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Abstract Many pelagic fish species have a life history that involves producing7

a large number of small eggs. This is the result of a trade-off between fecun-8

dity and larval survival probability. There are also trade-offs involving other9

traits, such as larval swimming speed. Swimming faster increases the average10

food encounter rate but also increases the metabolic cost. Here we introduce11

an evolutionary model comprising fecundity and swimming speed as heritable12

traits. We show that there can be two evolutionary stable strategies. In en-13

vironments where there is little noise in the food encounter rate, the stable14

strategy is a low-fecundity strategy with a swimming speed that minimises15

the mean time taken to reach reproductive maturity. However, in noisy envi-16

ronments, for example where the prey distribution is patchy or the water is17

turbulent, strategies that optimise mean outcomes are often outperformed by18

strategies that increase inter-individual variance. We show that, when larval19

growth rates are unpredictable, a high-fecundity strategy is evolutionarily sta-20

ble. In a population following this strategy, the swimming speed is higher than21

would be anticipated by maximising the mean growth rate.22
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Zealand and Te Pūnaha Matatini, a New Zealand Centre of Research Excellence. E-mail:
michael.plank@canterbury.ac.nz

J. W. Pitchford
York Centre for Complex Systems Analysis, University of York, United Kingdom. E-mail:
jon.pitchford@york.ac.uk

A. James
School of Mathematics and Statistics, University of Canterbury, Christchurch 8140, New
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1 Introduction25

Newborn larvae of pelagic spawning fish species face an extremely uncertain26

outlook. The median egg diameter of marine fish species is approximately 1.127

mm (Chambers and Leggett, 1996). These tiny eggs are abandoned by their28

parents in turbulent water (MacKenzie and Kiørboe, 1995), with a highly29

patchy prey distribution (Tsuda et al., 1993), spatiotemporal variations in30

abiotic factors like temperature and salinity (Jennings and Warr, 2003) and31

an abundance of predators. Most quickly perish – larval mortality rates as high32

as 42% per day have been recorded in Atlantic mackerel (Ware and Lambert,33

1985) – but a lucky few reach reproductive maturity and contribute to the34

generation of spawners.35

Most marine fish species have very high fecundity (Elgar, 1990). This high36

fecundity, high mortality life history skews the evolutionary pressures that op-37

erate on these populations because only the extreme tail of the fitness distri-38

bution contributes to the next generation. For this reason, the inter-individual39

variance in metrics such as the prey encounter rate can be a more important40

determinant of reproductive fitness than the mean (Pitchford et al., 2005).41

Larval swimming speed is an important factor affecting the expected prey42

encounter rate (Chick and Van Den Avyle, 2000). There are trade-offs in-43

volving this trait: swimming faster will increase the prey encounter rate but44

will also increase energy expenditure. Previous models of swimming speed45

(Darowski et al., 1988; Pitchford et al., 2003) have focused on maximising the46

mean net rate of energy gain or mean growth rate. However, because only47

a tiny fraction of larvae reach reproductive maturity, the important part of48

the distribution of growth rates is the tail and focusing on optimising mean49

values may not produce representative results (Pitchford et al., 2005). In such50

circumstances, a strategy with a lower mean growth rate but a higher variance51

in the growth rate may be evolutionarily advantageous. This can occur if some52

fitness effects of a heritable trait are subject to higher demographic stochas-53

ticity (inter-individual variance) than others (Currey et al., 2007). Increasing54

swimming speed has an energetic cost that is approximately deterministic be-55

cause it is a function of the energy required to overcome the drag force of the56

water (Pitchford et al., 2003). In contrast, the energetic benefit of swimming57

faster is stochastic because prey distributions are often very patchy (Duarte58

and Alcaraz, 1989).59

The trade-offs between fecundity and egg size have been studied empir-60

ically and theoretically (Elgar, 1990; Winemiller and Rose, 1993; Andersen61

et al., 2008). Pelagic-spawning marine species tend to have very high fecundity62

and very small egg sizes, whereas demersal spawners and freshwater species63

typically produce fewer, larger eggs, possibly due to lower inter-larval variabil-64

ity (Duarte and Alcaraz, 1989). Models with a predetermined mortality rate65

cannot fully capture the trade-offs between high and low fecundity strategies66

because the mortality rate is a major factor influencing optimal life histories.67

