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Transmission Control Protocol (TCP) is the dominant transport protocol in the Internet and 

supports many of the most popular Internet applications, such as the World Wide Web (WWW), 

file transfer and e-mail. TCP congestion control algorithms dynamically learn the network 

bandwidth and delay characteristics of a network and adapt its performance to changes in traffic 

so as to avoid network collapse. 

TCP is designed to perform well in traditional wireline networks with the assumptions that 

packet losses are mainly due to network congestion and random bit error rate (BER) is negligible. 

However, networks with wireless links suffer from significant packet losses due to random bit 

errors and handoffs. Hence TCP performs poorly in networks with wireless links because it treats 

any packet loss in the network to be a result of network congestion and slows down its 

transmission rate, or even cause the TCP sender to experience unnecessary timeouts, further 

reducing its performance. 

The development of advance wireless networks, such as WiFi, UMTS and WiMAX, make it 

necessary to find ways to improve TCP’s efficiency and resource utilization, as well as improve 

the user’s experience and reduce latency times. In order to find effective solutions to this effect, 

packet losses across wireless links should be distinguished from congestion related packet losses. 

In this thesis, we concentrate on two main strategies for enabling the TCP congestion control 

mechanism to determine the cause for a packet loss. One is a proxy-based mechanism that 

monitors the radio network interface and sends radio network feedback (RNF) to the TCP 

sender with the status of the wireless link. The other one is an end-to-end mechanism, in which 

the packet error pattern is used as the system metric to fine-tune the congestion control 



mechanism. It also presents an analytical model of TCP with enhanced recovery mechanism for 

wireless environments. 

In a proxy-based mechanism, TCP sender is explicitly informed of any effects caused by 

wireless links. However, the implementation technique is network dependent. We have proposed 

and developed three proxy-based schemes; the radio network feedback (RNF) scheme over an 

802.11 WLAN network, the radio network controller (RNC) feedback over a UMTS network 

and a wireless enhancement proxy (WENP) over both the 802.11 WLAN and UMTS networks. 

The RNF scheme is introduced at the 802.11 WLAN base station that monitors the TCP 

packet flows over the wireless links, detects wireless packet losses and provides feedback to the 

TCP sender using one of the TCP header reserved control bits, called RNF flag. TCP Reno is 

modified to utilize the radio network feedback to distinguish the losses due to wireless effects 

form the congestion and fine-tuned to perform wireless enhanced fast retransmit and fast 

recovery mechanisms. The RNF scheme is implemented using the OPNET tool, and the 

simulation results show that the TCP performance is significantly improved. 

The RNC feedback mechanism, similar to the RNF scheme, is developed and implemented in 

a UMTS network. The GPRS Tunneling Protocol (GTP) layer of the UMTS Radio Network 

Control (RNC) protocol stack was modified to detect and notify the TCP sender of the wireless 

packet losses, which is the main difference between the RNF and RNC mechanisms. The 

simulation results shows that the RNC feedback mechanism significantly improves the TCP 

performance compared to that of standard TCP over UMTS. 

The wireless enhancement proxy (WENP) is developed to minimize spurious TCP timeouts 

over wireless networks and implemented in both 802.11 WLAN and UMTS networks. WENP 

extends the proposed RNF and RNC feedback mechanisms to detect both wireless packet losses 

and large delays across the wireless link, and to notify the TCP sender of these events with the aid 

of two reserved bits in the TCP header. TCP Reno is further modified to utilize the WENP 

feedback to distinguish both wireless packet losses from congestion losses and spurious timeouts 

from normal timeouts. It is also fine-tuned to perform both the wireless enhanced fast retransmit 

and fast recovery mechanism and the timeout mechanism. The simulation results demonstrate 

that the proposed scheme markedly improves the TCP performance compared to that of 

standard WLAN and UMTS implementations.  



An end-to-end early packet loss recovery (EPLR) mechanism that modifies the TCP Reno 

fast retransmit algorithm to detect packet losses early and to speed up the packet recovery 

process to reduce the number of TCP timeouts over networks with heavy packet losses, such as 

wireless networks is also presented. TCP Reno with EPLR scheme is implemented in a UMTS 

network and its performance is compared with that of TCP Reno and New Reno. Simulation 

results shows that Reno with EPLR improves the TCP performance and application response 

time significantly compared to that of both Reno and New Reno by reducing the TCP timeouts, 

which is the main cause of degradation of the TCP performance in a wireless environment. 

Finally, we develop an analytical TCP throughput model with enhanced TCP Reno fast 

retransmit algorithm to avoid timeouts. The model captures the TCP fast retransmit mechanism 

and expresses the steady state congestion window and throughput as a function of network 

utilization factor, round trip time (RTT) and loss rate. Another new feature added to the model is 

dynamic adjustment of the congestion window size depending on the packet drop rates. This 

speeds up the packet recovery process and reduces the number of TCP timeouts over networks 

with heavy packet losses. The proposed model is implemented over a UMTS network and its 

performance is compared with that of TCP Reno. Simulation results show that the proposed 

model reduces the TCP timeouts and improves the TCP performance compared to that of TCP 

Reno. It is also found that the model provides a very good match to the steady-state congestion 

window behavior. 
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C h a p t e r  I .   

 

1. Introduction 

 

The Internet has revolutionized the computer and communications world and developed into 

the world’s largest information network. It is a source of news, facts and figures and has become 

an essential part of modern civilization. The convergence of Internet, telephony and wireless 

technologies, such as WiFI, UMTS and WiMAX, changes the way we communicate, work and 

live. The present challenge of leading telecommunications and networking vendors is to provide 

systems with richer functionality at faster speeds and lower cost in order to meet constantly 

evolving market demands. 

Computer networks should be well designed and optimized to get maximum benefit with 

minimal cost. Most wire-line networks are optimized to perform well under different network 

conditions. However, TCP applications in mobile and wireless networks experience severe 

performance degradation because packet losses due to bit errors and handoffs initiate congestion 

control mechanism. This leads to an absolute necessity to design and optimize the TCP 

congestion control mechanism to effectively handle the non-congestion related issues in wireless 

environments. This dissertation presents some novel approaches to the design of protocols and 

enhancement proxies for TCP congestion control mechanism. 

1.1 THE EVOLUTION OF TCP/IP AND THE INTERENET 

The Advanced Research Projects Agency (ARPA) was created by US in response to the 

launch of Sputnik, first artificial earth satellite, by Soviet Union in 1957. ARPA had the mission 

of advancing science and technology applicable to the military [TANENBAUM. A.S, 3rd ed]. 

The existing traditional circuit-switched telephone networks were considered to be too vulnerable 

since the loss of one line or switch would disable the entire network. The research and 

development (RAND) corporation came up with the idea of building a network without a central 

point of control. In this way, the system would not be vulnerable to a direct hit on a single 

location. 
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To accommodate this requirement, ARPA decided to adapt to a packet-switched network, 

consisting of a subnet and host computers. In 1969, a group of people working for the ARPA 

linked computers at UCLA, Standard Research Institute, the University of Utah, and the 

University of California at Santa Barbara to create the network. The non-centralized network was 

born and dubbed ARPANET (Advanced Research Projects Agency Network). 

Further experiments demonstrated that the existing ARPANET protocol were not suitable 

for running multiple networks. Thus the ability to connect to multiple networks together in a 

seamless way became one of the major design goals. This led to more research on protocols, 

culminating with the invention of the TCP/IP model and protocols [Cerf & Kahn, 1974]. A later 

perspective was given to the TCP/IP model in [Leiner, Cole, Postel, & Mills, 1985]. 

In 1980, the Department of Defense (DoD) mandated TCP/IP protocol as an official 

network standard. The number of networks, machines, and users connected to the ARPANET 

grew rapidly after TCP/IP became the only official protocol on January 1, 1983. The National 

Science Foundation (NSF) chose TCP/IP when it built a nationwide research network in 1985. 

The collection of interconnected TCP/IP networks such as ARPANET, NSFNET and private 

networks became the prototype of the Internet that eventually grows to the today’s global 

network [Leiner, Cole, Postel, & Mills, 1985]. 

1.2 OPEN SYSTEM INTERCONNECTION REFERENCE MODEL 

The International Standard Organization (ISO) proposed the Open System Interconnection 

(OSI) reference model [Zimmermann, 1980] [Tanenbaum, 2003], shown in Figure 1.1, for the 

standardization of computer network protocols. The OSI reference model is composed of seven 

layers, each specifying particular network functions, and provides a conceptual framework for 

communication between computers. 
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Figure  1-1 The OSI reference model 

Actual communication is achieved by using communication protocols; a formal set of rules 

and conventions that govern how computer exchange information over network medium. One 

OSI layer communicates with another layer to make use of the services provided by that layer. 

The services provided by adjacent layers help a given OSI layer to communicate with its peer 

layer in other computer systems. The OSI protocols have not become as prevalent as one may 

expect, given the degree to which OSI has been predicted as the basis for networking. The 

protocol suite that has attained a stronger foothold is TCP/IP. 

1.3 INTERNET GROWTH 

Until 1995, the usage of the Internet was limited to file transfer, remote access to computers, 

and simple mail transfer in the form of a file transfer [Jamalipour, 2003]. Invention of Hypertext 

Transfer Protocol (HTTP) and Hypertext Markup Language (HTML) has revolutionized the 

Internet as the new media for telecommunications. The web browsing is considered the main 

factor in the popularity of the Internet and a huge increase in the Internet subscription happened 

after the invention of web browsers such as Netscape and Internet Explorer. Figure 1.2 shows 

the growth in the number of Internet users over the last decade. With the extensive progress 
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achieved during the last decade in wireless access technology, the wireless Internet will be the 

next revolutionizing factor in the Internet growth. 

 

Figure  1-2 The growth in the number of Internet usage 

1.4 TRENDS TOWARDS WIRELESS INTERNET 

The convergence of Internet, telephony and wireless technology changes the way we 

communicate, work and live. Wireless communications have become pervasive. The number of 

mobile phones and wireless Internet has increased significantly in recent years. As shown in 

Figure 1.3, the number of worldwide mobile subscribers increases exponentially with no sign of a 

stop or a slowing down of the increase rate, while  the increase in the number of fixed 

subscribers has been very smooth since 2002 [Jamalipour, 2003; Mohr & Konhauser, 2000]. 
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Figure  1-3 Increase in user population in fixed and mobile communications system 

Mobile communications are determined by economic and technical trends and, in future, by 

application requirements. With the evolution of second-generation systems and the emerging 

third-generation systems, more advanced data and multimedia services are becoming available in 

addition to the mobile telephony. These trends and requirements are affecting the vision of 

future systems beyond the third generation [Mohr & Konhauser, 2000]. 

1.5 PROBLEM STATEMENT 

Congestion control is the problem of managing network traffic or a network state where the 

total demand for resources such as bandwidth among the competing users exceeds the available 

capacity. It is a core infrastructural problem stemming from the packet switched and statistically 

multiplexed nature of the Internet and has an impact on the Internet stability and manageability. 

Although TCP is the most common transport protocol used in the Internet for years, it has 

been shown that its congestion control algorithm lacks the ability to adapt to the wireless 

environments. TCP is primarily designed for wired networks, where data is seldom lost or 

corrupted due to link errors and queue overflow in routers is the predominant reason for the 

packet loss. In a wireless network, however, packet losses will occur more often due to high Bit 

Error Rates (BERs) than due to congestion. When using TCP over wireless networks, it 
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considers each packet loss as a sign of congestion and invokes congestion control measures at the 

source. This results in severe performance degradation. 

It is highly undesirable for a protocol to react to random losses the same way as it reacts to 

congestion indications. TCP should react to congestion rather than packet losses. Due to the 

characteristics of the air interface, wireless links could introduce sporadic packet losses due to 

burst of packet losses. A loss of a single packet often has a little effect on network applications, 

but multiple packet losses can have a significant effect. TCP’s inability to distinguish a loss due to 

congestion from a random loss can lead to serious performance degradation. 

Moreover, TCP can yield low throughput in highly mobile environments due to hand-offs, 

which may introduce temporal disconnections, buffer losses and increased latency. Shadowing 

and fading of the radio signal may also cause the destination to be temporarily unavailable, which 

causes the TCP either to time out or to stop the transmission. The lack of mechanism to notify 

the TCP of this effect introduces extra delay and increases the application response time 

considerably. 

In the case of large-scale mobility, the third Generation (3G) cellular networks are the most 

suitable candidates for support of Internet traffic, since they offer capacity for enhanced 

broadband data transfers, as well as improved transmission quality. In Code Division Multiple 

Access (CDMA), soft hand-off, where a mobile is connected to more than one Base Station (BS), 

can eliminate temporal disconnections. However, this problem may still occur if soft hand-off is 

not initiated promptly. TCP performances in 3G CDMA networks are generally degraded by 

increased latency due to the extensive processing required at the physical layer of these links for 

coding and interleaving,  and to link layer processing for Forward Error Control (FEC) and link-

level retransmission. Moreover, dynamic resource sharing among all the users in a particular cell 

introduces significant bandwidth variations to which TCP is unable to adapt. 

In summary, TCP is very sensitive to packet losses and requires further improvements to 

better adapt to the wireless environments. It should be able to distinguish wireless related losses 

from the congestion related losses and be fine tuned to utilize the available network resources 

efficiently. 
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1.6 FOCUS OF THIS THESIS 

The aim of this thesis is to improve the TCP performance over wireless networks such as 

WLAN and UMTS. It studies an extensive literature on the performance of TCP and emphasizes 

the ways to distinguish the effects due to congestion losses from the effects due to wireless 

errors. It addresses the TCP congestion avoidance and control issues over the wireless links from 

both the End-to-End and proxy based methods by developing an analytical model and Radio 

Network Feedback (RNF) mechanism, thereby leading to efficient network resource utilization 

and improving the application response time. It also analyzes widely used TCP End-to-End 

congestion control algorithm and presents a spectrum of new algorithms that enables the TCP to 

better adapt to the wireless environments.  

The newly developed analytical model, RNF mechanism and algorithms are tested by 

performing simulations experiments using a wide range of simulation scenarios. Since it is very 

difficult to cover the entire area of congestion avoidance and control issues and due to the time 

constraint, our research scope is restricted to the improvement of TCP performances over 

wireless networks by avoiding the hand-offs effects. 

1.7 SOLUTION APPROACH 

The basic idea is to explicitly inform the TCP source of any effects caused by non-congestion 

related packet losses. It can be achieved by monitoring the radio interface, which requires a 

proxy, and by considering the packet loss rates or packet loss patterns at the TCP source. The 

introduction of a proxy and its implementation technique is network dependent. This thesis 

considers the following significant contributions to achieve the object: 

• Development and implementation of the RNF technique in a WLAN Server and in a 

WLAN Router together with the network utilization factor (Chapter 4). 

• Development and implementation of Radio Network Controll (RNC) feedback 

mechanism in a UMTS network (Chapter 5). 

• Development and implementation of Wireless Timeout Detection (WTD) in a WLAN  

and in a UMTS network (Chapter 6). 

• Development and design of improved congestion avoidance and control algorithm for 

Early Timeout Detection (ETD) (Chapter 7). 
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• Development and design of an analytical model of TCP with enhanced recovery 

mechanism for wireless environments (Chapter 8). 

1.8 LIMITATIONS 

The proposed solutions could not implement in a CDMA network because the simulation 

tool, OPNET, used in this study does not support the CDMA network. The RNF and RNC 

feedback mechanism do not consider the hand-off effects due to mobility. However, they can be 

further extended to support mobility by introducing appropriate modifications. In addition to 

these, the following assumptions are made in this thesis: 

• IP datagram is not encrypted so that the RNF proxy will be able to monitor the TCP 

flows. 

• Traffic consists of File Transfer Protocol (FTP) over TCP  

• Packet losses are uniformly distributed 

• Receiver window is bigger than the congestion window and hence it does not influence 

the sender rate 

• Congestion control schemes are window based and not rate based 

1.9 STRUCTURE OF THESIS 

This thesis comprises nine chapters and the remainder of this dissertation is organized as 

follows. 

Chapter 2 gives an overview of all major types of TCP and briefly explains their specific 

functionalities. The strength and weaknesses of those TCP flavors are discussed and the TCP 

Reno is selected for further development. It then gives an in-depth analysis of its congestion 

avoidance and control mechanism and directs attention to specific areas, where further 

improvements required optimizing the TCP performance over wireless medium. 

Chapter 3 presents an up-to-date survey of the schemes proposed to alleviate the poor End-

to-End TCP performance in wireless medium. It summarizes these protocols and points out the 
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advantages and disadvantages of each scheme. It then briefly outlines the proposed schemes and 

their advantages over previously proposed schemes. 

Chapter 4 gives an overview of WLAN technology and motivates the need for the RNF 

mechanism. The concept behind the RNF mechanism and the methodology applied in 

developing the RNF mechanism are explained. It then outlines the implementation details of the 

RNF mechanism in a WLAN environment and compares its performance with the standard 

WLAN and the WLAN with Snoop enhancing proxy. It also presents the guidelines for further 

improvement. 

Chapter 5 gives an overview of UMTS technology and, based on the RNF mechanism 

implemented in WLAN environments, devises the RNC feedback mechanism. It provides with 

an incentive to the RNC development and outlines the advantages of the RNC mechanism over 

the RNF. The RNC mechanism is developed and implemented in a UMTS network. The TCP 

performance with the RNC proxy is analyzed and compared with that of the standard UMTS. 

Chapter 6 analysis the adverse effect on the network performances due to the spurious TCP 

timeouts and motivates the development of WTD scheme. Both the RNF and RNC mechanisms 

are extended with WTD scheme and are implemented in a WLAN and UMTS network 

respectively. The TCP performance over the WLAN and UMTS networks, with and without the 

WTD schemes, are explained and compared. 

Chapter 7 gives an in-depth analysis of the existing TCP Reno congestion avoidance and 

control mechanism and indicates its inability to deal with situations where it cannot initiate the 

congestion control, thereby leading to unnecessary timeouts. Based on the analysis, it develops 

the ETD scheme with improved congestion avoidance and control algorithm that enables the 

TCP source to early detect timeouts and to act accordingly. The ETD scheme is implemented in 

a UMTS network and its performance is compared with that of the standard TCP Reno. 

Chapter 8 develops an analytical model of TCP by extending the work done in Chapter 7. It 

also proposes a further modification that dynamically adjusts its congestion window by 

considering the packet loss rate as the input parameter. The model is implemented in a UMTS 

network and its performance is explained and compared with that of TCP Reno. The guidelines 

for further improvement are also presented. 
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Finally, Chapter 9 presents the overall conclusions and indicates future directions of research. 
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[3] A. Jayananthan, Harsha Sirisena and Krzysztof Pawlikowski, ‘Improving TCP Performance 

over 802.11 WLAN with Radio Network Feedback’, Australian Telecommunication 
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C h a p t e r  I I .   

 

2. Transmission Control Protocol 

 

It is essential to be thoroughly familiar with TCP to understand the historic, current and 

future architecture of the Internet protocols. Most applications on the Internet use TCP because 

its built in reliability and flow control ensure safe delivery of data across an unreliable IP layer 

below. IP alone is a basic datagram service and does not support any concept of a session or 

connection. Once a datagram is sent or received, the service retains no memory of the entity with 

which it was communicating. The abilities to retransmit data or check it for errors are minimal or 

nonexistent in the datagram services. 

This chapter provides a brief overview of TCP development and its general features. All 

major types of TCP and their specific functionalities, with special emphasis on their congestion 

avoidance and control mechanisms are presented. The strength and weaknesses of those TCP 

flavors are discussed and most appropriate transport protocol, which can be further developed to 

perform well in wireless networks, is selected. Finally, an in-depth analysis of the congestion 

avoidance and control mechanism of the selected TCP is given and the specific areas, where 

further improvements required optimizing its performance over wireless medium, are indicated. 

2.1 DEVELOPMENT OF TCP 

TCP is both complex and evolving transport protocol. The basic functionality of TCP is 

defined in [RFC 793] and was published in 1981. Since then, significant enhancements have been 

made and proposed. Host Requirements for Internet Hosts [RFC 1122] clarifies a number of 

TCP protocol implementation requirements. TCP extensions have been defined in by [RFC 

1323], [RFC 2018] and [RFC 2481]. TCP congestion Control [RFC 2581], one of the most 

important TCP related Request for Comment (RFC) in recent years, describes updated 

congestion control algorithms to avoid congestion. 

Congestion occurs when the demand is greater than the available resources, such as 

bandwidths of links, buffer space and processing capacity at the intermediate nodes such as 
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routers. Congestion control is concerned with allocating the resources in a network such that 

network can operate at an acceptable performance level when the demand exceeds the capacity 

of the network resources. Careful design is required to provide good service under heavy load. 

Otherwise, there can be a congestion collapse that is highly resource wasteful and causes 

undesirable state of operation. 

Congestion collapse was first observed during the early growth phase of the Internet in the 

mid 1980s [RFC 896]. It was mainly due to TCP connections unnecessarily retransmitting packets 

that were either in transit or had already been received at the receiver. The original TCP 

implementations [RFC 793] used window-based flow control to control the use of buffer space at 

the receiver and Go-Back-N retransmission after a packet drop for reliable delivery, but did not 

include dynamic adjustment of the flow-control window in response to congestion. 

Different types of congestion collapse are categorized in [Fall & Floyd, 1996]: classical congestion 

collapse, which occurs when the network is flooded with unnecessary retransmitted packets [Nagle, 

1984] and was fixed with modern TCP retransmit timer and congestion control algorithm 

[Jacobson, 1988], fragmentation-based congestion collapse , which is given in [Kent & Mogul, 1987] and 

was fixed with Maximum Transfer Unit (MTU) discovery [RFC 1063, 1988], and congestion collapse 

from undelivered packets, which occurs when networks overloaded with packets that are discarded 

before they reach the receiver [S. Floyd & Fall, 1999]. 

The popularity of the Internet has caused a proliferation in the number of TCP 

implementations. Some of these may fail due to logic errors, or misinterpretations of the 

specification [RFC 2525]. Others may deliberately be implemented with the congestion control 

algorithms that use the available resources more aggressive than other TCP implementations. The 

consequence of such applications may lead to a state where effectively no congestion control and 

the Internet is chronically congested [RFC 2309, 1998]. There is also a significant number of TCP 

non-compatible and non-responsive bandwidth hungry traffic flows in the Internet, which can 

also pose significant threats to the stability of the Internet. 

The development of TCP must avoid making radical changes that may stress the deployed 

network into congestion collapse, and also must avoid a congestion control arms race among 

competing protocols [RFC 2914]. TCP has experienced number of changes in its primitive 

design, during its development process, over the last three decades. The exponential growth in 
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the Internet usage increased the congestion problems. Consequently, many versions of TCP exist 

today. Presently, all major types of TCP employs congestion control algorithms, which include 

slow-start (SS), congestion avoidance and fast retransmit and fast recovery. 

 

Figure  2-1 Time line for important types of TCP 

2.2 GENERAL FEATURES IN TCP 

TCP is an end-to-end, point-to-point transport protocol used in the Internet. Being point-to-

point protocol means that there is always a single sender and a single receiver for a TCP session. 

Being an end-to-end protocol, on the other hand, means that TCP session should cover all 

parameters and transportations involved from the source host to the destination host 

[Jamalipour, 2003]. TCP provides connection-oriented, reliable byte stream service. We, in turn, 

discuss the meaning for each of these descriptive terms. 

2.2.1 CONNECTION- ORIENTED 

Before any data transfer could be started, a connection must be established through a process 

called three-way handshake. During this process, the TCP sender and receiver come to an 

agreement in the establishment of a connection and set the relevant parameters such as 

Maximum Segment Size (MSS). For example, if a client computer is contacting a server to send it 

some information, a TCP connection is established by exchanging control messages as follows: 

• The client sends a packet with the SYN bit set and a sequence number N. 

• The server then sends a packet with an ACK number of N+1, the SYN bit set and a 

sequence number X. 

• The client sends a packet with an ACK number X+1 and the connection is established. 

Such signaling period before the exchange of data could sometimes put an unacceptable delay 

in the applications that are sensitive to delay such as real-time voice. 
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2.2.2 RELIABILITY 

A number of mechanisms, namely checksums, duplicate data detection, sequencing, 

retransmissions and timers, help TCP to provide reliable data delivery. All TCP segments carry a 

checksum, which is used by the receiver to detect corrupted data. TCP keeps track of bytes 

received in order to detect and drop duplicate transmissions. In packet switched network, packets 

can arrive out of sequence. TCP delivers the byte stream data to an application in order by 

properly sequencing segments it receives. Corrupted or lost data must be retransmitted in order 

to guarantee delivery of data. The use of positive acknowledgements by the receiver to the sender 

confirms successful reception of data. The lack of positive acknowledgements, coupled with a 

timeout period, calls for a retransmission. TCP maintains a collection of static and dynamic 

timers on data sent. The TCP sender waits for the receiver to reply with an acknowledgement 

within a bounded length of time. If the timer expires before receiving any acknowledgement, the 

sender can retransmit the segment. 

2.2.3 BYTE STREAM DELIVERY 

TCP interfaces between the application layer above and the network layer below. A stream of 

8-bit bytes is exchanged across the TCP connection between the two applications. An application 

sends data to TCP in 8-bit byte streams, which is then broken by TCP sender into segments in 

order to transmit data in manageable pieces to the receiver. The size of the application layer 

payload is variable but may not be larger than MSS, which is usually announced by the TCP 

receiver during connection establishment using the MSS option in the TCP header. However, it is 

limited by the outbound link’s Maximum Transfer Unit (MTU). Alternatively, the sender may use 

the path MTU discovery [RFC 1191] to derive an appropriate MSS. 

2.3 TCP SEGMENT FORMAT 

The TCP segment consists of a TCP header followed by a payload. The payload includes 

information data passed from the application layer above for transmission. The TCP header 

includes address information for the segment and all information required for implementation of 

algorithms used in TCP. An option field is included in the TCP header that can include specific 

information for a particular TCP connection. The default TCP header size is 20 bytes. However, 

this may go up to 60 bytes with inclusion of an option field. To this effect, a header length filed is 

also included in the TCP header as shown in Figure 2.2. 
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Figure  2-2 TCP segment header format 

TCP segments are sent as IP datagram. The IP header carries several fields, including the 

source and destination host addresses. A TCP header follows the IP header, supplying 

information specific to the TCP protocol. This division allows for the existence of host level 

protocols other than TCP. 

2.4 TCP FLOW CONTROL 

TCP flow control is provided through the well-known sliding window mechanism. ACKs sent 

by the TCP receiver carry the advertised window, which limits the number of bytes the TCP 

sender may have outstanding at any time. The advertised window corresponds to the size of TCP 

receiver’s receive socket buffer. The key feature of the sliding window protocol is that it permits 

pipelined communication to better utilize the channel capacity. The sender can send a maximum 

W frames without acknowledgement, where W is the window size of the sliding window. The 

sliding window maps to the frames in sender’s buffer that are to be sent, or have been sent and 

now are waiting for acknowledgement. For maximum throughput, the amount of data in transit 

at any given time should be the channel bandwidth-delay product, which refers to the product of 

a data link's capacity (in bits per second) and its end-to-end delay (in seconds). 
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Figure  2-3 Window flow control 'self-clocking' 

End-to-end protocols that implement sliding window flow control, like TCP, share an 

important self-clocking property. A schematic representation of a sender and receiver on high 

bandwidth networks connected by a slow link, the bottleneck link, is shown in Figure 2.3 

[Jacobson, 1988]. The vertical and horizontal dimensions are the bandwidth (BW) and time 

respectively. Each of the shaded boxes represents a packet. The area of each box is the packet 

size because ‘BW-delay product = bits’. The number of bits in a packet does not change as it 

goes through the network so a packet on the slow link has to spread out more in time. 

