
TCP PERFORMANCE ENHANCEMENT OVER
WIRELESS NETWORKS

by

Aiyathurai Jayananthan

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Canterbury New Zealand

2007

Approved by
Chairperson of Supervisory Committee

Program Authorized
to Offer Degree

Date

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF CANTERBURY

ABSTRACT

TCP PERFORMANCE IMPROVEMENT OVER WIRELESS NETWORKS

by Aiyathurai Jayananthan

Chairperson of the Supervisory Committee: Professor Harsha Sirisena
 Department of Electrical and Computer Engineering

Transmission Control Protocol (TCP) is the dominant transport protocol in the Internet and

supports many of the most popular Internet applications, such as the World Wide Web (WWW),

file transfer and e-mail. TCP congestion control algorithms dynamically learn the network

bandwidth and delay characteristics of a network and adapt its performance to changes in traffic

so as to avoid network collapse.

TCP is designed to perform well in traditional wireline networks with the assumptions that

packet losses are mainly due to network congestion and random bit error rate (BER) is negligible.

However, networks with wireless links suffer from significant packet losses due to random bit

errors and handoffs. Hence TCP performs poorly in networks with wireless links because it treats

any packet loss in the network to be a result of network congestion and slows down its

transmission rate, or even cause the TCP sender to experience unnecessary timeouts, further

reducing its performance.

The development of advance wireless networks, such as WiFi, UMTS and WiMAX, make it

necessary to find ways to improve TCP’s efficiency and resource utilization, as well as improve

the user’s experience and reduce latency times. In order to find effective solutions to this effect,

packet losses across wireless links should be distinguished from congestion related packet losses.

In this thesis, we concentrate on two main strategies for enabling the TCP congestion control

mechanism to determine the cause for a packet loss. One is a proxy-based mechanism that

monitors the radio network interface and sends radio network feedback (RNF) to the TCP

sender with the status of the wireless link. The other one is an end-to-end mechanism, in which

the packet error pattern is used as the system metric to fine-tune the congestion control

mechanism. It also presents an analytical model of TCP with enhanced recovery mechanism for

wireless environments.

In a proxy-based mechanism, TCP sender is explicitly informed of any effects caused by

wireless links. However, the implementation technique is network dependent. We have proposed

and developed three proxy-based schemes; the radio network feedback (RNF) scheme over an

802.11 WLAN network, the radio network controller (RNC) feedback over a UMTS network

and a wireless enhancement proxy (WENP) over both the 802.11 WLAN and UMTS networks.

The RNF scheme is introduced at the 802.11 WLAN base station that monitors the TCP

packet flows over the wireless links, detects wireless packet losses and provides feedback to the

TCP sender using one of the TCP header reserved control bits, called RNF flag. TCP Reno is

modified to utilize the radio network feedback to distinguish the losses due to wireless effects

form the congestion and fine-tuned to perform wireless enhanced fast retransmit and fast

recovery mechanisms. The RNF scheme is implemented using the OPNET tool, and the

simulation results show that the TCP performance is significantly improved.

The RNC feedback mechanism, similar to the RNF scheme, is developed and implemented in

a UMTS network. The GPRS Tunneling Protocol (GTP) layer of the UMTS Radio Network

Control (RNC) protocol stack was modified to detect and notify the TCP sender of the wireless

packet losses, which is the main difference between the RNF and RNC mechanisms. The

simulation results shows that the RNC feedback mechanism significantly improves the TCP

performance compared to that of standard TCP over UMTS.

The wireless enhancement proxy (WENP) is developed to minimize spurious TCP timeouts

over wireless networks and implemented in both 802.11 WLAN and UMTS networks. WENP

extends the proposed RNF and RNC feedback mechanisms to detect both wireless packet losses

and large delays across the wireless link, and to notify the TCP sender of these events with the aid

of two reserved bits in the TCP header. TCP Reno is further modified to utilize the WENP

feedback to distinguish both wireless packet losses from congestion losses and spurious timeouts

from normal timeouts. It is also fine-tuned to perform both the wireless enhanced fast retransmit

and fast recovery mechanism and the timeout mechanism. The simulation results demonstrate

that the proposed scheme markedly improves the TCP performance compared to that of

standard WLAN and UMTS implementations.

An end-to-end early packet loss recovery (EPLR) mechanism that modifies the TCP Reno

fast retransmit algorithm to detect packet losses early and to speed up the packet recovery

process to reduce the number of TCP timeouts over networks with heavy packet losses, such as

wireless networks is also presented. TCP Reno with EPLR scheme is implemented in a UMTS

network and its performance is compared with that of TCP Reno and New Reno. Simulation

results shows that Reno with EPLR improves the TCP performance and application response

time significantly compared to that of both Reno and New Reno by reducing the TCP timeouts,

which is the main cause of degradation of the TCP performance in a wireless environment.

Finally, we develop an analytical TCP throughput model with enhanced TCP Reno fast

retransmit algorithm to avoid timeouts. The model captures the TCP fast retransmit mechanism

and expresses the steady state congestion window and throughput as a function of network

utilization factor, round trip time (RTT) and loss rate. Another new feature added to the model is

dynamic adjustment of the congestion window size depending on the packet drop rates. This

speeds up the packet recovery process and reduces the number of TCP timeouts over networks

with heavy packet losses. The proposed model is implemented over a UMTS network and its

performance is compared with that of TCP Reno. Simulation results show that the proposed

model reduces the TCP timeouts and improves the TCP performance compared to that of TCP

Reno. It is also found that the model provides a very good match to the steady-state congestion

window behavior.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

GLOSSARY

1. INTRODUCTION .. 1

1.1 THE EVOLUTION OF TCP/IP AND THE INTERENET.. 1
1.2 OPEN SYSTEM INTERCONNECTION REFERENCE MODEL .. 2
1.3 INTERNET GROWTH .. 3
1.4 TRENDS TOWARDS WIRELESS INTERNET.. 4
1.5 PROBLEM STATEMENT ... 5
1.6 FOCUS OF THIS THESIS ... 7
1.7 SOLUTION APPROACH .. 7
1.8 LIMITATIONS.. 8
1.9 STRUCTURE OF THESIS .. 8
1.10 PUBLICATION LIST ... 10

2. TRANSMISSION CONTROL PROTOCOL ... 11

2.1 DEVELOPMENT OF TCP.. 11
2.2 GENERAL FEATURES IN TCP.. 13

2.2.1 Connection- Oriented... 13
2.2.2 Reliability ... 14
2.2.3 Byte Stream Delivery.. 14

2.3 TCP SEGMENT FORMAT ... 14
2.4 TCP FLOW CONTROL ... 15
2.5 TCP TIME-OUT MECHANISM .. 16
2.6 TCP CONGESTION CONTROL IN THE INTERNET... 18

2.6.1 Additive-Increase, Multiplicative-Decrease.. 20
2.6.2 Slow Start ... 21
2.6.3 Reaction to Timeout Events ... 21

2.7 TCP TAHOE ... 22
2.8 TCP RENO.. 23

2.8.1 TCP Reno Fast Retransmit and Fast Recovery... 23
2.9 TCP NEW RENO... 24

2.9.1 TCP New Reno Fast Recovery Algorithm ... 25
2.10 TCP SELECTIVE ACKNOWLEDGEMENT ... 25
2.11 TCP FORWARD ACKNOWLEDGEMENT .. 26
2.12 TCP VEGAS.. 26
2.13 TCP PERFORMANCE EVALUATION... 27
2.14 TCP FOR WIRELESS CHANNEL ... 27
2.15 CONCLUSIONS .. 28

3. REVIEW OF TCP ENHANCEMENTS FOR WIRELESS NETWORKS... 29

3.1 SPLIT-CONNECTION PROTOCOLS .. 29
3.1.1 Indirect TCP... 30
3.1.2 Split-Connection with Selective Repeat Protocol.. 31
3.1.3 Mobile-End Transport Protocol .. 31
3.1.4 Mobile-TCP.. 32
3.1.5 Split-Connection Mobile Transport Protocol.. 32
3.1.6 Conclusion.. 33

 ii

3.2 LINK-LAYER PROTOCOLSS ... 33
3.2.1 Snoop Protocol... 34
3.2.2 Adaptive-TCP Protocol.. 34
3.2.3 Asymmetric Reliable Mobile Access in Link-layer (AIRMAIL) protocol 35
3.2.4 Radio Link Protocol ... 35
3.2.5 TULIP Protocol.. 36
3.2.6 Conclusion.. 36

3.3 EXPLICIT NOTIFICATION .. 37
3.3.1 Explicit Congestion Notification.. 37
3.3.2 Explicit Loss Notification... 38
3.3.3 ICMP Messaging.. 38
3.3.4 Syndrome.. 39
3.3.5 Multiple Acknowledgements .. 39
3.3.6 Conclusion.. 40

3.4 END-TO-END PROTOCOLS ... 40
3.4.1 End-to-End SMART.. 41
3.4.2 TCP Westwood ... 41
3.4.3 Freeze-TCP .. 42
3.4.4 Delayed Duplicate Acknowledgement ... 42
3.4.5 Wireless Transmission Control Protocol .. 42
3.4.6 TCP Eiffel ... 43
3.4.7 TCP Real .. 43
3.4.8 Conclusion.. 44

3.5 SUMMARY OF ABOVE PROPOSED OPTIMIZATIONS ... 44
3.6 OUR PROPOSALS TO IMPROVE TCP PERFORMANCE OVER WIRELESS LINK ... 45

4. RNF SCHEME FOR TCP ENHANCEMENT OVER A 802.11 WIRELESS LAN 47

4.1 OVERVIEW OF WIRELESS LOCAL AREA NETWORK... 47
4.1.1 The 802.11 Architecture... 48
4.1.2 The 802.11 MAC Protocol ... 50
4.1.3 The IEEE 802.11 Frame .. 53

4.2 THE RADIO NETWORK FEEDBACK MECHANISM ... 54
4.2.1 Proposed RNF Scheme .. 54

4.3 THE IMPLEMENTATION DETAILS OF THE RNF MECHANISM... 59
4.3.1 Wireless Loss Detection ... 59
4.3.2 TCP Congestion Control Modification.. 62

4.4 PERFORMANCE EVALUATION OF OUR PROPOSED SCHEME BASED ON OPNET SIMULATION 65
4.4.1 Experiment with an 802.11 WLAN Server... 67
4.4.2 Experiment with an 802.11 WLAN ethernet router... 73

4.5 CONCLUSIONS AND FUTURE WORK ... 80

5. RNC FEEDBACK SCHEME FOR TCP ENHANCEMENT OVER A UMTS NETWORK 82

5.1 AN OVERVIEW OF UMTS TECHNOLOGY .. 82
5.1.1 UMTS Architecture .. 83
5.1.2 UTRAN Architecture .. 84
5.1.3 Wideband Code Division Multiple Access (W-CDMA) .. 85
5.1.4 UMTS Modes of Operation.. 87
5.1.5 UMTS Radio Interface Protocol Architecture... 88
5.1.6 Node B .. 91
5.1.7 Radio Network Controller (RNC).. 92
5.1.8 3GGP Release 5 ... 92

5.2 RADIO NETWORK CONTROLLER FEEDBACK MECHANISM ... 93
5.2.1 Proposed RNC Feedback Mechanism ... 94

5.3 OPNET IMPLEMENTATION OF THE RNC FEEDBACK MECHANISM .. 97
5.4 SIMULATION RESULTS AND DISCUSSION ... 100

5.4.1 Scenario 1 Results and Observations .. 102
5.4.2 Scenario 2 Results and Observations .. 106

5.5 CONCLUSIONS AND FUTURE WORK ... 109

 iii

6. TCP ENHANCEMENT OVER WIRELESS LINKS BY MINIMIZING SPURIOUS TCP

TIMEOUTS ... 111

6.1 PROPOSED WIRELESS TIMEOUT DETECTION SCHEME... 112
6.1.1 Wireless RTT Measurement ... 115
6.1.2 Required TCP Congestion Control Modifications .. 117

6.2 EXPERIMENT - 1: 802.11 WLAN NETWORK WITH THE PROPOSED SCHEME... 118
6.2.1 Simulation Results and Discussion.. 121
6.2.2 Conclusions .. 127

6.3 EXPERIMENT 2: UMTS NETWORK WITH THE PROPOSED SCHEME.. 128
6.3.1 Simulation Results and Discussion.. 130
6.3.2 Conclusions and Future work.. 134

7. TCP PERFORMANCE IMPROVEMENT OVER WIRELESS NETWORKS VIA EARLY

PACKET LOSS RECOVERY .. 136

7.1 THE STANDARD TCP MULTIPLE PACKET RECOVERY MECHANISM .. 136
7.1.1 Summary of TCP variants in Multiple Loss Recovery .. 138

7.2 THE PROPOSED EPLR SCHEME .. 138
7.2.1 TCP Reno Congestion Window Analysis... 139
7.2.2 TCP New Reno Congestion Window Analysis .. 140
7.2.3 Intuition behind the Proposed Scheme .. 140

7.3 IMPLEMENTATION DETAILS OF THE PROPOSED SCHEME.. 141
7.4 PERFORMANCE EVALUATION OF THE PROPOSED SCHEME OVER UMTS NETWORK 142