We develop a model to investigate the evolutionarily stable strategy (ESS) for68

fish that captures trade-offs between fecundity, mortality, prey encounter rate69
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and metabolic cost in a stochastic environment. The model includes swim-70

ming speed and fecundity as heritable traits. We explore evolutionarily stable71

strategies for this combination of traits using two methods: (i) maximising72

an an analytical expression for reproductive fitness; (ii) simulating a genetic73

algorithm. We show that high fecundity tends to be stable and that, in a noisy74

environment, high swimming speeds can increase fitness despite reducing the75

expected net growth rate.76

2 Model77

Larval fish grow as a result of encountering suitable prey and also have a78

metabolic cost that increases with energy used swimming. We model the body79

mass X(t) of an individual fish by a stochastic differential equation (SDE):80

dX = rdt + σdW, X(0) = x0 (2.1)

(Pitchford et al., 2005), where W (t) is a standard Brownian motion. This81

is a drift–diffusion process for body size with fixed mean growth rate r and82

diffusivity σ2. We assume that reproductive maturity is defined by reaching a83

certain minimum body size xm.84

Pitchford and Brindley (2001) modelled foraging in a patchy environment85

using Poisson processes for patch encounters and for prey encounters within a86

patch. They calculated the mean and variance of the number of prey encounters87

per unit time as functions of the average prey density, the patchiness and the88

predator swimming speed. The mean number of prey encounters Np during89

a period of time δt is independent of the patchiness and is an approximately90

linear function of the swimming speed v:91

E(Np) = (a + bv)δt,

where a and b are constants representing respectively the contribution of tur-92

bulence to the encounter rate and the average prey density. Pitchford and93

Brindley (2001) also showed that the variance in the number of prey encoun-94

ters increases with the patchiness of the prey distribution. We therefore set95

Var(Np) = SE(Np) = S(a + bv)δt,

where the constant S represents patchiness. For a homogeneous prey distribu-96

tion, the number of encounters Np is a Poisson random variable, which implies97

that Var(Np) = E(Np) and hence S = 1. Increasingly patchy distributions of98

the same mean density (e.g. sparse but highly densely populated patches of99

prey) are represented by values of S greater than 1 (Pitchford and Brindley,100

2001). Values of S less than 1 could also occur if there was a regular distribu-101

tion of prey or a minimum handling time between successive encounters. All102

prey encounters are assumed to result in an increase in predator body mass103

of an equal amount xp.104
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The larval fish experience an metabolic cost due to swimming. This is105

assumed be deterministic and proportional to the Stokes drag, which in-106

creases quadratically with swimming speed (Pitchford and Brindley, 2001).107

The metabolic cost is assumed to result in a loss of body mass at rate108

Eswim = cv2.

According to the above assumptions, the mean net growth rate and the109

diffusivity in Eq. (2.1) are110

r(v) = (a + bv)xp − cv2,

σ2(v) = S(a + bv)x2
p.

By a non-dimensionalisation of the variables X, t and v (see Appendix), we111

may rewrite112

r(v) = α + 2v − v2, (2.2)

σ2(v) = s(α + 2v), (2.3)

where s = Sxp/xm, α = 4ac/(b2xp), the initial mass is X(0) = x0/xm and the113

maturity size is xm = 1.114

The time taken to reach maturity Th is the first time that the body size115

X(t) exceeds xm = 1. Since the growth process is stochastic, Th is a random116

variable, referred to as a first hitting time. For the stochastic process described117

by Eq. (2.1), the first hitting time has as an inverse Gaussian distribution, with118

cumulative density function (CDF)119

P (Th < t) = C(t; v, x0) = 1−Φ

(

1 − x0 − rt

σ
√

t

)