Figure 2.3 shows the ideal case in which a single sender fully utilizes the non-shared 

bottleneck link, the slowest link in the path, with a fixed bandwidth and always sends fixed size 

segments. In this case, the ACK inter-arrival time (AS) at the sender is constant and equal to the 

packet transmission delay over the bottleneck link, PB. This constant stream of returning ACKs is 

referred to as ACK clock. The arrival of an ACK moves the sliding window to the right by one 

segment and clocks out a new segment, thereby keeping the number of outstanding packets, i.e. 

the window constant. 

2.5 TCP TIME-OUT MECHANISM 

In order to avoid long delays when there is no response from the receiver in a TCP 

connection, a time-out mechanism is employed. Therefore, after each TCP segment transmission 

by a sender, a timer is set and it starts counting down. If the TCP sender does not receive a 
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threshold number of ACKs before the timer expires, it assumes that either the packet or the 

ACK is lost, and retransmits the same packet again until an ACK is received. The TCP retransmit 

timeout (RTO) value must be carefully chosen. If RTO value is too small, the time expires 

quickly and premature time-outs will be generated during the usual TCP operation and thus 

unnecessary retransmission will occur. On the other hand, if RTO value is too large, the TCP will 

slowly respond to the segment loss, which means longer end-to-end delay and can also degrade 

performance. Therefore, the RTO value must be optimized to the extent possible. 

When a packet is sent over a TCP connection, the sender times how long it takes for it to be 

acknowledged, producing a sequence of round-trip samples. Older TCP implementations only 

time one segment per RTT, whereas newer implementations use the timestamp option [RFC 

1323] to time every segment. Timing every segment allows much closer tracking of changes in 

RTT. We refer to the RTT sampling rate as the number of RTT samples the TCP sender 

captures per RTT divided by the TCP sender’s load. In case the TCP sender times every segment 

and the TCP receiver acknowledges every segment, the RTT sampling rate is 1. If the TCP 

sender times every segment and the TCP receiver acknowledges every other segment (delayed-

ACK), the RTT sampling rate is 0.5. The closer the sampling rate to 1 the more accurately the 

TCP sender measures the RTT.  

 TCP uses a mechanism to estimate the round-trip time (RTT) in the network, based on 

which the timer can be set accordingly. This will be done continually so that a variable estimation 

will happen. TCP collects information on the most recent RTTs and then makes an average 

value, called a sample RTT [Kurose & Ross, 2005]. The EstimatedRTT is then computed in an 

iterative manner by using the following equation: 

EstimatedRTT = (1-α) EstimatedRTT + α SampleRTT                                         Equation  2.1 

Where α is a constant between 0 and 1 that control how rapidly the estimated RTT adapts to 

changes and the typical value for α is 0.125 [Jacobson, 1988], which decides trade-off between 

efficiency and fairness. This method is called exponential weighted moving average (EWMA) 

owing to the inclusion of the factor α. The method provides that the influence of given sample 

decreases exponentially fast and puts more weight on the recent sample instead.  
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In addition to having an estimate of the RTT, it is also valuable to have a measure of the 

variability of the RTT. [RFC 2988] defines the RTT variations, DevRTT, as an estimate of how 

much SampleRTT typically deviates from EstimatedRTT: 

DevRTT = (1 – β) DevRTT + β |SampleRTT - Estimated RTT|                         Equation  2.2 

Note that DevRTT is an EWMA of the difference between SampleRTT and EstimatedRTT. 

If the SampleRTT values have little fluctuation, then DevRTT will be small; on the other hand, if 

there is a lot of fluctuation, DevRTT will be large. The recommended value of β is 0.25 

[Jacobson, 1988]. 

After computing EstimatedRTT, the TCP RTO interval is set to that value plus a safety 

margin in order to avoid any unnecessary retransmissions and large data transfer delay. 

RTO = Estimated RTT + 4 DevRTT                                                              Equation  2.3 

2.6 TCP CONGESTION CONTROL IN THE INTERNET 

With the fast development of the network, more and more networks access the Internet. The 

Internet has been expanded in terms of its scale, coverage and users quantities. More and more 

users use the Internet as their data transmission platform to implement various applications. 

Apart form traditional applications of World Wide Web (WWW), e-mail and file-transfer 

protocol (FTP), network users try to expand some new applications, such as tele-education, video 

telephone, video conference and video-on-demand (VoD), on the Internet. A best-effort 

network like the Internet does not have the notion of admission control or resource reservation 

to control the imposed network load, i.e., the total number of packets that can reside within the 

network. A best-effort network under high network load is called congested. 

If the network becomes congested, no one can use the network resources at all and also the 

fact that when the network is congested, any additional transmitted packets would be lost 

because of lack of network resources such as the buffer spaces at the routers. So, network end-

points sharing a best-effort network need to respond to congestion by implementing congestion 

control in order to avoid further packet drop. Otherwise, it may cause the following negative 

effects: 

• Increase the delay and jitter of packet transmission 
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• Packet retransmission caused by high delay 

• Decrease the network throughput and lower the utilization of network resources 

• Intensified congestion can occupy too many network resources and the irrational 

assignment of resources even can lead to congestion collapse: the network load stays 

extremely high but throughput is reduced to close to zero [RFC 896]. 

The main objective of TCP’s congestion control is to limit the sending rate to avoid 

overwhelming the network when it faces congestion on the path to the destination. 

Let us first examine how a TCP sender limits the rate at which it sends traffic into its 

connection. Each side of a TCP connection consists of a receive buffer, a send buffer and several 

variables, such as LastByteRead, RcvWindow and so on. The TCP congestion control has each 

side of a connection keep track of an additional variable, the congestion window (CWND). The 

CWND size imposes a constraint on the rate a TCP sender can send traffic into the network. 

Specifically, the amount of unacknowledged data at a sender may not exceed the minimum of 

CWND and RcvWND (receiver window). 

LastByteSent – LastByteAcked ≤ MIN (CWND, RcvWND)                                  Equation  2.4 

TCP controls the rate of transmission of the packets as well as the congestion occurrence in 

the network. Therefore, the throughput of the TCP becomes a function of the size of the 

congestion window W and the RTT. If the throughput is measured in bytes per second, then 

with MSS bytes in each segment, the TCP throughput will be expressed. 

TCP Throughput = (W * MSS)/RTT                                                                    Equation  2.5  

Let us next consider how a TCP sender perceives that there is congestion on the path 

between itself and the destination. A loss event at a TCP sender is defined as the occurrence of 

either a timeout or the receipt of three duplicate ACKs from the receiver. When there is an 

excessive congestion, one (or more) router buffers along the path overflows, causing a datagram 

to be dropped.  The dropped datagram, in turn, results in a loss event at the sender, either by a 

timeout or the receipt of three duplicate ACKs, which is taken by the sender to be an indication 
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of congestion on the sender-to-receiver path. Notice that TCP congestion control algorithm does 

not require any support of routers for their functioning. 

TCP congestion algorithm has three major components: additive increase and multiplicative 

decrease, slow-start and reaction to timeout events. 

2.6.1 ADDITIVE-INCREASE, MULTIPLICATIVE-DECREASE 

A TCP sender additively increases its rate when it perceives that the end-to-end path is 

congestion free, and multiplicatively decreases its rate when it detects (via a loss event) that the 

path is congested. For this reason, TCP congestion control is often referred to as an additive-

increase, multiplicative-decrease (AIMD) [CHIU D. M  & JAIN R, 1989]. The rationale for an 

increase in rate when it perceives no congestion is that if there is no detected congestion, then 

there is likely to be available bandwidth that could be additionally uses by TCP connection. In 

such circumstances, TCP increases its CWND slowly, cautiously probing for additional available 

bandwidth in the end-to-end path: it does increment its CWND a little each time it receives an 

ACK, with the goal of increasing CWND by 1 MSS every RTT [RFC 2581]. 

CWND = CWND + MSS (MSS/CWND)                                                             Equation  2.6 

The linear increase phase of TCP’s congestion control protocol is known as congestion 

avoidance (CA). The value of CWND repeatedly goes through cycles during which it increases 

linearly and then suddenly drops to half its current value (multiplicative-decrease) when a loss 

event occurs, giving rise to a saw-toothed pattern in long-lived TCP connections, as shown in 

Figure 2.4. 
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Figure  2-4 Additive-increase, multiplicative-decrease congestion control 

2.6.2 SLOW START 

When a new TCP connection is established with a host on another network, the CWND is 

initialized to 1 MSS [RFC 3390] and slow-start threshold (SSTHRESH), which determines the 

CWND size at which the slow-start will end and congestion avoidance will start, is set to a large 

value, such as equal to 65 Kbytes as in [RFC 2001, 1997]. Because the available bandwidth to the 

connection may be much larger than MSS/RTT, a TCP sender, during its initial phase, increases 

its rate exponentially by doubling its CWND value every RTT; the sender generates the 

exponential growth by increasing the CWND value by 1 MSS every time a transmitted segment is 

acknowledged. 

CWND = CWND + MSS                                                                                     Equation  2.7 

The exponential growth continues until there is a loss event, at which time CWND is cut in 

half, or the SSTHRESH is reached. 

2.6.3 REACTION TO TIMEOUT EVENTS 

If an ACK for a given segment is not received in a certain amount of time, known as RTO 

value, a timeout event occurs and the segment is resent [RFC 793]. After a timeout event, a TCP 
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sender enters a slow-start phase; it sets the CWND to 1 MSS and then grows the congestion 

window exponentially until CWND reaches SSTHRESH. When CWND reaches SSTHRESH, 

TCP enters the CA phase, during which CWND ramps up linearly as described in Section 2.6.1. 

Assuming initial value of CWND equals 1MSS, initial value of SSTHRESH is large, i.e 64 Kbyes, 

and TCP sender begins in slow stat state, a visual description of slow start and congestion 

avoidance [RFC 2581] followed by a timeout is shown in Figure 2.5. 

 

Figure  2-5 TCP Congestion Control 

The TCP is based on the notion of the sliding window in order to guarantee reliable and in 

order packet delivery. All major types of TCP employs congestion control algorithms. However, 

the implementation of the fast recovery and retransmit mechanism is quite different. 

2.7 TCP TAHOE 

The first and most basic step taken by Van Jacobson in [Jacobson, 1988] when he established 

the fundamental algorithms for congestion avoidance and control. It has slow start, congestion 

avoidance and Fast Retransmit (FR) algorithms and was first implemented in 1988 as 4.3 BSD 

Tahoe TCP and was later improved in [Jacobson, 1990]. One of the major concepts behind his 

ideas is that a connection operating at a stable state using a full window of in transit packets 

should obey the packet conservation rule: a new packet is not put into the network until an old packet 

leaves the network. This implies that a packet can enter the network on the receipt of an 
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acknowledgement which indicates that another packet has indeed left the network. Therefore, a 

connection at equilibrium will send new packets with the rate it receives acknowledgements. 

In FR algorithm, TCP Tahoe retransmits the lost packet upon receiving three duplicate ACKs 

without waiting for retransmit timer to expire. It then sets the ssthresh to CWND/2 and the 

CWND to 1 MSS and enters into the SS phase. Later, it was found that this algorithm works well 

for a single packet drop but fails in case of multiple packet drops within a window of data [Sally 

Floyd, 1994 October ]. Each retransmission of packet will force TCP Tahoe to enter SS phase 

thus resulting in serious loss of performance. This weakness of TCP Tahoe is partially improved 

in TCP Reno [Jacobson, 1990] by introducing Fast Recovery algorithm. 

2.8 TCP RENO 

TCP Reno introduces a major improvement to TCP Tahoe by modifying the action after the 

detection of a loss through duplicate ACKs. The idea is that the only way for a loss to be 

detected via a TCP timeout and not via the receipt of duplicate ACKs is when the flow of 

packets and acknowledgements has completely stopped. This would be an indication of heavy 

congestion. However, when the flow of acknowledgements is not stopped the sender should not 

fall back to slow-start. This is the case when a loss is signaled by the receipt of three duplicate 

ACKs rather than a timeout. Since the congestion experienced is not heavy and the flow still 

exists, the sender can continue with transmission but should reduce the usage of network 

resources. 

This is implemented in the Fast Recovery algorithm that follows a Fast Retransmit. 

 TCP Reno after retransmits the missing packet by its fast retransmission algorithm will enter 

the Fast Recovery algorithm until the receipt of non duplicate ACK. Its Fast Recovery algorithm sets 

the CWND to half the flight-size after Fast Retransmission instead of reducing it to one MSS and 

entering into slow-start phase as done in TCP Tahoe. TCP Reno did significantly improve the 

behavior of TCP Tahoe when a single packet is dropped within a window of date. However, it 

suffers from multiple packet recovery within a window [Fall & Floyd, 1996]. 

2.8.1 TCP RENO FAST RETRANSMIT AND FAST RECOVERY 

On receiving the third duplicate ACK, TCP Reno sender retransmits the missing packet by 

performing its Fast Retransmit algorithm without waiting for the expiry of retransmission timeout 

interval and enters into its Fast Recovery phase. It then waits for an ACK that acknowledges the 
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entire transmit window of data before returning to congestion avoidance. If it does not receive such 

an ACK, TCP Reno experiences a timeout and enters the slow-start state. The implementation of 

TCP Reno Fast Retransmit and Fast Recovery mechanism [RFC 2581] is as follows:  

1. ssthresh is set to no more than max( flightsize/2, 2MSS) when receiving the third duplicate 

ACK. 

2. Retransmit the lost segment and set CWND = ssthresh +3MSS to inflate the congestion 

window artificially by three that are buffered at receiver side. 

3. Increment CWND by MSS for each additional duplicate ACK received to inflate the 

congestion window in order to reflect the additional segment that has left the network. 

4. Transmit a new segment if allowed by the new value of CWND and the receiver’s 

advertised window. 

5. When the next ACK arrives that acknowledges new data, set CWND = ssthresh, which is 

set in step 1. 

It should be noted that after the step 5, TCP Reno will enter the Fast Retransmit phase again 

instead of Congestion Avoidance phase if there is multiple packet losses within that window of data. 

This may also require a timeout to recover the lost packets, and it has been shown in [Sally Floyd, 

1994 October ] that TCP Reno Fast Recovery is generally not efficient to this effect. 

2.9 TCP NEW RENO 

TCP New Reno [S.   FLOYD & HENDERSON, 1999] introduces a small enhancement to 

TCP Reno. In simple, TCP Reno sender would leave Fast Recovery on the receipt of first ACK 

that acknowledges new data. This works fine if there is only one lost packet. However, when 

more losses exist this will fail to recover all of them. [Hoe, 1996] suggested that during the Fast 

Recovery the TCP sender should respond to partial ACK by inferring that the indicated packet has 

been lost and retransmitting that packet. TCP New Reno, contrary to TCP Reno, does not exit its 

Fast Recovery phase on receiving partial ACKs. Instead, it retransmits that indicated lost packet on 

the arrival of each partial ACK, thereby recovering from multiple packet loss in a single window 

of data and exits its Fast Recovery phase either on receiving the ACK that acknowledges entire data 

within that window or on occurrence of retransmission timeout. 
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2.9.1 TCP NEW RENO FAST RECOVERY ALGORITHM 

The TCP New Reno Fast Recovery algorithm described in [S.   FLOYD & HENDERSON, 

1999] is as follows.  

1. Initialize a new variable send_recover to initial send sequence number. When the third 

duplicate ACK is received and the sender is not already in the Fast Recovery phase, check 

that the duplicate ACKs cover more than variable send_recover. If they do, then set 

ssthresh to max(flightsize/2, 2MSS) and record the highest sequence number transmitted 

in the variable send_recover. 

2. Steps 2, 3 and 4 of TCP Reno given in Subsection 2.8.1 are processed. 

3. When the next ACK arrives that acknowledges all data packets up to and including 

send_recover, then set CWND either to min(ssthresh, flightsize + MSS) or ssthresh as in 

step 1 and exit the Fast Recovery phase. Otherwise, this indicates a partial ACK. Do not 

exit Fast Recovery and performs the followings 

a. Retransmit the first unacknowledged packet, deflate CWND by the amount of 

new data being acknowledged and add one MSS and reset the retransmit timer. 

b. It then tries to send new segment depending on the new CWND size and the 

receiver window size. 

4. If a retransmit timeout happens then it records the highest sequence number transmitted 

in the variable send_recover, exits Fast Recovery phase. 

2.10 TCP SELECTIVE ACKNOWLEDGEMENT 

A proposed modification to TCP, selective acknowledgement (SACK) [RFC 2018] allows a 

TCP receiver to acknowledge out-of-order segments selectively rather than just cumulatively 

acknowledging the last correctly received in-order segment. SACK option is used by TCP 

receiver to inform the TCP sender that a non contiguous segment of data has been received and 

it is queued. To use SACK, both the TCP sender and receiver must support the feature and must 

enable it by negotiating the SACK-Permitted option during the connection establishment. 

Adding the SACK option to the TCP flavors such as TCP Tahoe or Reno, does not change 

their basic underlying congestion control algorithms. The information about missing sequence 



 

 26 

numbers is transmitted to TCP sender using three SACK blocks with each ACK, using the rules 

outlined in [RFC 2018]. A simulation based comparison of TCP Tahoe, TCP Reno and TCP 

SACK [Fall & Floyd, 1996] showed that TCP SACK recovers from multiple packet losses quickly 

and smoothly without the expiry of retransmission timeout interval. Further, real time  Internet 

experiments in [Bruyeron, Hemon, & Zhang, 1988]  shows that depending on the error pattern, 

TCP SACK has 10% to 45 % higher throughput than TCP Reno. 

2.11 TCP FORWARD ACKNOWLEDGEMENT 

The Forward Acknowledgment (FACK) algorithm proposed in [RFC 2018] aims at better 

recovery from multiple losses. In FACK, TCP maintains two additional variables: snd_fack that 

represent the forward-most segment that has been acknowledged by the receiver through the 

SACK option and retrans_data that reflects the amount of outstanding retransmitted data in the 

network. Using these variables, the sender can estimate the actual quantity of outstanding data in 

the network as (forward-most data sent - snd_fack + retrans_data) and can inject new data if 

allowed by receiver’s window. TCP FACK regulates the amount of outstanding data in the 

network to be within one segment of CWND, which remains constant during the Fast Recovery 

phase. 

2.12 TCP VEGAS 

TCP Vegas [Brakmo, O'Malley, & Peterson, 1994] was presented before New Reno, SACK 

and FACK were developed. Vegas is fundamentally different from other TCP variants in that it 

does not wait for loss to trigger congestion window reductions.; it employs an alternative strategy 

in that it tries to predict when congestion is about to happen and adapts its window to 

compensate. This is a proactive approach as it attempts to reduce its sending rate before packets 

start being dropped by the network. 

Vegas keeps track of the time each segment is sent. When an ACK arrives, it estimates RTT as 

the difference between the current time and the recorded timestamp for the relevant segment. 

For each connection, Vegas defines BaseRTT to be the minimum RTT seen so far. The actual 

throughput of TCP Vegas is obtained by dividing the number of bytes sent in a round trip time 

(RTT) and its expected throughput is obtained by dividing current CWND size by the minimum 

RTT. TCP Vegas does not look at changes in the slope of throughput but alternatively it 

compares the actual throughput with expected throughput to determine change in its congestion 

window size. 
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TCP Vegas uses the fact that as the CWND size increase the throughput of the connection 

should also increase to measure and control the amount of extra data the connection should have 

in transit; sending too much data will obviously cause congestion, thereby increasing the RTT. 

However, it is also important for Vegas to maintain enough throughput to actually allow it to 

adjust the throughput to the available bandwidth. 

2.13 TCP PERFORMANCE EVALUATION 

TCP performance is mainly determined by its throughput and fairness. However, other 

factors such as link utilization and packet loss rate are also important in effective evaluation of 

TCP. 

The throughput performance is defined as the total number of original packets received by 

the receiver in a given period of time. TCP throughput is influenced by many parameters. The 

granularity of the TCP timers can vary from 10ms to 500ms, depending on the TCP 

implementation of the host system [Stevens & Wright, 1994]. These implementation specific 

details can result in a considerable throughput discrepancy of different variants under the same 

network conditions. 

Fairness is an important performance criterion in all resource allocation schemes. Its most 

intuitive and obvious definition is that all sessions of data flow should be entitled to use the 

network resources including the bandwidth equally without any bias. Thus a fair TCP connection 

does not deprive other connections their fair share of bandwidth [BERTSEKAS & 

GALLAGER, 1996]. 

2.14 TCP FOR WIRELESS CHANNEL 

The properties of wireless channels are very different from those of wired channels. Wireless 

channels are characterized by high bit error rate with random losses caused by shadowing and 

fading. Furthermore, the channel may cause burst errors when the channel is in a deep fade for a 

significant amount of time or when the channel is in short fade where the length of burst error 

could vary. The low efficiency of TCP in a wireless channel is due to the fact that it misinterprets 

packet losses due to high error rate and congestions. However, because of the common usage of 

the TCP in Internet applications that require reliable data transfer, it is important to keep the 

TCP/IP protocol stack and also the network element structure as unchanged as possible even 

when mobility features required in wireless Internet are added to the network [Jamalipour, 2003].  
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It emphasize that the TCP should be modified in order to meet the TCP performance 

expectation in wireless channel. 

2.15 CONCLUSIONS 

In this Chapter, we have outlined the development of TCP and described its main features 

with an emphasis on congestion control and packet loss recovery mechanism. Major types of 

TCP variants and their specific functionalities are explained; we have seen how packet losses are 

detected, retransmitted and congestion window is calculated depending on the selected TCP 

variants. Specially, the Fast Retransmit and Fast Recovery algorithms of TCP Reno and TCP New 

Reno are described in details. 

Furthermore, it is outlined that in the wireless channels the main cause for packet loss is the 

high bit error rate and not the network congestion. 
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C h a p t e r  I I I .   

 

3. Review of TCP Enhancements for Wireless 

Networks 

 

Wireless networks are becoming increasingly popular in the world of telecommunication. As a 

consequence, a significant effort has been devoted to the provisioning of reliable data delivery for 

a wide variety of applications over different wireless infrastructures. One of the major challenges 

in modern communication system is to provide wireless access to the Internet. TCP supports the 

most popular suit of applications on the Internet today and it has been enhanced in recent years 

to improve robustness and performance over network of varying capacities and quality. 

However, it largely retains the behavior outlined in [RFC 793] including properties that make it a 

less suitable transport protocol for wireless medium. 

In this Chapter, we give an overview of some optimizations that have been proposed in the 

literature and describe how they differ in terms of their retransmission and recovery mechanisms. 

The proposed optimizations can be categorized into four groups; split-connection, link-layer, 

explicit notification and end-to-end protocols. Section 3.1 describes how optimization at the 

transport layer can be achieved by splitting the connection at the base station.  Link-layer 

optimizations for improved TCP performance are presented in Section 3.2. Explicit notifications 

can be used between an intermediate node and the end hosts in order to distinguish the 

congestion related losses from the wireless error and are outlined Section 3.3. The End-to-End 

approaches do not require any intermediate node’s support and are described in Section 3.4. 

Motivated by these criteria, we propose new techniques to enhance the TCP performance over a 

wide range of network and traffic configurations in Section 3.5. 

3.1 SPLIT-CONNECTION PROTOCOLS 

The idea of split-connection approaches is to divide each TCP connection into two separate 

connections at an intermediate node; one is between the fix host (FH) and the base station (BS) 
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and the other between the BS and mobile host (MH) as shown in Figure 3.1. Such a subdivision 

of the traditional end-to-end connection offers several advantages [Fieger & Zitterbart, 1997].  

 

Figure  3-1 Splitting the TCP Connection into two separate connections 

The transmission characteristics of the wireless link such as high bit error probability and 

disruptions due to radio shadow or handoffs influence only the transport connection over the 

wireless hop. This way any effects due to wireless link can be hidden from nodes within the wire-

line network and makes it possible for the wire-line and wireless medium to be employed with 

different transport protocols. However, since TCP connections are terminated at the base station, 

data buffers and TCP state information should be maintained at the base station in any split-

connection scheme. When a TCP connection is created, the socket send buffer and receive 

buffer are allocated. The buffer size can be specified by the process that creates the socket or a 

default value can be used. In either case, the TCP send and receive buffer sizes are fixed for the 

duration of the connection. 

3.1.1 INDIRECT TCP 

Indirect TCP (I-TCP) [Bakre & Badrinath, 1995] is a split-connection solution that utilizes the 

resources of mobility support routers (MSRs) to provide transport layer communication between 

mobile hosts and fixed hosts.. It uses the standard TCP for its connection over the wireless hop 

and, like other split-connection protocols, attempts to separate loss recovery over the wireless 

link from the wired link. It ensures that packet errors and delay variations on the wireless link do 

not result in the initiation of TCP congestion control procedures or affect the TCP 

retransmission timer on the wire-line connection, and eliminates the end-to-end retransmission 

of packets that suffer error across the wireless link. An experiments in [Balakrishnan, 

Padmanabhan, Seshan, & Katz, 1997] indicates that the choice of TCP over the wireless link 
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results in inefficient utilization of the wireless link capacity and adds overhead to the base station. 

This shortcoming is addressed in two other split-connection protocols, Mobile-End Transport 

Protocol [Kuang-Yeh & Tripathi, 1998] and Mobile-TCP [Haas & Agrawal, 1997]. 

3.1.2 SPLIT-CONNECTION WITH SELECTIVE REPEAT PROTOCOL 

The authors in [Yavatkar & Bhagawat, 1994] proposes a split-connection protocol that 

introduces a new session layer protocol on top of TCP at both base stations and mobile hosts to 

compensate for effects of wireless link characteristics and host migration. The session layer 

protocol is designed to exploit the available knowledge about both wireless link characteristics 

and host migration and to compensate for highly unpredictable and unreliable between a mobile 

host and its base station. The intermediate agent at the base station participates in the session 

layer protocol and forwards incoming traffic over a TCP connection to the remote mobile host. 

It proposes two transport protocols over the wireless link; one is the standard TCP and the other 

one a selective repeat protocol (SRP) on top of user datagram protocol (UDP). 

SRP implements its own flow and error control mechanisms designed and optimized 

specifically to handle the wireless link effects. It also uses a selective repeat algorithm in which a 

receiver returns a selective ACK (SACK) when an out of order segment is received. The SACK 

specifies the missing segments using a bitmap that includes the sequence numbers of the latest 

segment and the last in order segment received. Using this alternative, unlike the TCP, SRP 

enables the sender to recover from multiple losses within a window of data, thereby increasing 

the throughput performance over the wireless link. However, their study in the impact of 

handoffs on performance concludes that the use of SRP instead of TCP as the transport protocol 

over the wireless hop does not obtain any significant advantage. 