7.4.1 Simulation Scenario 1 .. 144
7.4.2 Simulation Scenario 2 .. 151

7.5 CONCLUSIONS .. 156

8. ANALYTICAL MODEL OF TCP WITH ENHANCED RECOVERY MECHANISM FOR

WIRELESS ENVIRONMENTS... 157

8.1 AN OVERVIEW AND COMPARISON OF ANALYTICAL TCP MODELS... 157
8.2 THE TCP RENO ANALYSIS ... 160

8.2.1 First Packet Recovery .. 160
8.2.2 Second Packet Recovery .. 160
8.2.3 Third packet recovery .. 161
8.2.4 Required Modifications.. 161

8.3 PROPOSED ANALYTICAL MODEL FOR THE TCP STEADY STATE THROUGHPUT 163
8.4 PROPOSED SCHEME FOR DYNAMICALLY ADJUSTING THE TCP CWND .. 167
8.5 EVALUATION OF THE PROPOSED MODEL OVER A UMTS NETWORK ... 169

8.5.1 Results and Observations... 172
8.6 CONCLUSION AND FUTURE WORK ... 177

9. CONCLUSION ... 178

REFERENCES.. 183

 iv

LIST OF FIGURES

FIGURE 1-1 THE OSI REFERENCE MODEL.. 3

FIGURE 1-2 THE GROWTH IN THE NUMBER OF INTERNET USAGE .. 4

FIGURE 1-3 INCREASE IN USER POPULATION IN FIXED AND MOBILE COMMUNICATIONS SYSTEM............................... 5

FIGURE 2-1 TIME LINE FOR IMPORTANT TYPES OF TCP .. 13

FIGURE 2-2 TCP SEGMENT HEADER FORMAT.. 15

FIGURE 2-3 WINDOW FLOW CONTROL 'SELF-CLOCKING'... 16

FIGURE 2-4 ADDITIVE-INCREASE, MULTIPLICATIVE-DECREASE CONGESTION CONTROL ... 21

FIGURE 2-5 TCP CONGESTION CONTROL.. 22

FIGURE 3-1 SPLITTING THE TCP CONNECTION INTO TWO SEPARATE CONNECTIONS ... 30

FIGURE 3-2 A LINK-LAYER APPROACH TO IMPROVE THE TCP PERFORMANCE ... 34

FIGURE 3-3 TCP HEADER WITH ECN AND CWR FLAGS .. 38

FIGURE 4-1 IEEE 802.11 WLAN ARCHITECTURE.. 49

FIGURE 4-2 AN IEEE 802.11 AD HOC NETWORK... 50

FIGURE 4-3 IEEE 802.11 MAC LAYER ... 50

FIGURE 4-4 CSMA/CA MECHANISM... 52

FIGURE 4-5 THE 802.11 FRAME... 54

FIGURE 4-6 WLD FLOW CONTROL FOR CACHING TCP HEADER INFORMATION ... 56

FIGURE 4-7 TCP HEADER WITH RNF FLAG ... 57

FIGURE 4-8WIRELESS LOSS DETECTION FLOW CONTROL.. 58

FIGURE 4-9 TCP INFORMATION DATA STRUCTURE.. 59

FIGURE 4-10 TCP CONNECTION TABLE DATA STRUCTURE ... 60

FIGURE 4-11 GLOBAL STRUCTURE FOR CACHE TABLE .. 60

FIGURE 4-12 WLD PROCESS MODEL .. 62

FIGURE 4-13 ACK PROCESSING WITH RNF FLAG ... 64

FIGURE 4-14 WLAN NETWORK MODEL WITH AN 802.11 WLAN SERVER .. 68

FIGURE 4-15 OPNET REPRESENTATION OF A WLAN SERVER WITH WLD PROXY ... 69

FIGURE 4-16 OPNET REPRESENTATION OF A WLAN MH WITH WL-PEG ... 69

FIGURE 4-17 COMPARISON OF TCP CWND RESPONSES WITH FOR MH-5 ... 70

FIGURE 4-18 COMPARIOSN TCP SENT SEGMET SEQUENCE NUMBER RESPONSES FOR MH-5 71

FIGURE 4-19 AVERAGE NUMBER OF CACHED PACKETS .. 72

FIGURE 4-20 WLAN DATA TRAFFIC SENT (PACKETS/SEC).. 72

FIGURE 4-21 OPNET NETWORK MODEL.. 74

FIGURE 4-22 PSEUDO CODE FOR MAC LAYER PACKET DROPS ... 75

FIGURE 4-23 THE OPNET REPRESENTATION OF 802.11 WLAN ETHERNET ROUTER WITH WLD PROXY 76

FIGURE 4-24 RESPONSES DURING MH-4 CLIENT FTP FILE UPLOAD ... 77

FIGURE 4-25 A SNAPSHOT OF TCP CWND RESPONSE FOR MH-4 ... 78

FIGURE 4-26 A SNAPSHOT OF TCP SENT SEGMENT NUMBER RESPONSE .. 78

FIGURE 4-27 COMPARISON OF TCP SENT SEGMENT RESPONSES... 79

FIGURE 4-28 TCP THROUGHPUT IMPROVEMENT VS PACKET DROP RATES .. 80

FIGURE 5-1 THE UMTS NETWORK ARCHITECTURE .. 84

FIGURE 5-2 UTRAN ARCHITECTURE .. 85

FIGURE 5-3 COMPARISON OF MULTIPLE ACCESS SCHEMES ... 86

FIGURE 5-4 UTRA FDD AND TDD MODES OF OPERATION .. 88

FIGURE 5-5 UMTS RADIO INTERFACE PROTOCOL ARCHITECTURE ... 89

 v

FIGURE 5-6 IP DATAGRAM DOUBLE ENCAPSULATION .. 95

FIGURE 5-7 OPNET REPRESENTATION OF RNC NODE MODEL ... 95

FIGURE 5-8 GTP PROCESS MODEL... 96

FIGURE 5-9 MODIFICATIONS OF “GTP DECAP” STATE ... 98

FIGURE 5-10 MODIFICATIONS OF “GTP ENCAP” STATE ... 99

FIGURE 5-11 UMTS NETWORK MODEL ... 100

FIGURE 5-12 TCP CWND, DROPPED AND CACHED PACKETS ... 103

FIGURE 5-13 TCP CWND, DROPPED AND CACHED PACKETS ... 104

FIGURE 5-14 TCP SENT SEGMENT SIZE NUMBER... 105

FIGURE 5-15 TCP CWND, DROPPED AND CACHED PACKETS ... 107

FIGURE 5-16 TCP SENT SEQUENCE NUMBER... 108

FIGURE 5-17 TOTAL NUMBER OF RNC DOWN-LINK PACKETS .. 109

FIGURE 6-1 TCP HEADER WITH WLN AND WTN RESERVE BITS.. 113

FIGURE 6-2 WENP PROCESS MODEL ... 113

FIGURE 6-3 TCP CONNECTION TABLE DATA STRUCTURE ... 114

FIGURE 6-4 GLOBAL STRUCTURE FOR CACHE TABLE .. 114

FIGURE 6-5 A PSEUDO CODE FOR MEASURING W-RTT... 115

FIGURE 6-6 SETTING GET_WRTT_ENABLE VARIABLE ... 116

FIGURE 6-7 WLAN NETWORK MODEL .. 118

FIGURE 6-8RESPONSES DURING MH-3 FTP FILE UPLOAD .. 122

FIGURE 6-9 W-RTT MEASUREMENT ... 123

FIGURE 6-10 TCP CWND SIZE RESPONSES... 124

FIGURE 6-11 TCP SENT SEGMENT SEQUENCE NUMBER RESPONSES.. 125

FIGURE 6-12 WLAN THROUGHPUT AND DEALY (SEC) RESPONSES .. 126

FIGURE 6-13 GTP PROCESS MODEL WITH WENP ... 128

FIGURE 6-14UMTS NETWORK MODEL.. 129

FIGURE 6-15 W-RTT, CACHED AND DROPPED PACKETS AND TCP CWND ... 131

FIGURE 6-16 TCP CWND SIZE RESPONSES... 132

FIGURE 6-17 COMPARISONS OF TCP SENT SEGMENT SEQUENCE NUMBER RESPONSES .. 133

FIGURE 6-18 UMTS NODE B THROUGHPUT.. 134

FIGURE 7-1 A FLIGHT OF DATA IN THE NETWORK ... 137

FIGURE 7-2 A WINDOW OF DATA WITH MULTIPLE PACKET DROPS .. 139

FIGURE 7-3 CWND EVOLUTION DURING THE FIST PACKET RECOVERY.. 141

FIGURE 7-4 THE FLOW CONTROL FOR EPLR ACK PROCESSING ... 142

FIGURE 7-5 UMTS NETWORK MODEL ... 145

FIGURE 7-6 TCP SENT SEGMENT SEQUENCE NUMBER... 146

FIGURE 7-7 TCP CWND RESPONSE .. 147

FIGURE 7-8 TCP RETRANSMISSION COUNT FOR UE-4... 148

FIGURE 7-9 TCP SENT AND ACK NUMBER FOR UE-4... 149

FIGURE 7-10 UMTS NODE-B DOWNLINK THROUGHPUT ... 151

FIGURE 7-11 UMTS NETWORK MODEL ... 152

FIGURE 7-12 TCP SENT SEGMENT SEQUENCE NUMBER... 153

FIGURE 7-13 TCP SENT SEGMENT SEQUENCE NUMBER RESPONSES.. 154

FIGURE 7-14 MEAN TCP THROUGHPUT AND TCP IMPROVEMENT VERSUS PACKET DROP RATES.......................... 155

FIGURE 7-15 UMTS RNC THROUGHPUT.. 155

FIGURE 8-1 A WINDOW OF DATA WITH MULTIPLE PACKET DROPS .. 160

FIGURE 8-2 CWND EVOLUTION.. 164

FIGURE 8-3 CWND VERSUS PACKET DROP RATE (P)... 168

 vi

FIGURE 8-4 CWND SIZE AND CWND IMPROVEMENT VERSUS PACKET DROP RATE (P) WITH DYNAMIC NETWORK

UTILIZATION FACTOR (Α) ... 169
FIGURE 8-5 UMTS NETWORK MODEL ... 170

FIGURE 8-6 TCP CWND AND SENT SEGMENT SEQUENCE NUMBER RESPONSES WITH 10% PACKET DROP RATE .. 173

FIGURE 8-7 TCP CWND AND SENT SEGMENT SEQUENCE NUMBER RESPONSES WITH 10% PACKET DROP RATE 174

FIGURE 8-8 TCP SENT SEGMENT SEQUENCE NUMBER RESPONSES.. 175

FIGURE 8-9 MEAN TCP CWND AND TCP CWND IMPROVEMENT VERSUS PACKET DROP RATES (P)................... 176

 vii

 LIST OF TABLES

TABLE 4-1 SUMMARY OF IEEE 802.11 STANDARDS .. 48

TABLE 4-2 SELECTED TCP RENO PARAMETER VALUES ... 66

TABLE 4-3 SELECTED WLAN PARAMETER VALUES... 67

TABLE 4-4 MOBILE HOST CONFIGURATION .. 75

TABLE 4-5 SUMARRY OF TCP THROUGHPUT PERFORMANCE ... 80

TABLE 5-1 TCP RENO PARAMETERS ... 101

TABLE 5-2 UMTS PARAMETERS ... 102

TABLE 5-3 SUMMARY OF TCP PERFORMANCE.. 106

TABLE 6-1 MHS CONFIGURATIONS ... 119

TABLE 6-2 WLAN PARAMETERS... 120

TABLE 6-3 TCP PARAMETERS ... 121

TABLE 6-4 SUMMARY OF TCP THROUGHPUT PERFORMACNE... 127

TABLE 6-5 MOBILE HOST CONFIGURATIONS ... 128

TABLE 6-6 SELECTION OF UMTS PARAMETERS ... 129

TABLE 6-7 TCP PERFORMANCE SUMMARY ... 134

TABLE 7-1 TCP PARAMETER VALUES ... 143

TABLE 7-2 UMTS PARAMETER VALUES.. 144

TABLE 7-3 USER EQUIPMENTS CONFIGURATIONS ... 145

TABLE 7-4 SUMMARY OF AVERAGE THROUGHPUT PERFORMANCES... 148

TABLE 7-5 AVERAGE TCP THROUGHPUT PERFORMANCE IMPROVEMENT .. 148

TABLE 7-6 UES CONFIGURATIONS .. 152

TABLE 7-7 SUMMARY OF THE AVERAGE TCP THROUGHPUT PERFORMANCE.. 154

TABLE 8-1 SUMMARY OF TCP RENO CONGESTION WINDOW ANALYSIS... 161

TABLE 8-2 UES CONFIGURATIONS .. 171

TABLE 8-3 SELECTION OF UMTS RNC PARAMETERS .. 171

TABLE 8-4 SELECTION OF TCP PARAMETERS ... 172

TABLE 8-5 SUMMARY OF THE AVERAGE TCP THROUGHPUT PERFORMANCE.. 176

 viii

 LIST OF EQUATIONS

ESTIMATEDRTT = (1-Α) ESTIMATEDRTT + Α SAMPLERTT EQUATION 2.1............................. 17

DEVRTT = (1 – Β) DEVRTT + Β |SAMPLERTT - ESTIMATED RTT| EQUATION 2.2............................... 18

RTO = ESTIMATED RTT + 4 DEVRTT EQUATION 2.3.. 18

LASTBYTESENT – LASTBYTEACKED ≤ MIN (CWND, RCVWND) EQUATION 2.4......................... 19

TCP THROUGHPUT = (W * MSS)/RTT EQUATION 2.5 .. 19

CWND = CWND + MSS (MSS/CWND) EQUATION 2.6... 20

CWND = CWND + MSS EQUATION 2.7.. 21

p

K

RTT

MSS
T = EQUATION 8.1... 158

()2

0 321
3

2
3,1min

3

2

1
)(

pp
bp

T
b

RTT

pB

+









+

≈ EQUATION 8.2 159

[]