+e2r(1−x0)/σ2

Φ

(

−1 + x0 − rt

σ
√

t

)

(2.4)
where Φ is the CDF of the standard normal distribution N(0, 1) (Grimmett120

and Stirzaker, 1992). Eq. (2.4) corresponds to the probability that a fish with121

swimming speed v and mass-at-birth x0 will reach maturity by time t.122

We assume that, on reaching maturity, a constant proportion p of the123

parent’s body mass is used to generate offspring, and that this mass is divided124

evenly between all n offspring. Hence, the mass-at-birth of an individual whose125

parent has fecundity n is x0 = p/n.126

The model therefore has three parameters: (i) the mean food intake rate127

for a non-swimming larvae α; (ii) the proportion p of parental mass used for128

reproduction; and (iii) the noise level s, which is the product of the prey129

patchiness S and the mass of a prey item xp relative to the maturity mass xm.130

We will set a = 0 (and as a consequence α = 0) so that the expected encounter131

rate for a non-swimming fish larvae is zero, and p = 0.2, and investigate a132

range of noise levels s. Note that setting α = 0 does not remove noise from133

the system; turbulence and spatial heterogeneity still play an important role134

in promoting variability in realised encounter rates via the noise parameter s.135

We have tested the effect of varying α in the range 0 to 4 and p in the range136

0.05 to 0.5 and this does not qualitatively change the results. Values for xp/xm137

could range from 10−8 for the larvae of large species foraging on small prey138

such as copepods, to 10−4 for smaller species feeding on larger prey.139
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2.1 Fitness140

In an equilibrium population in which all individuals have fecundity n, an141

average proportion 1/n of all offspring reach reproductive maturity. The as-142

sumption of an equilibrium population size is reasonable over evolutionary143

time scales. For example, this might represent a population whose sustainable144

size is limited to some carrying capacity by the availability of suitable habitat145

or the abundance of prey.146

The fitness W (v, n) of a strategy with swimming speed v and fecundity n147

is defined by the expected time taken for a proportion 1/n of the offspring to148

reach maturity. Since the initial mass of offspring of a parent with fecundity149

n is x0 = p/n, the expected time taken, t∗(v, n), for a proportion 1/n of the150

parent’s offspring to reach maturity is defined implicitly by151

C(t∗; v, p/n) = 1/n.

For given values of v and n, this equation was solved to find t∗ using Matlab’s152

numerical root finder fzero. We define fitness W as inversely proportional to153

t∗:154

W (v, n) = 1/t∗(v, n). (2.5)

A resident strategy (vr, nr) is vulnerable to invasion by any mutant strategy155

(v, n) with a higher fitness. In this model formulation, the fitness of a given156

strategy is independent of the strategies being followed by other individuals in157

the population. An ESS is a strategy that cannot be invaded by any mutant158

strategy (Maynard-Smith, 1982). In this context, an ESS is simply a strategy159

with higher fitness than any other strategy.160

2.2 Genetic algorithm161

We simulated the evolution of swimming speed and fecundity using a sim-162

ple genetic algorithm (GA). We assume an adult population of fixed size N163

and with swimming speed and fecundity traits (vi, ni), i = 1, . . . , N . For each164

parent i, we create ni offspring with traits (vi + φj , nie
ψj ), where φj and ψj165

(j = 1, . . . , ni) are independent normal random variables with mean zero and166

variance σ2
v and σ2

n respectively. This represents normally distributed muta-167

tions in swimming speed v and in log-fecundity ln(n). Both traits are restricted168