3.1.3 MOBILE-END TRANSPORT PROTOCOL 

Mobile-End Transport Protocol (METP) [Kuang-Yeh & Tripathi, 1998] proposes to eliminate 

the TCP and IP layers from mobile hosts. A mobile host will replace TCP/IP headers of the 

packets transmitted over a wireless link with a header containing essentially only de-multiplex 

keys and the source and destination IP addresses. METP considers that the hop between a 

mobile host and its base station is either the first or the last one along a data path and the mobile 

host does not perform datagram forwarding. Hence, only a part of the IP functionality needs to 

be shifted to the base station. All TCP connections are handled at the base station by METP on 

behalf of the mobile host; it negotiates with another host in the Internet to establish or close a 
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TCP connection. When a TCP segment destined for the mobile host arrives at the base station, 

METP puts it in the receiving buffer and sends an acknowledgement back to the source thereby 

any congestion control or congestion avoidance mechanism of TCP reflects only the state of the 

wire-line part of the connection. 

Since the TCP connection is terminated at the base station, METP has to provide reliable in-

order delivery over the wireless link. It adds tremendous overhead to the base station and makes 

the mobile host becomes more dependant on the base station. For example, when a packet has 

arrived at and been acknowledged by the base station, the sender will confirm that that packet 

has been successfully transmitted. However, if the base station fails thereafter, that packet may 

never arrive at the mobile host. In such a case, the mobile host should take appropriate recovery 

measures as the failure were happened to itself. This will further increase the buffer size, thereby 

adding more overhead to the base station. 

3.1.4 MOBILE-TCP 

Mobile-TCP [Haas & Agrawal, 1997], employs header compression to reduce the amount of 

wirelessly transmitted data. It considers that there is no need to communicate with the full TCP-

layer source and destination addresses as all the packets form the MH pass through the BS.  

During the connection establishment process, a connection ID (CID) is assigned to each 

direction and it is used in any future exchange of data over the wireless segment. The CID 

information, which includes the source and destination IP addresses and the corresponding port 

numbers, are cached at both the MH and BS. When MH sends a packet to the network, the TCP 

address is translated into the corresponding CID, which is then expanded back into the TCP-

layer address at the BS. Similar operation is performed in the reverse direction. In Mobile-TCP, 

TCP segments originated in the fixed host are acknowledged by the TCP entity in the base 

station only when successful wireless transmissions of the segments are acknowledged by the 

mobile host. Mobile-TCP thus preserves the end-to-end semantics of the TCP, but the downlink 

TCP data flow is affected by variable delays in the wireless link. 

3.1.5 SPLIT-CONNECTION MOBILE TRANSPORT PROTOCOL 

Split-Connection mobile transport protocol (SCMTP) [Xie, Hammond, & Noneaker, 2003]  

proposes a scheme similar to the mobile end transport protocol (METP) described in Section 

3.1.3. In common with METP, SCMTP employs a standard TCP protocol on the wire-line 

connection between the fixed host and base station, and a light weight transport protocol over 



 

 33 

the wireless link. However, it employs an automatic repeat request (ARQ) protocol to handle the 

wireless error and uses a different channel access protocol; time division multiplexing (TDM) is 

used to allocate the forward-link (BS to MH) capacity to each mobile host, and a time-division 

multiple access (TDMA) is employed by each mobile host on the reverse-link. If there are 

multiple traffic between the base station and a given mobile host, scheduling algorithms in the 

base station and the mobile host determine how the flows share the forward-link and reverse-link 

capacities respectively. Their experiment concludes that the use of Go-back-N ARQ can exploit 

the wireless link capacity more efficiently than that of stop-and wait ARQ protocol. 

3.1.6 CONCLUSION 

The schemes presented above have tried to improve the performance of TCP over wireless 

network by shielding the sender from wireless effects. None of these schemes actually lets the 

TCP sender know clearly whether the packet is lost because of network congestion or wireless 

error. This makes the TCP sender retransmit the packet as usual, subsequently being unable to 

keep the throughput high in the error-prone wireless environment. They also violate the end-to-

end semantics of TCP. They also maintain a significant amount of TCP state at the base station 

per TCP connection that makes the handoff procedures slow and complicated.    

3.2 LINK-LAYER PROTOCOLSS 

Link-layer protocols are another alternative for improving the poor performance of TCP over 

wireless links. The concept behind this is to make the wireless link layer look similar to the wired 

case for TCP by recovering the wireless error locally. There have been several proposals for 

reliable link-layer protocols. The main techniques employed by these protocols are forward error 

correction (FER) and automatic repeat request (ARQ). This method is illustrated in Figure 3.2. 

ARQ is frequently used in data communications protocols. When a frame is detected to contain 

errors after decoding, it is discarded and an ACK is sent back to the sender requesting a 

retransmission of the frame. This is called a selective retransmission and the most efficient way of 

retransmission. Cellular networks such as GSM/GPRS and UMTS have recently incorporated 

the concept of ARQ in order to improve performance of data transfers over wireless link [Ladas, 

Amiee, Mahdavi, & Manson, 2002]. We describe some of these link-layer proposals and conclude 

their ability to improve the TCP performance over wireless link. 
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Figure  3-2 A link-layer approach to improve the TCP performance 

3.2.1 SNOOP PROTOCOL  

The Snoop protocol [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997]  is a TCP-aware link 

layer protocol. It uses link layer retransmission to improve the reliability of the wireless link, and 

actively tries to avoid unnecessary TCP retransmissions. In this method,  the base station is 

equipped with a module called snoop agent, the functionality of which is to monitor the TCP 

packets transmitted from a fixed host to a mobile host and vice versa. The agent caches all these 

packets locally and uses this information to detect wireless packet losses and timeouts. In the case 

of detecting a wireless packet loss, it retransmits the packet promptly and suppresses the 

duplicate ACK reaching the TCP sender. This way, it prevents the sender from invoking 

unnecessary fast retransmissions and congestion control algorithms.  

3.2.2 ADAPTIVE-TCP PROTOCOL 

The Adaptive TCP (A-TCP) is a TCP aware link layer protocol and maintains end-to-end 

semantics of TCP. The basic concept of the protocol is to make a wireless link look like a wired 

link by employing an A-TCP agent in the base station. This is referred to as a virtual host model. 

The A-TCP agent implements three basic functions, such as local retransmissions, sender 

freezing and A-TCP flow control to hide the wireless environment form the fixed host. The local 

retransmission diminishes the effect of high bit errors. On receiving duplicate ACKs, the A-TCP 

agent, similar to the Snoop agent, filters the duplicate ACKs and locally retransmits the lost 

packet. It also keeps a retransmission timer of the standard TCP sender. When it expires for a 

particular segment, the A-TCP agent immediately retransmits that segment. Long-term channel 

disconnections are handled by the use of sender freezing [Goff, Moronski, Phatak, & Gupta, 

2000]. The A-TCP flow control is the main factor for improving the TCP performance in a 
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wireless environment. In the A-TCP flow control, the A-TCP agent marks the window field of 

acknowledgement segment with a retransmission buffer size, thereby avoiding wireless link 

overflow. Thus, the TCP congestion control at the sender will not be triggered by wireless link 

overflow. 

3.2.3 ASYMMETRIC RELIABLE MOBILE ACCESS IN LINK-LAYER (AIRMAIL) 

PROTOCOL 

The AIRMAIL protocol [Ender Ayanoglu, Sanjoy Paul, Thomas F. LaPorta, Krishan K. 

Sabnani, & Gitlin, February 1995] provides a reliable link layer in conjunction with forward error 

correction. In this approach, in order to conserve bandwidth power, the base station sends an 

entire window of data before an ACK is returned by the mobile receiver. A consequence of this 

approach is that there is no opportunity to correct errors until the end of an entire window, 

which can cause TCP to time out if the error rate is large or cause a large variation in delay 

depending on the position of the loss within the window. Another approach [Chaskar, 

Lakshman, & Madhow, 1996], which  demonstrates the validity of link-layer solutions, shows 

analytically how to achieve throughput by insuring the buffer at the interface to the wireless 

connection is sufficient. In AIRMAIL, a simple Stop-and-Wait protocol is used over the wireless 

link to quickly retransmit packets before TCP discovers the loss. 

3.2.4 RADIO LINK PROTOCOL 

The Radio Link Protocol (RLP) is a link layer protocol that, like TCP, provides a reliable byte 

stream service and typically used over cellular networks. RLP fragments the TCP segment into 

frames and uses robust error correcting codes and fast retransmission schemes to shield the 

wireless channel related losses from the TCP sender, thus preventing TCP throughput 

degradation. The fragmentation is done to increase the granularity of the transmission. In case of 

any error, an RLP frame which is of a smaller size is affected rather than the entire TCP segment. 

The RLP uses an ARQ error recovery mechanism to retrieve a lost RLP frame, which can be an 

acknowledgement based (ACK-based) or negative acknowledgement based (NACK-based). 

Since the reverse link is very expensive on most cellular networks, most RLPs implement 

NACK-based scheme in which the recovery process is initiated by the receiver by requesting a 

retransmission of only the missing or erroneous frame. 

RLP’s error recovery persistency can be configured via a parameter that defines the maximum 

number of retransmission of a single frame. When the RLP sender detects that a frame could not 
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be transmitted successfully after all the requires-retransmission attempts, it not only discards that 

frame, but also resets the link, i.e, re-initializes the sequence numbers. In this case, the 

corresponding TCP segment will be discovered at the TCP layer. 

3.2.5 TULIP PROTOCOL 

The transport unaware link improvement protocol (TULIP) [Parsa & Garcia-Luna-Aceves, 

1999] is, similar to the Snoop protocol, to improve the TCP performance over lossy wireless 

links without the need to modify the transport layer protocol. However, it does not require a 

proxy at the base station and keeps no TCP states. TULIP provides reliable service for TCP data 

traffic and an unreliable service for UDP and TCP ACKs. TULIP does not provide reliable 

service to TCP ACKs because subsequent ACKs supersede the information in the lost ACK. 

The receiver simply buffers packets and passes them up to the next layer in order, thereby 

preventing TCP from generating duplicate ACKs in the event that a packet is missing from the 

expected sequential packet stream. This ability of TULIP to maintain local recovery of all lost 

packets at the wireless link in order to avoid the unnecessary and delayed retransmission of 

packet over the entire path. TULIP maintains timers that rely on a maximum propagation delay 

over the link, rather than performing a round-trip time estimate of the channel delay. 

3.2.6 CONCLUSION 

The proposal described above use link layer retransmission to minimize packet loss due to the 

wireless part of the connection. Link layer protocols focus on the problems that arise from lossy 

wireless links. The main advantage of employing a link layer protocol for wireless loss recovery is 

that it fit naturally in the layered structure of the network protocols. The link layer protocol 

operates independently of higher layer protocols, and does not maintain any per-connection state. 

All link layer proposals preserve End-to-End semantics of TCP, but TCP data 

acknowledgements are required to pass through the same base station. The main concern about 

the link layer protocols is the possibility of having an inverse effect on certain transport protocols 

such as TCP. Independent timer reaction at link and transport layers that may result in 

unnecessary retransmissions, fast retransmission interaction, and large round-trip variations are 

considered as major problem with link-layer approaches [Balakrishnan, Padmanabhan, Seshan, & 

Katz, 1997]. 
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3.3 EXPLICIT NOTIFICATION  

A various explicit notification schemes have been proposed to enable the TCP sender to 

distinguish between different types of packet losses. Examples of this approach include Explicit 

Congestion Notification (ECN) [Ramani & Karandikar, 2000], Explicit Loss Notification (ELN) 

[Balakrishnan, Padmanabhan, Seshan, & Katz, 1997]. The idea behind this approach is to enable 

the TCP sender to distinguish packet losses due to congestion from wireless error. 

3.3.1 EXPLICIT CONGESTION NOTIFICATION 

In this method, a TCP receiver informs the TCP sender of the network congestion explicitly 

through one of the reserved bits in the TCP header, called the ECN-Echo (ECE) flag, when it 

receives an IP packet with the congestion experienced (CE) bit in the IP header set. ECN is an 

extension proposed to random early detection (RED) [S. Floyd & Jacobson, 1993], which 

monitors the average queue size and marks packets instead of dropping them based on statistical 

probabilities. Since ECN marks packets before congestion actually occurs, this is useful for 

protocols like TCP that are sensitive to even a single packet loss. The packets provided with 

ECN support is referred as ECN capable packets. 

ECN requires support from both the routers as well as the end hosts. It requires the routers 

to be able to identify packets that are ECN capable and to mark only such packets from ECN 

capable hosts. Two bits in the IP header field are utilized to achieve this; the ECN Capable 

Transport bit (ECT) is set by the sender during the connection establishment process if both the 

end systems are ECN capable. The CE bit of the packets encountering congestion is marked by 

the router on their way to the receiver with a probability proportional to the average queue size 

used in RED. It also proposes to add two new flags, namely the ECE flag and congestion 

window reduction (CWR) flag, in the reserved field of TCP header as shown in Figure 3.3. 
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Figure  3-3 TCP Header with ECN and CWR Flags 

The ECE flag, which is set by the TCP receiver, indicates congestion in the network. On 

receiving an ACK with the ECE flag set, the sender sets the CWR flag to inform the receiver that 

it has reacted to its congestion notification. 

3.3.2 EXPLICIT LOSS NOTIFICATION 

On the basis of the performance improvement achieved in TCP Snoop and ECN  protocols, 

a new protocol, namely, explicit loss notification with acknowledgement (ELN-ACK) [Wenqing 

& Jamalipour, 2001b] is proposed that could remedy the limitations of the Snoop protocol 

[Balakrishnan & Katz] [Wenqing & Jamalipour, 2001a, , 2001b] . In the ELN-ACK scheme, a 

new form of acknowledgement packet called ACKELN is used to communicate the cause of 

packet losses to the TCP sender and no packets are cached at the base station. An ELN-ACK 

agent, similar to the Snoop agent, is introduced at the base station to perform two main features. 

• One is to judge and store the packet loss information transmitted form the fixed host. If 

the base station receives an out of order packet from the fixed host, it will store the 

corresponding packet information in the ELN-ACK agent. 

• On receiving an ACKELN, the base station will judge the lost packet based on the stored 

information. If it finds the packet has been lost before arriving at the base station, it will 

set the ELN bit to indicate the packet was lost due to congestion. Otherwise, it will reset 

the ELN bit to indicate the packet loss was due to wireless error. 

When the sender receives an ACK with the ELN bit set, it retransmits the next segment, but 

does not trigger any congestion control actions. The sender also makes sure that each dropped 

segment is retransmitted at most once during the course of a single round trip since the agent 

would set the ELB flag for each duplicate ACK following a loss. 

3.3.3 ICMP MESSAGING 

The authors in [Goel & Sanghi, 1998] proposes an ICMP based scheme that makes the TCP 

sender aware of wireless errors. The base station generates two ICMP messages. One is ICMP-

DEEFER message when its fist attempt in transmitting the packet over the wireless link fails. 

This ensures that TCP sender will receive either an ACK or an ICMP message during one round 

trip. A lack of both will signal a congestion loss. Thus, TCP can distinguish a packet loss due to 
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congestion from wireless loss. Second one is an ICMP-RETRANSMISSION message when it 

discards the packet after all retransmission attempts have been exhausted. 

On receiving an ICMP-DEEFER message, TCP postpones the retransmission timer if the 

lost segment is one for which the timer is active. This will help to avoid conflict between the link 

layer and end-to-end retransmissions. When the TCP sender receives an ICMP-

RETRANSMISSION message, which indicates that one segment was lost across the wireless 

link, it retransmits the segment indicated and enters the fast recovery phase. On receiving a new 

ACK that acknowledges the retransmitted segment, it comes out of recovery phase, resetting its 

CWND to the value prior to entering the fast recovery phase. When the TCP suffers a retransmit 

timeout or receives three supplicate ACKs for which it has not received an ICMP-

RETRANSMISSION message, it follows the standard TCP procedures. 

3.3.4 SYNDROME 

[W.P. Chen, Y.C. Hsiao, J. C. Hou, Y. Ge, & Fitz] proposes a light-weight approach, called 

syndrome, to improve TCP performance in wireless environments. In syndrome, the base station 

counts the number of packets it has relayed to the destination host for each TCP connection and 

includes this in the TCP header option. The destination host will use both the syndrome counter 

and the sequence number to determine whether the packet is lost due to the congestion or due to 

wireless error. Gaps in the syndrome counter will indicate that packets were lost on the wireless 

link. Gaps in the sequence number but not syndrome counter will indicate that packets must 

have been lost due to congestion in with wire-line part of the network. Determining the cause for 

the packet loss, the TCP receiver notifies the sender via explicit loss notification to take 

appropriate action. If a packet loss is due to the transmission error on the wireless link, the 

sender does not reduce its congestion window. 

3.3.5 MULTIPLE ACKNOWLEDGEMENTS 

[Biaz & Vaidya] proposes to use two types of acknowledgements to distinguish congestion 

losses from wireless errors. This proposal uses one additional acknowledgement, called partial 

acknowledgement, which the base station transmits in response to data from the TCP sender in 

the fixed network. Provided that no segments are lost, the sender receives two 

acknowledgements for each segment; a partial acknowledgement (ACKp) from the base station 

and a complete ACK from mobile host. If the sender receives only the ACKp, it can deduce that 
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the data must have been lost over the wireless hop and no congestion control action is required. 

If no acknowledgements arrive, then the most likely cause for the data loss is congestion. 

A similar scheme [Cobb & Agrawal, 1995] that introduces two new partial acknowledgements 

to improve the performance of TCP sessions that originate or terminate in noisy wireless 

networks for mobile hosts. If the receiver is a mobile host, the base station transmits a last hop 

acknowledgement in response to the fixed host. In case the mobile host is the sender, then the 

base station transmits a first hop acknowledgement in response to the mobile host. As in the 

partial acknowledgement approach described above, the sender receives two acknowledgements 

for each successfully transmitted segment, one from the base station and from the receiver. This 

acknowledgement approach allows the TCP sender to distinguish losses due to congestion and 

losses due to wireless errors and to take appropriate action. 

3.3.6 CONCLUSION 

The explicit notification proposals have a different philosophy compared to the split-

connection approach. They have significantly reduced the overhead introduced at the base station 

and enable the TCP sender to distinguish congestion from the wireless error and to implement 

the fast retransmit and fast recovery mechanism that may well suit in the wireless environments. 

The explicit notification scheme does not solve the problem with the higher unreliability of the 

wireless network. However, since the sender knows about this effect, it can make a more 

informed decision. 

3.4 END-TO-END PROTOCOLS 

The standard TCP implementations rely on packet loss as an indicator of network congestion 

and lack the ability to distinguish congestion losses from losses invoked by noisy links. In wireless 

connections, overlapping radio channels, signal attenuation and additional noises have a huge 

impact on such losses. As a consequence, the standard TCP reacts with drastic reduction of the 

congestion window, thus degrading the performance of TCP. End-to-end proposals make the 

TCP sender handle packet losses caused by both congestion and random wireless errors and 

requires minimal or no processing at the base station. Another advantage of these schemes is that 

the end-to-end semantics of TCP is maintained. Some of the end-to-end schemes proposed in 

the literature are described below. 
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3.4.1 END-TO-END SMART 

SMART (Simple Method to Aid Retransmission) protocol [Keshav & Morgan, 1997] 

combines aspects of both the traditional techniques Go-Back-N (GBN) and selective 

retransmissions (SR) [Doshi, Johri, Netravali, & Sabnani, 1993]. The key idea in SMART is to 

build the bit-mask of correctly received packets at the sender instead of carrying it in the ACK 

header. Each ACK therefore carries two pieces of information; the cumulative ACK as in the 

standard GBN and the sequence number of the packet that caused that ACK to be generated. 

The second piece of information not only allows the sender to identify which packets have been 

correctly received, but also enable to infer which packets have been lost and to retransmit those 

lost packets selectively. When the sender detects gaps in the bitmask, it immediately assumes that 

the missing packets have been lost without considering the possibility that they simply may have 

been reordered. Thus, this scheme trades off some resilience to reordering and lost 

acknowledgements in exchange for a reduction in the overhead to generate and transmit 

acknowledgements [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997]. The SMART allows the 

sender to handle multiple losses within a window of outstanding data efficiently. However, the 

sender still assumes that losses are a result of congestion and invoke congestion control 

mechanism. 

3.4.2 TCP WESTWOOD 

TCP Westwood is a sender-side modification to TCP NewReno that controls the congestion 

window using end-to-end rate estimation and only affects the congestion avoidance algorithm 

and keeps the slow-start phase unchanged, as well as the linear increase in the congestion 

avoidance phase [Gerla et al., 2001] [Grieco & Mascolo, 2003]. The TCP sender, by monitoring 

the ACK reception rate, continuously estimates the packet rate of the connection and uses this 

estimate to determine the available bandwidth. When the sender perceives that congestion has 

appeared, the sender uses the estimated available bandwidth to set the congestion window and 

the slow-start threshold sizes. The rationale is that if a connection is achieving a given rate, then it 

can be safely used to obtain the corresponding CWND and threshold setting without causing 

congestion in the network. Adjusting the congestion window to the estimated available 

bandwidth makes TCP Westwood more robust to wireless losses since the CWND is not 

reduced to half, but it is adapted to the most recent bandwidth estimation instead, which may 

lead to unfairness. However, performance analysis in [Casetti, Geria, Lee, Mascolo, & Sanadidi, 
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2000] shows that TCP Westwood manages to obtain a fair share of the bandwidth when it 

coexists with other TCP Westwood connections. 

3.4.3 FREEZE-TCP  

Freeze-TCP [Goff, Moronski, Phatak, & Gupta, 2000] is a mechanism that places the sender 

in persist mode prior to a disconnection through signal strength measurements. In this method, 

mobile host monitors the signal strength and sends zero window advertisement (ZWA) if it 

detects an impending disconnection. By exploiting the properties of the receiver advertised 

window, a TCP connection can be frozen. If the receiver sets the receiver window to zero, then 

the sender leaves its CWND unchanged until the receiver advertises a new receiver window. This 

prevents segments from getting lost and unnecessary congestion control action to be taken by the 

sender. Upon reconnection detection, the receiver sends three copies of acknowledgements of 

last received prior to the disconnection, as in [Caceres & Iftode, 1995], in order to awake the 

sender and to resume the transmission at the same rate as before. A possible drawback of Freeze-

TCP is that it depends on the ability of the lower layers to detect an incoming disconnection and 

notify the TCP sender of this in a timely manner. 

3.4.4 DELAYED DUPLICATE ACKNOWLEDGEMENT 

The delayed duplicate acknowledgement scheme proposed in [Nitin H. Vaidya, 2002] is an 

end-to-end scheme that attempts to mimic the behavior of Snoop protocol. In this method, the 

receiver delays the third and subsequent duplicate ACKs for a predetermined interval while the 

base station performs link level retransmissions. During this time, if the receiver receives the 

missing data, it will transmit cumulative ACKs and discards the delayed duplicate ACKs. 

Otherwise, it will release the delayed duplicate ACKs when the timer expires. This is an attempt 

to prevent the fixed host from triggering congestion control action while the base station 

retransmits the data over the wireless link. One disadvantage of this scheme is that if the 

duplicate ACKs are caused by congestion, delaying the duplicate ACKs will unnecessarily delay 

the error recovery process. Explicit loss notification to the receiver (ELNR) proposed in [Mehta 

& Vaidya] is an enhancement to the delayed duplicate acknowledgement scheme. 

3.4.5 WIRELESS TRANSMISSION CONTROL PROTOCOL 

The wireless transmission control protocol (WTCP) [Sinha, Nandagopal, Venkitaraman, 

Sivakumar, & Bharghavan, 1999] uses a rate based approach as in TCP Westwood to control the 

transmission rate. The ratio of the inter-packet separation at the receiver and the sender is used as 
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the primary metric for transmission control rather than using packet losses and retransmit 

timeouts. In WTCP, the receiver performs the rate control mechanisms and computes the 

transmission rate for the sender; the sender transmits its current inter-packet separation with each 

packet. The receiver uses this information and its local state to update the transmission rate. The 

sender must receive ACKs, which carries both the reliability and transmission control 

information, periodically in order to react to the new transmission rate and perform flow control. 

WTCP uses selective acknowledgements scheme and does not use retransmission timers for loss 

recovery. It tries to remain in congestion avoidance phase at all times by detecting and reacting to 

incipient congestion. This makes the WTCP be more resilient to non-congestion related packet 

losses, thereby improving the performance over wireless links. 

3.4.6 TCP EIFFEL 

The Eifel described in [R. Ludwig & R. H. Katz] [RFC 3522, 2003] eliminates the 

retransmission ambiguity, thereby solving the problems caused by spurious timeouts and 

spurious fast retransmits. It allows the sender to detect whether an already initiated error recovery 

mechanism is in fact necessary or not by monitoring the first ACK that covers previously 

unacknowledged data. The sender uses the timestamp option to determine this is an 

acknowledgement of the original segment or of the retransmitted segment. If this ACK is for the 

original segment, the sender considers the retransmission is spurious and it does not have to 

reduce the transmission rate. The original segment is not lost due to congestion, therefore it 

should been delayed before it arrived at the receiver. 

3.4.7 TCP REAL 

TCP Real [C. Zhang & V. Tsaoussidis, 2001] is a rate based scheme extending the TCP Reno. 

In TCP Real, the receiver controls the sender transmission rate. The receiver uses changes in the 

rate of incoming segments to compute the CWND and then includes this estimate with 

acknowledgement that goes back to the sender. TCP Real takes the data-receiving rate as a metric 

to predict the network conditions. Decrease in the rate of incoming segments indicates that there 

is an increase in the network load therefore the CWND should be reduced. After a segment loss, 

the CWND is adjusted to the network conditions sooner than in the standard TCP, since the 

estimate of the CWND is included in the ACK. These modifications constitute the foundation 

for an efficient recovery strategy over heterogeneous environments with wire-line or wireless 

networks. 
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3.4.8 CONCLUSION 

The end-to-end proposals described above are based on various ideas. the SMART handles 

multiple losses within a window of data, which is highly likely in the wireless environments, but 

invoke congestion control with the assumption that all losses are due to congestion. The rate 

based proposal try to avoid congestion and to recover quickly from random errors. Freeze TCP 

prevents additional data loss by making a pause in the data transfer during disconnections or 

handoffs. The TCP Eifel, on the other hand, limits performance degradation when delay of a 

segment is misinterpreted as a sign of congestion. The advantage of the end-to-end proposals are 

the preserve the end-to-end semantics of TCP and do not support from any intermediate nodes, 

thereby no additional processing is required in the network. 

3.5 SUMMARY OF ABOVE PROPOSED OPTIMIZATIONS 

Optimization proposals presented above use different types of approaches to improve TCP 

performance over wireless networks, and are categorized into four groups; split-connection, link-

layer, explicit notification and end-to-end protocols. 

Split-connections protocols manage to completely hide the wireless link from the wire-line 

part of the network by terminating the TCP connection at the base station and establishing 

another connection from the base station to mobile host. The transport protocol used in the 

latter connection can be a standard TCP or any other protocols that suit for the wireless 

environment, such as selective repeat protocol. The major advantage of split-connection 

protocols is that they provide backward compatibility with the existing protocols, thus they do 

not require any modification at the fixed hosts. However, they violate the end-to-end semantics 

of TCP and need to translate from one protocol to the other at the base station, leading 

significant overhead to the base station. 

The link layer approaches use link layer retransmissions to improve the performance of TCP. 