−

−

−
+

−

−
+= 2

21

1

21

1
0

f

f

r

r

CE
p

p

p

p
RTORTTLE EQUATION 8.3 159

P

P
RTORTTL

21

1

1
−

+= EQUATION 8.4 .. 159

() () ()1

2

21

1

1

1

22

2 LRTOpLRTOpqLRTTRTOqpRTTqL +++++++= EQUATION 8.5.... 159

ii NR = EQUATION 8.6 ... 164

iiiiiiii TNTRTNTP δδδ ++≈+++= EQUATION 8.7 164

iii WSX α2+= IF NI > 1 EQUATION 8.8... 165

d

T
W

d

TT
WW i

i

ii

ii +≈
+

+= −− 11 α
δ

α EQUATION 8.9..................................... 165

() iii

i

i SWW
T

S δα +−+= − 1
2

1 EQUATION 8.10 165

[]
][PE

XE
B = EQUATION 8.11... 165

RTTNETEPE 







++=

2

1
][][][EQUATION 8.12 166

1][][][++= WESEXE α IF NI = 1 EQUATION 8.13 166

()][1][WEdTE α−= EQUATION 8.14 .. 166

()
2

][
1][)1(

2

][
][

WE
WE

TE
SE +−+= α EQUATION 8.15 166

1][
1

][−+= WE
p

SE EQUATION 8.16 .. 166

)1(

)1(2

)1(2

)1(1

)1(2

)1(1
][

2

2

22 αα

α

α

α

−

−
+









−

−+
+

−

−+
=

pd

p

d

d

d

d
WE EQUATION 8.17.................. 166

 ix

RTTWE
d

WE
p

B








 −+
+









++

=

][
2

)1(21
1

][)1(
1

α

α

 IF E[N] = 1 EQUATION 8.18 167

)1(

)1(

)1(4

23

)1(4

23
][

2

2

22 αα

α

α

α

−

−
+









−

−
+

−

−
=

p

p
WE EQUATION 8.19......................... 167

62.000033.0 += pα EQUATION 8.20 .. 168

Ŝ(1, N) =

∑

∑

=

=

n

i

i

n

i

ii

w

sw

1

1
 EQUATION 8.21 .. 169

 x

ACKNOWLEDGMENTS

I would like to express my deep and sincere gratitude to my research supervisors, Professor Dr.

Harsha Sirisena and Professor Dr. Krzysztof Pawlikowski for their guidance and encouragement

to carry out this research endeavor. Their brilliant ideas and suggestions helped me to improve

the presentation of this thesis.

My very special thanks go to Professor Dr. Harsha Sirisena for his valuable advice and friendly

help. His extensive discussions and constructive comments have been very helpful for this study.

Many thanks to Professor Dr. Krzysztof Pawlikowski for allowing me to use Computer Science

facilities during the first year of my Ph.D study.

I am also grateful for the Electrical and Computer Engineering Department for providing me an

excellent work environment during the past years and for computer staff, Pieter Kikstra and

Florin Predan, for their cheerful assistance.

Many thanks to all members of Networking Research Group of Electrical and Computer

Engineering, and Computer Science Departments for their discussion during weekly meetings.

I also want to express my acknowledgements to University of Canterbury for providing me

financial support for this work.

I am also thankful to the Royal Society of New Zealand for providing me travel grant to attend

the ATNAC 2006 conference in Melbourne.

I feel a deep sense of gratitude for my late father and mother who formed part of my vision and

taught me the good things that really matter in life. The happy memory of my father still provides

a persistent inspiration for my journey in this life.

Lastly, and most importantly, I wish to thank my wife Pathmaverni, for her love, patience and

support during my Ph.D study. I am also thankful to my lovely sons, Nirojan and Vanujan, who

provided me with an additional joyful dimension to our life mission.

 xi

GLOSSARY

AP Access Point

ACK Acknowledgement

A-TCP Adaptive TCP

AIMD Additive-Increase, Multiplicative-Decrease

ARP Address Resolution Protocol

ARPA Advanced Research Projects Agency

ARPANET Advanced Research Projects Agency Network

AIRMAIL Asymmetric Reliable Mobile Access in Link-layer

ATM Asynchronous Transfer Mode

ARQ Automatic Repeat Request

BW Bandwidth

BS Base Station

BS Base Station

BSS Basic Service Set

BER Bit Error Rate

BCH Broadcast Channel

BCCH Broadcast Control Channel

BMC Broadcast/Multicast Control

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CS Circuit-Switched

CTS Clear To Send

CDMA Code Division Multiple Access

CDM Code Division Multiplexing

 xii

CCCH Common Control Channel

CPCH Common Packet Channel

CA Congestion Avoidance

CE Congestion Experienced

CWND Congestion Window

CWR Congestion Window Reduction

CID Connection ID

CFP Contention Free Period

CP Contention Period

CCH Control Channel

CN Core Network

CRC Cyclic Redundancy Check

DCH Dedicated channel

DCCH Dedicated Control Channel

DoD Department of Defense

DS Direct Sequence

DCF Distributed Coordination Function

DIFS Distributed Inter Frame Space

DS Distribution System

DSCH Downlink Shared Channel

DUPACK Duplicate Acknowledgement

EPLR Early Packet Loss Recovery

ETD Early Timeout Detection

ECT ECN Capable Transport

ECE ECN-Echo (ECE)

ETSI European Telecommunications Standards Institute

 xiii

ECN Explicit Congestion Notification

ELN Explicit Loss Notification

ELNR Explicit Loss Notification to Receiver

ELN-ACK Explicit Loss Notification with Acknowledgement

EWMA Exponential Weighted Moving Average

ESS Extended Service Set

FR Fast Retransmit

FTP File Transfer Protocol

FH Fix Host

FS Flight Size

FACH Forward Access Channel

FACK Forward Acknowledgment

FEC Forward Error Control

FEC Forward Error Correction

FER Forward Error Correction

FER Frame Error Rate

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FH Frequency Hopping

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GBN Go-Back-N

GMM GPRS Mobility Management

GSN GPRS Support Node

 xiv

GTP GPRS Tunneling Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

I-TCP Indirect TCP

IEEE Institute of Electronics and Electrical Engineers

IFS Inter Frame Space

ISO International Standard Organization

ITU International Telecommunication Union

IMT-2000 International Telecommunications-2000

ICMP Internet Control Message Protocol

IP Internet Protocol

LAN Local Area Network

MSS Maximum Segment Size

MTU Maximum Transfer Unit

MAC Medium Access Control

MH Mobile Host

MSC Mobile Switching Center

METP Mobile-End Transport Protocol

MSR Mobility Support Routers

NSF National Science Foundation

NACK Negative Acknowledgement

NAV Network Allocation Vector

OSI Open System Interconnection

OFDM Orthogonal Frequency Division Multiplexing

OVSF Orthogonal Variable Spreading Factor

PDCP Packet Data Convergence Protocol

 xv

PDN Packet Data Network

PDP Packet Data Protocol

PS Packet-Switched

PCH Paging Channel

PCCH Paging Control Channel

PCF Point Coordination Function

PIFS Point Inter Frame Space

PSTN Public Switched Telephone Network

QoS Quality of Service

RF Radio Frequency

RLC Radio Link Control

RLP Radio Link Protocol

RNC Radio Network Control

RNC-FB Radio Network Control Feedback

RNF Radio Network Feedback

RNF Radio Network Feedback

RNS Radio Network Subsystems

RRC Radio Resource Control

RRM Radio Resource Management

RACH Random Access Channel

RED Random Early Detection

RTS Ready To Send

RcvWND Receiver Window

RFC Request for Comment

RAND research and development

RTO Retransmit Timeout

 xvi

RTT Round Trip Time

SACK Selective Acknowledgement

SRP Selective Repeat Protocol

SR Selective Retransmissions

SAP Service Access Points

SGSN Serving GPRS Support Node

SRNC Serving Radio Network Controller

SIFS Short Inter Frame Space

SMART Simple Method to Aid Retransmission

SS Slow-Start

SSTHRESH Slow-Start Threshold

SMG Special Mobile Group

SCMTP Split-Connection Mobile Transport Protocol

SF Spreading Factor

SYN Synchronization

 3G Third Generation

3GPP Third Generation Partnership Project

TDD Time Division Duplex

TDM Time Division Multiplexing

TDMA Time-Division Multiple Access

TCH Traffic Channel

TCP Transmission Control Protocol

TPC Transmission Power Control

TULIP Transport Unaware Link Improvement Protocol

UMTS Universal Mobile Telecommunications System

UTRAN UMTS Terrestrial Radio Access Network

 xvii

UDP User Datagram Protocol

UE User Equipment

VoD Video-on-Demand

VLR Visitor Location Register

W-CDMA Wideband Code Division Multiple Access

WiMAX WiMAX

WEP Wired Equivalent Privacy

WENP Wireless Enhancement Proxy

WLD Wireless Loss Detector

WLN Wireless Loss Notification

W-RTO Wireless Retransmit Timeout

W-RTT Wireless Round Trip Time

WTD Wireless Timeout Detection

WTN Wireless Timeout Notification

WTCP Wireless Transmission Control Protocol

ZWA Zero Window Advertisement

NSFNET National Science Foundation Net

WLAN Wireless Local Area Network

C h a p t e r I .

1. Introduction

The Internet has revolutionized the computer and communications world and developed into

the world’s largest information network. It is a source of news, facts and figures and has become

an essential part of modern civilization. The convergence of Internet, telephony and wireless

technologies, such as WiFI, UMTS and WiMAX, changes the way we communicate, work and

live. The present challenge of leading telecommunications and networking vendors is to provide

systems with richer functionality at faster speeds and lower cost in order to meet constantly

evolving market demands.

Computer networks should be well designed and optimized to get maximum benefit with

minimal cost. Most wire-line networks are optimized to perform well under different network

conditions. However, TCP applications in mobile and wireless networks experience severe

performance degradation because packet losses due to bit errors and handoffs initiate congestion

control mechanism. This leads to an absolute necessity to design and optimize the TCP

congestion control mechanism to effectively handle the non-congestion related issues in wireless

environments. This dissertation presents some novel approaches to the design of protocols and

enhancement proxies for TCP congestion control mechanism.

1.1 THE EVOLUTION OF TCP/IP AND THE INTERENET

The Advanced Research Projects Agency (ARPA) was created by US in response to the

launch of Sputnik, first artificial earth satellite, by Soviet Union in 1957. ARPA had the mission

of advancing science and technology applicable to the military [TANENBAUM. A.S, 3rd ed].

The existing traditional circuit-switched telephone networks were considered to be too vulnerable

since the loss of one line or switch would disable the entire network. The research and

development (RAND) corporation came up with the idea of building a network without a central

point of control. In this way, the system would not be vulnerable to a direct hit on a single

location.

 2

To accommodate this requirement, ARPA decided to adapt to a packet-switched network,

consisting of a subnet and host computers. In 1969, a group of people working for the ARPA

linked computers at UCLA, Standard Research Institute, the University of Utah, and the

University of California at Santa Barbara to create the network. The non-centralized network was

born and dubbed ARPANET (Advanced Research Projects Agency Network).

Further experiments demonstrated that the existing ARPANET protocol were not suitable

for running multiple networks. Thus the ability to connect to multiple networks together in a

seamless way became one of the major design goals. This led to more research on protocols,

culminating with the invention of the TCP/IP model and protocols [Cerf & Kahn, 1974]. A later

perspective was given to the TCP/IP model in [Leiner, Cole, Postel, & Mills, 1985].

In 1980, the Department of Defense (DoD) mandated TCP/IP protocol as an official

network standard. The number of networks, machines, and users connected to the ARPANET

grew rapidly after TCP/IP became the only official protocol on January 1, 1983. The National

Science Foundation (NSF) chose TCP/IP when it built a nationwide research network in 1985.

The collection of interconnected TCP/IP networks such as ARPANET, NSFNET and private

networks became the prototype of the Internet that eventually grows to the today’s global

network [Leiner, Cole, Postel, & Mills, 1985].

1.2 OPEN SYSTEM INTERCONNECTION REFERENCE MODEL

The International Standard Organization (ISO) proposed the Open System Interconnection

(OSI) reference model [Zimmermann, 1980] [Tanenbaum, 2003], shown in Figure 1.1, for the

standardization of computer network protocols. The OSI reference model is composed of seven

layers, each specifying particular network functions, and provides a conceptual framework for

communication between computers.

 3

Figure 1-1 The OSI reference model

Actual communication is achieved by using communication protocols; a formal set of rules

and conventions that govern how computer exchange information over network medium. One

OSI layer communicates with another layer to make use of the services provided by that layer.

The services provided by adjacent layers help a given OSI layer to communicate with its peer

layer in other computer systems. The OSI protocols have not become as prevalent as one may

expect, given the degree to which OSI has been predicted as the basis for networking. The

protocol suite that has attained a stronger foothold is TCP/IP.

