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Abstract

Simulating accurate infrared spectra is a longstanding problem in computational

quantum chemistry. Linearly scaling harmonic frequencies to better match exper-

imental data is a popular way of approximating anharmonic effects while simul-

taneously attempting to account for deficiencies in ab initio method and/or basis

set. As this approach is empirical, it is also non-variational and unbounded, so

it is important to separate and quantify errors as robustly as possible. Eliminat-

ing the confounding factor of methodological incompleteness enables us to explore

the intrinsic accuracy of the scaling approach alone. We find that single-coefficient

linear scaling methods systematically overcorrect low frequencies, while generally

undercorrecting higher frequencies. A two-parameter polynomial model gives sig-

nificantly better predictions without systematic bias in any spectral region, while a

single-parameter quadratic scaling model is parameterized to minimize overcorrec-

tion errors while only slightly decreasing predictive power.
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Introduction

It is widely reported1–7 and commonly accepted in the scientific literature that ab initio

derived harmonic vibrational frequencies tend to be larger than experimentally observed

fundamentals, due to the combined effects of anharmonicity and methodological incom-

pleteness. Assuming that these effects are uniform across the spectral range motivates

the use of parameterized scaling factors to improve the agreement between predicted and

observed fundamental frequencies.1–7 Within this empirical framework, separate scaling

factors are required for different ab initio method and basis set combinations.1–7

However, there are two lines of evidence in the literature to suggest that straightforward

linear scaling of normal coordinate force constants may not always be justified.

Firstly, internal coordinate force constant scaling approaches8 achieve higher accuracies

than simple normal coordinate frequency scaling. However, this comes at the cost of

having to define appropriate internal coordinate sets and parameterize different scaling

factors for each internal coordinate. Although somewhat lacking in generality, this ap-

proach nonetheless illustrates the importance of different scaling factors for different types

of molecular motion.

Even within the literature on normal coordinate force constant scaling, there are strong

indications that anharmonicity and methodological incompleteness effects are not, in fact,

constant across the entire spectral range, with different scaling factors required in low

and high frequency regimes.5,6 Down-scaling is always recommended for high frequencies,

but scaling factors for low frequencies vary significantly in both magnitude and direction

across different levels of theory, with a median recommended value around 1.0, corre-

sponding to no scaling correction.

These observations raise a number of questions:

• Can an alternative relationship between anharmonicity and harmonic normal mode

frequency be empirically established?

2



• Could this underpin a more accurate and/or robust anharmonic correction model

that retains the simplicity and generality of a frequency scaling approach?

• Are the low frequency scaling factors primarily accounting for methodological in-

completeness rather than anharmonicity?

Methods

To eliminate the confounding effects of methodological incompleteness, we use the PyPES

library of high quality semi-global potential energy surfaces (PES).9 This enables us to

obtain benchmark anharmonic vibrational frequencies and their harmonic counterparts

for 226 unique fundamental vibrational modes. Although reference anharmonic vibra-

tional frequencies are available in the literature for the PES contained within the PyPES

library, benchmark harmonic frequencies calculated from these surfaces have not all been

available until now. The 50 molecules within the PyPES library vary in size from three

to six atoms, and contain a range of different atom types, bonding patterns and molec-

ular topologies. Hence, the vibrational modes of these molecules are expected to form

a representative set. All benchmark anharmonic and harmonic frequencies used in this

work are provided as Supporting Information.

For larger molecules, where high level ab initio calculations to obtain accurate poten-

tial energy surfaces are not feasible, previous work5,6,12 suggests that density functionals

incorporating around 20% Hartree-Fock exchange reliably recover harmonic frequencies

comparable to those obtained at much higher levels of theory. We therefore benchmark

the ability of the B3LYP,13 B3PW91,14 PBE0,15 EDF2,12 M0516 and M0617 functionals

to recover benchmark harmonic frequencies for all molecules in the PyPES library. We

also assess the ability of the quadratic correction model defined above to predict anhar-

monic frequencies from DFT harmonic frequencies.

All calculations are carried out in the atomic orbital basis sets that were used for pa-

rameterizing each functional,18–22 augmenting each basis set with diffuse functions for
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anionic molecules if not already included.23,24 The CRENBL ECP basis25,26 is used for

atoms larger than Kr. All (TD-)DFT geometry optimizations and subsequent frequency

calculations are carried out using the Q-Chem 4.2 program package,27 employing a Euler-

Maclaurin – Lebedev product quadrature grid comprising 75 radial points and 302 an-

gular points per radial point, with an SCF convergence threshold of 10−8 and geometry

optimization thresholds decreased by an order of magnitude from their default values.

Results and Discussion

Anharmonicity Model

For clarity and consistency, we recast the scale factor approach of Radom et al.5,6 (1) as

a linear correction model (2).