to pre-defined ranges vi ≥ 0 and 1 ≤ ni ≤ nmax. If any trait values are gen-169

erated outside the allowed range, they are adjusted to the closest allowable170

value. The upper limit on fecundity is interpreted as a physiological limita-171

tion on the minimum size for viable offspring (p/nmax); the effect of varying172

the parameter nmax will be investigated. The limitation of traits to defined173

ranges is necessary numerically. The results show that this is not important174

in terms of swimming speed (intermediate speeds are evolutionarily selected).175

However, the evolutionary optimum for fecundity commonly lies at one of the176

physiologically imposed limits, favouring either a strategy of “as many small177

larvae as possible”, or its opposite, depending on the selective environment.178
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Fig. 1 Fitness calculated using Eq. (2.5) against speed and fecundity. (a) No noise (s = 0),
highest fitness occurs at fecundity n = 1 and the deterministically optimum speed v = vdet.
(b) Moderate noise (s = 0.001), highest fitness occurs at maximum fecundity n = nmax =
106 and the deterministically optimum swimming speed. (c) High noise (s = 0.4), highest
fitness occurs at maximum fecundity n = nmax and high swimming speed v > vdet.

The total number of offspring is
∑N

i=1 ni. We sample the hitting times of179

all offspring independently from the distribution in Eq. (2.4) and select the180

N individuals with the lowest hitting times to make up the next generation181

of adults. Within these N individuals, we ignore any advantage to reaching182

maturity earlier and assume that consecutive generations are non-overlapping.183

This is the simplest selection choice for the GA. An ecological interpretation184

would be a situation where there is a finite resource or limited space, to which185

only the most successful N individuals have equal access. More complex selec-186

tion criteria could be included in the GA, based, for example, on a weighting of187

the hitting time. However, this would be at the expense of introducing further188

parameters, which would make the model more difficult to interpret.189

3 Results190

For fixed swimming speed v, fitness is a convex function of fecundity. There-191

fore, the optimal fecundity is always either the minimum allowed fecundity (1)192

or the maximum allowed fecundity (nmax). Which of these two strategies has193

the higher fitness depends on the level of noise. In a low noise (s ≪ 1) environ-194

ment, the low fecundity strategy of having one large offspring is optimal. The195

optimal swimming speed under these conditions is the one that maximises the196

mean net growth rate in Eq. (2.2) (i.e. the deterministically optimum speed197

vdet = 1). However, as the amount of noise increases, there is a tipping point198

and, above that point, the optimal strategy is to have as many offspring as199

physiologically possible. This can be understood intuitively as follows. In an200

environment where everyone produces a large number of offspring, the larvae201

all begin life at a very small size. Increasing the number of offspring causes a202

negligible reduction in the initial larval size and, therefore, negligible change203

in the hitting time distribution. So having more offspring is like getting more204

lottery tickets for the same total cost.205
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Close to the tipping point between the low fecundity and high fecundity206

strategies, the optimal swimming speed is still close to the deterministic op-207

timum. However, as the noise level s increases further, the optimal swim-208

ming speed increases above the deterministic optimum. This reduces the mean209

growth rate but, because the metabolic swimming cost is deterministic, it in-210

creases the variance of the growth rate. For high levels of noise, the optimal211

swimming speed can be several times larger than the deterministic optimum.212

In these cases, the mean growth rate is actually negative (i.e. mass lost due to213

the metabolic cost of swimming is greater than the mass gained from prey en-214

counters) but the increase in variance means that the individuals in the tail of215

the hitting-time distribution reach maturity more rapidly and therefore have216

higher fitness.217

Each row of graphs in Fig. 2 shows a single simulation of the GA. The218

simulations shown are representative of the behaviour of the GA: there is219

variability among realisations in the time taken to converge, but the long-220

term behaviour is always the same for a given noise level s and given initial221

conditions. The results of the GA are consistent with the fitness functions in222

Fig. 1. The population converges to low fecundity (n = 1) when noise is low223

(Fig. 2a, b) and to high fecundity (n = nmax) when noise is high (Fig. 2e–224

h). This finding is robust to changes to the value of nmax, which only affect225

the time taken for the population to converge. At moderate noise levels, the226

population can get trapped in the local optimum at low fecundity (Fig. 2c, d).227