1.3 INTERNET GROWTH

Until 1995, the usage of the Internet was limited to file transfer, remote access to computers,

and simple mail transfer in the form of a file transfer [Jamalipour, 2003]. Invention of Hypertext

Transfer Protocol (HTTP) and Hypertext Markup Language (HTML) has revolutionized the

Internet as the new media for telecommunications. The web browsing is considered the main

factor in the popularity of the Internet and a huge increase in the Internet subscription happened

after the invention of web browsers such as Netscape and Internet Explorer. Figure 1.2 shows

the growth in the number of Internet users over the last decade. With the extensive progress

 4

achieved during the last decade in wireless access technology, the wireless Internet will be the

next revolutionizing factor in the Internet growth.

Figure 1-2 The growth in the number of Internet usage

1.4 TRENDS TOWARDS WIRELESS INTERNET

The convergence of Internet, telephony and wireless technology changes the way we

communicate, work and live. Wireless communications have become pervasive. The number of

mobile phones and wireless Internet has increased significantly in recent years. As shown in

Figure 1.3, the number of worldwide mobile subscribers increases exponentially with no sign of a

stop or a slowing down of the increase rate, while the increase in the number of fixed

subscribers has been very smooth since 2002 [Jamalipour, 2003; Mohr & Konhauser, 2000].

 5

Figure 1-3 Increase in user population in fixed and mobile communications system

Mobile communications are determined by economic and technical trends and, in future, by

application requirements. With the evolution of second-generation systems and the emerging

third-generation systems, more advanced data and multimedia services are becoming available in

addition to the mobile telephony. These trends and requirements are affecting the vision of

future systems beyond the third generation [Mohr & Konhauser, 2000].

1.5 PROBLEM STATEMENT

Congestion control is the problem of managing network traffic or a network state where the

total demand for resources such as bandwidth among the competing users exceeds the available

capacity. It is a core infrastructural problem stemming from the packet switched and statistically

multiplexed nature of the Internet and has an impact on the Internet stability and manageability.

Although TCP is the most common transport protocol used in the Internet for years, it has

been shown that its congestion control algorithm lacks the ability to adapt to the wireless

environments. TCP is primarily designed for wired networks, where data is seldom lost or

corrupted due to link errors and queue overflow in routers is the predominant reason for the

packet loss. In a wireless network, however, packet losses will occur more often due to high Bit

Error Rates (BERs) than due to congestion. When using TCP over wireless networks, it

 6

considers each packet loss as a sign of congestion and invokes congestion control measures at the

source. This results in severe performance degradation.

It is highly undesirable for a protocol to react to random losses the same way as it reacts to

congestion indications. TCP should react to congestion rather than packet losses. Due to the

characteristics of the air interface, wireless links could introduce sporadic packet losses due to

burst of packet losses. A loss of a single packet often has a little effect on network applications,

but multiple packet losses can have a significant effect. TCP’s inability to distinguish a loss due to

congestion from a random loss can lead to serious performance degradation.

Moreover, TCP can yield low throughput in highly mobile environments due to hand-offs,

which may introduce temporal disconnections, buffer losses and increased latency. Shadowing

and fading of the radio signal may also cause the destination to be temporarily unavailable, which

causes the TCP either to time out or to stop the transmission. The lack of mechanism to notify

the TCP of this effect introduces extra delay and increases the application response time

considerably.

In the case of large-scale mobility, the third Generation (3G) cellular networks are the most

suitable candidates for support of Internet traffic, since they offer capacity for enhanced

broadband data transfers, as well as improved transmission quality. In Code Division Multiple

Access (CDMA), soft hand-off, where a mobile is connected to more than one Base Station (BS),

can eliminate temporal disconnections. However, this problem may still occur if soft hand-off is

not initiated promptly. TCP performances in 3G CDMA networks are generally degraded by

increased latency due to the extensive processing required at the physical layer of these links for

coding and interleaving, and to link layer processing for Forward Error Control (FEC) and link-

level retransmission. Moreover, dynamic resource sharing among all the users in a particular cell

introduces significant bandwidth variations to which TCP is unable to adapt.

In summary, TCP is very sensitive to packet losses and requires further improvements to

better adapt to the wireless environments. It should be able to distinguish wireless related losses

from the congestion related losses and be fine tuned to utilize the available network resources

efficiently.

 7

1.6 FOCUS OF THIS THESIS

The aim of this thesis is to improve the TCP performance over wireless networks such as

WLAN and UMTS. It studies an extensive literature on the performance of TCP and emphasizes

the ways to distinguish the effects due to congestion losses from the effects due to wireless

errors. It addresses the TCP congestion avoidance and control issues over the wireless links from

both the End-to-End and proxy based methods by developing an analytical model and Radio

Network Feedback (RNF) mechanism, thereby leading to efficient network resource utilization

and improving the application response time. It also analyzes widely used TCP End-to-End

congestion control algorithm and presents a spectrum of new algorithms that enables the TCP to

better adapt to the wireless environments.

The newly developed analytical model, RNF mechanism and algorithms are tested by

performing simulations experiments using a wide range of simulation scenarios. Since it is very

difficult to cover the entire area of congestion avoidance and control issues and due to the time

constraint, our research scope is restricted to the improvement of TCP performances over

wireless networks by avoiding the hand-offs effects.

1.7 SOLUTION APPROACH

The basic idea is to explicitly inform the TCP source of any effects caused by non-congestion

related packet losses. It can be achieved by monitoring the radio interface, which requires a

proxy, and by considering the packet loss rates or packet loss patterns at the TCP source. The

introduction of a proxy and its implementation technique is network dependent. This thesis

considers the following significant contributions to achieve the object:

• Development and implementation of the RNF technique in a WLAN Server and in a

WLAN Router together with the network utilization factor (Chapter 4).

• Development and implementation of Radio Network Controll (RNC) feedback

mechanism in a UMTS network (Chapter 5).

• Development and implementation of Wireless Timeout Detection (WTD) in a WLAN

and in a UMTS network (Chapter 6).

• Development and design of improved congestion avoidance and control algorithm for

Early Timeout Detection (ETD) (Chapter 7).

 8

• Development and design of an analytical model of TCP with enhanced recovery

mechanism for wireless environments (Chapter 8).

1.8 LIMITATIONS

The proposed solutions could not implement in a CDMA network because the simulation

tool, OPNET, used in this study does not support the CDMA network. The RNF and RNC

feedback mechanism do not consider the hand-off effects due to mobility. However, they can be

further extended to support mobility by introducing appropriate modifications. In addition to

these, the following assumptions are made in this thesis:

• IP datagram is not encrypted so that the RNF proxy will be able to monitor the TCP

flows.

• Traffic consists of File Transfer Protocol (FTP) over TCP

• Packet losses are uniformly distributed

• Receiver window is bigger than the congestion window and hence it does not influence

the sender rate

• Congestion control schemes are window based and not rate based

1.9 STRUCTURE OF THESIS

This thesis comprises nine chapters and the remainder of this dissertation is organized as

follows.

Chapter 2 gives an overview of all major types of TCP and briefly explains their specific

functionalities. The strength and weaknesses of those TCP flavors are discussed and the TCP

Reno is selected for further development. It then gives an in-depth analysis of its congestion

avoidance and control mechanism and directs attention to specific areas, where further

improvements required optimizing the TCP performance over wireless medium.

Chapter 3 presents an up-to-date survey of the schemes proposed to alleviate the poor End-

to-End TCP performance in wireless medium. It summarizes these protocols and points out the

 9

advantages and disadvantages of each scheme. It then briefly outlines the proposed schemes and

their advantages over previously proposed schemes.

Chapter 4 gives an overview of WLAN technology and motivates the need for the RNF

mechanism. The concept behind the RNF mechanism and the methodology applied in

developing the RNF mechanism are explained. It then outlines the implementation details of the

RNF mechanism in a WLAN environment and compares its performance with the standard

WLAN and the WLAN with Snoop enhancing proxy. It also presents the guidelines for further

improvement.

Chapter 5 gives an overview of UMTS technology and, based on the RNF mechanism

implemented in WLAN environments, devises the RNC feedback mechanism. It provides with

an incentive to the RNC development and outlines the advantages of the RNC mechanism over

the RNF. The RNC mechanism is developed and implemented in a UMTS network. The TCP

performance with the RNC proxy is analyzed and compared with that of the standard UMTS.

Chapter 6 analysis the adverse effect on the network performances due to the spurious TCP

timeouts and motivates the development of WTD scheme. Both the RNF and RNC mechanisms

are extended with WTD scheme and are implemented in a WLAN and UMTS network

respectively. The TCP performance over the WLAN and UMTS networks, with and without the

WTD schemes, are explained and compared.

Chapter 7 gives an in-depth analysis of the existing TCP Reno congestion avoidance and

control mechanism and indicates its inability to deal with situations where it cannot initiate the

congestion control, thereby leading to unnecessary timeouts. Based on the analysis, it develops

the ETD scheme with improved congestion avoidance and control algorithm that enables the

TCP source to early detect timeouts and to act accordingly. The ETD scheme is implemented in

a UMTS network and its performance is compared with that of the standard TCP Reno.

Chapter 8 develops an analytical model of TCP by extending the work done in Chapter 7. It

also proposes a further modification that dynamically adjusts its congestion window by

considering the packet loss rate as the input parameter. The model is implemented in a UMTS

network and its performance is explained and compared with that of TCP Reno. The guidelines

for further improvement are also presented.

 10

Finally, Chapter 9 presents the overall conclusions and indicates future directions of research.

1.10 PUBLICATION LIST

The papers prepared during this study are listed below:

[1] A. Jayananthan and Harsha Sirisena, ’TCP Performance Enhancement over WLAN with

Wireless Loss Detection Proxy’, Proceedings of 5th IEEE International Conference on ICICS 2005,

pp. 654-658, Bangkok, December, 2005.

[2] A. Jayananthan, Harsha Sirisena and Krzysztof Pawlikowski, ‘TCP Performance

Enhancement over UMTS Network with RNC Feedback’, AusWireless’06, Sydney, March

2006.

[3] A. Jayananthan, Harsha Sirisena and Krzysztof Pawlikowski, ‘Improving TCP Performance

over 802.11 WLAN with Radio Network Feedback’, Australian Telecommunication

Network and Applications Conference (ATNAC 2006), Melbourne, December 2006.

[4] A. Jayananthan and Harsha Sirisena, ‘TCP End-to-End Performance Improvement over

Wireless Networks via Early Packet Loss Recovery’, Australian Telecommunication

Network and Applications Conference (ATNAC 2006), Melbourne, December 2006.

[5] A. Jayananthan, Harsha Sirisena and Vijay Garg, ‘Analytical Model of TCP with Enhanced

Recovery Mechanism for Wireless Environments’, IEEE International Conference on

Communications 2007, ICC-2007, Glasgow, June 2007.

[6] A. Jayananthan, Harsha Sirisena and Krzysztof Pawlikowski, ‘[1] TCP Enhancement over

Wireless Links by Minimizing Spurious TCP Timeouts’, Australian Telecommunication

Network and Applications Conference (ATNAC 2007), Christchurch, December 2007.

 11

C h a p t e r I I .

2. Transmission Control Protocol

It is essential to be thoroughly familiar with TCP to understand the historic, current and

future architecture of the Internet protocols. Most applications on the Internet use TCP because

its built in reliability and flow control ensure safe delivery of data across an unreliable IP layer

below. IP alone is a basic datagram service and does not support any concept of a session or

connection. Once a datagram is sent or received, the service retains no memory of the entity with

which it was communicating. The abilities to retransmit data or check it for errors are minimal or

nonexistent in the datagram services.

This chapter provides a brief overview of TCP development and its general features. All

major types of TCP and their specific functionalities, with special emphasis on their congestion

avoidance and control mechanisms are presented. The strength and weaknesses of those TCP

flavors are discussed and most appropriate transport protocol, which can be further developed to

perform well in wireless networks, is selected. Finally, an in-depth analysis of the congestion

avoidance and control mechanism of the selected TCP is given and the specific areas, where

further improvements required optimizing its performance over wireless medium, are indicated.

2.1 DEVELOPMENT OF TCP

TCP is both complex and evolving transport protocol. The basic functionality of TCP is

defined in [RFC 793] and was published in 1981. Since then, significant enhancements have been

made and proposed. Host Requirements for Internet Hosts [RFC 1122] clarifies a number of

TCP protocol implementation requirements. TCP extensions have been defined in by [RFC

1323], [RFC 2018] and [RFC 2481]. TCP congestion Control [RFC 2581], one of the most

important TCP related Request for Comment (RFC) in recent years, describes updated

congestion control algorithms to avoid congestion.

Congestion occurs when the demand is greater than the available resources, such as

bandwidths of links, buffer space and processing capacity at the intermediate nodes such as

 12

routers. Congestion control is concerned with allocating the resources in a network such that

network can operate at an acceptable performance level when the demand exceeds the capacity

of the network resources. Careful design is required to provide good service under heavy load.

Otherwise, there can be a congestion collapse that is highly resource wasteful and causes

undesirable state of operation.

Congestion collapse was first observed during the early growth phase of the Internet in the

mid 1980s [RFC 896]. It was mainly due to TCP connections unnecessarily retransmitting packets

that were either in transit or had already been received at the receiver. The original TCP

implementations [RFC 793] used window-based flow control to control the use of buffer space at

the receiver and Go-Back-N retransmission after a packet drop for reliable delivery, but did not

include dynamic adjustment of the flow-control window in response to congestion.