ν ≈ λνe (1)

ν ≈ (1− c1)νe (2)

in which ν represents the benchmark anharmonic frequency we wish to approximate

and νe its harmonic equivalent. This enables us to recast the problem of minimizing

the difference between scaled and benchmark frequencies as a problem of approximating

anharmonicities as a function of harmonic frequencies:

νe − ν ≈ c1νe (3)

Or, equivalently,

∆anh ≈ c1νe (4)

The optimal coefficient, c1, is determined by least-squares fitting to experimentally de-

rived or benchmark anharmonicities, i.e. by linear regression with ∆anh as the response

variable and νe as the independent variable, as illustrated in Figure 1(a). As per equa-
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tions (1) and (2), the coefficient, c1, derived in this manner is the complement of the

scaling factor, λ, defined by Radom et al. The quality of the model is more evident upon

examining the residual differences between predicted and benchmark frequencies:

∆res = νpredicted − ν (5)

shown in Figure 1(b), noting that if no correction is applied to the harmonic frequencies

then νpredicted = νe and ∆res = ∆anh.

From Figures 1(a) and 1(b), it is clear that a single parameter linear correction model sig-

nificantly overestimates anharmonicity corrections in the low frequency, low anharmonic-

ity regime while simultaneously underestimating anharmonicity corrections at higher fre-

quencies. Indeed, low frequencies are often overcorrected to such an extent that the

‘improved’ frequency estimates are, in fact, further from the experimental values than

the original harmonic estimates. Points below the red anti-diagonal line on Figure 1(b)

fall into this category. Ideally, the trend line on Figure 1(a) would provide a closer fit to

the benchmark anharmonicity data, resulting in residual errors in Figure 1(b) narrowly

and randomly clustered around the dashed horizontal line.

The tendency of the single parameter linear scaling model to overcorrect low frequency

modes is also reflected in the summary statistics presented in Table 1. Although the

mean absolute error decreases from 47.0 to 19.6 cm−1, the average error associated with

underpredicted frequencies increases from 8.2 to 18.2 cm−1, with corresponding maxi-

mum error increasing from 17.3 to 44.0 cm−1. The c1 value of 0.039640 corresponds to a

λ value of 0.96036, in very good agreement with existing scale factors parameterized for

high level correlated ab initio methods across a larger data set; 0.9639 for CCSD(T)/6-

311+G(d,p).6

It is now evident that the dual scaling factor recommendation of Radom et al.5,6 implies

that at least a bi-linear model is required to describe trends in anharmonicity as a func-

tion of harmonic frequency. However, they do not give an exact prescription for mapping
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scale factor to frequency range. To complete the specification of their model, further

optimization to determine the optimal ‘cross-over’ point would be required.

Given the relatively straightforward relationship between anharmonicity and harmonic

frequency apparent upon visual inspection of Figure 1(a), this approach seems needlessly

complicated. Instead, we propose a second-order polynomial model:

∆anh ≈ c1νe + c2ν
2
e (6)

This produces a much closer fit to the anharmonicity data, as illustrated in Figure 1(c)

and summarized in Table 1. Although the polynomial model produces universally more

accurate estimates of the benchmark frequencies than the single-parameter linear model,

there remains a cluster of outliers in the low frequency, high anharmonicity region, a

single outlier at 1052 cm−1 and ∆anh = 99 cm−1, and another outlying pair of modes

with ∆anh << 0.

Modes with anomalously high anharmonicities all represent cases in which the assump-

tion of low amplitude vibrations about a single minimum on a PES expanded in normal

coordinates breaks down; for low barrier torsional modes (the low frequency, high anhar-

monicity cluster) and the NH3 inversion mode (the lone outlier at 1052 cm−1). In these

cases, correcting for anharmonicity by scaling normal coordinate force constants is in-

appropriate, as internal-coordinate based approaches for expanding the PES and solving

the nuclear vibrational Schrödinger equation are required.

The two cases in which anharmonicity increases the fundamental frequencies correspond

to antisymmetric stretching modes of excited state ClO2 and BrO2. Early studies at-

tributed this behaviour to Cs-distortion of the equilibrium geometry producing a very

shallow double minimum in the potential.10 However, more extensive recent work has con-

cluded that the negative (according to the sign convention adopted here) anharmonicity

corrections arise from strong anharmonic coupling between symmetric and asymmetric

stretching modes.11 Again, a normal coordinate force constant scaling approach is ill-
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suited to capturing these effects.

This is reflected in the residual error data illustrated in Figure 1(d). The polynomial

scaling model fails to allow harmonic frequencies to increase toward their anharmonic

counterparts, resulting in residual errors as large as, or even worse than, the original

harmonic estimates, i.e. |∆res| > |∆anh| when ∆anh < 0. In these cases, the ‘least worst’

prediction would be no change from harmonic.