They operate independently of higher layer protocols and try to make the wireless link appear as 

higher quality link, but reduced effective bandwidth. They rely on determined network elements, 

which collaborate at link level in order to reduce the effects of wireless link. The requirements on 

the link layer service may vary depending on the application. For example, the radio link protocol 

in the UMTS network allows many configuration parameters, such as the maximum number of 

retransmissions to be set. The main advantage of link layer proposals is that no modifications are 

required in the end points and preserve the end-to-end semantics of TCP. However, link layer 
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protocols could adversely affect the TCP performance [Balakrishnan, Padmanabhan, Seshan, & 

Katz, 1997]. Link layer protocols indeed improve the wireless link performance but fail to 

synchronize with the TCP sender that may help to improve the TCP performance. 

Most explicit notification proposals require TCP awareness of the intermediate nodes that are 

responsible for transmitting explicit notifications. The sender can distinguish congestion from 

data loss due to wireless errors since it receives information about the transmission status. Based 

on this, the sender can make more informed decision. Thus, if a segment is lost for reasons other 

than congestion, then the sender can take appropriate actions. The main drawback of these 

schemes is that the end points need modifications to handle the explicit notification signal. 

End-to-end proposals are based on the idea that complexity belongs in the end hosts rather 

than in the network. The end points are responsible for performing the necessary changes to 

ensure a good adaptation and do not need any support from the intermediate nodes. The main 

advantage of these schemes is that they can be used in any situation. 

3.6 OUR PROPOSALS TO IMPROVE TCP PERFORMANCE OVER WIRELESS LINK 

We have carefully analyzed the extensive literature on TCP optimizations over wireless 

networks. They all have the same goal to improve the TCP performance over wireless networks, 

but use different approaches to achieve the goal. The efficiency of those optimizations is network 

dependent. Based on the findings and considering the inefficiency of the TCP over wireless link, 

we propose some new schemes that optimize the TCP performance. We consider the following 

optimizations in our proposed schemes. 

• Distinguish congestion losses from non-congestion losses to fine tune the TCP to 

perform well in both wired and wireless environment 

• Use link layer approach without local retransmissions (retransmissions of cached 

packets by the proxy) to minimize the base station overhead 

• Minimize the intermediate node dependencies 

• Early timeout detection to speed up the recovery process 

• Analyzing the impact of packet loss pattern on the performance of TCP 
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• Using dynamic congestion window size based in loss probability 

•  Design an analytical model with enhanced recovery mechanism 

• Wireless timeout detection to minimize spurious timeouts 

Since it is very difficult to cover the entire area of congestion avoidance and control issues and 

due to the time constraint, our research scope is restricted to the improvement of TCP 

performances over wireless networks without countering hand-offs effects. We have 

implemented our proposed schemes in the WLAN and UMTS networks and demonstrated their 

efficacy in the performance improvement of TCP in the following Chapters. 
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C h a p t e r  I V .   

 

4. RNF Scheme for TCP Enhancement over a 802.11 

Wireless LAN  

 

In this Chapter, we propose a wireless loss detection technique that allows the TCP sender to 

distinguish wireless packet losses from the congestion related packet losses. This scheme employs 

an enhancement proxy, called wireless loss detector (WLD), in the base station that monitors the 

TCP flow between the base station and the mobile host in both directions, and detects the 

wireless packet loss. When a wireless packet loss is detected, it sends a radio network feedback 

(RNF) with the acknowledgements that arrive from the mobile host. One of the TCP header 

reserved bits is utilized to carry the RNF and a minimal change to the standard TCP congestion 

control mechanism is required to accommodate this effect. 

Section 4.1 gives an overview of wireless LAN (WLAN) technology and motivates the need 

for the RNF mechanism. The concept behind the RNF mechanism and the methodology applied 

in developing the RNF mechanism are explained in Section 4.2. The implementation details of 

the RNF mechanism in a WLAN environment is outlined in Section 4.3. The performance of 

our proposed scheme is explained and compared with that of the standard WLAN and the 

WLAN with Snoop enhancing proxy in Section 4.4. At last, we draw our conclusions and present 

the guidelines for further improvement. 

4.1 OVERVIEW OF WIRELESS LOCAL AREA NETWORK 

Wireless LANs are now one of the most important access network technologies in the 

Internet today. Although many technologies and standards for wireless LANs were developed in 

the 1990s, the IEEE 802.11 WLAN, also known as Wi-Fi, has emerged as the initial standard for 

WLANs [Kurose & Ross, 2003]. There are several 802.11 standards for WLANs technology, 

including 802.11a, 802.11b, and 820.11g. Main characteristics of these standards are summarized 

in Table 4.1. The 802.11 standards share many characteristics; they all use the same medium 

access protocol, use the same frame structure for their link layer frames, have the ability to 
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support multiple transmission modes in order to reach out over greater distances and allow for 

both infrastructure mode and ad hoc mode. However, as can be from Table 4.1, 802.11 standards have 

some major differences at the physical layer.  

 

Table  4-1 Summary of IEEE 802.11 Standards 

The 802.11a WLANs operate in the 5 GHz frequency range and can offer transmission rate 

up to 54 Mbps, but they have a shorter transmission distance for a given power level and suffer 

more from multi-path fading. The 802.11b WLANs have data rate of 11 Mbps and operate in the 

unlicensed frequency bands of 2.4 – 2.485 MHz, competing for frequency spectrum with 2.4 

MHz phones and microwave ovens. 802.11g WLANs operate in the same lower frequency band 

as 802.11b, but with the higher transmission rate of 802.11a. They employ orthogonal frequency 

division multiplexing (OFDM), the modulation scheme used in 802.11a WLAN, to obtain higher 

data rate and can fall back to speeds of 6 Mbps. This feature makes 802.11b and 802.11g WLAN 

devices compatible within a single network. The 802.11n is a proposed amendment, which 

improves upon the previous standards by adding multiple-input multiple-output (MIMO) and 

many other new features. 

4.1.1 THE 802.11 ARCHITECTURE 

Figure 4.1 illustrates the principal components of the 802.11 WLAN architecture. An 802.11 

WLAN is based on a cellular architecture where the system is subdivided into cells. Each cell, 

called Basic Service Set (BSS), is controlled by a Base Station called Access Point (AP). When a 

WLAN is formed from several BSSs, APs are connected through a backbone network, typically 

Ethernet, called a Distribution System (DS). The whole interconnected WLAN including the 

different BSSs with their respective APs and the DS is called an Extended Service Set (ESS). 

Wireless LANs that deploy APs are often referred to as infrastructure wireless LANs. 
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Figure  4-1 IEEE 802.11 WLAN Architecture 

Figure 4.2 shows that 802.11 stations can also group themselves together to form an ad hoc 

network; a network with no central control and with no connection to the Internet. In ad hoc 

networks, several wireless stations join together to establish a peer-to-peer communication. Each 

client communicates directly with the other clients within the network. Ad hoc mode is designed 

such that only the clients within the transmission range of each other can communicate. If a 

client in an ad hoc network wishes to communicate outside the cell, a member of the cell must 

operate as a gateway and perform routing. They typically require no administration and share the 

network resources without a central server. There has been tremendous interests in ad hoc 

networking as communicating portable devices continue to grow. However, we will focus our 

studies on the infrastructure wireless LANs. 
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Figure  4-2 An IEEE 802.11 ad hoc network 

4.1.2 THE 802.11 MAC PROTOCOL 

The 802.11 standard specifies the MAC and Physical layers that provide a variety of functions 

to support the operation of 802.11 wireless LANs. The MAC layer manages and maintains 

communications between 802.11 stations by coordinating access to a shared radio channel. As 

illustrated in Figure 4.3, the 802.11 physical layer has Frequency Hopping (FH) Spread Spectrum, 

Direct Sequence (DS) Spread Spectrum and the Infrared (IR). The MAC interacts with the 

physical layer by passing the MAC frame and receiving the MAC frame. 

 
Figure  4-3 IEEE 802.11 MAC Layer 

Besides the standard MAC layer functionality, the 802.11 MAC performs other functions, 

such as packet fragmentation, retransmissions and acknowledgements. The MAC provides access 

to the medium through coordinated functions (CFs) to support both asynchronous and time-



 

 51 

bound traffic; the Distributed Coordination Function (DCF) and the Point Coordination 

Function (PCF).  

The DCF is basically a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 

mechanism and provides contention-based access. In CSMA/CA, a wireless station that wants to 

transmit performs the following sequence as illustrated in Figure 4.4. 

1. Senses the medium. If the medium is idle for a specified time called Distributed Inter 

Frame Space (DIFS) then the station moves into a contention window and starts a 

random back off timer when waiting for the contention window. 

2. If it is the first station to finish its allocated number of slot times, it transmits (RTS) 

signal, otherwise it stops counting down their back off timer until the medium 

becomes idle again. 

3. The target receiver replies with clear to send (CTS) signal after inter frame space (IFS) 

interval, which is the time interval between transmissions of frames. 

4. On receiving CTS, the sender can transmit the data frame. All other stations set the 

network allocation vector (NAV) value. Each station calculates the amount of time 

required to send the frame based on the length of the frame and the data rate and 

places this value in the duration field of the MAC header, which is then used by the 

other station as a basis for setting their NAV value. 

5. If the receiver gets the frame correctly, it sends an ACK to the sender after SIFS 

interval. 

6. If the sender does not receive the ACK, it will keep transmitting the packet after 

randomly backing off until it either gets acknowledged or is discarded after a certain 

number of retransmissions. 

7. Any other station that attempts to the medium waits for DIFS and a back-off 

procedure is invoked. 

 



 

 52 

 

Figure  4-4 CSMA/CA mechanism 

An important aspect of the DCF is a random back off timer. If the medium is busy the station 

must wait for DIFS interval plus a random number of slot times. The time between the end of 

DIFS and the beginning of the next frame is known as the contention window. Each station 

starts a random back off timer when waiting for the contention window. The first station to 

finish its allocated number of slot times begins transmission and the other stations stop counting 

down their back off timer until the medium becomes idle again. The random delay causes 

stations to wait for different period of times and avoid all of them sensing the medium at exactly 

the same time. This in turn reduces the number of collisions and corresponding retransmissions 

significantly. 

The 802.11 MAC protocol also includes a scheme using RTS/CTS control frames that helps 

avoid collisions even in the presence of hidden terminals, which are defined as the terminals 

beyond the communication range of the transmitter but within that of the receiver. Although the 

RTS/CTS exchange can help collisions, it also introduces delay and consumes channel resources. 

For this reason, the RTS/CTS exchange is only used to reserve the channel for the transmission 

of a long data frame. In practice, each wireless channel can set RTS threshold such that the 

RTS/CTS sequence is used only when the frame is longer than threshold. For many wireless 

stations, the default RTS threshold value is larger than the maximum frame length, so the 

RTS/CTS sequence is skipped for all data frames sent [Kurose & Ross, 2005]. 

PCF provides contention free access and service for supporting time sensitive data via a totally 

centralized polling mechanism. In PCF, APs send beacon frames at regular intervals. Between 

these beacons frames, PCF defines two periods; the contention free period (CFP) and contention 
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period (CP). In CP, the DCF is simply used. In CFP, the AP sends contention free beacon frame 

to each station in the BSS after it confirms that the medium is idle for point inter frame space 

(PIFS). Beacon frame contains the information on the maximum duration of the CFP, beacon 

interval, and BSS identifier. All stations in BSS set their NAV value and not to send any packet in 

the CFP after receiving a beacon.  

4.1.3 THE IEEE 802.11 FRAME 

 The 802.11 frame shown in Figure 4.5 contains a number of fields that are specific to its use 

for wireless links. The payload field can hold data up to 2312 bytes. However, it is typically fewer 

than 1500 bytes, holding IP datagram or an ARP packet. As with an Ethernet frame, an 802.11 

frame includes a cyclic redundancy check (CRC) so that the receiver can detect any bit errors in 

the received frame. The CRC is more useful in wireless LANs, since it has very high bit errors. 

There are four address fields, each of which can hold up to 6 bytes MAC address. 

• Address 1 is the MAC address of the station that transmits the frame. 

• Address 2 is the MAC address of the station that is to receive the frame. 

• Address 3 is the MAC address of the router interface to which BSSs are connected. 

• Address 4 is only used in ad hoc networks. 

The sender may send multiple copies of a given frame if the acknowledgement gets lost. The 

use of sequence number field allows the receiver to distinguish between a newly transmitted 

frame and the retransmission of previous frame. The 802.11 protocol allows a transmitting 

station to reserve the channel for period of time required to send the frame, including the time to 

transmit its data frame and the time to transmit the acknowledgement. This duration value is 

placed in the duration field.  
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Figure  4-5 The 802.11 Frame 

The control frame assists in the delivery of data frames between stations and includes many 

subfields. The type and subtype fields are used to distinguish the association RTS, CTS, ACK, 

and data frames. The To AP and From AP frame are used to define the different address fields. 

More fragments field is used to indicate that more fragments belonging to the same frame 

following this current fragment. Retry field indicates that this fragment is a retransmission of a 

previously transmitted fragment. This will be used by the receiver station to recognize duplicate 

transmission of frames. Finally, the wired equivalent privacy (WEP) field indicates whether 

encryption is enabled or not. More complete description of MAC frame can be found in [O'Hara 

& Petrick]. 

4.2 THE RADIO NETWORK FEEDBACK MECHANISM 

One of the most challenging and interesting trends in recent computer networks is the 

integration of mobile communications. Wireless LANs based on the IEEE 802.11 MAC protocol 

[O'Hara & Petrick] are becoming ubiquitous as they can deliver services commonly found in 

wired networks. However, the performance of transport layer protocols, such as TCP, over 

802.11 may be degraded considerably due to the characteristics of the wireless medium that 

suffers from significantly high bit error rates. In this Chapter, we present a technique that detects 

wireless packet losses and enables the TCP sender to completely distinguish wireless packet 

losses from congestion related losses. It also helps the TCP sender to minimize the unnecessary 

TCP timeouts, which leads to a reduction in CWND and unnecessary retransmissions of packets 

using Go-Back-N mechanism, when non-congestion related losses occur. 

4.2.1 PROPOSED RNF SCHEME 

In previously proposed schemes in the literature, TCP performance has been improved 

essentially by enhancing link layer protocols. We adopt the alternative view that TCP 
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improvements should be achieved by tuning TCP itself to utilize the available network resources 

efficiently in both wire-line and wireless environments. Our proposed scheme introduces a proxy 

called wireless loss detector (WLD) that monitors the WLAN network radio interface and, with 

the aid of one of the TCP header reserved bits, notifies the TCP sender of packet losses across 

the wireless link. The TCP End-to-End semantic is maintained but it is modified in order to 

adapt to the characteristics of the wireless environment. 

WLD enhancement proxy is introduced between the 802.11 WLAN MAC and the IP layers 

of 802.11 WLAN base stations. It monitors the TCP flow between the mobile hosts and the base 

station. On receiving data packets from the IP layer that are destined for mobile hosts, WLD 

proxy obtains the TCP header information from the IP datagram, assuming it is not encrypted, 

and maintains them in a Cache Table. It also keeps a Connection Table in order to be able to 

support multiple TCP connections. Figure 4.6 shows the flow control to extract the TCP header 

information from IP datagram packets. It should also be noted that RNF scheme cannot 

distinguish a wireless packet loss due to contention or due to channel BER. However, RNF can 

be further modified to incorporate this. We leave this a future work. 
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Figure  4-6 WLD flow control for caching TCP header information 

On the arrival of ACK packets from the MAC layer, WLD proxy uses both the Cache Table 

and Connection Table to detect wireless packet losses. If a wireless packet loss is detected, it 

notifies the TCP sender of this effect by utilizing the control bit next to the CWR flag in the 

reserved field of the TCP header, called Radio Network Feedback (RNF) flag, as shown in Figure 



 

 57 

4.7. It should be noted that the maximum header length is 60 bytes. TCP header length is usually 

20 bytes, but can have up to 40 bytes for options. Since we only cache the TCP header 

information, which is of 20 bytes long, our proposed scheme does not add much overhead to the 

base station. 
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Figure  4-7 TCP header with RNF flag 

 Flow control for the wireless packet loss detection is shown in Figure 4.8. The main 

contribution of this scheme is the wireless loss detection, which is the key to successful TCP 

performance improvement, and the TCP modification to accommodate this effect. Once the 

TCP sender can completely distinguish between the packet losses due to the congestion and 

wireless errors, TCP congestion control mechanism can be tuned to adapt to the network 

environments. It is critical to decide whether to reduce the CWND size when a TCP sender 

detects wireless packet losses. We define α to be the bandwidth (BW) utilization factor that the 

TCP sender uses to calculate the CWND size during the fast retransmit and recovery phase. The 

value of α can be between 0.5 and 1. In the standard TCP Reno and TCP New Reno, the α is 

assigned value of 0.5; they halve the CWND when a packet drop is detected by three duplicate 

ACKs. The value of α can be optimized for wireless packet loss recovery and it is discussed in 

detail in Section 4.3.5. 
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Figure  4-8Wireless loss detection flow control 
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4.3 THE IMPLEMENTATION DETAILS OF THE RNF MECHANISM 

The implementation of the proposed scheme, and the rationale for it, are briefly explained. 

The scheme consists of two parts; wireless loss detection and fine-tuning of the TCP congestion 

control mechanism to adapt to the network condition. 

4.3.1 WIRELESS LOSS DETECTION 

WLD proxy maintains three data structures to handle the wireless loss detection; the TCP 

Information Structure, the TCP Connection Table and the Global Structure for Cache Table, as 

shown in Figures 4.9, 4.10 and 4.11 respectively.  

 

Figure  4-9 TCP Information Data Structure 
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Figure  4-10 TCP Connection Table Data Structure 

 

Figure  4-11 Global Structure for Cache Table 

WLD proxy maintains five states, as shown in Figure 4.12, depending on the transition 

variables, and its functionality is explained as follows. 

• INIT state initializes both the Cache Table and the TCP Connection Table with the 

necessary information for each TCP connection passing through the base station. 

• WAIT state is the default state and depending on the transition variables, the state will 

change between the corresponding state and the default state. 
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• Monitor Data state extracts TCP header information from the IP datagram and 

determines the extracted TCP header is already in the Cache Table. If this TCP header is 

not in the Cache Table, it will add it to the Cache Table after confirming that this 

connection information exists in the TCP Connection Table. Otherwise, it will first add 

the connection information to the TCP Connection Table and then cache the TCP 

header information to the Cache Table. 

• Monitor ACK state extracts TCP header information from the IP datagram, coming 

form the mobile receiver, and determines this is an ACK packet before triggering its 

WLD algorithm to detect wireless packet loss. It uses the extracted TCP header 

information, the Cache Table and the TCP Connection Table to confirm a wireless 

packet loss, as illustrated in the Wireless loss detection flow control in Figure 4.8. If a 

wireless packet loss is detected, it will set the RNF flag of the ACK packet and forward it 

to the TCP sender. Otherwise it will forward the packet as it enters. On receiving a new 

ACK, it will destroy the entries in the Cache Table up to this ACK in order to further 

reduce the overload at the base station. Finally, it will destroy entries both in the Cache 

Table and the Connection Table on receiving the ACK packet with FIN bit set. 

• Timeout state maintains a timer that can be used to make the TCP sender aware of delay 

spikes, defined as sudden large delays, across the wireless link that causes spurious TCP 

timeouts. TCP can be further enhanced to distinguish spurious timeouts from the normal 

timeouts. It should be noted that Monitor DATA state and the Monitor ACK state can 

be utilized to record the arrival times of data packets and their corresponding ACKs at 

the base station. Timeout state can then use this information to calculate the wireless 

RTT (W-RTT) and the wireless RTO (W-RTO) and to detect delay spikes. This feature is 

not considered in this proposal and is left for our future work. 
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Figure  4-12 WLD Process Model 

4.3.2 TCP CONGESTION CONTROL MODIFICATION 

The standard TCP congestion control mechanisms are tuned to perform well in traditional 

wire-line networks, where packet losses occur mostly because of congestion. However, networks 

with wireless links suffer form significant losses due to high bit errors and handoffs. TCP 

responds to all losses by invoking congestion control and avoidance algorithms, resulting in 

degraded End-to-End performance in wireless environment. The TCP congestion control should 

be modified to utilize the available bandwidth efficiently in wireless environments. WLD proxy 

enables the TCP sender to confirm a packet loss due to wireless error when it receives an 

acknowledgement with the RNF flag set. The RNF flag is added to the TCP header as; 

#define TCPC_FLAG_RNF  0x100    

In standard TCP implementations, the TCP sender concludes that the network has dropped a 

packet when it receives three duplicate ACKs. It then immediately retransmits the dropped 

packet without waiting for the retransmission timer to expire. The rationale is that the sooner the 

fast retransmit occurs, the better TCP performs because it avoids unnecessary TCP timeouts. 

With this in mind, and the fact that TCP sender can confirm any wireless packet drops when it 

receives duplicate ACKs with the RNF flag set, it is fine tuned to retransmit the packets dropped 

across the wireless link when it receives two duplicate ACKs with the RNF flag set. It should be 

noticed that the TCP sender, considering the delayed packet arrivals at the base station, still waits 
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for two duplicate ACKs with RNF flag set even though it has received confirmation that the 

packet has been dropped across the wireless link. 

Now it comes to deciding whether to reduce the CWND when a TCP sender detects a 

wireless packet drop. It is very important to keep the existing implementation of TCP while 

modifying it to accommodate new features. We have added two new features to the standard 

TCP without making any changes to its current implementation; one is to enable the TCP sender 

to process the fast retransmit and fast recovery mechanism depending on the cause of a packet 

loss. The other implements wireless fast retransmit and fast recovery mechanism to quickly 

recover form wireless related losses with the use of the BW utilization factor, which will have a 

great impact on the TCP performance improvement over wireless links.  

For example, if BW utilization factor is assigned the value of 1, it will improve the TCP 

throughput performance by CWND/2 per RTT after each wireless packet recovery given that 

the receiver window is bigger than the CWND. It will also increase the chance of recovering 

multiple packet losses within a window of data, which are highly likely in wireless environments, 

thereby reducing unnecessary TCP retransmission timeouts. However, this may have some 

adverse effect on networks in case of heavy loss across the wireless links. The BW utilization 

factor can be optimized to perform well over network with wireless links. We leave this 

phenomenon for our future work and with this scheme, we implement the wireless fast 

retransmit and fast recovery mechanism with the BW utilization factor of 0.75 and 1. 

Figure 4.13 shows the flow control for the TCP ACK processing, which distinguishes 

between packet losses due to congestion and packet losses due to wireless error with the aid of 

RNF flag. It triggers the standard fast retransmit and fast recovery processing if the loss is due to 

congestion, otherwise call the wireless fast retransmit and fast recovery processing, which is 

added to the standard TCP as part of the TCP modification to enhance its performance over the 

wireless networks. 
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   tcp_frfr_processing ();

Yes

No
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   there is no outstanding data.*/
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Figure  4-13 ACK processing with RNF flag 
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4.3.2.1 The Wireless Fast Retransmit and Fast Recovery Processing 

The wireless fast retransmit and fast recovery processing triggers wireless fast retransmit 

algorithm when it receives two duplicate ACKs with RNF flag set. Similar to the standard TCP 

fast retransmit algorithm, it considers the flight size, which is the number of unacknowledged 

packets in the network, in calculating the SSTHRESH value. On fast retransmitting the lost 

packet, the CWND is set to SSTHRESH times the BW utilization factor. The number of new 

packets can be transmitted during the fast recovery process depend on the CWND value. If BW 

utilization factor is assigned a value of 0.5, there can be maximum of (CWND/2 -PD) number of 

packets transmitted, where PD is the number of dropped packets within that window of data. It 

should be noted that it will take the TCP sender CWND/2 of RTT period to utilize the available 

BW in which it was operating prior to a single packet drop experienced. If the packet drop were 

due to wireless error, TCP sender under-utilizes the available BW, causing performance 

degradation. 

4.4 PERFORMANCE EVALUATION OF OUR PROPOSED SCHEME BASED ON 

OPNET SIMULATION 

The OPNET [OPNET Technologies Inc] simulation tool is used throughout our studies to 

implement and evaluate the proposed scheme based on simulation studies. We have 

implemented the WLD scheme in both an 802.11 WLAN Server and an 802.11 WLAN Router 

and Extensive simulations were run to get the mean TCP throughput with less than 5% error 

margin. Modified TCP Reno with the default parameters is used in all simulation scenarios. 

Selected TCP Reno and WLAN parameter values [OPNET Technologies Inc]are given in Tables 

4.2 and 4.3, respectively. The received power of a packet is inversely proportional to the distance 

that it travels. The lower the reception power threshold, the greater will be the transmission range 

of a packet since packets with lower power will be accepted by the radio receiver. The higher the 

transmission power, the greater the distance that the packet can be transmitted over. With 

11Mbps data rate, 5mW transmission power and -95 dBm, the transmission rate can be up to 

1094m [OPNET Technologies Inc]. 
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Table  4-2 Selected TCP Reno Parameter values 
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Table  4-3 Selected WLAN Parameter values 

4.4.1 EXPERIMENT WITH AN 802.11 WLAN SERVER  

The network model used in this study is shown in Figure 4.14. It consists of two WLAN 

nodes, a WLAN Server and Mobile Hosts (MHs). The two WLAN nodes are Application 

Configuration and the Profile Configuration nodes, which are configured to generate FTP traffic 

comprising a 160,000 byte file upload. The WLAN Server is implemented, in turn, with a 

standard WLAN, a WLAN with the Snoop proxy and a WLAN with WLD proxy to compare 

their relative performances. OPNET representations of a WLAN Server with the WLD proxy 

and a WLAN MH with wireless loss packet generator (WL-PEG) are shown in Figures 4.15 and 

4.16 respectively. MHs are configured to drop 2 % of IP datagrams, using a uniform probability 

distribution. Modified TCP Reno with the default parameters is used in all simulation scenarios. 

Selected TCP Reno and WLAN parameter values are given in Tables 4.2 and 4.3, respectively. 
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Figure  4-14 WLAN network model with an 802.11 WLAN Server 
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Figure  4-15 OPNET representation of a WLAN Server with WLD proxy 

 

Figure  4-16 OPNET representation of a WLAN MH with WL-PEG 
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4.4.1.1 Simulation Results and Discussion 

Extensive simulations were run to compare the performance of a WLAN with the WLD 

enhancement proxy with a standard WLAN and a WLAN with the Snoop proxy. Figure 4.17 

shows the TCP CWND size responses together with packet drops. It can be seen that the 

proposed scheme successfully distinguished packet losses due to wireless error from congestion 

and recovered from wireless packet losses without reducing the CWND while the standard 

WLAN, as expected, reacted to each packet loss and reduced its CWND. WLD proxy helped the 

TCP sender to avoid unnecessary spurious TCP timeouts. The WLAN with Snoop proxy also 

managed to recover from most of the wireless errors. However, it experienced timeouts due to its 

inability to exchange the wireless effects with the TCP sender. 

 

Figure  4-17 Comparison of TCP CWND responses with for MH-5 
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The TP timeouts makes the TCP sender perform slow-start, assuming all outstanding 

unacknowledged packets are lost. This effect can be observed from Figures 4.17 and 4.18 and it 

can be highly undesirable form user’s perspective because the system may look like unstable.   