Different types of congestion collapse are categorized in [Fall & Floyd, 1996]: classical congestion

collapse, which occurs when the network is flooded with unnecessary retransmitted packets [Nagle,

1984] and was fixed with modern TCP retransmit timer and congestion control algorithm

[Jacobson, 1988], fragmentation-based congestion collapse , which is given in [Kent & Mogul, 1987] and

was fixed with Maximum Transfer Unit (MTU) discovery [RFC 1063, 1988], and congestion collapse

from undelivered packets, which occurs when networks overloaded with packets that are discarded

before they reach the receiver [S. Floyd & Fall, 1999].

The popularity of the Internet has caused a proliferation in the number of TCP

implementations. Some of these may fail due to logic errors, or misinterpretations of the

specification [RFC 2525]. Others may deliberately be implemented with the congestion control

algorithms that use the available resources more aggressive than other TCP implementations. The

consequence of such applications may lead to a state where effectively no congestion control and

the Internet is chronically congested [RFC 2309, 1998]. There is also a significant number of TCP

non-compatible and non-responsive bandwidth hungry traffic flows in the Internet, which can

also pose significant threats to the stability of the Internet.

The development of TCP must avoid making radical changes that may stress the deployed

network into congestion collapse, and also must avoid a congestion control arms race among

competing protocols [RFC 2914]. TCP has experienced number of changes in its primitive

design, during its development process, over the last three decades. The exponential growth in

 13

the Internet usage increased the congestion problems. Consequently, many versions of TCP exist

today. Presently, all major types of TCP employs congestion control algorithms, which include

slow-start (SS), congestion avoidance and fast retransmit and fast recovery.

Figure 2-1 Time line for important types of TCP

2.2 GENERAL FEATURES IN TCP

TCP is an end-to-end, point-to-point transport protocol used in the Internet. Being point-to-

point protocol means that there is always a single sender and a single receiver for a TCP session.

Being an end-to-end protocol, on the other hand, means that TCP session should cover all

parameters and transportations involved from the source host to the destination host

[Jamalipour, 2003]. TCP provides connection-oriented, reliable byte stream service. We, in turn,

discuss the meaning for each of these descriptive terms.

2.2.1 CONNECTION- ORIENTED

Before any data transfer could be started, a connection must be established through a process

called three-way handshake. During this process, the TCP sender and receiver come to an

agreement in the establishment of a connection and set the relevant parameters such as

Maximum Segment Size (MSS). For example, if a client computer is contacting a server to send it

some information, a TCP connection is established by exchanging control messages as follows:

• The client sends a packet with the SYN bit set and a sequence number N.

• The server then sends a packet with an ACK number of N+1, the SYN bit set and a

sequence number X.

• The client sends a packet with an ACK number X+1 and the connection is established.

Such signaling period before the exchange of data could sometimes put an unacceptable delay

in the applications that are sensitive to delay such as real-time voice.

 14

2.2.2 RELIABILITY

A number of mechanisms, namely checksums, duplicate data detection, sequencing,

retransmissions and timers, help TCP to provide reliable data delivery. All TCP segments carry a

checksum, which is used by the receiver to detect corrupted data. TCP keeps track of bytes

received in order to detect and drop duplicate transmissions. In packet switched network, packets

can arrive out of sequence. TCP delivers the byte stream data to an application in order by

properly sequencing segments it receives. Corrupted or lost data must be retransmitted in order

to guarantee delivery of data. The use of positive acknowledgements by the receiver to the sender

confirms successful reception of data. The lack of positive acknowledgements, coupled with a

timeout period, calls for a retransmission. TCP maintains a collection of static and dynamic

timers on data sent. The TCP sender waits for the receiver to reply with an acknowledgement

within a bounded length of time. If the timer expires before receiving any acknowledgement, the

sender can retransmit the segment.

2.2.3 BYTE STREAM DELIVERY

TCP interfaces between the application layer above and the network layer below. A stream of

8-bit bytes is exchanged across the TCP connection between the two applications. An application

sends data to TCP in 8-bit byte streams, which is then broken by TCP sender into segments in

order to transmit data in manageable pieces to the receiver. The size of the application layer

payload is variable but may not be larger than MSS, which is usually announced by the TCP

receiver during connection establishment using the MSS option in the TCP header. However, it is

limited by the outbound link’s Maximum Transfer Unit (MTU). Alternatively, the sender may use

the path MTU discovery [RFC 1191] to derive an appropriate MSS.

2.3 TCP SEGMENT FORMAT

The TCP segment consists of a TCP header followed by a payload. The payload includes

information data passed from the application layer above for transmission. The TCP header

includes address information for the segment and all information required for implementation of

algorithms used in TCP. An option field is included in the TCP header that can include specific

information for a particular TCP connection. The default TCP header size is 20 bytes. However,

this may go up to 60 bytes with inclusion of an option field. To this effect, a header length filed is

also included in the TCP header as shown in Figure 2.2.

 15

Figure 2-2 TCP segment header format

TCP segments are sent as IP datagram. The IP header carries several fields, including the

source and destination host addresses. A TCP header follows the IP header, supplying

information specific to the TCP protocol. This division allows for the existence of host level

protocols other than TCP.

2.4 TCP FLOW CONTROL

TCP flow control is provided through the well-known sliding window mechanism. ACKs sent

by the TCP receiver carry the advertised window, which limits the number of bytes the TCP

sender may have outstanding at any time. The advertised window corresponds to the size of TCP

receiver’s receive socket buffer. The key feature of the sliding window protocol is that it permits

pipelined communication to better utilize the channel capacity. The sender can send a maximum

W frames without acknowledgement, where W is the window size of the sliding window. The

sliding window maps to the frames in sender’s buffer that are to be sent, or have been sent and

now are waiting for acknowledgement. For maximum throughput, the amount of data in transit

at any given time should be the channel bandwidth-delay product, which refers to the product of

a data link's capacity (in bits per second) and its end-to-end delay (in seconds).

 16

Figure 2-3 Window flow control 'self-clocking'

End-to-end protocols that implement sliding window flow control, like TCP, share an

important self-clocking property. A schematic representation of a sender and receiver on high

bandwidth networks connected by a slow link, the bottleneck link, is shown in Figure 2.3

[Jacobson, 1988]. The vertical and horizontal dimensions are the bandwidth (BW) and time

respectively. Each of the shaded boxes represents a packet. The area of each box is the packet

size because ‘BW-delay product = bits’. The number of bits in a packet does not change as it

goes through the network so a packet on the slow link has to spread out more in time.

Figure 2.3 shows the ideal case in which a single sender fully utilizes the non-shared

bottleneck link, the slowest link in the path, with a fixed bandwidth and always sends fixed size

segments. In this case, the ACK inter-arrival time (AS) at the sender is constant and equal to the

packet transmission delay over the bottleneck link, PB. This constant stream of returning ACKs is

referred to as ACK clock. The arrival of an ACK moves the sliding window to the right by one

segment and clocks out a new segment, thereby keeping the number of outstanding packets, i.e.

the window constant.

2.5 TCP TIME-OUT MECHANISM

In order to avoid long delays when there is no response from the receiver in a TCP

connection, a time-out mechanism is employed. Therefore, after each TCP segment transmission

by a sender, a timer is set and it starts counting down. If the TCP sender does not receive a

 17

threshold number of ACKs before the timer expires, it assumes that either the packet or the

ACK is lost, and retransmits the same packet again until an ACK is received. The TCP retransmit

timeout (RTO) value must be carefully chosen. If RTO value is too small, the time expires

quickly and premature time-outs will be generated during the usual TCP operation and thus

unnecessary retransmission will occur. On the other hand, if RTO value is too large, the TCP will

slowly respond to the segment loss, which means longer end-to-end delay and can also degrade

performance. Therefore, the RTO value must be optimized to the extent possible.

When a packet is sent over a TCP connection, the sender times how long it takes for it to be

acknowledged, producing a sequence of round-trip samples. Older TCP implementations only

time one segment per RTT, whereas newer implementations use the timestamp option [RFC

1323] to time every segment. Timing every segment allows much closer tracking of changes in

RTT. We refer to the RTT sampling rate as the number of RTT samples the TCP sender

captures per RTT divided by the TCP sender’s load. In case the TCP sender times every segment

and the TCP receiver acknowledges every segment, the RTT sampling rate is 1. If the TCP

sender times every segment and the TCP receiver acknowledges every other segment (delayed-

ACK), the RTT sampling rate is 0.5. The closer the sampling rate to 1 the more accurately the

TCP sender measures the RTT.

 TCP uses a mechanism to estimate the round-trip time (RTT) in the network, based on

which the timer can be set accordingly. This will be done continually so that a variable estimation

will happen. TCP collects information on the most recent RTTs and then makes an average

value, called a sample RTT [Kurose & Ross, 2005]. The EstimatedRTT is then computed in an

iterative manner by using the following equation:

EstimatedRTT = (1-α) EstimatedRTT + α SampleRTT Equation 2.1

Where α is a constant between 0 and 1 that control how rapidly the estimated RTT adapts to

changes and the typical value for α is 0.125 [Jacobson, 1988], which decides trade-off between

efficiency and fairness. This method is called exponential weighted moving average (EWMA)

owing to the inclusion of the factor α. The method provides that the influence of given sample

decreases exponentially fast and puts more weight on the recent sample instead.

 18

In addition to having an estimate of the RTT, it is also valuable to have a measure of the

variability of the RTT. [RFC 2988] defines the RTT variations, DevRTT, as an estimate of how

much SampleRTT typically deviates from EstimatedRTT:

DevRTT = (1 – β) DevRTT + β |SampleRTT - Estimated RTT| Equation 2.2

Note that DevRTT is an EWMA of the difference between SampleRTT and EstimatedRTT.

If the SampleRTT values have little fluctuation, then DevRTT will be small; on the other hand, if

there is a lot of fluctuation, DevRTT will be large. The recommended value of β is 0.25

[Jacobson, 1988].

After computing EstimatedRTT, the TCP RTO interval is set to that value plus a safety

margin in order to avoid any unnecessary retransmissions and large data transfer delay.

RTO = Estimated RTT + 4 DevRTT Equation 2.3

2.6 TCP CONGESTION CONTROL IN THE INTERNET

With the fast development of the network, more and more networks access the Internet. The

Internet has been expanded in terms of its scale, coverage and users quantities. More and more

users use the Internet as their data transmission platform to implement various applications.

Apart form traditional applications of World Wide Web (WWW), e-mail and file-transfer

protocol (FTP), network users try to expand some new applications, such as tele-education, video

telephone, video conference and video-on-demand (VoD), on the Internet. A best-effort

network like the Internet does not have the notion of admission control or resource reservation

to control the imposed network load, i.e., the total number of packets that can reside within the

network. A best-effort network under high network load is called congested.

If the network becomes congested, no one can use the network resources at all and also the

fact that when the network is congested, any additional transmitted packets would be lost

because of lack of network resources such as the buffer spaces at the routers. So, network end-

points sharing a best-effort network need to respond to congestion by implementing congestion

control in order to avoid further packet drop. Otherwise, it may cause the following negative

effects:

• Increase the delay and jitter of packet transmission

 19

• Packet retransmission caused by high delay

• Decrease the network throughput and lower the utilization of network resources

• Intensified congestion can occupy too many network resources and the irrational

assignment of resources even can lead to congestion collapse: the network load stays

extremely high but throughput is reduced to close to zero [RFC 896].

The main objective of TCP’s congestion control is to limit the sending rate to avoid

overwhelming the network when it faces congestion on the path to the destination.

Let us first examine how a TCP sender limits the rate at which it sends traffic into its

connection. Each side of a TCP connection consists of a receive buffer, a send buffer and several

variables, such as LastByteRead, RcvWindow and so on. The TCP congestion control has each

side of a connection keep track of an additional variable, the congestion window (CWND). The

CWND size imposes a constraint on the rate a TCP sender can send traffic into the network.

Specifically, the amount of unacknowledged data at a sender may not exceed the minimum of

CWND and RcvWND (receiver window).

LastByteSent – LastByteAcked ≤ MIN (CWND, RcvWND) Equation 2.4

TCP controls the rate of transmission of the packets as well as the congestion occurrence in

the network. Therefore, the throughput of the TCP becomes a function of the size of the

congestion window W and the RTT. If the throughput is measured in bytes per second, then

with MSS bytes in each segment, the TCP throughput will be expressed.

TCP Throughput = (W * MSS)/RTT Equation 2.5

Let us next consider how a TCP sender perceives that there is congestion on the path

between itself and the destination. A loss event at a TCP sender is defined as the occurrence of

either a timeout or the receipt of three duplicate ACKs from the receiver. When there is an

excessive congestion, one (or more) router buffers along the path overflows, causing a datagram

to be dropped. The dropped datagram, in turn, results in a loss event at the sender, either by a

timeout or the receipt of three duplicate ACKs, which is taken by the sender to be an indication

 20

of congestion on the sender-to-receiver path. Notice that TCP congestion control algorithm does

not require any support of routers for their functioning.

TCP congestion algorithm has three major components: additive increase and multiplicative

decrease, slow-start and reaction to timeout events.