Whenever there is any noise (s > 0), the low fecundity optimum (if it exists)228

is always local in the sense that fitness is eventually an increasing function of229

fecundity when fecundity is sufficiently high. The only thing that can make230

the low-fecundity strategy globally optimal is the physiological restriction on231

the maximum number of eggs.232

Figure 3 shows the optimal trait values according to the analytical model233

together with the mean trait values after 500 generations of the GA. The GA234

was run for a range of noise levels s and, for each new noise level, was initialised235

with the resulting population (i.e. same set of trait values) from the previous236

noise level. The noise level s was first increased in logarithmic increments237

from 10−8 to 1 and then decreased back down to 10−8. This allows us to238

investigate bistability in the fecundity, which is indicated by the two branches239

of results in Fig. 3a. In the range of noise levels for which there are two240

branches, the population can evolve towards either the low fecundity (n ≈ 1)241

or high fecundity (n ≈ nmax) strategy, depending on the initial conditions.242

The optimal swimming speed is largely independent of initial conditions243

and consistent with the predictions of the analytical model (Fig. 3b). At low244

noise levels, when the population is in the low-fecundity state, the swimming245

speed is close to the value that maximises the mean net growth rate in Eq.246

(2.2), referred to as the deterministically optimum speed. There is a range of247

intermediate noise levels (roughly 10−4 < s < 10−2) for which the optimum248

strategy is high fecundity but the swimming speed is still close to the deter-249

ministic optimum. At high noise levels (s > 10−2), the optimum strategy is250

high fecundity and high swimming speed. As the noise level is subsequently251
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Fig. 2 GA results showing the minimum, mean and maximum trait values of a population
of N = 100 individuals over time (t represents generation number). (a, b) No noise (s = 0),
population converges to fecundity n = 1 and swimming speed v = vdet. (c, d, e, f) Moderate
noise (s = 0.001), population can converge to the local optimum at low fecundity (c),
or to the global optimum at high fecundity (e), depending on initial conditions. (g, h)
High noise (s = 1), population always converges to the high fecundity optimum with v >
vdet. Population size N = 100; mutation size constants σn = 0.1, σv = 0.1vdet; maximum
fecundity nmax = 106. Initial swimming speeds uniformly distributed in [0, 10vdet]. In (a,
b, e–h) initial fecundity is log-uniformly distributed in [0, 1000]; in (c, d) initial fecundity is
log-uniformly distributed in [0, 10].
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Fig. 3 Fecundity n and swimming speed v against noise level s. Blue curves show the trait
values that maximise fitness as defined by Eq. (2.5); red circles show the mean population
trait values after 100 generations of the GA. For each new noise level s, the GA was initialised
with the trait values at the end of the previous simulation. Noise level was first increased
in logarithmic increments from 10−6 to 1 (labelled ‘increasing s’) and then decreased in
logarithmic decrements back down to 10−6 (labelled ‘decreasing s’). Black dotted line in (b)
shows the deterministically optimum speed v = vdet. Population size N = 100; mutation
size constants σn = 0.1, σv = 0.1vdet; maximum fecundity nmax = 106.

reduced, the population remains trapped in the high-fecundity local optimum,252

but the swimming speed evolves back down towards the deterministic op-253

timum. In other words, the hysteresis observed in the population fecundity254

(Fig. 3a) is not present in the population swimming speed (Fig. 3b).255

Discussion256

The trade-off between producing many small eggs or fewer large ones has been257

investigated empirically (Duarte and Alcaraz, 1989; Elgar, 1990) and theoret-258

ically (Winemiller and Rose, 1993; Andersen et al., 2008). Stochasticity in the259

growth trajectories of fish larvae is clearly a major factor in the high-fecundity260

life histories of many marine fish species (Pitchford et al., 2005). In this pa-261

per, we have explored the interplay between fecundity and another heritable262

trait, larval swimming speed. We have shown that, in low-noise environments,263

the evolutionarily stable strategy is to swim at the speed that maximises the264

mean net growth rate, which is a balance between the prey encounter rate and265

the metabolic cost. This is the result of a simple deterministic optimisation.266