 

Figure  4-18 Compariosn TCP sent segmet sequence number responses for MH-5 

Figure 4.19 shows the average number of cached packets, which reflect the amount of data 

transmitted within an RTT period of each TCP connection. The higher the packets in the Cached 

Table implies larger the TCP throughput for a given number of TCP connections. Since the 

WLD proxy only caches the TCP header information, it does not create more overhead at the 

base station than Snoop does. 
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Figure  4-19 Average number of cached packets 

Figure 4.20 shows the number of WLAN data traffic sent. It can be seen that WLAN with 

Snoop sent higher number of packets than the WLAN with WLD while achieving lower TCP 

throughput than the WLAN with WLD does. This implies the Snoop wastes the valuable 

network resources by competing for retransmission with the TCP sender. 

 

Figure  4-20 WLAN data traffic sent (packets/sec) 
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Our main objective is to detect all wireless packet losses and to make the TCP sender aware of 

this and perform wireless enhanced fast retransmit of those lost packets without reducing the 

CWND, taking  the network utilization factor a value of 1.0. In order to see this effect, we have 

included the standard WLAN behavior without any packet losses in Figure 4.18, and it can be 

seen that the WLD proxy performs as expected; WLD scheme closely follows the performance 

of standard WLAN without any packet losses. Even though the proposed scheme has 

significantly improved the TCP performance in accordance with the intuition behind it, we 

further investigate its ability to deal with more rigorous wireless environments, for example with 

high packet drops rate, in the next experiment scenario. 

4.4.2 EXPERIMENT WITH AN 802.11 WLAN ETHERNET ROUTER  

The network model used for this study is shown in Figure 4.21. The Local Area Network 

(LAN) is extended using an 802.11 WLAN Ethernet router that forms a WLAN together with 

MHs. The model consists of two Servers, and some fixed hosts (FHs) and MHs. Servers and 

FHs are connected to the WLAN router through switches using 10baseT point-to-point link 

model. The Application and Profile Configuration nodes are configured to generate different 

applications such as HTTP, FTP Database and Email. FHs are configured to utilize some of 

these services in parallel with MHs in order to make the network analyzes be realistic and to 

show that the proposed scheme can be implemented in any WLAN devices. 
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Figure  4-21 OPNET Network Model 

All MHs are configured to download FTP files from Server-1 simultaneously. Packets coming 

from the Server-1 are dropped at the MAC layer of MH clients, using a uniform probability 

distribution and Table 4.4 shows the packet drop rates of MHs. The MAC layer is modified to 

generate bursty packet drops, as illustrated in Figure 4.22, so that the base station will perform its 

local retransmission and discard the packets once the threshold number of retry limit reaches. 

The packets that experience base station local retransmission before get successfully transmitted 

will imitate characteristics of wireless links, thereby impacting the end-to-end RTT. Figure 4.23 

shows the OPNET representation of 802.11 WLAN Ethernet Router with the WLD proxy. 
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Table  4-4 Mobile Host Configuration 

 

 Figure  4-22 Pseudo code for MAC layer packet drops  
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Figure  4-23 the OPNET representation of 802.11 WLAN Ethernet Router with WLD proxy 

The WLAN Router is implemented, in turn, with a standard WLAN and a WLAN with WLD 

proxy to compare their relative performances. Modified TCP Reno with the default parameters  

is used in all simulation scenarios. Selected TCP Reno and WLAN parameter values are as given 

in Tables 4.2 and 4.3, respectively. 

4.4.2.1 Simulation Results and Discussion 

Figure 4.24 shows the TCP CWND size, sent segment sequence number, the MAC packet 

drops and the number of cached TCP headers responses during FTP file upload by MH-4 with 

the proposed scheme, WLAN with WLD, and the standard WLAN. Figures 4.25 and 4.26 show 

a snapshot of TCP CWND and TCP sent sequence number responses for MH-4. Comparison of 

WLD proxy 
introduced in WLAN 
Ethernet Router 
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the TCP sent segment sequence number responses for MH-4, MH-5, MH-6, MH-7 and MH-8 is 

given in Figure 4.27. 

 

Figure  4-24 Responses during MH-4 client FTP file upload 
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Figure  4-25 A Snapshot of TCP CWND response for MH-4 

 

Figure  4-26 A Snapshot of TCP sent segment number response 
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Figure  4-27 Comparison of TCP sent segment responses 

From Figures 4.24 - 4.27, it can be seen that proposed scheme does not add much overhead 

to the WLAN Router and significantly improves the CWND and throughput responses 

compared to that of the standard TCP; there is a maximum of 353 TCP headers (7060 bytes) 

cached during the entire simulation period. The simulation was repeated many times with 

different seed values, which generated different MAC packet drop patterns, and the TCP mean 

throughput value was obtained with less than 5% error margin. Table 4.5 summarizes the TCP 

throughput performances. Figure 4.28 shows the TCP throughput improvement with the 

proposed scheme versus the MAC packet drop rates. 
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Table  4-5 Sumarry of TCP throughput performance 

 

Figure  4-28 TCP Throughput improvement Vs Packet drop rates 

From Table 4.5 and Figure 4.28, it can be observed that the proposed scheme has improved 

the TCP throughput performance of MHs with MAC packet drops. It should also be noticed 

that the proposed scheme has decreased the TCP throughput performance of MH-1, which does 

not drop any MAC packets. It demonstrates that TCP with enhanced fast retransmit and 

recovery algorithms to handle wireless packet drops is much fairer than the standard TCP Reno 

implementation. With the proposed scheme, the available BW across the wireless medium is 

more fairly shared among the 802.11 mobile hosts. 

4.5 CONCLUSIONS AND FUTURE WORK 

A new RNF scheme was presented that detects and distinguishes wireless packet losses from 

congestion related packet losses. TCP Reno was modified to distinguish wireless packet losses 

from the congestion losses, with the aid of the RNF flag, and to trigger the enhanced fast 

Drop rate (%) 
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retransmit and recovery algorithm accordingly. The standard TCP header was slightly modified to 

achieve this. 

The RNF scheme was implemented in an 802.11 WLAN Server, with the bandwidth 

utilization factor α = 1.0, in OPNET. The simulation results showed that it improved the TCP 

performance significantly compared to that of both the standard WLAN and the WLAN with 

the Snoop proxy. In particular, it detected all the wireless losses and enabled the TCP sender to 

trigger wireless enhanced fast retransmit and recovery algorithm to recover from those lost 

packets without reducing the congestion window. 

It was also implemented in an 802.11 WLAN Ethernet Router in OPNET, with the 

bandwidth utilization factor α = 0.75. Simulation results showed that the proposed scheme 

improved the TCP performance significantly compared to that of the standard WLAN. It also 

enabled the modified TCP Reno to distinguish wireless packet losses from the congestion-related 

losses and to trigger the wireless enhanced fast retransmit and fast recovery mechanisms to 

quickly recover from wireless packet losses. However, it could not completely avoid spurious 

TCP timeouts. The effects of spurious TCP timeouts can be minimized enabling the TCP sender 

to distinguish spurious timeouts from the normal timeouts. We leave this for our future work.  

Simulation results also showed that the proposed scheme can handle multiple nodes and 

multiple TCP connections, and utilized the available network resources efficiently and fairly by 

adapting to the network characteristics. The advantage of this scheme is that it does not inject 

any additional packet into the network to provide feedback when it detects wireless packet losses; 

it does not compete for bandwidth and only sets the RNF flag of the ACK in case of a wireless 

detection. Finally, the proposed scheme only requires the software changes and can be easily 

implemented in real time network. Further validation of the scheme with different TCP flavors in 

different networks is left for future work. 
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C h a p t e r  V .   

 

5. RNC Feedback Scheme for TCP Enhancement 

over a UMTS Network  

 

Universal Mobile Telecommunications System (UMTS) is one of the most significant 

advances in the evolution of telecommunications into Third Generation (3G) networks. UMTS 

allows many more applications to be introduced to a worldwide base of users and provides a vital 

link between today’s multiple Global System for Mobile Communications (GSM) and the 

ultimate single worldwide standard for all mobile telecommunications, International 

Telecommunications-2000 (IMT-2000). Development of advanced 3G networks and services 

makes it necessary to find a way of improving TCP’s efficiency and resource utilization. TCP 

optimization for wireless networks to deal with packet losses due to fading, shadowing and 

contention should preferably maintain TCP end-to-end semantics with minimal dependence on 

intermediate nodes. Previous research on this issue suggests that TCP needs radio network 

feedback to distinguish wireless related losses from congestion related losses. 

In this Chapter, we first give an overview of UMTS technology and, based on the RNF 

mechanism implemented in 802.11 WLAN environments, devise the radio network control 

(RNC) feedback mechanism in Sections 5.1 and 5.2, respectively. The RNC mechanism requires 

only a minimal change to the standard TCP implementation. Section 5.3 provides an incentive to 

the RNC development and outlines the advantages of the RNC mechanism over the RNF. The 

RNC mechanism is implemented in a UMTS network and the TCP performance with the RNC 

proxy is analyzed and compared with that of the standard UMTS in Section 5.4. The conclusions 

drawn and directions for future work are outlined in Section 5.5 

5.1 AN OVERVIEW OF UMTS TECHNOLOGY 

 
Third Generation (3G) technology is revolutionizing the capabilities of mobile 

communications. 3G networks are the next generation of mobile cellular networks, and their 
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origin is an initiative of the International Telecommunication Union (ITU). The main objective is 

to provide high-speed and high-BW wireless services to support a wide range of advanced 

applications, specially tailored for mobile personal communication such as telephony, paging, 

messaging and Internet access. 3G mobile networks are expected to provide more enhanced 

services than are possible over existing cellular systems, including higher bit rates services and 

greater capacity and service capability. 

Universal Mobile Telecommunications System (UMTS) is one of the main 3G wireless 

technologies developed by the European Telecommunications Standards Institute (ETSI) within 

the IMT-2000 framework proposed by the ITU [Samukic, 1998]. UMTS evolved from global 

systems for mobile communications (GSM) and supports both existing services and offering new 

services including multimedia and access to the Internet with a speed of up to 2 Mbps; it 

provides network and service infrastructure convergence for fixed and mobile networks by 

allowing network operators to flexibly and efficiently offer services to customers irrespective of 

their access means [Mason, Cullen, & Lobley, 1996]. Currently, the Third Generation Partnership 

Project (3GPP) [3GPP], formed by a cooperation of standards organization, is in charge of 

developing UMTS technical specifications. UMTS systems have already been deployed in most 

European countries, although new and advance terminals, as well as many specifications, are still 

under development. 

5.1.1 UMTS ARCHITECTURE 

A UMTS network consists of three interacting domains: Core Network (CN), UMTS 

Terrestrial Radio Access Network (UTRAN) and User Equipment (UE). Figure 5.1 [Jamalipour, 

2003] shows the UMTS architecture based on 3G TS 25.401 UTRAN Overall Description. The 

packet domain CN includes the serving GPRS support node (SGSN) and the gateway GPRS 

support node (GGSN). The GPRS support nodes (GSNs) include all GPRS functionality needed 

to support GSM and UMTS packet services. The SGSN monitors user location and performs 

security functions and access control. The GGSN contains routing information for packet-

switched (PS) attached users and provides internetworking with external PS networks, such as 

packet data network (PDN). 
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Figure  5-1 The UMTS network architecture 

At the packet domain CN, UMTS mainly reuses the GSM/GPRS network elements. The 

MSCU performs transcoding and bridges the cellular network to the public switched telephone 

network (PSTN). The circuit-switched (CS) core network includes the mobile switching center 

(MSC)/visitor location register (VLR). The MSC/VLR is used in the packet domain architecture 

to efficiently coordinate PS and CS services and functionality. Connection of the UMTS user 

terminal to the public telephony network is provided via an UMTS-type MSC, shown as MSCU in 

the Figure 5.1. Access network domain, UTRAN manages specifications of the access technology 

of the UMTS, the wideband Code Division Multiple Access (W-CDMA). The BTS in the UMTS 

network is called a Node B and BSC uses the new name of radio network controller (RNC). The 

RNC provides data link layer services and the Node B supplies the physical (radio) channel 

access. User equipment (UE) is the end user UMTS cellular phone and provides data and voice 

services to the system users. 

5.1.2 UTRAN ARCHITECTURE 

Figure 5.3 provides an overview of UTRAN architecture showing the relationship between 

the CN and the UTRAN. Both CN and UTRAN are designed independently and are connected 

to each other through a set of standard interfaces. The UMTS core network consists of CS 

service domain and PS service domain, which are responsible for providing appropriate services 

to the CS traffic and PS traffic.   
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  Figure  5-2 UTRAN architecture  

The UTRAN consists of a set of Radio Network Subsystems (RNS) connected to CN 

through Iu interfaces.  An RNS consists of a Radio Network Controller (RNC) and one or more 

Node-Bs. An RNC manages a set of base stations, referred as Node-Bs, through Iub interfaces. 

The RNC exerts admission control for new mobiles or services attempting to use the Node-B. 

Admission control ensures that mobiles are only allocated radio resources up to what the 

network has available. The RNC is also responsible for the Handover decisions that require 

signaling to the UE. Each UE has exactly one Serving RNC and can have one or more Drift 

RNCs, where the mobile physical layer communications terminate. Drift RNCs communicate 

with the Serving RNC via the Iur interface. A Drift RNC may also be the Serving RNC where no 

soft handover activity is in progress. Each Node B is responsible for connecting many end user 

terminals, UEs, to the UTRAN through the Uu interface. Detail description of UMTS access 

technology is given in the following Sections. 

5.1.3 WIDEBAND CODE DIVISION MULTIPLE ACCESS (W-CDMA) 

W-CDMA defines the air interface access of the UMTS network and is termed as UTRA. 

Unlike GSM and GPRS, which uses time division multiple access (TDMA) and frequency 

division multiple access (FDMA), W-CDMA allows all users to transmit at the same time and to 

share the same radio frequency (RF) carrier. In W-CDMA, instead of dividing users by frequency 
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or time as shown in Figure 5.3, they are divided into codes and specific data streams are assigned 

to particular users. Each mobile user is uniquely identified by a specialized code and frequency. 

 

 

Figure  5-3 Comparison of multiple access schemes 

In WCDMA Spread Spectrum technology, the information contents are spread by unique, 

digital codes (spreading sequence). The basic unit of a code sequence is one chip. Each user 

channel is uniquely identified by a code, which is a combination of a scrambling code and an 

orthogonal variable spreading factor (OVSF) code. Scrambling code is unique for each device 

and allows the recipient to identify from the other devices. The OVSF codes are used to separate 

traffic in a W-CDMA signal. W-CDMA uses a variable length code (4 to 512 chips), known as 

the spreading factor (SF). The SF may be updated as often as every 10 ms. This permits the 

overall data capacity of the system to be used more efficiently. Any user equipment that receives 

a transmitted data sequence and attempts to demodulate it using the wrong OSVF would 

interpret the information as noise. The noise, when integrated over time, will net to zero, which is 

an important property of the orthogonal codes in W-CDMA systems. The OVSF codes can be 

reused by each base station and user equipment within the same location, since the scrambling 

codes identify the transmitting device. 

The CDMA digital mobile communication system has great potential power. In the CDMA 

system, system capacity is a soft capacity concept. For example, the system manager may raise the 

frame error rate to increase the available channels during peak hours of telephone traffic. Again, 

the CDMA system is a self-interference system, when its neighbor cells have less load, 

interference sent to the cell is smaller, so the capacity can be increased adequately. 
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One of the most important characteristics of W-CDMA is the fact that power is the common 

shared resource for users. In the downlink, the total transmitted power of an RF carrier is shared 

between the users transmitting from the base station by code division multiplexing (CDM). In 

the uplink, there is a maximum tolerable interference level at the base station receiver. This 

maximum interference power is shared between the transmitting user equipments in the cell, each 

contributing to the interference [Haardt et al., 2000]. Power as the common resource makes W-

CDMA very flexible in handling mixed services and services with variable bit rate demands. 

Radio resource management is done by allocating power to each user to ensure that maximum 

interference is not exceeded. Reallocation of codes and time slots is normally not needed as the 

bit rate demand changes, i.e. the physical channel allocation remains unchanged even if the bit 

rate changes. 

5.1.4 UMTS MODES OF OPERATION 

ETSI special mobile group (SMG) defines two different mode of operation for the UTRA; 

frequency division duplex mode (FDD) [Dahlman, Gudmundson, Nilsson, & Skold, 1998], 

where the uplink and downlink are transmitted on different frequencies, and time division duplex 

(TDD) [Haardt et al., 2000], where the uplink and downlink are transmitted on the same 

frequency and are multiplexed in time. These modes are illustrated in Figure 5.4. 

UTRA FDD is based on 5 MHz W-CDMA with a basic chip rate of 4.096 Mchips/s, 

corresponding to a bandwidth of approximately 5 MHz. Higher chips rates of 8.192 and 16.384 

Mchips/s are also specified intended for future evolution of the W-CDMA air interface towards 

data rates higher than 2 Mbps [Dahlman, Gudmundson, Nilsson, & Skold, 1998]. The basic radio 

frame has a length of 10 ms, allowing for low delay speech and fast control messages, and is 

divided into 15 slots. W-CDMA carriers are located on a 200 kHz carrier grid with typical carrier 

spacing in the range of 4.2 – 5.0 MHz. Spreading factors vary from 256 to 4 for an FDD uplink 

and from 512 to 4 for an FDD downlink. With these spreading factors, data rates of up to 2 

Mbps are attainable. 
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Figure  5-4 UTRA FDD and TDD modes of operation 

UTRA TDD is based on TD/CDMA technology. During the subsequent ETSI process, the 

parameters of the TDD mode have been completely harmonized to the FDD mode. TDD is the 

only method that can flexibly share the system capacity to uplinks and downlinks [Jamalipour, 

2003]. The main difference between the FDD and TDD modes is that the TDD mode includes 

an additional TDMA component, allowing for interference avoidance by means of dynamic 

channel allocations. Since in TDD, the uplink and downlink are transmitted on the same 

frequency it is possible to allocate different ratio of TDD time slots to uplinks and downlinks in 

accordance to the service requirements at a particular time. This flexibility is not available in an 

FDD mode, as a fixed amount of total system capacity is devoted to the uplink and the rest to 

the downlink. 

5.1.5 UMTS RADIO INTERFACE PROTOCOL ARCHITECTURE 

The UMTS radio interface protocol architecture is shown in Figure 5.5. The architecture 

consists of a control plane (C-plane) for signaling and user plane (U-plane) for data information 

transportation. 
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Figure  5-5 UMTS radio interface protocol architecture 

The design of the radio interface protocol stack has focused on a clear structuring of the 

layers. The main functionality layers are physical layer (PHY), medium access control layer 

(MAC), radio link control layer (RLC), broadcast/multicast control layer (BMC), packet data 

convergence protocol layer (PDCP) and radio resource control layer (RRC). The services 

provided by each layer and the physical and logical channels at the physical layer and MAC layer 

are briefed, respectively, in the following. 

The physical layer is responsible for the transmission of transport blocks over the air interface. 

This includes forward error correction (FEC), multiplexing of different transport channels on the 

same physical resources, rate matching, modulation, spreading and RF processing. The error 

indication in the physical layer is important for the realization of incremental redundancy 

protocols. Physical channels could be of one of the following types: 
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• Random access channel (RACH) is a contention based uplink transport channel for initial 

channel access to the network as well as for short data bursts. The RACH is always 

received from the entire cell and is characterized by a collision risk and by being 

transmitted using open loop power control. 

• Common packet channel (CPCH) is a contention based used for transmission of bursty 

data traffic. This channel only exists in FDD mode and only in the uplink direction. 

The CPCH employs fast power control and is shared by the UE in a cell and 

therefore, it is a common resource. 

• Forward access channel (FACH) 

• Downlink shared channel (DSCH) 

• Broadcast channel (BCH) 

• Paging channel (PCH) 

• Dedicated channel (DCH) 

MAC layer maps the logical channels of the RLC on the transport channels provided by the 

physical layer. Its main functionality is multiplexing different data streams. The MAC layer is 

informed about resource allocations by the RRC and performs priority handling between 

different data flows that are mapped on the same physical resource. The logical channels 

provided by the MAC layer are as follows: 

• Control channel (CCH) 

- Broadcast control channel (BCCH) 

- Paging control channel (PCCH) 

- Dedicated control channel (DCCH) 

- Common control channel (CCCH) 
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- Shared control channel (SHCCH) 

• Traffic channel (TCH) 

- Dedicated traffic channel (DTCH) 

- ODMA dedicated traffic channel (ODTCH) 

- Common traffic channel (CTCH) 

RLC layer provides transparent, unacknowledged, or acknowledged mode data transfer to the 

upper layers. The acknowledged mode transfer uses a sliding window protocol with selective 

reject-automatic repeat request (ARQ). The RLC also provides segmentation and retransmission 

services for both users and control data. It offers services to higher layers via service access 

points (SAP), which describes how the RLC layer handles the data packets. On the C-plane, the 

RLC services are used by the RRC layer for signaling transport. On the U-plane, the RLC 

services are used either by the service specific protocol layers (PDCP or BMC) or by the higher 

layer U-plane functions. 

Packet data convergence protocol (PDCP) layer is located in the U-plane and provides header 

compression functions for network protocols such as TCP/IP and UDP/IP [RFC 2507] . It also 

handles transmission and reception of protocol data units (PDUs) using services provided by the 

RLC protocol and supports for SRNs loss-less relocation. 

RRC layer handles the C-plane signaling of layer 3 between UTRAN and the UE. It is also 

responsible for controlling the available radio resources. This includes the assignment, 

reconfiguration, and release of radio resources as well as continuous control of the requested 

quality of service. The TDD mode requires additional features in the RRC layer such as dynamic 

channel allocation, handling of the outer loop power control, ad timing advance control. 

5.1.6 NODE B 

The Node B is the function within the UMTS network that provides the physical radio link 

between the user equipment and the network. UMTS uses Wideband Code Division Multiple 

Access (WCDMA) to carry the radio transmissions. A Node-B can support FDD, TDD or dual-

mode operation. Node B connects with the UE via the W-CDMA Uu radio interface and with 
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the RNC via the Iub ATM based interface, and performs the conversion of data to and from the 

Uu radio interface. It determines the frame error rate (FER), based on the quality and strength of 

the connection, and transmits these data to the RNC as a measurement report for handover and 

macro diversity combining. The macro diversity combining is carried out independently, 

eliminating the need for additional transmission capacity in the Iub interface. 

Node B also participates in power control as it enables the user equipment to adjust its power 

using downlink transmission power control (TPC) commands via an inner-loop power control 

on the basis of uplink TPC information. The UMTS standard specifies a downlink power 

adjustment procedure for adjusting the Node B transmitted power of the radio links in the active 

set. However, the standard leaves opens the specific method used to compute and apply the 

adjustment corrections. 

5.1.7 RADIO NETWORK CONTROLLER (RNC) 

The RNC handles protocol exchanges between Iu, Iur and Iub interfaces and is responsible 

for centralized operation and maintenance of the entire RNS with access to the operating 

subsystem. Since the interfaces are ATM based, the RNC switches ATM cells between them. The 

user’s circuit switched and packet switched data coming from Iu-CS and Iu-PS interfaces are 

multiplexed together for multimedia transmission via Iur, Iub and Uu interfaces to and from the 

user equipment. The RNC uses the Iur interface to autonomously handle radio resource 

management (RRM), eliminating the burden from the core network. Serving control functions 

such as admission, RRC connection to the UE, congestion and handover/macro diversity are 

managed entirely by the serving RNC (SRNC). If another RNC is involved in the active 

connection through an Inter-RNC Soft Handover, it is declared a drift RNC and is responsible 

for the allocation of code resources. 

5.1.8 3GGP RELEASE 5 

The initial standards for UMTS were completed by 3GPP in April of 1999 and termed 

Release 1999 (R’99). These standards are the basis for a majority of the current commercially 

deployed UMTS systems previously discussed. In April of 2001, a follow up release to R’99 was 

standardized in 3GPP, termed Release 4 (Rel’4), which provided minor improvements of the 

UMTS transport, radio interface and architecture. In March 2002, Release 5 (Rel’5) [3GPP] of 

UMTS was completed which defined features such as the High Speed Data Packet Access 

(HSDPA) channel, the IP Multimedia Subsystem (IMS) and IP UTRAN that provide significant 



 

 93 

spectral/network efficiency, performance and functionality advantages over the R’99 and Rel’4 

standards. 

The Rel’5 UMTS standards were developed such that the Rel’5 enhancements can co-exist on 

the same RF carrier as currently deployed R’99 UMTS. Thus, a current R’99 UMTS carrier can be 

upgraded to support legacy R’99 as well as new Rel’5 terminals in the same 5 MHz band. 

HSDPA is one of the key Rel’5 features that offers significantly higher data capacity and data user 

speeds on the downlink (theoretically up to 14 Mbps peak) compared to R’99 UMTS through the 

use of very dynamic adaptive modulation, coding and scheduling with Hybrid Automatic 

Retransmission Request (H-ARQ) processing. Through HSDPA, operators will benefit from a 

technology that will provide improved end-user experience for web access, file download and 

streaming services. Wireless Broadband access to the Internet, intranet and corporate LAN will 

benefit greatly from HSDPA. In addition to HSDPA, UMTS Rel’5 introduces the IP Multimedia 

System (IMS) architecture that promises to greatly enhance the end-user experience for integrated 

multimedia applications and offer the mobile operator an efficient means for offering such 

services. The IMS enables new and more advanced multimedia applications for operators 

(including VoIP), the ability for these services to interact and the ability to fully integrate real-

time, near real-time as well as non-realtime services. UMTS Rel’5 also introduces the IP UTRAN 

concept to realize network efficiencies and reduce network costs. 

5.2 RADIO NETWORK CONTROLLER FEEDBACK MECHANISM 

 
A study of Wireless TCP proposals with proxy servers in the GPRS network [Rendon, 

Casadevall, & Carrasco, 2002] analyses the Split mechanism [Bakre & Badrinath, 1995] and the 

Snoop protocol [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997] and concludes that the 

Snoop protocol does not perform well because of the high delays in the GPRS radio channel and 

the Split mechanism slightly improves the TCP throughput. Snoop is a link-layer protocol that 

retransmits the lost packets locally, trying to hide packet losses across the wireless link from the 

TCP sender, while the Split mechanism attempts to separate loss recovery over the wireless link 

from that over the wire-line network. A cross-layer congestion avoidance scheme in [Kliazovich 

& Granelli, 2005] gathers network capacity information such as BW and delay at the link layer 

and, based on these measurements, it adjusts the outgoing data stream. Link layer proposals 

[Wong & Leung, 1999] try to hide packet losses across the wireless link from the TCP sender by 

employing error correction using techniques such as FEC and retransmitting the lost packets 
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locally in response to the ARQ message. Adaptive-TCP [Seok, Youm, kim, & Kang, 2003] is a 

TCP-aware link layer protocol and performs local retransmission, sender freezing and flow 

control in order to hide the wireless environment from the TCP sender. 

The abovementioned protocols attempt to either hide or separate the wireless effects from 

that of traditional wire-line network. However, they all fail to completely recover from the 

wireless effects [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997; Sinha, Nandagopal, 

Venkitaraman, Sivakumar, & Bharghavan, 1999]. In this Chapter, we propose a new technique 

that utilizes the RNC feedback (RNC-FB) to completely distinguish the wireless packet losses 

form the congestion related losses. 