2.6.1 ADDITIVE-INCREASE, MULTIPLICATIVE-DECREASE

A TCP sender additively increases its rate when it perceives that the end-to-end path is

congestion free, and multiplicatively decreases its rate when it detects (via a loss event) that the

path is congested. For this reason, TCP congestion control is often referred to as an additive-

increase, multiplicative-decrease (AIMD) [CHIU D. M & JAIN R, 1989]. The rationale for an

increase in rate when it perceives no congestion is that if there is no detected congestion, then

there is likely to be available bandwidth that could be additionally uses by TCP connection. In

such circumstances, TCP increases its CWND slowly, cautiously probing for additional available

bandwidth in the end-to-end path: it does increment its CWND a little each time it receives an

ACK, with the goal of increasing CWND by 1 MSS every RTT [RFC 2581].

CWND = CWND + MSS (MSS/CWND) Equation 2.6

The linear increase phase of TCP’s congestion control protocol is known as congestion

avoidance (CA). The value of CWND repeatedly goes through cycles during which it increases

linearly and then suddenly drops to half its current value (multiplicative-decrease) when a loss

event occurs, giving rise to a saw-toothed pattern in long-lived TCP connections, as shown in

Figure 2.4.

 21

Congestion Avoidance
phase

Slow-Start

Fast

retransmit

and fast

recovery

phase

Slow-Start

threshold

Figure 2-4 Additive-increase, multiplicative-decrease congestion control

2.6.2 SLOW START

When a new TCP connection is established with a host on another network, the CWND is

initialized to 1 MSS [RFC 3390] and slow-start threshold (SSTHRESH), which determines the

CWND size at which the slow-start will end and congestion avoidance will start, is set to a large

value, such as equal to 65 Kbytes as in [RFC 2001, 1997]. Because the available bandwidth to the

connection may be much larger than MSS/RTT, a TCP sender, during its initial phase, increases

its rate exponentially by doubling its CWND value every RTT; the sender generates the

exponential growth by increasing the CWND value by 1 MSS every time a transmitted segment is

acknowledged.

CWND = CWND + MSS Equation 2.7

The exponential growth continues until there is a loss event, at which time CWND is cut in

half, or the SSTHRESH is reached.

2.6.3 REACTION TO TIMEOUT EVENTS

If an ACK for a given segment is not received in a certain amount of time, known as RTO

value, a timeout event occurs and the segment is resent [RFC 793]. After a timeout event, a TCP

 22

sender enters a slow-start phase; it sets the CWND to 1 MSS and then grows the congestion

window exponentially until CWND reaches SSTHRESH. When CWND reaches SSTHRESH,

TCP enters the CA phase, during which CWND ramps up linearly as described in Section 2.6.1.

Assuming initial value of CWND equals 1MSS, initial value of SSTHRESH is large, i.e 64 Kbyes,

and TCP sender begins in slow stat state, a visual description of slow start and congestion

avoidance [RFC 2581] followed by a timeout is shown in Figure 2.5.

Figure 2-5 TCP Congestion Control

The TCP is based on the notion of the sliding window in order to guarantee reliable and in

order packet delivery. All major types of TCP employs congestion control algorithms. However,

the implementation of the fast recovery and retransmit mechanism is quite different.

2.7 TCP TAHOE

The first and most basic step taken by Van Jacobson in [Jacobson, 1988] when he established

the fundamental algorithms for congestion avoidance and control. It has slow start, congestion

avoidance and Fast Retransmit (FR) algorithms and was first implemented in 1988 as 4.3 BSD

Tahoe TCP and was later improved in [Jacobson, 1990]. One of the major concepts behind his

ideas is that a connection operating at a stable state using a full window of in transit packets

should obey the packet conservation rule: a new packet is not put into the network until an old packet

leaves the network. This implies that a packet can enter the network on the receipt of an

 23

acknowledgement which indicates that another packet has indeed left the network. Therefore, a

connection at equilibrium will send new packets with the rate it receives acknowledgements.

In FR algorithm, TCP Tahoe retransmits the lost packet upon receiving three duplicate ACKs

without waiting for retransmit timer to expire. It then sets the ssthresh to CWND/2 and the

CWND to 1 MSS and enters into the SS phase. Later, it was found that this algorithm works well

for a single packet drop but fails in case of multiple packet drops within a window of data [Sally

Floyd, 1994 October]. Each retransmission of packet will force TCP Tahoe to enter SS phase

thus resulting in serious loss of performance. This weakness of TCP Tahoe is partially improved

in TCP Reno [Jacobson, 1990] by introducing Fast Recovery algorithm.

2.8 TCP RENO

TCP Reno introduces a major improvement to TCP Tahoe by modifying the action after the

detection of a loss through duplicate ACKs. The idea is that the only way for a loss to be

detected via a TCP timeout and not via the receipt of duplicate ACKs is when the flow of

packets and acknowledgements has completely stopped. This would be an indication of heavy

congestion. However, when the flow of acknowledgements is not stopped the sender should not

fall back to slow-start. This is the case when a loss is signaled by the receipt of three duplicate

ACKs rather than a timeout. Since the congestion experienced is not heavy and the flow still

exists, the sender can continue with transmission but should reduce the usage of network

resources.

This is implemented in the Fast Recovery algorithm that follows a Fast Retransmit.

 TCP Reno after retransmits the missing packet by its fast retransmission algorithm will enter

the Fast Recovery algorithm until the receipt of non duplicate ACK. Its Fast Recovery algorithm sets

the CWND to half the flight-size after Fast Retransmission instead of reducing it to one MSS and

entering into slow-start phase as done in TCP Tahoe. TCP Reno did significantly improve the

behavior of TCP Tahoe when a single packet is dropped within a window of date. However, it

suffers from multiple packet recovery within a window [Fall & Floyd, 1996].

2.8.1 TCP RENO FAST RETRANSMIT AND FAST RECOVERY

On receiving the third duplicate ACK, TCP Reno sender retransmits the missing packet by

performing its Fast Retransmit algorithm without waiting for the expiry of retransmission timeout

interval and enters into its Fast Recovery phase. It then waits for an ACK that acknowledges the

 24

entire transmit window of data before returning to congestion avoidance. If it does not receive such

an ACK, TCP Reno experiences a timeout and enters the slow-start state. The implementation of

TCP Reno Fast Retransmit and Fast Recovery mechanism [RFC 2581] is as follows:

1. ssthresh is set to no more than max(flightsize/2, 2MSS) when receiving the third duplicate

ACK.

2. Retransmit the lost segment and set CWND = ssthresh +3MSS to inflate the congestion

window artificially by three that are buffered at receiver side.

3. Increment CWND by MSS for each additional duplicate ACK received to inflate the

congestion window in order to reflect the additional segment that has left the network.

4. Transmit a new segment if allowed by the new value of CWND and the receiver’s

advertised window.

5. When the next ACK arrives that acknowledges new data, set CWND = ssthresh, which is

set in step 1.

It should be noted that after the step 5, TCP Reno will enter the Fast Retransmit phase again

instead of Congestion Avoidance phase if there is multiple packet losses within that window of data.

This may also require a timeout to recover the lost packets, and it has been shown in [Sally Floyd,

1994 October] that TCP Reno Fast Recovery is generally not efficient to this effect.

2.9 TCP NEW RENO

TCP New Reno [S. FLOYD & HENDERSON, 1999] introduces a small enhancement to

TCP Reno. In simple, TCP Reno sender would leave Fast Recovery on the receipt of first ACK

that acknowledges new data. This works fine if there is only one lost packet. However, when

more losses exist this will fail to recover all of them. [Hoe, 1996] suggested that during the Fast

Recovery the TCP sender should respond to partial ACK by inferring that the indicated packet has

been lost and retransmitting that packet. TCP New Reno, contrary to TCP Reno, does not exit its

Fast Recovery phase on receiving partial ACKs. Instead, it retransmits that indicated lost packet on

the arrival of each partial ACK, thereby recovering from multiple packet loss in a single window

of data and exits its Fast Recovery phase either on receiving the ACK that acknowledges entire data

within that window or on occurrence of retransmission timeout.

 25

2.9.1 TCP NEW RENO FAST RECOVERY ALGORITHM

The TCP New Reno Fast Recovery algorithm described in [S. FLOYD & HENDERSON,

1999] is as follows.

1. Initialize a new variable send_recover to initial send sequence number. When the third

duplicate ACK is received and the sender is not already in the Fast Recovery phase, check

that the duplicate ACKs cover more than variable send_recover. If they do, then set

ssthresh to max(flightsize/2, 2MSS) and record the highest sequence number transmitted

in the variable send_recover.

2. Steps 2, 3 and 4 of TCP Reno given in Subsection 2.8.1 are processed.

3. When the next ACK arrives that acknowledges all data packets up to and including

send_recover, then set CWND either to min(ssthresh, flightsize + MSS) or ssthresh as in

step 1 and exit the Fast Recovery phase. Otherwise, this indicates a partial ACK. Do not

exit Fast Recovery and performs the followings

a. Retransmit the first unacknowledged packet, deflate CWND by the amount of

new data being acknowledged and add one MSS and reset the retransmit timer.

b. It then tries to send new segment depending on the new CWND size and the

receiver window size.

4. If a retransmit timeout happens then it records the highest sequence number transmitted

in the variable send_recover, exits Fast Recovery phase.

2.10 TCP SELECTIVE ACKNOWLEDGEMENT

A proposed modification to TCP, selective acknowledgement (SACK) [RFC 2018] allows a

TCP receiver to acknowledge out-of-order segments selectively rather than just cumulatively

acknowledging the last correctly received in-order segment. SACK option is used by TCP

receiver to inform the TCP sender that a non contiguous segment of data has been received and

it is queued. To use SACK, both the TCP sender and receiver must support the feature and must

enable it by negotiating the SACK-Permitted option during the connection establishment.

Adding the SACK option to the TCP flavors such as TCP Tahoe or Reno, does not change

their basic underlying congestion control algorithms. The information about missing sequence

 26

numbers is transmitted to TCP sender using three SACK blocks with each ACK, using the rules

outlined in [RFC 2018]. A simulation based comparison of TCP Tahoe, TCP Reno and TCP

SACK [Fall & Floyd, 1996] showed that TCP SACK recovers from multiple packet losses quickly

and smoothly without the expiry of retransmission timeout interval. Further, real time Internet

experiments in [Bruyeron, Hemon, & Zhang, 1988] shows that depending on the error pattern,

TCP SACK has 10% to 45 % higher throughput than TCP Reno.

2.11 TCP FORWARD ACKNOWLEDGEMENT

The Forward Acknowledgment (FACK) algorithm proposed in [RFC 2018] aims at better

recovery from multiple losses. In FACK, TCP maintains two additional variables: snd_fack that

represent the forward-most segment that has been acknowledged by the receiver through the

SACK option and retrans_data that reflects the amount of outstanding retransmitted data in the

network. Using these variables, the sender can estimate the actual quantity of outstanding data in

the network as (forward-most data sent - snd_fack + retrans_data) and can inject new data if

allowed by receiver’s window. TCP FACK regulates the amount of outstanding data in the

network to be within one segment of CWND, which remains constant during the Fast Recovery

phase.

2.12 TCP VEGAS

TCP Vegas [Brakmo, O'Malley, & Peterson, 1994] was presented before New Reno, SACK

and FACK were developed. Vegas is fundamentally different from other TCP variants in that it

does not wait for loss to trigger congestion window reductions.; it employs an alternative strategy

in that it tries to predict when congestion is about to happen and adapts its window to

compensate. This is a proactive approach as it attempts to reduce its sending rate before packets

start being dropped by the network.

Vegas keeps track of the time each segment is sent. When an ACK arrives, it estimates RTT as

the difference between the current time and the recorded timestamp for the relevant segment.

For each connection, Vegas defines BaseRTT to be the minimum RTT seen so far. The actual

throughput of TCP Vegas is obtained by dividing the number of bytes sent in a round trip time

(RTT) and its expected throughput is obtained by dividing current CWND size by the minimum

RTT. TCP Vegas does not look at changes in the slope of throughput but alternatively it

compares the actual throughput with expected throughput to determine change in its congestion

window size.

 27

TCP Vegas uses the fact that as the CWND size increase the throughput of the connection

should also increase to measure and control the amount of extra data the connection should have

in transit; sending too much data will obviously cause congestion, thereby increasing the RTT.

However, it is also important for Vegas to maintain enough throughput to actually allow it to

adjust the throughput to the available bandwidth.

2.13 TCP PERFORMANCE EVALUATION

TCP performance is mainly determined by its throughput and fairness. However, other

factors such as link utilization and packet loss rate are also important in effective evaluation of

TCP.

The throughput performance is defined as the total number of original packets received by

the receiver in a given period of time. TCP throughput is influenced by many parameters. The

granularity of the TCP timers can vary from 10ms to 500ms, depending on the TCP

implementation of the host system [Stevens & Wright, 1994]. These implementation specific

details can result in a considerable throughput discrepancy of different variants under the same

network conditions.

Fairness is an important performance criterion in all resource allocation schemes. Its most

intuitive and obvious definition is that all sessions of data flow should be entitled to use the

network resources including the bandwidth equally without any bias. Thus a fair TCP connection

does not deprive other connections their fair share of bandwidth [BERTSEKAS &

GALLAGER, 1996].

2.14 TCP FOR WIRELESS CHANNEL

The properties of wireless channels are very different from those of wired channels. Wireless

channels are characterized by high bit error rate with random losses caused by shadowing and

fading. Furthermore, the channel may cause burst errors when the channel is in a deep fade for a

significant amount of time or when the channel is in short fade where the length of burst error

could vary. The low efficiency of TCP in a wireless channel is due to the fact that it misinterprets

packet losses due to high error rate and congestions. However, because of the common usage of

the TCP in Internet applications that require reliable data transfer, it is important to keep the

TCP/IP protocol stack and also the network element structure as unchanged as possible even

when mobility features required in wireless Internet are added to the network [Jamalipour, 2003].