Otherwise, excluding torsional and inversion mode outliers, residual errors tend to be

randomly and narrowly scattered about ∆res = 0. Although the polynomial model signif-

icantly outperforms the linear model on this metric, it has the disadvantage of requiring

an additional empirical parameter. Further, there remain a number of points below the

red anti-diagonal line on Figure 1(d), indicating that although the magnitude and extent

of ‘worse-than-harmonic’ overcorrection errors have decreased, they have not been com-

pletely eliminated.

Therefore, we seek a model that; minimizes overcorrection errors rather than minimizing

the overall error, requires only a single parameter, and outperforms the single-parameter

linear model in every metric. This combination of constraints yields the quadratic model

illustrated in Figures 1(e) and 1(f), with c2 = 0.00001215. A major advantage of this

model is that it provides a lower bounded estimate of the anharmonicity in most cases. In

other words, it generally corrects harmonic frequencies down toward but not beyond their

experimental values. This is particularly important when error direction is as important,

if not more important, than error magnitude.

For example, corrected frequencies that are higher than their true values will yield lower

bounds for derived thermochemical parameters such as enthalpies and entropies. Further,

this leads to lower total errors in calculated thermochemical parameters, as anharmonic

frequencies that are too high result in smaller errors than frequencies that are too low by

the same amount, due to the inverse exponential ansatz.

There remain a handful of cases in which the quadratic model overpredicts the anhar-
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monicity correction, but in each of these cases, the error is small. Overcorrection errors

are less than 12 cm−1 in all cases, averaging 3.0 cm−1. Like the polynomial model, the

quadratic model fails to account for the rare cases in which the true frequencies are higher

than the harmonic frequencies and a negative anharmonicity correction is required. In

these cases, the quadratic model does not significantly compound this error, but instead

returns frequencies similar within 3 cm−1 of the original harmonic frequencies.

DFT Frequencies

Errors in (TD-)DFT harmonic frequencies are calculated with reference to benchmark

values:

∆harm = νDFT
e − νe (7)

Mean and maximum absolute and signed errors in DFT harmonic frequencies are re-

ported in Table 2. Excited states and molecules containing atoms larger than Kr are

excluded from statistical analysis, because using TD-DFT or effective core potentials

introduces additional approximations beyond those inherent in the parameterization of

each functional, which may further decrease the accuracy of the calculated νDFT
e . For

completeness, the full set of results is provided as Supporting Information.

The data presented in Table 2 are broadly consistent with previous studies that report

mean or RMSD errors in harmonic frequencies of 30 – 40 cm−1 using B3LYP28 and

PBE028,29 with triple zeta basis sets. The minor discrepancy between the literature re-

sults and those reported here arises from our use of a larger and more representative

test set of molecules and our choice to use the basis sets in which each functional was

parameterized.

Of the functionals investigated here, EDF2 is generally the most accurate. This is to

be expected, as it was explicitly parameterized to recover CCSD(T)/cc-pVTZ harmonic

frequencies.12 Nonetheless, significant errors in harmonic frequencies are observed, with

a mean absolute deviation of 21.1 cm−1 and maximum absolute error of 82.9 cm−1. Sta-

tistically, errors are randomly distributed across the data set. However, upon visual
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inspection of Figure 2(a), it is clear that EDF2 systematically underestimates the fre-

quencies of highly anharmonic modes.

Errors in quadratically corrected DFT-derived anharmonic frequencies are presented in

Table 3. Comparing Tables 2 and 3 reveals a strong correlation between mean absolute

and maximum errors in DFT harmonic frequencies, and corresponding errors in DFT-

derived anharmonic frequencies. This implies that residual errors in predicted anharmonic

frequencies derive primarily from the inaccuracy of the DFT harmonic frequencies rather

than inadequacy of the anharmonicity correction model. This observation is supported

by existing literature results, in which anharmonic corrections are calculated using vi-

brational perturbation theory. Even using this significantly more time consuming and

rigorous procedure to account for anharmonicity, errors in calculated anharmonic fre-

quencies are strongly correlated with errors in the underlying harmonic frequencies.29

For low frequency modes, the quadratic model predicts only small anharmonicity correc-

tions by construction, and therefore errors in DFT harmonic frequencies translate almost

directly into residual errors in predicted anharmonic frequencies, as anticipated above.

This behaviour is evident comparing the low anharmonicity regions of Figures 2(a) and

2(b).