5.2.1 PROPOSED RNC FEEDBACK MECHANISM 

Previous studies show that minimizing the wireless environment effects could improve the 

TCP performance. In reality, they do optimize the link layer protocols and this in effect improves 

the TCP performance. The actual TCP improvements should be achieved by tuning the TCP 

itself to utilize the available network resources efficiently in both wire-line and wireless 

environments. We propose a scheme that monitors the UMTS network radio interface and 

notifies the TCP sender of any effects caused by the wireless link. The TCP End-to-End 

semantic is maintained but it is modified in order to adapt to the characteristics of the wireless 

environment. 

An IP packet entering the UMTS network is double encapsulated, as shown in Figure 5.6, to 

cross the UMTS network. The GPRS Tunneling Protocol (GTP) sets up the GTP tunnels 

between the GGSN and SGSN. When this packet reaches the RNC node, the original IP 

datagram is obtained at the GTP layer of the RNC protocol stack, shown in Figure 5.7, and 

passed on to the RNC layer for delivery to the destination UE. Our proposed scheme modifies 

the GTP layer of RNC protocol stack in order to be able to monitor the IP datagram flows and 

to extract TCP header information, assuming that the IP datagram is not encrypted. Extracted 

TCP header information is maintained in a cache table and used to observe wireless environment 

effects and prepare the RNC feedback to the TCP sender. The functionality of the GTP layer 

and the required modifications is briefly explained next. 
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Figure  5-6 IP Datagram double encapsulation 

 

Figure  5-7 OPNET representation of RNC node model 

When receiving a packet from the lower layer (UDP Layer), the GTP layer in the RNC 

protocol stack takes one of the two possible actions, depending on the packet types: 
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• If the packet is a GTP signaling message, GTP processes it locally and acts 

accordingly, otherwise decapsulates and forwards the packet to the higher layer. 

• If a packet is delivered by the upper layer (RNC layer), it encapsulates and tunnels the 

packet or directly delivers the packet to the UDP layer if the Iur interface 

implementation is ready. 

We modify the implementations of both GTP encapsulation and decapsulation states in the 

GTP process model shown in Figure 5.8 to generate RNC feedback. 
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Figure  5-8 GTP process model 

GTP encapsulation state is modified to monitor all the packet flows and to maintain a Cache 

Table with the TCP header information, including the TCP connection information to support 

multiple TCP connections. GTP decapsulation state is modified to utilize the cached TCP header 

information to provide RNC feedback to the TCP sender as follows; it monitors all the packet 

flows and uses the Cache Table to detect wireless packet losses. If a wireless packet loss is 

detected, it notifies the TCP sender of this by utilizing the control bit next to the CWR flag in the 

reserved field of the TCP header, called the Radio Network Feedback (RNF) flag. The standard 

TCP should be tuned to accommodate this effect so as to avoid unnecessary congestion window 

reduction and spurious timeouts due to wireless environment effects. 



 

 97 

Impact of transmission errors on TCP reduces the network resource utilization; it forces the 

TCP to reduce the CWND by invoking unnecessary congestion control measures, resulting in 

poor throughput. TCP is modified to accept the RNF control flag and is tuned to perform 

wireless fast retransmit without reducing the congestion window if the RNF flag is set. Wireless 

fast retransmit is triggered when the TCP sender receives two duplicate ACKs with RNF flag set 

to quickly recover from the wireless packet losses. The sooner the fast retransmit occurs, the 

better TCP performs because the TCP recovery phase ends and the congestion avoidance phase 

is entered sooner. It also minimizes the spurious TCP timeouts, resulting in further TCP 

performance improvement. It should be noted that this scheme does not introduce a proxy at the 

RNC node. It requires only the software change at the RNC node and does not add much 

overhead to the RNC node since only the TCP header information is cached. 

5.3 OPNET IMPLEMENTATION OF THE RNC FEEDBACK MECHANISM 

There are eleven states in OPNET implementation of GTP process model shown in Figure 

5.8. Modifications of “GTP DECAP” and “GTP ENCAP” states are required to implement the 

proposed RNC feedback (RNC-FB) scheme. Figures 5.9 and 5.10 show the flow controls for 

modifying the “GTP DECAP” and “GTP ENCAP” states respectively. Note that our 

modification to the “GTP DECAP” state looks only for the IP datagram flow to extract TCP 

header information because the information flow between SGSN and UE is not only data 

packets. There is also some UMTS management frames exchanged between these nodes.  

Actually, before any data flow can happen, first the UE has to complete its GMM GPRS 

attachment with the CN, and then go through packet data protocol (PDP) Context Activation 

with the SGSN node for the Quality of Service (QoS) class of the data flow. 
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Data Packet Arrives

Is RNC-FB 

Supported?

Yes

Get TCP Header 

Info Success?

Yes

Is TCP Data 

Size = 0?

No

Is This in 

Cache Table?

No

Is This in 

Connection 

Table?

No

Yes
Cache the TCP Header Information 

and forward the packet

It is the first packet in this connection, so add 

this to the connection table.

Cache the TCP Header Information and forward 

the packet.

Yes
It is already in the Cached table. 

So, it must be the retransmitted 

packet.

Forward the packet.

Yes
It is not a data packet and could be 

a control packet. We do not have to 

cache this header information.

Forward the packet.

No We cannot extract TCP header 

information.

Forward the packet.

No modification required since 

RNC-FB is not supported.

Forward the packet.

No

Is GTP Payload 

IP datagram?

Yes

It is not IP datagram and must be 
UMTS management frames. So, 
no modification required.
Forward the packet.

No

 

 Figure  5-9 Modifications of “GTP DECAP” state 
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Figure  5-10 Modifications of “GTP ENCAP” state 
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TCP Reno [RFC 2001, 1997], the current de facto standard for TCP, is fine-tuned to minimize 

the wireless effects on its performance by adding the RNF flag into TCP header. When TCP sees 

the ACK with RNF flag set it can confirm that packet is lost and retransmit that packet. 

However, it is tuned to perform wireless fast retransmit on receiving two duplicate ACKs with 

RNF flag set because unnecessary TCP retransmissions will contribute to the waste of valuable 

network resources and significant degradation of TCP end-to-end throughput. Required TCP 

modifications details are not given here because it is the same as the one implemented in Chapter 

4 to enhance the TCP performance over 802.11 WLAN environments. 

5.4 SIMULATION RESULTS AND DISCUSSION 

To demonstrate the effectiveness of our proposed scheme, the UMTS network model shown 

in Figure 5.11 is implemented, in turn, with the standard RNC and the modified RNC process 

model in the RNC protocol stack. The FTP server is configured to generate files of sizes 100 

Kbytes and 2 Mbytes. UEs are configured to download 100 Kbyte FTP files except for one UE 

(UE_1), which downloads 2 Mbyte FTP files and is used for analyzing our simulation results. 

Modified TCP Reno and UMTS RNC with their default parameters [OPNET Technologies 

Inc]are used in all simulation scenarios. An extract of the TCP Reno and UMTS RNC parameter 

values are given in Table 5.1 and 5.2 respectively. 

 

Figure  5-11 UMTS network model 
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Table  5-1 TCP Reno parameters 
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Table  5-2 UMTS RNC parameters 

Wireless packet drops are generated in user equipments (UEs) using a uniform probability 

distribution as explained in Figure 4.22 (Section 4.4.2). 

 

5.4.1 SCENARIO 1 RESULTS AND OBSERVATIONS 

Extensive simulations were run to obtain the TCP mean throughput value with less than 5% 

error margin. Figures 5.12 and 5.13 show the number of dropped packets, number of cached 

TCP headers and the TCP CWND size response of the proposed scheme and that of the 

standard TCP over UMTS model for packet drop rates of 2% and 5% respectively. Figure 5.14 

compares the TCP sent segment sequence number performance of our proposed scheme with 

that of the standard UMTS for different packet drops rate. In Figures 12 and 13, it is seen that 

our proposed scheme, with the aid of RNC-FB, significantly increases the TCP congestion 

window size; it recovers most of the wireless packet losses and minimizes the number of spurious 

timeouts by early triggering the enhanced wireless fast retransmit and recovery algorithm. 
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Figure  5-12 TCP CWND, dropped and cached packets 
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Figure  5-13 TCP CWND, dropped and cached packets 
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Figure  5-14 TCP sent segment size number 

From the TCP performance summary, shown in Table 5.3, it is also observed that our 

proposed scheme significantly improves the TCP performance with high packet error rates. The 

number of cached TCP headers, in Figures 5.12 and 5.13, shows that our proposed scheme adds 

very little overhead to the RNC process model. Since the TCP header information is cached at 

the RNC, it can also be used to provide additional performance enhancement by freezing the 

TCP to handle TCP timeouts caused by either handoffs or by temporary wireless disconnections. 
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Table  5-3 Summary of TCP performance 

5.4.2 SCENARIO 2 RESULTS AND OBSERVATIONS 

 
This scenario is designed to see the effects of using TCP Reno with the SACK option enabled 

on our proposed scheme. Figure 5.15 compares the number of dropped packets, number of 

cached TCP headers and the TCP CWND size response of our proposed scheme with and 

without the SACK option enabled for a 10 % packet drop rate. Figure 5.16 compares the TCP 

sent segment sequence number response of TCP Reno with and without the SACK option 

enabled for different packet drops rate. In Figure 5.15, it is seen that TCP Reno with SACK 

option enabled performs much better than does TCP Reno with the SACK option disabled. 

However, with the packet drop rates of 2% and 10 %, its performance seems to be similar to that 

with the SACK option disabled. This effect is shown in Figure 5.16.  
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Figure  5-15 TCP CWND, dropped and cached packets 
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Figure  5-16 TCP sent sequence number 

Figure 5.17 shows the total number of RNC down-link packets for WLAN standard, WLAN 

with RNC-FB with and without the SACK option enabled for different packet drops rate. It can 

be seen that the RNC-FB without the SACK option better utilizes the wireless resources, 

compared to that of RNC-FB with the SACK option, with higher packet drops rate. The SACK 

option will also add additional bytes to the TCP header, thereby reducing the TCP throughput. 



 

 109 

 

Figure  5-17 Total number of RNC down-link packets 

5.5 CONCLUSIONS AND FUTURE WORK 

We have proposed and implemented a RNC-FB mechanism in the UMTS network model and 

run simulation studies to validate the model by comparing its performance with that of the 

standard TCP over UMTS model. The simulation results showed that the RNC-FB mechanism 

significantly improved the TCP performance compared to that of standard TCP over UMTS. 

Specifically, the RNC-FB scheme recovered most of the wireless packet losses and minimized the 

number of spurious timeouts by early triggering of the enhanced wireless fast retransmit and fast 

recovery algorithm, introduced in TCP Reno as a modification to accommodate this effect. 

Utilizing one of the reserved control flags (RNF) enabled the TCP sender to successfully 

distinguish wireless packet losses from losses due to congestion, thereby avoiding unnecessarily 
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invocation of the congestion control mechanism, resulting in a higher TCP performance. A 

minimal modification to the standard TCP is required while maintaining its End-to-End 

semantics. 

The effect of using TCP Reno with the SACK option was also investigated. It was found that 

our proposed scheme with the TCP Reno SACK option enabled performs better than with the 

SACK option disabled when the packet drops rate is moderate. Otherwise, RNC-FB without the 

SACK option better utilizes the network resources. 

The size of the cache table required to record TCP headers is quite small and so would not 

add significant overhead to the RNC process. The TCP header information cached at the RNC 

can also be used to provide additional performance enhancement by freezing the TCP sender to 

handle timeouts caused by either handoffs or by temporary wireless disconnections. We are 

currently investigating the effect of freezing TCP during handoffs on UMTS network 

performance and also implementing the RNC-FB scheme with other TCP flavors to investigate 

whether they, too, would benefit from it. 
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C h a p t e r  V I .   

 

6. TCP Enhancement over Wireless Links by 

Minimizing Spurious TCP Timeouts 

 

In this Chapter, we analyze the adverse effect on the network performances due to the 

spurious TCP timeouts and motivate the requirements for improving the TCP congestion 

control to be able to distinguish spurious timeouts form the traditional timeouts and to behave 

accordingly. In Section 6.1, we propose a mechanism called wireless enhancement proxy 

(WENP) that provides radio network feedback to the TCP sender with the aid of two of the 

TCP header reserved bits. WENP extends our proposed schemes in Chapters 4 and 5 to detect 

packet loss and large delay across the wireless link and to notify the TCP sender of these events 

with the aid of two reserved bits in the TCP header. The WENP is implemented in both 802.11 

WLAN and UMTS networks and the TCP performance over the WLAN and UMTS networks 

with and without the wireless timeout detection are explained and compared in Section 6.2 and 

6.3, respectively. At last, we draw our conclusions and present the guidelines for further 

improvement in Section 6.4. 

Delay spikes are defined as a sudden and significant change in the RTT between a TCP sender 

and its receiver. High delay variability has also been observed in fixed wired networks and can be 

caused, for example, by route flipping [M. Allman & V. Paxson]. In wireless networks on the 

other hand, the delay variability can be attributed to several factors, most notably the time-

varying quality of the wireless link and the hand-off delay. Large and sudden variations in packet 

transmission delays are often unavoidable in wireless networks. Such large delays are likely to 

exceed the typical TCP round trip time value. A retransmission timer is a prediction of the upper 

limit of the RTT. In common TCP implementations, an adaptive retransmission timer accounts 

for RTT variations [Jacobson, 1988]. A spurious timeout occurs when the RTT suddenly 

increases to the extent that it exceeds the retransmission timer that had been determined priori. 

On a spurious timeouts, TCP assumes that all outstanding segments are lost and retransmits 

them unnecessarily by entering into the slow-start phase. 
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Spurious TCP timeouts have major impact on congestion control [A. Gurtov & Ludwig]; on 

one hand, the CWND and the slow-start threshold are reduced unnecessarily after a spurious 

timeout as no data loss has been yet detected that would otherwise indicate congestion in the 

network. On the other hand, TCP makes an assumption that all outstanding segments were lost 

and left the network. In fact, they are likely to be still located in the bottleneck queue. Therefore, 

Go-back-N retransmissions performed in slow-start phase lead to aggressive sender behavior. 

That is, while the original transmissions are draining from the queue, the transmission get twice 

the link rate assuming the receiver generates an ACK for each segment received. This behavior 

violates the packet conservation principle [Jacobson, 1988] and cause real packet loss due to 

congestion [R. Ludwig & R. H. Katz]. 

Delay spikes have been observed and measured independently in [Gurtov, Passoja, Aalto, & 

Raitola, 2002], [Korhonen, Aalto, Gurtov, & Lamanen, 2001] and [Yavuz & Khafizov, 2002]. 

The effects of large delays and delay variability on the TCP behavior have been investigated in 

[Shaojian, Atiquzzaman, & Ivancic, 2002] and [A. GURTOV]. Particularly, it is shown that sudden 

increase in the delay may lead to spurious TCP timeouts that makes the TCP sender enter into 

slow-start, leading to a low throughput. 

TCP Eifel [R. Ludwig & R. H. Katz] solves the retransmission ambiguity by using time stamp 

option. It can successfully discriminate spurious timeout and normal timeout, but the time stamp 

option requires additional 12 bytes in the TCP header, resulting in increased overhead in 

bandwidth constrained wireless networks. In addition, TCP Reno with Eifel experiences 

performance degradation on the path with sudden delay accompanied by multiple packet losses 

within one window of data. In this case, resuming the transmission of unsent data can cause 

multiple timeouts. How to continue with the congestion control when detecting spurious TCP 

timeouts still remains as research issues. 

6.1 PROPOSED WIRELESS TIMEOUT DETECTION SCHEME 

We propose a mechanism called wireless enhancement proxy (WENP) that provides radio 

network feedback, in the form of wireless packet loss and wireless timeout, to the TCP sender. 

WENP extends our proposed schemes in Chapters 4 and 5 to detect both the packet loss and 

large delay increase across the wireless link and to notify the TCP sender of them with the aid of 

two reserved bits, called wireless loss notification (WLN) and wireless timeout notification 

(WTN), in the TCP header, as illustrated in Figure 6.1. 
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Figure  6-1 TCP header with WLN and WTN reserve bits 

Figure 6.2 shows the WENP process model. The MONITOR DATA state and MONITOR 

ACK state are used to record the arrival times of data packets and their corresponding ACKs at 

the base station in order to measure the wireless round trip time (W-RTT) and to detect wireless 

timeouts with the aid of a timer, similar to the standard TCP retransmission timer, which times 

out when acknowledgements are not received in time across the wireless link. WENP modifies 

the TCP Connection Table data structure and the Global structure for Cache Table defined in 

Chapter 4 and Chapter 5, as shown in Figures 6.3 and 6.4 respectively, to be able to detect both 

the wireless packet loss and large delay across the wireless link. 

 

Figure  6-2 WENP process model 
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Figure  6-3 TCP Connection Table Data Structure 

 

Figure  6-4 Global Structure for Cache Table 

Note that the variable time_rcvd in the Global structure for Cache Table holds the actual time 

the data packet received and is used to measure the W-RTT on receiving an ACK for that packet. 
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WENP measures the W-RTT only if a packet is successfully acknowledged, i.e., on receiving a 

new ACK, as the standard TCP does. The MONITOR ACK state is designed to calculate the 

wireless RTT (W-RTT) and the wireless RTO (W-RTO) as explained in the following Section. 

6.1.1 WIRELESS RTT MEASUREMENT 

A pseudo code for measuring W-RTT is shown in Figure 6.5. W-RTT measurement and the 

update of wireless timeout value is based on Karn’s algorithm [P. Karn & C. Partridge, 1995]. 

Note that Karn’s algorithm restricts retransmission timeout updates for retransmitted segments 

in order to avoid retransmission ambiguity. The reason is that if the RTT measurement is based 

on the actual transmission time of the original packet, the RTT estimate may be too pessimistic. 

If the RTT measurement is based on the transmission time of the most recent retransmitted 

packet may result in too pessimistic estimate [Fu & Atiquzzaman, 2005]. WENP restricts W-RTT 

measurement not only for the retransmitted packet but also for the packets that are being 

acknowledged after a packet loss recovery by utilizing get_wrtt_enable variable that is set as 

shown in Figure 6.6. 

 

Figure  6-5 A pseudo code for measuring W-RTT 
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ACK Arrives

Is this a new 

ACK?

Yes

No

This is a duplicate 

ACK.

Reset get_wrtt_enable;

Is 

get_wrtt_enable 

set?

No

This ACK arrives after 

recovery of a lost 

packet. We should 

avoid W-RTT 

measurement in this 

case because the 

measurement may be 

too pessimistic.

Set get_wrtt_enable;

This ACK acknowledges the data without 

waiting for any delayed or out of order packet 

arrivals at TCP receiver. Update the W-RTT.

get_wireless_RTT()

Yes

 

Figure  6-6 Setting get_wrtt_enable variable 

On receiving a data packet from the TCP sender, WENP caches the TCP header, updates the 

TCP Connection Table and sets a timer for this data packet, with the timeout value obtained as 

shown in Figure 6.5. The timer expires when an excessive delay is experienced over the wireless 

link. When this timer expires, WENP enters into the TIMEOUT state that sends a duplicate 

ACK packet to the TCP sender with WTN flag set and backs off the timer as the standard TCP 

does. The feedback ACK packet with the WTN flag set enables the TCP sender to distinguish 

spurious timeouts from normal timeouts. Note that the TCP Connection Table Data Structure 

holds the last acknowledged packet for each TCP connection. In the event of a wireless timeout, 

this ACK packet is used by the TIMEOUT state to prepare and send a feedback packet.  

The RTT across the wireless link, which has just one hop, will be short and retransmissions 

due to packet corruption make W-RTT fluctuate considerably. It is important not to inject many 

feedback packets into the network because this may cause a negative impact on the TCP 

performance. In fact, WENP does not inject any additional packet into the network when it 

detects wireless packet loses, rather it sets the WLN flag. In the case of wireless timeout 

detection, WENP does inject feedback packets into the network but limited to only one packet 

per a window of data. 
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6.1.2 REQUIRED TCP CONGESTION CONTROL MODIFICATIONS 

In a standard TCP implementation, the TCP sender concludes that the network has dropped a 

packet when it receives three duplicate ACKs. It then immediately retransmits the dropped 

packet in order to avoid the expiry of the retransmission timer. The rationale is that the sooner 

the fast retransmit occurs, the better TCP performs because it avoids unnecessary TCP timeouts. 

WENP enables the TCP sender to confirm a wireless packet loss when it receives an 

acknowledgement with the WLN flag set. As proposed in Chapters 4 and 5, the standard TCP is 

fine tuned to retransmit the packets dropped across the wireless link without reducing the 

congestion window when it receives just two duplicate ACKs with the WLN flag set. 

Another new feature added to the standard TCP enables the system to distinguish spurious 

timeouts from normal timeouts. Recall that WENP utilizes the last acknowledged packet that was 

cached in its Connection Table to send a feedback packet to the TCP sender with WTN flag set 

when its timer expires, indicating a large delay across the wireless medium. When the timer 

expires, WENP sets the WTN flag only if it determines that it has received packets form the TCP 

sender since it has last acknowledged a packet. This confirms that no timeout occurred in the 

wireline part of the network and so avoids misinterpreting a normal timeout as a wireless 

timeout. Now, if the TCP sender receives duplicate ACK with the WTN flag set, it should 

consider the following cases to decide how to proceed with the transmission: 

• If both WTN and WLN flags are set, it indicates that TCP sender has already received a 

duplicate ACK with only the WLN flag set. Now it has received the second duplicate 

ACK as a result of wireless timeout. It implies that there is a packet flow exists across the 

wireless link, but has experienced a sudden large delay. This is the cause for spurious TCP 

timeout. In this case, TCP sender is modified to trigger wireless fast retransmit without 

reducing the congestion window. 

• If only the WTN flag is set, it indicates that the wireless link is congested. In this case, it 

is highly possible that multiple packets are lost across the wireless link or even at the base 

station due to buffer overflow. Considering the wireless link is also a part of the network, 

we treat this case as congestion in the network and leave TCP to handle it using its 

standard fast retransmit and recovery mechanism or its timeout recovery mechanism, 

depending on the way the packet loss is detected. 
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6.2 EXPERIMENT - 1: 802.11 WLAN NETWORK WITH THE PROPOSED SCHEME  

The network model used for this study is shown in Figure 6.7. The LAN is extended using a 

WLAN Ethernet router that forms a WLAN together with some mobile hosts (MHs). 

 

Figure  6-7 WLAN network model 

The model consists of two Servers and some fixed hosts and mobile hosts. Servers and fixed 

hosts are connected to the WLAN router through switches using 10baseT point-to-point link 

model. Servers are equipped with modified TCP Reno while the WENP is introduced between 

the MAC and IP layer of the WLAN Router. The Application and the Profile Configuration 

nodes are configured to generate different applications such as HTTP, FTP Database and Email. 

LAN Network 
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Fixed hosts are configured to utilize some of these services in parallel with MHs in order to make 

the network analyzes be realistic. 

All MHs are configured to download 1.6 MByte FTP files simultaneously with different 

packet drops rate as shown in Table 6.1. All MHs download FTP files from Server 1 while the 

FHs download different applications from both Servers 1 and 2. Data Packets coming from FTP 

Servers are dropped in MHs, at the MAC layer, using a uniform probability distribution. The 

MAC layer is modified to generate bursty packet drops, as illustrated in Figure 4.22, so that the 

base station will perform its local retransmission and discard the packets once the threshold 

number of retry limit reaches. The packets that experience base station local retransmission 

before get successfully transmitted will imitate characteristics of wireless links, thereby impacting 

the End-to-End RTT. 

 

Table  6-1 MHs configurations 

The WLAN Router is implemented, in turn, with a standard WLAN, a WLAN with Snoop 

and a WLAN with WENP to compare their relative performances. Modified TCP Reno with the 

default parameters  is used in all simulation scenarios. Selected WLAN and TCP Reno parameter 

values are given in Tables 6.2 and 6.3, respectively. 



 

 120 

 

Table  6-2 WLAN parameters 
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Table  6-3 TCP parameters 

6.2.1 SIMULATION RESULTS AND DISCUSSION 

Figure 6.8 shows TCP CWND size, number of MAC packets dropped and number of cached 

TCP headers while Figure 6.9 shows the W-RTT measurements during FTP file upload, with 

different packet drops rate, with the proposed scheme. From Figure 6.8, it can be seen that 

WENP adds little overhead to the WLAN Router and has successfully recovered from most of 

the wireless packet losses and minimized the number of spurious timeouts by early triggering the 

enhanced wireless fast retransmit and fast recovery algorithm. However, it can be observed that 

the WENP experienced a few TCP timeouts with higher packet drops rate. It can be attributed to 

the TCP Reno’s inability to recover form multiple losses within a window of data. It should also 
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be noted that if a retransmitted packet is dropped, it can only be recovered by the TCP timeout 

process. 

 

Figure  6-8Responses during MH-3 FTP file upload 

As expected, W-RTT measurement, shown in Figure 6.9, was obtained using the cached table 

seems to fluctuate. However, it helps WENP to detect wireless timeouts and enables the system 

to minimize the spurious TCP timeouts, thereby further improving the TCP performance. 
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Figure  6-9 W-RTT measurement 

Notice that WENP is designed to improve the TCP performance without changing its original 

behavior. For example, TCP Reno cannot recover from multiple packet losses within a window 

of data. This effect can be observed in Figures 6.8. 

 Figures 6.10 and 6.11 compare the TCP CWND history and TCP sent segment sequence 

number responses, respectively, for the different cases. It is seen that the proposed scheme 

significantly improves the TCP performance in comparison with the standard WLAN both 

without and with the Snoop protocol. 
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Figure  6-10 TCP CWND size responses 

The WENP implementation with only wireless packet loss detection is also included to show 

the effects of wireless timeouts on TCP performance. From Figures 6.10, it can be observed that 

TCP CWND size response of WENP without wireless timeout detection experiences more 

timeouts with higher MAC packet drops rate. However, WENP equipped with the timer helps 

TCP to minimize unnecessary spurious TCP timeouts, thus providing further enhancement to 

TCP performance. 
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Figure  6-11 TCP Sent Segment Sequence Number responses 

The average WLAN throughput and WLAN delay responses shown in Figure 6.12  indicates 

that WENP has efficiently utilized the available wireless resources by adapting to the wireless 

channel characteristics. It should also be noted that the Snoop performance was degraded. This 

can be attributed to Snoop’s inability to synchronize with the TCP sender in order to be able to 

avoid unnecessary spurious TCP timeouts and competing for retransmissions. WENP adds much 

less overhead to the base station than Snoop does because it only caches the TCP header 

information. It thereby improves the WLAN delay response as well. 
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Figure  6-12 WLAN throughput and Dealy (sec) responses 

Table 6.4 summarizes the total TCP throughput performance during the FTP file upload with 

different packet drops rate with 5% error margin. Notice that we run this simulation, by allowing 

all mobile hosts to drop MAC packets with the same rate, in order to see how the proposed 

scheme utilizes the available network resources. From Figures 6.10 and 6.11, and Table 6.4, it can 

be seen that the proposed scheme recovered from wireless effects by early triggering of the 

enhanced fast retransmit and recovery mechanism, better utilized the available network resources 

and has dramatically increased the TCP throughput compared to that of the standard WLAN, 

both without and with the Snoop protocol. 
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Table  6-4 Summary of TCP throughput performacne 

6.2.2 CONCLUSIONS 

A new scheme, WENP, was presented that detects and distinguishes wireless packet losses 

and wireless timeouts from congestion related packet losses and timeouts. WENP was 

implemented in a WLAN model in OPNET with modified TCP Reno as the transport protocol. 