 28

It emphasize that the TCP should be modified in order to meet the TCP performance

expectation in wireless channel.

2.15 CONCLUSIONS

In this Chapter, we have outlined the development of TCP and described its main features

with an emphasis on congestion control and packet loss recovery mechanism. Major types of

TCP variants and their specific functionalities are explained; we have seen how packet losses are

detected, retransmitted and congestion window is calculated depending on the selected TCP

variants. Specially, the Fast Retransmit and Fast Recovery algorithms of TCP Reno and TCP New

Reno are described in details.

Furthermore, it is outlined that in the wireless channels the main cause for packet loss is the

high bit error rate and not the network congestion.

 29

C h a p t e r I I I .

3. Review of TCP Enhancements for Wireless

Networks

Wireless networks are becoming increasingly popular in the world of telecommunication. As a

consequence, a significant effort has been devoted to the provisioning of reliable data delivery for

a wide variety of applications over different wireless infrastructures. One of the major challenges

in modern communication system is to provide wireless access to the Internet. TCP supports the

most popular suit of applications on the Internet today and it has been enhanced in recent years

to improve robustness and performance over network of varying capacities and quality.

However, it largely retains the behavior outlined in [RFC 793] including properties that make it a

less suitable transport protocol for wireless medium.

In this Chapter, we give an overview of some optimizations that have been proposed in the

literature and describe how they differ in terms of their retransmission and recovery mechanisms.

The proposed optimizations can be categorized into four groups; split-connection, link-layer,

explicit notification and end-to-end protocols. Section 3.1 describes how optimization at the

transport layer can be achieved by splitting the connection at the base station. Link-layer

optimizations for improved TCP performance are presented in Section 3.2. Explicit notifications

can be used between an intermediate node and the end hosts in order to distinguish the

congestion related losses from the wireless error and are outlined Section 3.3. The End-to-End

approaches do not require any intermediate node’s support and are described in Section 3.4.

Motivated by these criteria, we propose new techniques to enhance the TCP performance over a

wide range of network and traffic configurations in Section 3.5.

3.1 SPLIT-CONNECTION PROTOCOLS

The idea of split-connection approaches is to divide each TCP connection into two separate

connections at an intermediate node; one is between the fix host (FH) and the base station (BS)

 30

and the other between the BS and mobile host (MH) as shown in Figure 3.1. Such a subdivision

of the traditional end-to-end connection offers several advantages [Fieger & Zitterbart, 1997].

Figure 3-1 Splitting the TCP Connection into two separate connections

The transmission characteristics of the wireless link such as high bit error probability and

disruptions due to radio shadow or handoffs influence only the transport connection over the

wireless hop. This way any effects due to wireless link can be hidden from nodes within the wire-

line network and makes it possible for the wire-line and wireless medium to be employed with

different transport protocols. However, since TCP connections are terminated at the base station,

data buffers and TCP state information should be maintained at the base station in any split-

connection scheme. When a TCP connection is created, the socket send buffer and receive

buffer are allocated. The buffer size can be specified by the process that creates the socket or a

default value can be used. In either case, the TCP send and receive buffer sizes are fixed for the

duration of the connection.

3.1.1 INDIRECT TCP

Indirect TCP (I-TCP) [Bakre & Badrinath, 1995] is a split-connection solution that utilizes the

resources of mobility support routers (MSRs) to provide transport layer communication between

mobile hosts and fixed hosts.. It uses the standard TCP for its connection over the wireless hop

and, like other split-connection protocols, attempts to separate loss recovery over the wireless

link from the wired link. It ensures that packet errors and delay variations on the wireless link do

not result in the initiation of TCP congestion control procedures or affect the TCP

retransmission timer on the wire-line connection, and eliminates the end-to-end retransmission

of packets that suffer error across the wireless link. An experiments in [Balakrishnan,

Padmanabhan, Seshan, & Katz, 1997] indicates that the choice of TCP over the wireless link

 31

results in inefficient utilization of the wireless link capacity and adds overhead to the base station.

This shortcoming is addressed in two other split-connection protocols, Mobile-End Transport

Protocol [Kuang-Yeh & Tripathi, 1998] and Mobile-TCP [Haas & Agrawal, 1997].

3.1.2 SPLIT-CONNECTION WITH SELECTIVE REPEAT PROTOCOL

The authors in [Yavatkar & Bhagawat, 1994] proposes a split-connection protocol that

introduces a new session layer protocol on top of TCP at both base stations and mobile hosts to

compensate for effects of wireless link characteristics and host migration. The session layer

protocol is designed to exploit the available knowledge about both wireless link characteristics

and host migration and to compensate for highly unpredictable and unreliable between a mobile

host and its base station. The intermediate agent at the base station participates in the session

layer protocol and forwards incoming traffic over a TCP connection to the remote mobile host.

It proposes two transport protocols over the wireless link; one is the standard TCP and the other

one a selective repeat protocol (SRP) on top of user datagram protocol (UDP).

SRP implements its own flow and error control mechanisms designed and optimized

specifically to handle the wireless link effects. It also uses a selective repeat algorithm in which a

receiver returns a selective ACK (SACK) when an out of order segment is received. The SACK

specifies the missing segments using a bitmap that includes the sequence numbers of the latest

segment and the last in order segment received. Using this alternative, unlike the TCP, SRP

enables the sender to recover from multiple losses within a window of data, thereby increasing

the throughput performance over the wireless link. However, their study in the impact of

handoffs on performance concludes that the use of SRP instead of TCP as the transport protocol

over the wireless hop does not obtain any significant advantage.

3.1.3 MOBILE-END TRANSPORT PROTOCOL

Mobile-End Transport Protocol (METP) [Kuang-Yeh & Tripathi, 1998] proposes to eliminate

the TCP and IP layers from mobile hosts. A mobile host will replace TCP/IP headers of the

packets transmitted over a wireless link with a header containing essentially only de-multiplex

keys and the source and destination IP addresses. METP considers that the hop between a

mobile host and its base station is either the first or the last one along a data path and the mobile

host does not perform datagram forwarding. Hence, only a part of the IP functionality needs to

be shifted to the base station. All TCP connections are handled at the base station by METP on

behalf of the mobile host; it negotiates with another host in the Internet to establish or close a

 32

TCP connection. When a TCP segment destined for the mobile host arrives at the base station,

METP puts it in the receiving buffer and sends an acknowledgement back to the source thereby

any congestion control or congestion avoidance mechanism of TCP reflects only the state of the

wire-line part of the connection.

Since the TCP connection is terminated at the base station, METP has to provide reliable in-

order delivery over the wireless link. It adds tremendous overhead to the base station and makes

the mobile host becomes more dependant on the base station. For example, when a packet has

arrived at and been acknowledged by the base station, the sender will confirm that that packet

has been successfully transmitted. However, if the base station fails thereafter, that packet may

never arrive at the mobile host. In such a case, the mobile host should take appropriate recovery

measures as the failure were happened to itself. This will further increase the buffer size, thereby

adding more overhead to the base station.

3.1.4 MOBILE-TCP

Mobile-TCP [Haas & Agrawal, 1997], employs header compression to reduce the amount of

wirelessly transmitted data. It considers that there is no need to communicate with the full TCP-

layer source and destination addresses as all the packets form the MH pass through the BS.

During the connection establishment process, a connection ID (CID) is assigned to each

direction and it is used in any future exchange of data over the wireless segment. The CID

information, which includes the source and destination IP addresses and the corresponding port

numbers, are cached at both the MH and BS. When MH sends a packet to the network, the TCP

address is translated into the corresponding CID, which is then expanded back into the TCP-

layer address at the BS. Similar operation is performed in the reverse direction. In Mobile-TCP,

TCP segments originated in the fixed host are acknowledged by the TCP entity in the base

station only when successful wireless transmissions of the segments are acknowledged by the

mobile host. Mobile-TCP thus preserves the end-to-end semantics of the TCP, but the downlink

TCP data flow is affected by variable delays in the wireless link.

3.1.5 SPLIT-CONNECTION MOBILE TRANSPORT PROTOCOL

Split-Connection mobile transport protocol (SCMTP) [Xie, Hammond, & Noneaker, 2003]

proposes a scheme similar to the mobile end transport protocol (METP) described in Section

3.1.3. In common with METP, SCMTP employs a standard TCP protocol on the wire-line

connection between the fixed host and base station, and a light weight transport protocol over

 33

the wireless link. However, it employs an automatic repeat request (ARQ) protocol to handle the

wireless error and uses a different channel access protocol; time division multiplexing (TDM) is

used to allocate the forward-link (BS to MH) capacity to each mobile host, and a time-division

multiple access (TDMA) is employed by each mobile host on the reverse-link. If there are

multiple traffic between the base station and a given mobile host, scheduling algorithms in the

base station and the mobile host determine how the flows share the forward-link and reverse-link

capacities respectively. Their experiment concludes that the use of Go-back-N ARQ can exploit

the wireless link capacity more efficiently than that of stop-and wait ARQ protocol.

3.1.6 CONCLUSION

The schemes presented above have tried to improve the performance of TCP over wireless

network by shielding the sender from wireless effects. None of these schemes actually lets the

TCP sender know clearly whether the packet is lost because of network congestion or wireless

error. This makes the TCP sender retransmit the packet as usual, subsequently being unable to

keep the throughput high in the error-prone wireless environment. They also violate the end-to-

end semantics of TCP. They also maintain a significant amount of TCP state at the base station

per TCP connection that makes the handoff procedures slow and complicated.

3.2 LINK-LAYER PROTOCOLSS

Link-layer protocols are another alternative for improving the poor performance of TCP over

wireless links. The concept behind this is to make the wireless link layer look similar to the wired

case for TCP by recovering the wireless error locally. There have been several proposals for

reliable link-layer protocols. The main techniques employed by these protocols are forward error

correction (FER) and automatic repeat request (ARQ). This method is illustrated in Figure 3.2.

ARQ is frequently used in data communications protocols. When a frame is detected to contain

errors after decoding, it is discarded and an ACK is sent back to the sender requesting a

retransmission of the frame. This is called a selective retransmission and the most efficient way of

retransmission. Cellular networks such as GSM/GPRS and UMTS have recently incorporated

the concept of ARQ in order to improve performance of data transfers over wireless link [Ladas,

Amiee, Mahdavi, & Manson, 2002]. We describe some of these link-layer proposals and conclude

their ability to improve the TCP performance over wireless link.

 34

Figure 3-2 A link-layer approach to improve the TCP performance

3.2.1 SNOOP PROTOCOL

The Snoop protocol [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997] is a TCP-aware link

layer protocol. It uses link layer retransmission to improve the reliability of the wireless link, and

actively tries to avoid unnecessary TCP retransmissions. In this method, the base station is

equipped with a module called snoop agent, the functionality of which is to monitor the TCP

packets transmitted from a fixed host to a mobile host and vice versa. The agent caches all these

packets locally and uses this information to detect wireless packet losses and timeouts. In the case

of detecting a wireless packet loss, it retransmits the packet promptly and suppresses the

duplicate ACK reaching the TCP sender. This way, it prevents the sender from invoking

unnecessary fast retransmissions and congestion control algorithms.

3.2.2 ADAPTIVE-TCP PROTOCOL

The Adaptive TCP (A-TCP) is a TCP aware link layer protocol and maintains end-to-end

semantics of TCP. The basic concept of the protocol is to make a wireless link look like a wired

link by employing an A-TCP agent in the base station. This is referred to as a virtual host model.

The A-TCP agent implements three basic functions, such as local retransmissions, sender

freezing and A-TCP flow control to hide the wireless environment form the fixed host. The local

retransmission diminishes the effect of high bit errors. On receiving duplicate ACKs, the A-TCP

agent, similar to the Snoop agent, filters the duplicate ACKs and locally retransmits the lost

packet. It also keeps a retransmission timer of the standard TCP sender. When it expires for a

particular segment, the A-TCP agent immediately retransmits that segment. Long-term channel

disconnections are handled by the use of sender freezing [Goff, Moronski, Phatak, & Gupta,

2000]. The A-TCP flow control is the main factor for improving the TCP performance in a

 35

wireless environment. In the A-TCP flow control, the A-TCP agent marks the window field of

acknowledgement segment with a retransmission buffer size, thereby avoiding wireless link

overflow. Thus, the TCP congestion control at the sender will not be triggered by wireless link

overflow.

3.2.3 ASYMMETRIC RELIABLE MOBILE ACCESS IN LINK-LAYER (AIRMAIL)

PROTOCOL

The AIRMAIL protocol [Ender Ayanoglu, Sanjoy Paul, Thomas F. LaPorta, Krishan K.

Sabnani, & Gitlin, February 1995] provides a reliable link layer in conjunction with forward error

correction. In this approach, in order to conserve bandwidth power, the base station sends an

entire window of data before an ACK is returned by the mobile receiver. A consequence of this

approach is that there is no opportunity to correct errors until the end of an entire window,

which can cause TCP to time out if the error rate is large or cause a large variation in delay

depending on the position of the loss within the window. Another approach [Chaskar,

Lakshman, & Madhow, 1996], which demonstrates the validity of link-layer solutions, shows

analytically how to achieve throughput by insuring the buffer at the interface to the wireless

connection is sufficient. In AIRMAIL, a simple Stop-and-Wait protocol is used over the wireless

link to quickly retransmit packets before TCP discovers the loss.

