As expected all generators run in linear time with respect to n. As
all operations in Dynamic Creation’s Mersenne Twisters are bitwise, it is the fastest
of all tested generators. A single multiplication and modulo operations mod 2 make
MLFG the second fastest. The more complex operations of MRG32k3a make it the
third fastest, while the inversion operation of the cEICG make it by far the slowest.
The performance of the cEICG can be improved by reducing the number of EICGs
that make up the cEICG, however this will reduce to period of the generator also.

6a Pentium 4 running continuously would take approximately 1673 millenia to iterate around a near
empty while loop 276 times.
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Figure 6: Generation Time per Simulation Engine

4 Conclusion

Executing stochastic simulation in MRIP paradigm has many advantages. However
the quality of the final simulation results relies heavily on the quality of the underlying
Parallel Pseudo-Random Number Generator (PPRNG). To accept a generator to be
of high quality we require that it demonstrate intra-stream uniformity and indepen-
dence, inter-stream independence, a satisfactorily large period and be able to produce
a satisfactorily large number of streams. Further to this we require that an efficient

and accurate implementation exists.

Given the existence of a single stream PRNG two paradigms exist which may be
employed to achieve parallel streams of PRNs. Cycle splitting, which, as it’s name
suggests, involves distributing the single large cycle produced by the PRNG among
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various streams. Alternatively, parameterization involves modifying some parameter
in the base generator such that different parameters result in different independent full
period streams.

Though high quality generators are difficult to find, several have been proposed. We
investigate several that are potentially useful in massively parallel stochastic simula-
tions in the MRIP scenario. L’Ecuyer’s MRG32k3a PRNG is a large period linear gen-
erator. It achieves its large period and good randomness by combining several Multiple
Recursive Generators and is parallelized by the cycle splitting paradigm. Matsumoto
and Nishimura’s Dynamic Creation generates independent Mersenne Twister PRNGs
by parameterizing the matrix A in recurrence (14). Mascagni and Srinivasan’s parame-
terization of the Multiplicative Lagged-Fibonacci Generator is implemented within the
SPRNG library and is based on seed parameterization. We also consider the Explicit
Inversive Congruential Generators as implemented within the pLab’s PRNG library.
However, despite excellent randomness properties, the last class of PRNGs is signifi-
cantly slower than the other three generators considered.

The generators were tested for initialization and generation speed to assess the
efficiency of current implementations. Initialization was completed most quickly by
the Multiplicative lagged-Fibonacci Generator and most slowly by Dynamic Creation.
Generation of numbers was performed most quickly by Dynamic Creation’s Mersenne
Twisters and most slowly by the Explicit Inversive Congruential Generator.
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