Simulation results showed that WENP improved the TCP performance significantly compared to 

that of both the standard WLAN and a WLAN with Snoop. It enabled the modified TCP to 

trigger enhanced wireless fast retransmit and fast recovery mechanisms to recover from wireless 

packet losses sooner using the WLN flag. 

WENP also implemented a timer that detects wireless timeouts and enables the TCP sender 

to avoid spurious TCP timeouts with the aid of both the WTN and WLN flags, further 

enhancing the TCP performance. Simulation results also showed that WENP can handle multiple 

TCP connections and utilized the available network resources efficiently by adapting to the 

network characteristics. WENP does not inject any additional packet into the network to provide 

feedback when it detects wireless packet loses; it only sets the WLN flag. In case of wireless 

timeout detection, WENP does inject feedback packets into the network but limited to only one 

packet per a window of data. 
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6.3 EXPERIMENT 2: UMTS NETWORK WITH THE PROPOSED SCHEME  

The proposed scheme WENP is implemented in UMTS RNC protocol stack as described in 

Section 5.3. Specifically, the GTP layer in the RNC protocol stack is equipped with WENP, as 

shown in Figure 6.13, to detect and notify the TCP sender of any wireless loss or wireless 

timeouts. The detection of wireless packet losses and wireless timeouts are the same as explained 

in Section 6.1.  
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Figure  6-13 GTP process model with WENP 

To demonstrate the effectiveness of our proposed scheme, the UMTS network model shown 

in Figure 6.14 is implemented, in turn, with the standard RNC and the modified RNC process 

model in the RNC protocol stack. The FTP server is configured to generate FTP files of 100 

Kbytes, 500 Kbytes and 1 Mbytes. User equipments are configured to download FTP files with 

packet drops, generated using a uniform probability distribution function, as described in Table 

6.5. Modified TCP Reno and UMTS with their default parameters [OPNET Technologies Inc] 

are used in all simulation scenarios. Selected UMTS RNC parameter values are given in Table 6.6. 

 

Table  6-5 Mobile host configurations 
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Table  6-6 Selection of UMTS parameters 

 

Figure  6-14UMTS network model 
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6.3.1 SIMULATION RESULTS AND DISCUSSION 

Extensive simulations were run to get the mean TCP throughput with less than 5% error 

margin. Figures 6.15 shows the results of W-RTT measurement, number of cached TCP headers, 

number of dropped packets, and the TCP CWND size response of our proposed scheme and 

that of the standard TCP over UMTS model for packet drop rates of 6%. Notice that our 

scheme without the wireless timeout detection is also included to show the effect of spurious 

TCP timeouts. It can be observed that the proposed scheme has quickly recovered from both 

wireless loss and wireless timeouts; it has experienced only one TCP timeout and it can be 

attributed to the standard behavior of TCP Reno itself. As expected, one can see considerable 

fluctuations of WRTT. However, it helps WENP to detect wireless timeouts and enables the 

system to minimize spurious TCP timeouts, thereby further improving the TCP performance. 

It can also be seen that there is a maximum of 16 TCP header information items cached 

during the transmission period, which adds very little overhead to the RNC process model. Since 

the TCP header information is cached at the RNC, it can also be used to provide additional 

performance enhancement by freezing TCP to handle TCP timeouts caused by handoffs. 

Figures 6.16 compares the TCP CWND size responses of the proposed scheme with that of 

the standard UMTS for different packet drops rate. It can be seen that the proposed scheme, 

WENP, significantly increases the TCP CWND size; it has recovered most of the wireless packet 

losses and has reduced the number of spurious timeouts by early triggering the enhanced wireless 

fast retransmit and recovery algorithm. However, it can be noted that even with the proposed 

scheme, TCP timeouts occurred at higher packet drops rate. This can be attributed to the TCP 

Reno’s inability to recover from multiple losses within a window of data. It should be noted that 

if a retransmitted packet is dropped, it can only be recovered by the TCP timeout process. 
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Figure  6-15 W-RTT, cached and dropped packets and TCP CWND 
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Figure  6-16 TCP CWND size responses 

The performance of the proposed scheme with and without SACK option enabled is also 

implemented in this UMTS model and it was found that the SACK option enabled does not have 

any impact on the proposed scheme. It can be seen from Figure 6.17, which shows comparisons 

of TCP sent segment sequence number responses for different packet drops rate. 
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Figure  6-17 Comparisons of TCP sent segment sequence number responses 

From the TCP performance summary, shown in Table 6.7, it is observed that the proposed 

scheme significantly improves the TCP throughput with high packet error rates. However, the 

rate of improvement is not proportional to the packet drops rate since wireless error recovery 

mechanism not only depends on the proposed scheme but also on the TCP Reno behavior; the 

TCP Reno cannot recover form multiple losses within a window of data. The average UMTS 

Node-B throughput shown in Figure 6.18 indicates that the proposed scheme has utilized the 

available wireless network resources efficiently. 
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Table  6-7 TCP performance summary 

 

Figure  6-18 UMTS Node B throughput 

6.3.2 CONCLUSIONS AND FUTURE WORK 

 
We proposed a modified TCP Reno with a WENP mechanism and implemented it in a 

UMTS network modeled in OPNET. Extensive simulation studies were undertaken to compare 
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its performance with that of the standard TCP Reno over UMTS implementation. The 

simulation results showed that the new WENP scheme significantly improved the TCP 

performance compared to that of standard scheme. Specifically, the new scheme enabled 

recovery of packets lost in wireless medium, and reduced the number of spurious timeouts, by 

allowing the TCP sender to successfully distinguish wireless losses from congestion-related 

losses. 

The modification to the standard TCP to early detect wireless packet loss and spurious TCP 

timeouts help the system to quickly recover form transmission errors and to utilize the network 

resources efficiently. The effect of using modified TCP Reno with the SACK option with the 

proposed scheme was also investigated. It was found that the proposed scheme with the TCP 

Reno SACK option enabled does not have any impact on the proposed scheme. 

The size of the cache table required to record TCP headers is quite small and so would not 

add significant overhead to the RNC process. The TCP header information cached at the RNC 

can also be used to provide additional performance enhancement by freezing the TCP sender to 

handle timeouts caused by handoffs. 
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C h a p t e r  V I I .   

 

7. TCP Performance Improvement over Wireless 

Networks via Early Packet Loss Recovery  

 

In this Chapter, we propose a new technique that enables the TCP to early detect packet 

losses, which cannot be detected and retransmitted using the standard fast retransmit mechanism, 

and to quickly retransmit those packets without waiting for a timeout to occur, thereby 

improving TCP performance. Early Packet Loss Recovery (EPLR) is achieved by considering the 

expected number of acknowledgements and the number of packets in a flight during the fast 

retransmit phase of the TCP mechanism. It adds a new flavor to the TCP fast retransmit and 

recovery mechanism without requiring any other modification to the standard TCP 

implementation. 

We analyze the standard TCP implementations and outline their inability to recover from 

multiple packet losses within a small window of data, which is highly likely in wireless 

environments in Section 7.1. The proposed EPLR scheme, which modifies the TCP Reno to 

handle multiple losses within a window of data, and its implementation details are given in 

Sections 7.2 and 7.3 respectively. In Section 7.4, the proposed scheme is implemented over a 

UMTS network and extensive simulation studies are carried out to compare its performance with 

that of both TCP Reno and TCP New Reno. Based on the simulation results and the analysis, we 

draw our conclusion in Section 7.5. 

7.1 THE STANDARD TCP MULTIPLE PACKET RECOVERY MECHANISM  

There are many TCP flavors, such as Tahoe [Jacobson, 1988], Reno [Jacobson, January 1995], 

New Reno [S. Floyd & Henderson, April 1999] and SACK [Mathis .M, Mahdavi .J, Floyd .S, & 

Romanow .A, April 1996], which differ in how they react to packet loss. A packet loss is detected 

either by the arrival of three duplicate ACKs or the absence of an ACK for the packet within the 

retransmission timeout. All TCP implementations reset CWND after the retransmission timeout 

expiration to one MSS. However, they may proceed differently after duplicate ACKs are received. 
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The missing segment is always retransmitted immediately, but transmission of new or 

unacknowledged data depends on the selected TCP flavor. Consider a scenario illustrated in 

Figure 7.1, where packets PN, PN+4 and PN+5 are lost while there is F number of packets in the 

flight. 

 

Figure  7-1 A flight of data in the network 

 TCP Tahoe [Jacobson, 1988] retransmits the lost packet PN and enters into slow-start phase, 

setting its CWND to one MSS. The next ACK that acknowledges the packets up to PN+3 allows 

the sender to increase its CWND to two MSS and resend the packets PN+4 and PN+5. The ACK 

for PN+4 increases the sender’s CWND to three MSS and packets PN+6 and PN+7 can be sent. The 

ACK for PN+5 acknowledges packets up to PN+F-1. The sender then continues transmitting new 

data. Notice that the packets PN+6 and PN+7 are unnecessarily retransmitted, assuming F > 7, and 

TCP Tahoe recovers from the packet losses within a window of data without retransmission 

timeout expiration.  

TCP Reno [Jacobson, January 1995] retransmits the lost packet PN and enters into fast 

recovery phase, setting its CWND to (F/2 + 3) times MSS. The sender then continues receiving 

more duplicate ACKs and increases its CWND by one MSS for each ACK. The ACK for 

retransmitted packet PN takes the sender out of fast recovery and the CWND is set to F/2 times 

MSS. The sender then waits for another three duplicate ACKs to retransmit the packet PN+3. If 

the sender receives three duplicate ACKs, it will retransmit the packet PN+3 otherwise, it has to 

wait for the retransmission timer to expire. This increases the application response time 

considerably. 

TCP New Reno [S. Floyd & Henderson, April 1999] retransmits the packet PN , resets the 

CWND and enters into recovery phase as it does in Reno. The process then continues receiving 

more duplicate ACKs and increases its CWND by one MSS for each received ACK. Unlike in 

Reno, the ACK for the retransmitted packet PN does not take New Reno out of the recovery 

process. Partial ACKs add one MSS to CWND and decrease it by the amount of acknowledged 

data. Notice that during the fast recovery process, it retransmits the unacknowledged data packets 
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whenever it receives a partial ACK without waiting for the three duplicate ACKs to arrive, which 

allows the process to resend the packets PN+4 and PN+5. 

TCP SACK [Mathis .M, Mahdavi .J, Floyd .S, & Romanow .A, April 1996], similar to the 

flavors explained above, retransmits packet PN using the fast retransmit algorithm. However, it 

uses a different approach to determine when and which packets are sent out during fast recovery. 

It calculates the amount of in-flight data based on selective acknowledgements that it has 

received. Data can be sent only if the amount of outstanding data is lower than the size of the 

CWND. Because it has information about which packets were received, it is able to resend only 

missing segments and then continues with transmission of unsent data. 

7.1.1 SUMMARY OF TCP VARIANTS IN MULTIPLE LOSS RECOVERY 

TCP Tahoe can successfully recover from multiple losses within a window of data, assuming 

the retransmitted segments are not lost. However, the assumption it makes that all outstanding 

segments are lost on receiving three duplicate ACKs leads to unnecessary retransmissions and 

inefficient use of valuable network resources. TCP Reno introduces a major improvement over 

TCP Tahoe by changing the way it reacts to detecting a packet loss through duplicate ACKs 

when a single packet is dropped from a window of data, but still suffers from performance 

problem when multiple packets are dropped from a window of data. TCP New Reno adds 

further improvements to the TCP Reno to be able to recover from multiple losses within a 

window of data. However, it can retransmit only one packet per RTT, thereby reducing the 

throughput performance and increasing the application response time. TCP SACK, on the other 

hand, can recover from multiple losses from a window of data, but requires additional bytes in 

the TCP header, resulting in increased overhead in bandwidth constrained wireless networks. 

7.2 THE PROPOSED EPLR SCHEME 

The proposed EPLR scheme takes the number of packets in a flight as the system metric to 

quickly fast retransmit the dropped packet that can only be recovered by TCP timeout with the 

existing fast retransmit and recovery algorithms, such as Reno and New Reno. 

Let CWND be W, the number of dropped packets be N, where N ≥ 1, LI be the dropped 

packets within that window of data, as shown in Figure 7.2, DI be the number of packets from LI 

to PW and the flight size be F. Number of packets can be recovered by TCP fast retransmit and 

recovery algorithms depend on W, N and DI. The TCP sender can only transmit new packets if 



 

 139 

minimum of the CWND and the receiver window is grater than F, defined as the amount of data 

that has been sent but not yet acknowledged. We assume that the receiver window is bigger than 

W for the ease of analysis. 

 

Figure  7-2 A window of data with multiple packet drops 

7.2.1 TCP RENO CONGESTION WINDOW ANALYSIS 

7.2.1.1 One packet recovery 

In order to recover the first dropped packet, it requires that W ≥ N+3. During this recovery 

process, there can be up to W/2-N number of new packets transmitted, causing the flight size F 

to grow from W to 3W/2-N. On receiving the ACK for the retransmitted packet L1, F will be 

equal to D2 + (W/2-N) and CWND is set to W/2.  

7.2.1.2 Two packets recovery 

Notice that on receiving the first partial ACK, there can be maximum of one new packet 

transmitted if and only if N-D2 = 1. It makes F = CWND = W/2. Assuming it is not the case, 

there will be only W/2-N number of packets to be acknowledged out of (D2+W/2-N) number of 

packets in the network. It requires W ≥ 2(N+3) to be able to recover the second dropped packet. 

During this recovery process, (W/4 - D2) number of new packets can be transmitted, provided 

W/4 > D2. On receiving the ACK for the retransmitted packet L2, F will be equal to D3 + (W/2-

N)+(W/4–D2), and CWND is set to W/4. 

7.2.1.3 Three or More packets recovery 

Third packet recovery requires W/4-D2 ≥ 3 and allows (W/8- D3) number of new packets to 

be transmitted, provided W/8 > D3. It can be generalized that it requires (W/2N-1-DN-1 ≥ 3) to 

recover form the Nth packet, provided (N-1)th packet is recoverable and N > 2. 
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7.2.2 TCP NEW RENO CONGESTION WINDOW ANALYSIS 

TCP New Reno only requires W ≥ N+3 to initiate the fast retransmit and recovery 

algorithms. Because, once entered into the recovery phase, it can recover from multiple packet 

drops within a window of data by retransmitting the unacknowledged packets whenever it 

receives a partial ACK. 

7.2.3 INTUITION BEHIND THE PROPOSED SCHEME 

In order to proceed with packet transmissions, dropped packets must be retransmitted as 

quickly as possible. TCP Reno and New Reno fast retransmit and recovery algorithms are well 

defined and designed to handle this effect. However, they fail to consider situations where the 

fast retransmit and recovery algorithms cannot be even initiated.  

• If the CWND size is less than or equal to the duplicate acknowledgement threshold, 

which is normally assigned to be three, either the TCP Reno or New Reno cannot even 

initiate the fast retransmit and leave this packet to be recovered by means of TCP 

timeout process. 

• TCP Reno cannot initiate the fast retransmit to recover from multiple packets if CWND 

< 10. 

Our insight is that if the congestion window size or the expected number of duplicate 

acknowledgement packets is too small to initiate the fast retransmit, it must be handled 

separately. 

We modify the TCP Reno fast retransmit algorithm in order to recover from up to two 

packets within a window of data if CWND is too small to initiate the fast retransmit. Now, it 

comes to deciding when to retransmit the unacknowledged packet. Clearly, the TCP sender 

cannot confirm a received duplicate ACK was due to packet loss because packets in a flight could 

take different route and reach the destination out of order. Given the number of packets in a 

flight is F and is equal to the CWND, we can safely assume that a packet is dropped if the sender 

receives (F–1) number of duplicate ACKs and allow the sender to quickly retransmit that packet 

if the flight size is too small to initiate the fast retransmit and recovery algorithms. However, due 

to the sender’s inability to confirm the packet loss, we decide to allow the sender to transmit a 

new data packet by increasing the CWND by one MSS. It enables the sender to receive threshold 
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number of duplicate ACKs and either to fast retransmit the lost packet if a third duplicate ACK 

is received or to continue transmitting new data if a non duplicate ACK is received. This will 

considerably increase the TCP throughput and application response time while minimizing the 

number of TCP timeouts. 

7.3 IMPLEMENTATION DETAILS OF THE PROPOSED SCHEME 

TCP Reno is optimized for the case when a single packet is dropped within a window of data 

[Fall & Floyd, 1996] and is the most widely used TCP implementation in the Internet today 

[Dongkyun, Hanseok, Jeomki, & Cano, 2005]. The proposed scheme modifies the TCP Reno 

fast retransmit and recovery algorithm to recover form multiple losses within a window of data. 

Figure 7.3 shows the CWND evolution during the first packet recovery where three packets are 

dropped from a window of data. Note that the flight size F on receiving the first partial ACK is 

(D2+W/2– 3) even though the CWND is set to W/2. New packets can only be transmitted if the 

CWND is grater than the flight size. 

 

 

Figure  7-3 CWND evolution during the fist packet recovery 

In order to recover the next dropped packet within that window, the new transmitted packets 

should be greater than three, which is the duplicate ACK threshold to trigger the fast retransmit 

and fast recovery algorithm. The proposed scheme uses the number of newly transmitted packets 

during the fast recovery process as the system metric and based on this, it allows the TCP sender 

to transmit new packets that will enable the system to receive threshold number of duplicate 

ACKs. This way multiple packets can be recovered without waiting for the TCP timeout to 

occur. 

Figure 7.4 shows the flow control for EPLR ACK processing. Notice that the inflating the 

CWND size during the fast recovery phase plays an important role in the process of recovering 

multiple packets from a window of data. However, it is the successful retransmissions of the 



 

 142 

dropped packets that take the process out of the recovery phase. If a retransmitted packet is 

dropped, the only way to recover form the losses is the TCP timeout process.  

DUPACK_COUNT ≥
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Is ACK bit set?
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Do not process the DATA;No
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   tcp_frfr_processing ();
Yes
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Reset DUPACK_COUNT;
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Figure  7-4 the flow control for EPLR ACK processing 

7.4 PERFORMANCE EVALUATION OF THE PROPOSED SCHEME OVER UMTS 

NETWORK 

We have implemented the proposed scheme in two UMTS models and run extensive 

simulations to get the mean TCP throughput with less than 5% error margin. TCP and UMTS 

with their default parameters  are used in all simulation scenarios and an extract of the TCP and 

UMTS parameter values are given in Tables 7.1 and 7.2, respectively. 
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Table  7-1 TCP parameter values 
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Table  7-2 UMTS parameter values 

7.4.1 SIMULATION SCENARIO 1 

To demonstrate the effectiveness of the proposed scheme, the UMTS network model shown 

in Figure 7.5 is implemented, in turn, with different TCP fast retransmit algorithms at the 

standard FTP server: Reno, New Reno and Modified Reno. The FTP server is configured to 

generate files of 1 Mbyte size. User equipments are configured to download 1 Mbyte FTP files 

simultaneously with different packet drops rate as shown in Table 7.1. Data Packets coming from 

FTP server are dropped in UEs, at the IP layer, using a uniform probability distribution. 
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Figure  7-5 UMTS network model 

 

Table  7-3 User equipments configurations 

7.4.1.1 Results and Observations 

Figures 7.6 and 7.7, respectively, compare the TCP sent segment sequence number and the 

TCP CWND size responses of the proposed scheme with that of TCP Reno and New Reno 

implementations for different packet drops rate, espectively. A summary of the average TCP 

throughput and the TCP performance improvements with the proposed scheme over that of 

Reno and New Reno are given in Table 7.4 and Table 7.5 respectively. It can be seen that our 

proposed scheme improved the TCP throughput compared to that of TCP Reno significantly in 

all cases. This improvement can be directly attributed to the reduction of TCP timeouts, which 

can be observed in Figure 7.7. 
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Figure  7-6 TCP sent segment sequence number 
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Figure  7-7 TCP CWND response 
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Table  7-4 Summary of average throughput performances 

 

Table  7-5 Average TCP throughput performance improvement 

 

Figure  7-8 TCP retransmission count for UE-4 
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In order to prove the point that we have not overloaded the network, the number of 

retransmission counts during the file download by UE-4 is given in Figure 7.8. It can also be 

observed that the proposed scheme seems to start the retransmissions sooner than does TCP 

Reno. To explain and compare the proposed fast retransmit and recovery mechanisms with that 

of the standard TCP Reno, a snapshot of the TCP sent and ACK sequence number responses, 

during UE-4 file download, with TCP Reno and Modified Reno is given in Figure 7.9. 

 

Figure  7-9 TCP sent and ACK number for UE-4 

In Case-1, the sender with Modified Reno receives the first duplicate ACK with the flight size 

equal to four packets. It therefore does wait for the third duplicate ACK to arrive to trigger the 

fast retransmit. Since it has not received the third duplicate ACK in time, it times out and 

retransmits using the TCP timeout process. 

Case-1 

Case-2 

Case-3 

Case-4 
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In Case-2, the sender receives the first ACK with the flight size equal to two packets. The 

Modified Reno then allows the sender to transmit a new packet for each duplicate ACK. It 

enables the sender to receive three duplicates ACKs and to confirm the packet loss. As expected, 

it does receive the third duplicate ACK and the dropped packet gets retransmitted without 

waiting for a TCP timeout that would occur with either the Reno or New Reno retransmit 

mechanisms. 

In Case-3, the sender with Reno receives the first duplicate ACK with the flight size is equal 

to four packets. It therefore does wait for the third duplicate ACK to arrive to trigger the fast 

retransmit. Since it has received the third duplicate ACK in time, the dropped packet gets 

retransmitted without a TCP timeout. 

In Case-4, the sender receives the first ACK with the flight size equal to three packets. The 

Reno sender then waits for the third duplicate ACK to arrive to confirm the packet loss. Since 

the sender will never receive three duplicate ACKs, this dropped packet can only be recovered by 

the TCP timeout process. 

Compared to TCP New Reno, our proposed scheme does always outperform in all scenarios. 

This is because New Reno also undergoes the same problem when the flight size is too small to 

trigger the fast retransmit. This can be observed from the TCP CWND response in Figure 7.7, 

where New Reno experiences more timeouts than the Modified Reno does. Finally, in order to 

show that our proposed scheme has utilized the available network resources efficiently, a 

comparison of the UMTS Node-B downlink throughput performance is shown in Figure 7.10. 
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Figure  7-10 UMTS Node-B Downlink Throughput 

7.4.2 SIMULATION SCENARIO 2 

In this scenario, the UMTS network model shown in Figure 7.11 is implemented, in turn, with 

different TCP fast retransmit algorithms at the standard FTP server: Reno, New Reno and 

Modified Reno. The FTP server is configured to generate files of 10 Mbytes size. User 

equipments are configured to download 10 Mbytes FTP files simultaneously with different 

packet drops rate as shown in Table 7.6. Data Packets coming from FTP server are dropped in 

UEs, at the IP layer, using a uniform probability distribution. 
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Figure  7-11 UMTS network model 

 

Table  7-6 UEs configurations 

7.4.2.1 Results and Observations 

Extensive simulations were run to get the mean TCP throughput with less than 5% error 

margin. Figures 7.12 shows a snapshot of the comparison of the TCP sent segment sequence 

number and the CWND size responses of the proposed scheme with that of TCP Reno and 

New Reno implementations for packet drops rate of 8% and 15%. Figure 7.13 compares the 

TCP sent segment sequence number responses while Figure 7.14 shows the average TCP 

throughput and the TCP performance improvements of the proposed scheme with that of TCP 

Reno and New Reno for different packet drops rate. A summary of the average TCP throughput 

performance with different packet drops rate is given in Table 7.7.  
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From Figures 7.12, 7.13 and 7.15, and Table 7.7, it can be seen that the proposed scheme 

improved the TCP throughput compared to that of TCP Reno and New Reno significantly. This 

improvement can be directly attributed to the reduction of TCP timeouts, observed in Figure 

7.12. The higher the packet drops rate means higher the TCP timeouts. From Figure 7.14, it can 

be observed that the proposed scheme increases the TCP throughput improvement with packet 

drops rate. 

 

Figure  7-12 TCP sent segment sequence number 
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Figure  7-13 TCP sent segment sequence number responses 

 
Table  7-7 summary of the average TCP throughput performance 
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Figure  7-14 Mean TCP throughput and TCP improvement versus packet drop rates 

Finally, in order to show that the proposed scheme has utilized the available network 

resources efficiently, a comparison of the UMTS RNC throughput performance is shown in 

Figure 7.15. 

 

Figure  7-15 UMTS RNC Throughput 
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7.5 CONCLUSIONS 

TCP Reno fast retransmit algorithm was modified with a new Early Timeout Detection 

mechanism to speed up the packet recovery process and to reduce the number of TCP timeouts 

over networks with heavy packet losses, such as wireless networks. Modified Reno was 

implemented in a UMTS network and its performance was compared with that of Reno and New 

Reno. Simulation results showed that Modified Reno improved the TCP performance and 

application response time significantly compared to that of both Reno and New Reno by 

reducing the TCP timeouts, which is the main cause of degradation of the TCP performance in a 

wireless environment. 
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C h a p t e r  V I I I .   

 

8. Analytical Model of TCP with Enhanced Recovery 

Mechanism for Wireless Environments 

 

In this Chapter, we extend the analytical model for the TCP steady state throughput as a 

function of the network utilization factor, round trip time and packet drop rate for unlimited data 

transfer to capture the fast retransmit and recovery mechanisms. These mechanisms are 

frequently activated on connections over wireless links. We model TCP with a modified fast 

retransmit and recovery algorithm that allows packet recovery with smaller congestion window 

sizes than possible with TCP Reno or New Reno, thereby reducing the likelihood of timeouts. 

We also propose a further modification that dynamically adjusts its congestion window by 

considering the packet drop rate as the input parameter. This will further enhance the TCP 

performance over wireless networks and can be used to provide quality of services. 

We first give an overview and comparison of analytical TCP models in Section 8.1, and then 

extend the analysis done in Chapter 7 to further enhance the TCP Reno fast retransmit and fast 

recovery algorithm in Section 8.2. Motivated by the analysis, we propose an analytical model for 

the TCP steady state throughput that can predict TCP performance accurately over a wide range 

of packet loss rates in Section 8.3. A further enhancement is proposed in Section 8.4 to 

dynamically adjust the TCP CWND based on the packet loss rate. In Section 8.5, we evaluate the 

proposed model using simulation studies in a UMTS network and demonstrate that the proposed 

model can predict TCP performance accurately over a wide range of packet loss rates. The 

conclusions drawn and directions for future work are outlined in Section 8.6. 

8.1 AN OVERVIEW AND COMPARISON OF ANALYTICAL TCP MODELS 

Today, most popular Internet applications, including the World Wide Web (WWW), e-mail, 

file transfer protocol (FTP) and remote login, use TCP as the transport protocol [Cardwell, 

Savage, & Anderson, 2000]. As a consequent, modeling TCP performance has attracted research 

attention over the past decade. Several analytical models have recently been proposed in [Padhye, 



 

 158 

Firoiu, Towsley, & Kurose, 2000], [E. Altman, K. Avrachenkov, & C. Barakat], [Kassa & 

Wittevrongel, 2006], [Cardwell, Savage, & Anderson, 2000], [Mellia & Zhang, 2002] and [Mathis, 

Semke, & Mahdavi]. 