In high-noise environments, it becomes advantageous to swim faster than the267

deterministic optimum. This reduces the mean net growth rate, but increases268

the variance, and thereby increases the likelihood of having at least one off-269

spring reach reproductive maturity. The evolutionarily stable swimming speed270

was estimated in two ways, which gave the same results: (i) by minimising271

the expected time taken for at least one offspring to reach maturity; (ii) by272

simulating the evolution of a population using a genetic algorithm.273
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Considering the huge difference in size between the larvae and adults of274

most marine fish species, there is remarkably little variation in egg mass, with275

many species producing eggs close to 1 mg (Ware and Lambert, 1985; Ri-276

jnsdorp and Ibelings, 1989; Chambers and Waiwood, 1996; Mendiola et al.,277

2006). This suggests that there may be physiological constraints that prevent278

production of viable eggs much smaller than this. For example, hydrodynamic279

factors severely limit the ability of small larvae to obtain an adequate food280

supply (China and Holzman, 2014). There is a strong correlation between an281

individual’s reproductive effort (total mass of eggs produced) and its fecun-282

dity (Duarte and Alcaraz, 1989), suggesting that, given an increase in biomass283

available for reproduction, adult fish produce more eggs rather than larger284

eggs. These empirical observations are consistent with our model assumption285

that there is a maximum number of offspring that can be produced in a single286

spawning bout, corresponding to a minimum egg size.287

The FishBase database (www.fishbase.org) is the principal repository for288

fish data, while the most comprehensive experimental study of larval swim-289

ming speed is Fisher et al. (2005). Of the 62 identified species studied by Fisher290

et al. (2005), FishBase provides fecundity estimates for four species: Lutjanus291

carponotatus (speed 52 cm/s, fecundity 7,074–748,959); Oxymonacanthus lon-292

girostris (speed 31.1 cm/s, fecundity 200–300); Dascyllus aruanus (speed 24293

cm/s, fecundity 1,500–2,000); Plectropomus leopardus (speed 31.5 cm/s, fecun-294

dity 457,900) (fecundity data extracted using rfishbase). The two species with295

the fastest swimming larvae (L. carponotatus and P. leopardus) have fecundi-296

ties 2-3 orders of magnitude larger than the other two species.297

This is consistent with our theoretical predictions for this long-standing298

evolutionary problem, but cannot be regarded as corroboration due to the299

small sample size. The quoted speeds are for settlement-stage juvenile fish and300

are based on measurements of maximum sustainable swimming speed; this is301

used as a proxy for foraging speed, but may mask other factors (Fisher and302

Leis, 2010). Moreover, empirical observations may reveal other differences in303

swimming and behaviour, involving for example diurnal changes in activity304

(Fisher and Bellwood, 2003). It is plausible that variations in swimming speed305

and movement behaviour will result in increasing variance in the context of the306

model developed here, and may thereby convey fitness benefits in a turbulent307

environment. Fish larvae also exhibit other traits: for example, some species308

possess oil globules which act as initial energy reserves (Fisher et al., 2007) and309

vary with body size and reproductive strategy. These are presumably subject310

to selection. The model presented here could be extended to account for this311

trait, possibly using simple descriptions of seasonality and unpredictability in312

the underlying food supply (James et al., 2003; Burrow et al., 2011).313

We have presented results for a specific model of larval growth and mortal-314

ity in Eq. (2.1). This simple model assumes a constant average growth rate (r)315

and ignores density-dependent effects, such as competition for food or habi-316

tat, group defence against predators and cannibalism. In reality, interactions317

among individuals may be a function of relative body size, which could affect318

trade-offs involving fecundity. The model assumes there is no parental care:319
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this is reasonable for most pelagic marine species, although there are some320

species that invest substantial effort into care of offspring (Duarte and Al-321

caraz, 1989). The model also ignores the substantial changes in the abundance322

and size of prey as an individual fish grows to maturity (Benôıt and Rochet,323

2004). An advantage of this simple model is that it only has a small number of324

parameters: the mean food encounter rate for stationary larvae, the proportion325

of parental mass used for reproduction, and the level of noise in the food en-326

counter rate. The first two of these parameters were found not to have a major327

impact on evolutionarily stable outcomes. The noise level was shown to be a328

product of the patchiness of the prey distribution and the ratio of the mass of329

a prey item to the maturity mass. The reason for the latter effect is that, when330

fewer prey encounters are required to reach maturity, there is a higher prob-331

ability of an individual offspring reaching maturity much faster than average.332