For high frequency modes, the predicted anharmonic frequencies are scattered randomly

about ∆res = 0, as shown in Figure 2(b). This is a consequence of error cancellation,

with the quadratic correction model systematically overestimating anharmonic frequen-

cies as it was designed to do, and the EDF2 functional systematically underestimating

harmonic frequencies. Although it would be possible to reparameterize the quadratic

correction model to reinstate the upper bound behaviour for high frequencies, or further

optimize it to achieve maximum error cancellation, we consider it preferable to control for

anharmonicity and methodological errors separately so we do not pursue this approach.
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Conclusions

Overall, we recommend using the quadratic correction model in conjunction with high

level ab initio harmonic frequencies, due to its simplicity, accuracy and ability to provide

semi-bounded lower estimates of anharmonicities. This approach recovers anharmonic

frequencies within ∼ 13 cm−1 of benchmark values, on average, across a diverse range

of chemical species. We note that low barrier torsional and inversion modes should be

excluded a priori due to the inappropriateness of normal modes for describing these types

of motion.

Where high level ab initio harmonic frequency calculations are not feasible, quadratically

corrected DFT frequencies reasonably approximate anharmonic stretching frequencies,

with mean absolute errors in the 20 – 30 cm−1 range. However, DFT-derived estimates

of anharmonic frequencies are less reliable for lower frequency torsional and bending

modes, due to these regions of the potential energy surface being poorly described by

DFT methods. In these cases, errors in anharmonic fundamental frequencies predicted

by both simple empirical correction models and more rigorous nuclear vibrational struc-

ture theories (VPT2) are both dominated by relatively large errors in the DFT harmonic

frequencies.

Supporting Information Available: Benchmark data – anharmonic frequencies, har-

monic frequencies, anharmonicities; Ab initio data – DFT harmonic frequencies; Statis-

tical model data – predicted anharmonic frequencies.
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Table 1: Mean unsigned, mean signed and maximum signed errors in predicted anhar-
monic frequencies (∆res), according to models defined by equation 6 and the parameters
given. All values reported in units of cm−1.

〈|∆res|〉 |∆res|max

approx c1 c2 all νmodel νmodel νmodel νmodel

> ν < ν > ν < ν
harmonic 0.0 0.0 47.0 47.6 8.2 236.5 17.3

linear 0.039640 0.0 19.6 24.7 18.2 106.9 44.0
polynomial 0.011214 0.000010982 9.9 12.9 8.1 82.5 28.0
quadratic 0.0 0.00001215 13.3 15.0 3.7 106.6 19.4

Table 2: Mean and maximum errors in DFT harmonic frequencies (∆harm), excluding
excited states and molecules containing atoms larger than Kr. All values reported in
units of cm−1. a 6-31+G(d,p) or b 6-311+G(d,p) or c aug-cc-pVTZ basis used for anions.

〈|∆harm|〉 |∆harm|max

Method all νDFT
e νDFT

e νDFT
e νDFT

e

> νe < νe > νe < νe
B3LYP/6-31G(d,p)a 23.4 18.4 26.3 72.0 138.3

B3PW91/6-31G(d,p)a 20.0 19.9 20.2 102.5 94.1
PBE0/6-311G(d,p)b 22.2 25.2 19.2 132.9 90.4

M05/6-311+G(2df,2p) 30.4 34.5 27.6 162.3 125.7
M06/6-311+G(2df,2p) 27.5 32.5 23.7 146.4 121.2

EDF2/cc-pVTZc 21.1 21.3 21.1 76.1 82.9

Table 3: Mean and maximum errors in anharmonic frequencies (∆quad
res ) predicted from

DFT harmonic frequencies using the quadratic correction model (equation 6, c1 = 0, c2
= 0.00001215), excluding excited states and molecules containing atoms larger than Kr.
All values reported in units of cm−1. a 6-31+G(d,p) or b 6-311+G(d,p) or c aug-cc-pVTZ
basis used for anions.

〈∣∣∆quad
res

∣∣〉 ∣∣∆quad
res

∣∣
max

Method all νmodel νmodel νmodel νmodel

> ν < ν > ν < ν
B3LYP/6-31G(d,p)a 23.1 23.1 23.0 123.18 133.9

B3PW91/6-31G(d,p)a 23.9 26.5 18.5 115.5 91.0
PBE0/6-311G(d,p)b 26.5 31.6 16.4 133.4 87.4

M05/6-311+G(2df,2p) 32.5 39.2 18.4 161.7 102.0
M06/6-311+G(2df,2p) 29.3 34.7 16.4 152.4 100.3

EDF2/cc-pVTZc 19.8 23.8 16.0 91.3 71.7
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Figure 1: Left: Benchmark anharmonicities as a function of frequency, with trendlines
representing; a) single-parameter linear model, c) dual-parameter polynomial model, and
e) single-parameter quadratic model. Right: Corresponding residual errors as a function
of anharmonicity, for b) linear, d) polynomial and f) quadratic correction models.
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Figure 2: (a) Errors in EDF/cc-pVTZ harmonic frequencies as a function of benchmark
anharmonicity, and (b) corresponding errors in predicted anharmonic frequencies using
the quadratic correction model.
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