TCP models can be classified based on transfer length: short [Mellia & Zhang, 2002], long 

[Jitendra Padhye, Victor Firoiu y, Don Towsley, & Jim Kurose; Mathis, Semke, & Mahdavi] and 

arbitrary [Cardwell, Savage, & Anderson, 2000]. The transfer length determines the congestion 

control algorithms and the packet loss detection mechanisms that need to be incorporated in to 

the model. In case of short-lived transfers, TCP performance is strongly affected by the 

connection establishment and slow-start phases, with packet losses mostly being detected by TO. 

Models for long-lived transfers capture the steady state performance of TCP, which is dominated 

by the congestion avoidance (CA) phase, and packet loss recovery by three duplicate 

acknowledgements (TD) as well as timeout (TO). 

In [Mathis, Semke, & Mahdavi], steady-state throughput (T) is predicted as a function of MSS, 

RTT and packet loss rate  (p) for bulk transfer TCP flow. It only considers the congestion 

avoidance phase and packet loss recovery using TD and assumes that segment loss process is 

periodic with a constant probability of p. It implies that every segment loss is followed by the 

successful delivery of 1/p segments. Consequently, the evolution of CWND will follow a 

periodic saw-tooth pattern during the equilibrium. Given a maximum CWND of WM the 

minimum value of CWND is WM/2. Hence, the duration of each period is (WM/2 x RTT) and 

the throughput T is gives as: 

p

K

RTT

MSS
T =                                                                                                      Equation  8.1 

Where, K is a constant that depends on the TCP receiver acknowledgement strategy. If the 

receiver does not employ the delayed acknowledgement, then K = √3/2. 

In [Padhye, Firoiu, Towsley, & Kurose, 2000], steady-state throughput is predicted for bulk 

transfer TCP flow by considering packet loss detection by TD during CA phase and timeout 

(TO). The behavior of TCP congestion control is modeled in terms of rounds. A round starts 

with the transmission of the first segment within a window of data and ends when the ACK for 

that packet is received. Therefore, the duration of the round will be equal to one RTT period. It 
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assumes that the packet losses are correlated; if a segment is lost, all the remaining segments in 

the same round are considered to be lost. Stochastic system techniques is used to determine the 

expected values of the number of segments transmitted in a round and the duration of the round 

in terms of the loss probability p that a packet is lost, given that either it is the first packet in its 

round or the preceding packet in its round is not lost. The throughput T is approximated as: 
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Where T0 is the initial value of RTO and b is the number of packets that are acknowledged by 

the TCP receiver. 

[Mellia & Zhang, 2002] propose a recursive, analytical model for the TCP short-lived flows to 

estimate the completion time as a function of the average loss rate and the RTT along the flow 

path. The connection establishment latency E[LCE] is calculated using (8.3) with pr = pf = ps, 

where, pf is the segment loss rate in the forward path from the server to the client, pr is the loss 

rate in the reverse path, ps is the loss rate of SYN segment and RTO0 is the initial RTO value. 
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The latency LM
W is defined as the average time spent to successfully transmit M segments with 

an initial CWND of W. Note that 2

1

1

1

1

−+= nn CCC  since after the TCP sender receives the 

ACK for the first transmitted segment, it transmits the remaining segments using an initial 

CWND of two. The latency LM
W is calculated recursively as a function of p, RTT and RTO. For 

example; 
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Where, p is uniformly distributed and (q = 1 – p)  

8.2 THE TCP RENO ANALYSIS 

Let the CWND be W, PW be the last packet within that window of data, the number of 

dropped packets be N, where N ≥ 1, and LI, I = 1, 2, …, N index the dropped packets within 

that window of data, as shown in Figure 8.1. Also let DI be the number of packets from LI to PW, 

inclusive, and the flight size, defined as the amount of data that has been sent but not yet 

acknowledged, be F. 

 

Figure  8-1 A window of data with multiple packet drops 

The number of packets that can be recovered by TCP fast retransmit and recovery algorithms 

depend on W, N and DI. The TCP sender can only transmit new packets if minimum of the 

congestion window and the receiver window is grater than F. We assume that the receiver 

window is larger than W for the ease of analysis. 

8.2.1 FIRST PACKET RECOVERY 

Recovery of the first dropped packet requires W ≥ (N+3). During this recovery process, there 

can be up to (W/2-N) new packets transmitted, causing the flight size F to grow from W to 

(3W/2-N). On receiving the ACK for the retransmission of packet L1, F will be equal to 

(D2+W/2-N) and CWND is set to W/2.  

8.2.2 SECOND PACKET RECOVERY 

Notice that on receiving the first partial ACK, there can be maximum of one new packet 

transmitted if and only if (N-D2) = 1. It makes F = CWND = W/2. Assuming it is not the case, 

there will be (W/2-N) packets remaining to be acknowledged out of (D2+W/2-N) packets in the 

network. It requires W ≥ 2(N+3) to be able to recover the second dropped packet. During this 

recovery process, (F/2+W/2-N-F) = (W/2-N-D2)/2 new packets can be transmitted, provided W 
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> 2(N+D2). On receiving the ACK for the retransmission of packet L2, F will be equal to 

(D3+(W/2-N) + 1/2(W/2–N-D2)) and CWND is then set to ½ (D2+W/2-N). 

8.2.3 THIRD PACKET RECOVERY 

Third packet recovery requires ½ (W/2-N-D2) ≥ 3. Since (F/2+½(W/2-N-D2))–F = -¼ (W/2-

N+2D3+D2) < 0, there will not be any new packets transmitted during this recovery process. It 

implies that standard TCP Reno cannot recover from four (or more) packet drops within a 

window of data. 

A summary of TCP Reno packet recovery mechanism is given in Table 8.1. Notice that third 

packet recovery depends on error pattern. 

 

Table  8-1 Summary of TCP Reno congestion window analysis 

8.2.4 REQUIRED MODIFICATIONS 

In order to proceed with packet transmissions, dropped packets must be retransmitted as 

quickly as possible. TCP Reno and New Reno fast retransmit and recovery algorithms are well 

defined and designed to handle this effect. However, they fail to consider situations where the 

fast retransmit and recovery algorithms cannot be even initiated.  
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• If the CWND size is less than or equal to the duplicate ACK threshold, which is normally 

assigned to be three, either the TCP Reno or New Reno cannot even initiate the fast 

retransmit and leave this packet to be recovered by means of TCP timeout process. 

• TCP Reno cannot initiate the fast retransmit to recover from multiple packets if CWND 

< 2(N+3). 

Our insight is that if the CWND size is too small to initiate the fast retransmit, it must be 

handled separately. 

We modify the TCP Reno fast retransmit algorithm in order to recover from packet drops 

within a window of data, which can only be recovered by a TCP timeout process in the TCP 

Reno implementation. We assume that the retransmitted packets are not dropped. If the 

retransmitted packets are dropped, these packets can only be recovered using TCP timeout 

process. 

8.2.4.1 Recovery of a single packet drop if CWND < 4 

The TCP sender cannot confirm a received duplicate ACK was due to packet loss because 

packets in a flight could take different route and reach the destination out of order. Given the 

number of packets in a flight is F and is equal to the CWND, we can safely assume that a packet 

is dropped if the sender receives (F–1) number of duplicate ACKs and allow the sender to 

quickly retransmit that packet if the flight size is too small to initiate the fast retransmit and 

recovery algorithms. However, due to the sender’s inability to confirm the packet loss, we decide 

to allow the sender to transmit new data packets by increasing the CWND by one MSS. It 

enables the sender to receive threshold number of duplicate ACKs and either to fast retransmit 

the lost packet if a third duplicate ACK is received or to continue transmitting new data if a non 

duplicate ACK is received. This will considerably increase the TCP throughput and application 

response time while minimizing the number of TCP timeouts. 

8.2.4.2  Recovery of multiple packet drops if CWND > (N+3) 

On receiving a partial ACK, the TCP sender can confirm the next packet drop within that 

window of data and can retransmit that packet without waiting for the third duplicate ACK to 

arrive. From the TCP Reno congestion window analysis, it can be observed that the flight size 

during the fast retransmit process depends on the position of the dropped packets except for the 



 

 163 

first packet recovery; flight size during the first, second and third packet recovery is W, 

(D2+W/2-N) and D3+½(W/2-N-D2) respectively. We modify the TCP Reno to handle the 

multiple packet drops as follows. 

• On receiving the partial ACK, it retransmits the next unacknowledged packet as TCP 

New Reno does. 

• It triggers the fast retransmit algorithm only during the first packet recovery, where slow-

start threshold (ssthresh) is set to α times the flight size. We define α to be the network 

utilization factor, which is normally assigned the value 0.5. 

• It resets the CWND to the slow-start threshold on receiving partial ACKs, as it does in 

TCP Reno, and when the process first gets out of recovery process.  

• No change is made to the fast recovery process 

8.3 PROPOSED ANALYTICAL MODEL FOR THE TCP STEADY STATE 

THROUGHPUT 

 
We drive a TCP steady state throughput model, by considering long-lived TCP flow, with the 

assumptions that packets transmitted during the fast retransmit and recovery phase are not 

dropped and the CWND is not limited by the receiver’s advertised flow control window. We 

define a round to be the period between the start of consequence congestion avoidance (CA) 

phases as shown in Figure 8.2. A round includes a CA phase and a fast retransmit and recovery 

phase. Figure 8.2 shows the CWND evolution during the ith round. The system variables are 

defined as follows. 

- Congestion window size at the end of CA phase (Wi) 

- Number of packets transmitted during CA phase including the dropped packets (Si) 

- Number of packets (δSi) transmitted during the last RTT period (δTi) 

- Number of RTTs until the start of the last RTT period during CA phase (Ti)  

- Total number of RTTs in the round (Pi)  

- Time from the start of the last RTT and to the first packet retransmission (δTi) 

- Total number of packets transmitted including retransmitted and dropped packets (Xi) 

- Number of segments after which a dataless ACK will be sent (d) 
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- Number of packets dropped (Ni) 

-  Packet drop rate (p) 

- The network utilization factor (αs) 

- Number of RTTs during the recovery process (Ri) 

 

Figure  8-2 CWND evolution 

We develop the model based on the CWND evolution shown in Figure 8.2. It requires Ni 

number of RTTs to recover from Ni number of packets within a window of data. 

ii NR =                                                                                                                 Equation  8.6 

For simplicity, we ignore the term δRi , which is the time elapsed from the last ACK to the 

third duplicate ACK, and obtain the period of the ith round as; 

iiiiiiii TNTRTNTP δδδ ++≈+++=                                                              Equation  8.7 

There will be αWi-Ni+1 packets, including the first dropped packet, transmitted during the 

first packet recovery process. On receiving partial ACKs, it will retransmit the next dropped 
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packet. When the process gets out of the recovery phase and enters into the next round, there 

will be one new packet transmitted if Ni=1, otherwise αWi new packets will be transmitted. 

1++= iii WSX α  if Ni = 1 

iii WSX α2+=     if Ni > 1                                                                           Equation  8.8 

During CA phase, CWND will grow by 1/d for each RTT period. Assuming, Ti is much 

bigger than δTi , we obtain 

d

T
W

d

TT
WW i

i
ii

ii +≈
+

+= −− 11 α
δ

α                                                              Equation  8.9 

Si will be the sum of packets transmitted during Ti and δTi. 
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Using (8.9), we obtain 
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We consider Wi to be a Markov regenerative process with rewards Xi and obtain the long-

term steady-state TCP throughput B as in [Padhye, Firoiu, Towsley, & Kurose, 2000] 

[ ]
][PE

XE
B =                                                                                                           Equation  8.11 

Where, E[X] and E[P] are the expected value of number of packets and RTTs during the 

round respectively. With the assumption that Ti and Wi are mutually independent sequences of 
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identically distributed random variables, we obtain (8.12)–(8.15) from (8.7)–(8.10) respectively. 

We also consider that δSi is uniformly distributed between 1 and Wi and have E[δS] = E[W]/2 

and E[δT ] = RTT/2. 
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It can be shown that the mean number of packets successfully acknowledged before a loss 

occurs is 1/p [Padhye, Firoiu, Towsley, & Kurose, 2000]. It follows that total number of packets 

transmitted during CA phase is: 
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From (8.14), (8.15) and (8.16), we obtain 

)1(

)1(2

)1(2

)1(1

)1(2

)1(1
][

2

2

22 αα

α

α

α

−

−
+









−

−+
+

−

−+
=

pd

p

d

d

d

d
WE                                    Equation  8.17 

From (8.11), (8.12), (8.13), (8.14) and (8.17), 
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Standard TCP implementation assigns α the value of 0.5. Recall that recovery of multiple 

packets from a window of data depends on the number of newly transmitted packets during the 

fast recovery phase. The network utilization factor α is the main factor that limits the number of 

new packets transmitted during the fast recovery phase, assuming the receiver window is bigger 

than the CWND size. Packet losses in network with wireless links can be bursty resulting in 

multiple losses within a window of data. Having larger value for α can help the system to recover 

from multiple losses. However, it may overload the network if the losses are due to congestion. 

We use the packet drop rate p to dynamically calculate the value of α as explained in the next 

Section. 

8.4 PROPOSED SCHEME FOR DYNAMICALLY ADJUSTING THE TCP CWND 

Standard TCP implementation assigns α the value of 0.5. In Equations (8.17) to (8.19), we also 

assign α the value of 0.5 if p ≤ 0.01, otherwise, it is assigned dynamically. Network with wireless 

links has high bit-error rates, which contributes to high packet drop rates and significantly 

degrades the TCP performance. Figure 8.3 shows the CWND size versus packet drop rate, 

obtained from (8.19), with different values for α, from 0.5 to 0.85 in step of 0.05. From Figure 

8.3, we can obtain α as a function of packet drop rate for desired CWND improvement.  Figure 

8.4 shows CWND size versus packet drop rate with α, derived as a function of packet drop rate 

using MATLAB curve fitting tool, to provide 10 percent CWND size improvement. It should be 
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noted that (8.20) is applied only for high packet drop rate and can be used to provide quality of 

service with different CWND improvement rates. 

 

Figure  8-3 CWND versus packet drop rate (p) 

62.000033.0 += pα                                                                                        Equation  8.20 
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Figure  8-4 CWND size and CWND improvement versus packet drop 
rate (p) with dynamic network utilization factor (α) 

8.5 EVALUATION OF THE PROPOSED MODEL OVER A UMTS NETWORK 

The proposed scheme is implemented in OPNET by adding a new TCP flavor, called 

Modified Reno, to the TCP fast retransmit and recovery algorithms. We need to calculate the 

packet drop rate to dynamically adjust the CWND, given in (8.20). The packet drop rate is 

calculated with the use of a weighted average by the Average Loss Interval method  explained in 

[Sally Floyd, Handley, Padhye, & Widmer, August 2000]. The average loss interval ŝ(1,n) is defined  

as a weighted average of the last n interval as follows: 
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Considering the most recent packet drop, the average loss interval (ŝ) is calculated as: 

max(ŝ ( 1,  n) , ŝ ( 0, n-1) ) and the packet drop rate is 1/ ŝ. 

To demonstrate the effectiveness of the proposed scheme, the UMTS network model shown 

in Figure 8.5 is implemented, in turn, with TCP Reno and Modified Reno fast retransmit 

algorithms at the standard FTP server. The FTP server is configured to generate files of 10 

Mbyte size. User equipments are configured to download FTP files simultaneously with different 

packet drop rates as shown in Table 8.2. Data Packets coming from FTP server are dropped in 

UEs, at the IP layer, using a uniform probability distribution. UMTS  and TCP with their default 

parameters [OPNET Technologies Inc]  are used in all simulation scenarios and an extract of the 

UMTS and TCP parameter values are given in Tables 8.3 and 8.4 respectively. 

 

Figure  8-5 UMTS network model 
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Table  8-2 UEs configurations 

 

Table  8-3 Selection of UMTS RNC parameters 
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Table  8-4 Selection of TCP parameters 

8.5.1 RESULTS AND OBSERVATIONS 

Extensive simulations were run to get the mean TCP throughput with less than 5% error 

margin. Figure 8.6 shows a snapshot of the comparison of the TCP CWND size and the TCP 

sent segment sequence number responses of the proposed scheme with that of TCP Reno 

implementations for packet drop rate of 10%. It can be observed that the proposed scheme 

significantly reduced the number of TCP timeouts as expected. 
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Figure  8-6 TCP CWND and sent segment sequence number responses 
with 10% packet drop rate 

Figure 8.7 compares the steady-state mean TCP CWND size response of our proposed 

scheme with that of TCP Reno for 10 percent packet drop rates and their mean CWND values 

are obtained to be 6925 and 6,278 bytes respectively, which closely match with the steady-state 

CWND value obtained using our analytical model shown in Figure 8.4. Note that the proposed 

model achieved high throughput performance during the transient phase and maintains its 

throughput rate during the steady state phase. The reason why it cannot continue to gain 

throughput improvement is due to the assumptions that receiver window is big enough and does 

affect the sending rate. However, it achieves the expected CWND improvement as can be seen 

from Figure 8.7. 

Steady state 

Transient  
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Figure  8-7 TCP cwnd and sent segment sequence number responses 
with 10% packet drop rate 

Since the average CWND with 10% packet drop rates seems to be less than 5MSS, the TCP 

Reno cannot recover from more than one packet drop within a window of data. This effect can 

be observed form Figure 8 6. A comparison of the TCP sent segment sequence number 

responses of the proposed scheme with that of Reno for different packet drop rates is shown in 

Figure 8.8. 
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Figure  8-8 TCP sent segment sequence number responses 

Figure 8.9 compares the steady-state mean TCP CWND of the proposed scheme with that of 

both the analytical value, shown in Figure 8.4, and TCP Reno for different packet drop rates. It 

also shows the TCP CWND improvement with the proposed scheme over TCP Reno. From 

Figure 8.9, it can be seen that the steady-state CWND value obtained using our analytical model 

shown in Figure 8.4 closely matches with that of the simulation results. 
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Figure  8-9 Mean TCP CWND and TCP CWND improvement versus 
packet drop rates (p) 

A summary of the average TCP throughput performance with different packet drop rates is 

given in Table 8.5. From Figure 8.8, 8.9 and Table 8.5, it can be seen that our proposed scheme 

improved the TCP throughput compared to that of TCP Reno. 

 

Table  8-5 summary of the average TCP throughput performance 
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We could not achieve 10 percent TCP throughput improvement with different packet drop 

rates as expected because the assumptions made in deriving the model, such as the retransmitted 

packets are not dropped and the CWND is not limited by the receiver’s advertised flow control 

window, do not hold in our simulations studies. The loss of retransmitted packets causes TCP 

timeouts. These effects can be observed from Figure 8.6. 

8.6 CONCLUSION AND FUTURE WORK 

A TCP throughput model was developed after modifying the TCP Reno fast retransmit 

algorithm to avoid timeouts. The model captures the TCP fast retransmit mechanism and 

expresses the steady state congestion window and throughput as a function of network utilization 

factor, RTT and loss rate. Based on the new model, a further modification was proposed where 

the TCP congestion window size is dynamically adjusted, depending on the packet drop rates. 

This speeds up the packet recovery process and reduces the number of TCP timeouts over 

networks with heavy packet losses, such as wireless networks. The network utilization factor, 

derived as a function of packet drop rate, can also be used to provide quality of service. 

The proposed model was implemented in OPNET for a UMTS network and its performance 

was compared with that of TCP Reno. Simulation results showed that the proposed model 

reduced the TCP timeouts and improved the TCP performance compared to that of TCP Reno. 

It was found that the model provides a very good match to the steady-state congestion window 

behavior. The model could not completely avoid timeouts because of the assumption that the 

packets transmitted during the recovery process are not lost. This assumption can be relaxed and 

the model can be modified to incorporate the packet loss detection by both three duplicate 

acknowledgements and timeouts to predict more accurate TCP throughput performance. In 

future work, we intend to incorporate this, and to further validate the model in other wireless 

networks such as WiFi and WiMAX. 
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C h a p t e r  I X .   

 

9. Conclusion 

 

The main focus of this thesis is the investigation and improvement of the TCP performance 

over wireless networks, such as IEEE 802.11 WLAN and UMTS networks. Based on a study of 

the extensive literature on the enhancement of TCP performance over wireless networks, it 

emphasizes the need to develop techniques to efficiently utilize the available network resources 

by distinguishing non-congestion related packet losses from the congestion related losses. TCP’s 

inability to distinguish wireless effects from the traditional wire-line effects is the main factor that 

degrades its performance over networks with wireless links. 

In this thesis, we concentrated on two main strategies for enabling the TCP congestion 

control mechanism to determine the cause for a packet loss. One is the proxy based mechanism 

that monitors the radio network interface and sends feedback to the source with the status of the 

wireless link. The other one is based on end-to-end mechanism, in which the packet loss rate is 

used as the system metric to fine-tune the congestion control mechanism. 

The main objective of our proposed proxy based mechanisms is to explicitly inform the TCP 

source of any effects caused by wireless links while maintaining the end-to-end design 

philosophy. However, the implementation technique is network dependent. The major 

contributions of the proxy based schemes are summarized as follows. 

• Development and implementation of RNF feedback mechanism in an 802.11 WLAN network: A 

new RNF scheme was developed to detect wireless packet losses and to distinguish them 

from congestion related packet losses. The base station is equipped with the WLD proxy 

to detect and notify the TCP sender of the wireless packet losses. TCP Reno was 

modified to utilize the radio network feedback to distinguish the losses due to wireless 

effects form the congestion and fine-tuned to perform wireless enhanced fast retransmit 

and fast recovery mechanism. The RNF scheme was implemented in an 802.11 WLAN 

model in OPNET. Simulation results showed that the RNF scheme successfully 
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distinguished the packet losses due to wireless effects form the congestion and improved 

the TCP performance significantly compared to that of the standard WLAN. It also 

demonstrated that it can handle multiple TCP connections and utilized the available 

network resources efficiently and fairly by adapting to the network characteristics.  

• Development and implementation of RNC feedback mechanism in a UMTS network: The RNC 

feedback mechanism, similar to the RNF scheme, was developed and implemented in a 

UMTS network. The GTP layer of the UMTS RNC protocol stack was modified to 

detect and notify the TCP sender of the wireless packet losses, which is the main 

difference between the RNF and RNC mechanism. Since the RNC supports multiple 

Node Bs, the RNC feedback mechanism can be extended to provide further TCP 

performance enhancement by freezing the TCP sender to handle timeouts caused by 

handoffs. The simulation results showed that the RNC feedback mechanism significantly 

improved the TCP performance compared to that of standard TCP over 

UMTS. Specifically, the scheme recovered from most of the wireless packet losses and 

minimized the number of TCP timeouts by early triggering of the wireless enhanced fast 

retransmit algorithm, introduced in TCP Reno. The effect of using TCP Reno with the 

SACK option was also investigated. It was found that the proposed scheme with SACK 

option enabled performs better than with the SACK option disabled when the packet 

drops rate is moderate, otherwise the performances are quite similar  

• Development and implementation of WENP to minimize spurious TCP timeouts in both 802.11 

WLAN and UMTS networks: The WENP scheme was developed to detect both the 

wireless packet losses and delay spikes in the wireless link, and enable the TCP sender to 

distinguish them from wireline related packet losses and timeouts. Delay spikes, defined 

as a sudden and significant change in the RTT, causes spurious TCP timeouts, which 

have major impact on TCP performance. The WENP proxy is used to detect both the 

wireless packet losses and the delay spikes. TCP Reno was further modified to utilize the 

radio network feedback from the WENP to distinguish both packet losses due to wireless 

effects from congestion and spurious timeouts from normal timeouts. It was also fine-

tuned to perform both the wireless enhanced fast retransmit and fast recovery 

mechanism and the timeout mechanism. This scheme was implemented in both 802.11 

WLAN and UMTS networks. The simulation results demonstrated that the proposed 
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scheme markedly improved the TCP performance compared to that of standard WLAN 

and UMTS implementations. Particularly, the scheme recovered from most of the 

wireless packet losses and minimized the number of spurious timeouts by enabling the 

TCP sender to successfully distinguish wireless effects from congestion related effects. 

The effect of using modified TCP Reno with the SACK option with the proposed 

scheme was also investigated. It was found that the proposed scheme with the TCP Reno 

SACK option enabled does not have any impact on the proposed scheme. 

The major advantages of the proposed proxy based mechanisms over the other proxy based 

schemes, such as Snoop, are: 

- Does not add much overhead to the base station since it only caches the TCP header 

information. 

- Does not compete for bandwidth with the TCP sender since it does not perform any 

local retransmission. It only sends feedback with the ACK packet in the form of control 

flags. 

- Does not violate the end-to-end semantic of TCP. 

- Enable TCP sender to completely distinguish wireless packet losses form congestion 

losses. 

-  Enable the TCP sender to completely distinguish spurious TCP timeouts form normal 

timeouts. 

- Gives the flexibility to design the TCP congestion control to fine-tune its congestion 

control mechanism to efficiently utilize the available network resources.  

The only drawback of these schemes, like any split connection schemes, is the inability to 

monitor the radio interface if the IP datagram is encrypted. In this case, the TCP header is 

inaccessible since the TCP segment, including its header information, is encrypted and cannot be 

decrypted at the intermediate nodes. 

We further developed an end-to-end EPLR scheme by modifying the TCP Reno fast 

retransmit algorithm to early detect packet losses and to speed up the packet recovery process to 
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reduce the number of TCP timeouts over networks with heavy packet losses, such as wireless 

networks. TCP Reno with EPLR scheme was implemented in a UMTS network and its 

performance was compared with that of Reno and New Reno. Simulation results showed that 

Reno with EPLR improved the TCP performance and application response time significantly 

compared to that of both Reno and New Reno by reducing the TCP timeouts, which is the main 

cause of degradation of the TCP performance in a wireless environment. 

Finally, we developed an analytical TCP throughput model with enhanced TCP Reno fast 

retransmit algorithm to avoid timeouts. The model captures the TCP fast retransmit mechanism 

and expresses the steady state congestion window and throughput as a function of network 

utilization factor, RTT and loss rate. Another new feature was added to the proposed model by 

dynamically adjusting the congestion window size depending on the packet drop rates. This 

speeds up the packet recovery process and reduces the number of TCP timeouts over networks 

with heavy packet losses, such as wireless networks. The network utilization factor, derived as a 

function of packet drop rate, can also be used to provide quality of service. 

The proposed model was implemented in OPNET for a UMTS network and its performance 

was compared with that of TCP Reno. Simulation results showed that the proposed model 

reduced the TCP timeouts and improved the TCP performance compared to that of TCP Reno. 

It was found that the model provides a very good match to the steady-state congestion window 

behavior. The model could not completely avoid timeouts because of the assumption that the 

packets transmitted during the recovery process are not lost. This assumption can be relaxed and 

the model can be modified to incorporate the packet loss detection by both three duplicate 

acknowledgements and timeouts to predict more accurate TCP throughput performance. 

Optimizing the TCP performance to react to a packet loss other than congestion remains an 

open research problem. Although we developed schemes to enhance the TCP performance over 

wireless link, we have not further studied their effectiveness in mobile environments, i.e. the 

hand-off effects on our proposed schemes. We believe these problems merit further exploration 

for finding feasible solutions to make wireless networks even more efficient.  
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