Patchy prey distributions have been argued to promote high-risk, high-reward333

strategies (Pitchford and Brindley, 2001).334

The evolutionary stability of a high-fecundity strategy is robust to changes335

in model assumptions. For example, if both the mean and variance in the336

growth rate are proportional to size, rather than simply constant, Eq. (2.1)337

describes the logarithm of size and, for a given initial mass, results in the same338

hitting-time distribution. The trade-off between fecundity and initial mass re-339

sults in slightly different fitness landscapes (Fig. 1), but the switch from low340

fecundity, slow swimming to high fecundity, fast swimming with increasing341

noise still occurs. When a resident population is following a high-fecundity342

strategy, egg size is by definition very small. A mutant with the same total343

reproductive effort but higher fecundity experiences little disadvantage from344

the further decrease in egg size, but benefits from having a greater number345

of tickets in the lottery of larval growth and survival. This effect is clearly346

at work in the genetic algorithm results in Fig. 2e, h, which show a steady347

evolution in the direction of increasing fecundity, consistent with empirical348

observation (Duarte and Alcaraz, 1989). Physiological and hydrodynamic fac-349

tors are likely to put a lower limit on viable egg size (Levitan, 1993; China350

and Holzman, 2014), and we hypothesise that producing eggs around this size351

will be evolutionarily stable in many cases. An exception to this would be if352

there is sensitive dependence of larval survival on egg size, even at very small353

egg sizes. This could occur if the hatchlings’ mass-specific growth rate is low354

relative to their mortality rate (Houde, 1997; Law et al., 2014).355

In the model, we assumed that fish reproduce only once on reaching ma-356

turity and then die. In reality, mature fish of large species have a relatively357

low mortality rate and can survive for several years and undergo multiple re-358

productive bouts. The genetic algorithm could be generalised to include this359

by allowing non-overlapping generations. This would increase the advantage of360

having offspring reach maturity at an early age because this will allow multiple361

spawning bouts and lead to a faster increase in representation in the gene pool.362

This may enhance the selection pressure for high-risk, high-reward strategies363

like the one identified in this model, because there would be even greater364

benefit to having offspring in the extreme tail of the growth rate distribution.365



12 Michael J. Plank et al.

We chose to study larval swimming speed because it is a variable trait366

that is a key determinant of prey encounter rate. But our results illustrate a367

wider point: when a particular trait has a combination of deterministic and368

stochastic effects, its optimal value will depend on the level of stochasticity369

(Currey et al., 2007). Optimising mean values, like the mean growth rate, is370

not likely lead to an evolutionarily stable strategy when stochastic effects are371

strong and when only a small fraction of offspring reach reproductive maturity.372

Appendix373

We define dimensionless variables374

X̂ =
X

xm
, t̂ =

t

tref
, v̂ =

v

vdet

,

where tref = 4cxm/(b2x2
p) and vdet = bxp/(2c), which is the swimming speed that maximises375

the expected growth rate, i.e. the deterministic optimum. Then Eq. (2.1) becomes376

dX̂ = r̂dt̂ + σ̂dŴ ,

where377

r̂ =
4ac

b2xp
+ 2v̂ − v̂2,

σ̂2 = S
xp

xm

„

4ac

b2xp
+ 2v̂

«

and Ŵ = W/t
1/2

ref
is a standard Brownian motion with respect to dimensionless time t̂. The378

initial condition in the new variables is X̂(0) = x0/xm and the fish reaches maturity when379

X̂ = 1. Dropping the hats, this is equivalent to Eq. (2.1) with the growth rate and diffusivity380

given in Eqs. (2.2) and (2.3).381
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