3.2.4 RADIO LINK PROTOCOL

The Radio Link Protocol (RLP) is a link layer protocol that, like TCP, provides a reliable byte

stream service and typically used over cellular networks. RLP fragments the TCP segment into

frames and uses robust error correcting codes and fast retransmission schemes to shield the

wireless channel related losses from the TCP sender, thus preventing TCP throughput

degradation. The fragmentation is done to increase the granularity of the transmission. In case of

any error, an RLP frame which is of a smaller size is affected rather than the entire TCP segment.

The RLP uses an ARQ error recovery mechanism to retrieve a lost RLP frame, which can be an

acknowledgement based (ACK-based) or negative acknowledgement based (NACK-based).

Since the reverse link is very expensive on most cellular networks, most RLPs implement

NACK-based scheme in which the recovery process is initiated by the receiver by requesting a

retransmission of only the missing or erroneous frame.

RLP’s error recovery persistency can be configured via a parameter that defines the maximum

number of retransmission of a single frame. When the RLP sender detects that a frame could not

 36

be transmitted successfully after all the requires-retransmission attempts, it not only discards that

frame, but also resets the link, i.e, re-initializes the sequence numbers. In this case, the

corresponding TCP segment will be discovered at the TCP layer.

3.2.5 TULIP PROTOCOL

The transport unaware link improvement protocol (TULIP) [Parsa & Garcia-Luna-Aceves,

1999] is, similar to the Snoop protocol, to improve the TCP performance over lossy wireless

links without the need to modify the transport layer protocol. However, it does not require a

proxy at the base station and keeps no TCP states. TULIP provides reliable service for TCP data

traffic and an unreliable service for UDP and TCP ACKs. TULIP does not provide reliable

service to TCP ACKs because subsequent ACKs supersede the information in the lost ACK.

The receiver simply buffers packets and passes them up to the next layer in order, thereby

preventing TCP from generating duplicate ACKs in the event that a packet is missing from the

expected sequential packet stream. This ability of TULIP to maintain local recovery of all lost

packets at the wireless link in order to avoid the unnecessary and delayed retransmission of

packet over the entire path. TULIP maintains timers that rely on a maximum propagation delay

over the link, rather than performing a round-trip time estimate of the channel delay.

3.2.6 CONCLUSION

The proposal described above use link layer retransmission to minimize packet loss due to the

wireless part of the connection. Link layer protocols focus on the problems that arise from lossy

wireless links. The main advantage of employing a link layer protocol for wireless loss recovery is

that it fit naturally in the layered structure of the network protocols. The link layer protocol

operates independently of higher layer protocols, and does not maintain any per-connection state.

All link layer proposals preserve End-to-End semantics of TCP, but TCP data

acknowledgements are required to pass through the same base station. The main concern about

the link layer protocols is the possibility of having an inverse effect on certain transport protocols

such as TCP. Independent timer reaction at link and transport layers that may result in

unnecessary retransmissions, fast retransmission interaction, and large round-trip variations are

considered as major problem with link-layer approaches [Balakrishnan, Padmanabhan, Seshan, &

Katz, 1997].

 37

3.3 EXPLICIT NOTIFICATION

A various explicit notification schemes have been proposed to enable the TCP sender to

distinguish between different types of packet losses. Examples of this approach include Explicit

Congestion Notification (ECN) [Ramani & Karandikar, 2000], Explicit Loss Notification (ELN)

[Balakrishnan, Padmanabhan, Seshan, & Katz, 1997]. The idea behind this approach is to enable

the TCP sender to distinguish packet losses due to congestion from wireless error.

3.3.1 EXPLICIT CONGESTION NOTIFICATION

In this method, a TCP receiver informs the TCP sender of the network congestion explicitly

through one of the reserved bits in the TCP header, called the ECN-Echo (ECE) flag, when it

receives an IP packet with the congestion experienced (CE) bit in the IP header set. ECN is an

extension proposed to random early detection (RED) [S. Floyd & Jacobson, 1993], which

monitors the average queue size and marks packets instead of dropping them based on statistical

probabilities. Since ECN marks packets before congestion actually occurs, this is useful for

protocols like TCP that are sensitive to even a single packet loss. The packets provided with

ECN support is referred as ECN capable packets.

ECN requires support from both the routers as well as the end hosts. It requires the routers

to be able to identify packets that are ECN capable and to mark only such packets from ECN

capable hosts. Two bits in the IP header field are utilized to achieve this; the ECN Capable

Transport bit (ECT) is set by the sender during the connection establishment process if both the

end systems are ECN capable. The CE bit of the packets encountering congestion is marked by

the router on their way to the receiver with a probability proportional to the average queue size

used in RED. It also proposes to add two new flags, namely the ECE flag and congestion

window reduction (CWR) flag, in the reserved field of TCP header as shown in Figure 3.3.

 38

Figure 3-3 TCP Header with ECN and CWR Flags

The ECE flag, which is set by the TCP receiver, indicates congestion in the network. On

receiving an ACK with the ECE flag set, the sender sets the CWR flag to inform the receiver that

it has reacted to its congestion notification.

3.3.2 EXPLICIT LOSS NOTIFICATION

On the basis of the performance improvement achieved in TCP Snoop and ECN protocols,

a new protocol, namely, explicit loss notification with acknowledgement (ELN-ACK) [Wenqing

& Jamalipour, 2001b] is proposed that could remedy the limitations of the Snoop protocol

[Balakrishnan & Katz] [Wenqing & Jamalipour, 2001a, , 2001b] . In the ELN-ACK scheme, a

new form of acknowledgement packet called ACKELN is used to communicate the cause of

packet losses to the TCP sender and no packets are cached at the base station. An ELN-ACK

agent, similar to the Snoop agent, is introduced at the base station to perform two main features.

• One is to judge and store the packet loss information transmitted form the fixed host. If

the base station receives an out of order packet from the fixed host, it will store the

corresponding packet information in the ELN-ACK agent.

• On receiving an ACKELN, the base station will judge the lost packet based on the stored

information. If it finds the packet has been lost before arriving at the base station, it will

set the ELN bit to indicate the packet was lost due to congestion. Otherwise, it will reset

the ELN bit to indicate the packet loss was due to wireless error.

When the sender receives an ACK with the ELN bit set, it retransmits the next segment, but

does not trigger any congestion control actions. The sender also makes sure that each dropped

segment is retransmitted at most once during the course of a single round trip since the agent

would set the ELB flag for each duplicate ACK following a loss.

3.3.3 ICMP MESSAGING

The authors in [Goel & Sanghi, 1998] proposes an ICMP based scheme that makes the TCP

sender aware of wireless errors. The base station generates two ICMP messages. One is ICMP-

DEEFER message when its fist attempt in transmitting the packet over the wireless link fails.

This ensures that TCP sender will receive either an ACK or an ICMP message during one round

trip. A lack of both will signal a congestion loss. Thus, TCP can distinguish a packet loss due to

 39

congestion from wireless loss. Second one is an ICMP-RETRANSMISSION message when it

discards the packet after all retransmission attempts have been exhausted.

On receiving an ICMP-DEEFER message, TCP postpones the retransmission timer if the

lost segment is one for which the timer is active. This will help to avoid conflict between the link

layer and end-to-end retransmissions. When the TCP sender receives an ICMP-

RETRANSMISSION message, which indicates that one segment was lost across the wireless

link, it retransmits the segment indicated and enters the fast recovery phase. On receiving a new

ACK that acknowledges the retransmitted segment, it comes out of recovery phase, resetting its

CWND to the value prior to entering the fast recovery phase. When the TCP suffers a retransmit

timeout or receives three supplicate ACKs for which it has not received an ICMP-

RETRANSMISSION message, it follows the standard TCP procedures.

3.3.4 SYNDROME

[W.P. Chen, Y.C. Hsiao, J. C. Hou, Y. Ge, & Fitz] proposes a light-weight approach, called

syndrome, to improve TCP performance in wireless environments. In syndrome, the base station

counts the number of packets it has relayed to the destination host for each TCP connection and

includes this in the TCP header option. The destination host will use both the syndrome counter

and the sequence number to determine whether the packet is lost due to the congestion or due to

wireless error. Gaps in the syndrome counter will indicate that packets were lost on the wireless

link. Gaps in the sequence number but not syndrome counter will indicate that packets must

have been lost due to congestion in with wire-line part of the network. Determining the cause for

the packet loss, the TCP receiver notifies the sender via explicit loss notification to take

appropriate action. If a packet loss is due to the transmission error on the wireless link, the

sender does not reduce its congestion window.

3.3.5 MULTIPLE ACKNOWLEDGEMENTS

[Biaz & Vaidya] proposes to use two types of acknowledgements to distinguish congestion

losses from wireless errors. This proposal uses one additional acknowledgement, called partial

acknowledgement, which the base station transmits in response to data from the TCP sender in

the fixed network. Provided that no segments are lost, the sender receives two

acknowledgements for each segment; a partial acknowledgement (ACKp) from the base station

and a complete ACK from mobile host. If the sender receives only the ACKp, it can deduce that

 40

the data must have been lost over the wireless hop and no congestion control action is required.

If no acknowledgements arrive, then the most likely cause for the data loss is congestion.

A similar scheme [Cobb & Agrawal, 1995] that introduces two new partial acknowledgements

to improve the performance of TCP sessions that originate or terminate in noisy wireless

networks for mobile hosts. If the receiver is a mobile host, the base station transmits a last hop

acknowledgement in response to the fixed host. In case the mobile host is the sender, then the

base station transmits a first hop acknowledgement in response to the mobile host. As in the

partial acknowledgement approach described above, the sender receives two acknowledgements

for each successfully transmitted segment, one from the base station and from the receiver. This

acknowledgement approach allows the TCP sender to distinguish losses due to congestion and

losses due to wireless errors and to take appropriate action.

3.3.6 CONCLUSION

The explicit notification proposals have a different philosophy compared to the split-

connection approach. They have significantly reduced the overhead introduced at the base station

and enable the TCP sender to distinguish congestion from the wireless error and to implement

the fast retransmit and fast recovery mechanism that may well suit in the wireless environments.

The explicit notification scheme does not solve the problem with the higher unreliability of the

wireless network. However, since the sender knows about this effect, it can make a more

informed decision.

3.4 END-TO-END PROTOCOLS

The standard TCP implementations rely on packet loss as an indicator of network congestion

and lack the ability to distinguish congestion losses from losses invoked by noisy links. In wireless

connections, overlapping radio channels, signal attenuation and additional noises have a huge

impact on such losses. As a consequence, the standard TCP reacts with drastic reduction of the

congestion window, thus degrading the performance of TCP. End-to-end proposals make the

TCP sender handle packet losses caused by both congestion and random wireless errors and

requires minimal or no processing at the base station. Another advantage of these schemes is that

the end-to-end semantics of TCP is maintained. Some of the end-to-end schemes proposed in

the literature are described below.

 41

3.4.1 END-TO-END SMART

SMART (Simple Method to Aid Retransmission) protocol [Keshav & Morgan, 1997]

combines aspects of both the traditional techniques Go-Back-N (GBN) and selective

retransmissions (SR) [Doshi, Johri, Netravali, & Sabnani, 1993]. The key idea in SMART is to

build the bit-mask of correctly received packets at the sender instead of carrying it in the ACK

header. Each ACK therefore carries two pieces of information; the cumulative ACK as in the

standard GBN and the sequence number of the packet that caused that ACK to be generated.

The second piece of information not only allows the sender to identify which packets have been

correctly received, but also enable to infer which packets have been lost and to retransmit those

lost packets selectively. When the sender detects gaps in the bitmask, it immediately assumes that

the missing packets have been lost without considering the possibility that they simply may have

been reordered. Thus, this scheme trades off some resilience to reordering and lost

acknowledgements in exchange for a reduction in the overhead to generate and transmit

acknowledgements [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997]. The SMART allows the

sender to handle multiple losses within a window of outstanding data efficiently. However, the

sender still assumes that losses are a result of congestion and invoke congestion control

mechanism.

3.4.2 TCP WESTWOOD

TCP Westwood is a sender-side modification to TCP NewReno that controls the congestion

window using end-to-end rate estimation and only affects the congestion avoidance algorithm

and keeps the slow-start phase unchanged, as well as the linear increase in the congestion

avoidance phase [Gerla et al., 2001] [Grieco & Mascolo, 2003]. The TCP sender, by monitoring

the ACK reception rate, continuously estimates the packet rate of the connection and uses this

estimate to determine the available bandwidth. When the sender perceives that congestion has

appeared, the sender uses the estimated available bandwidth to set the congestion window and

the slow-start threshold sizes. The rationale is that if a connection is achieving a given rate, then it

can be safely used to obtain the corresponding CWND and threshold setting without causing

congestion in the network. Adjusting the congestion window to the estimated available

bandwidth makes TCP Westwood more robust to wireless losses since the CWND is not

reduced to half, but it is adapted to the most recent bandwidth estimation instead, which may

lead to unfairness. However, performance analysis in [Casetti, Geria, Lee, Mascolo, & Sanadidi,

 42

2000] shows that TCP Westwood manages to obtain a fair share of the bandwidth when it

coexists with other TCP Westwood connections.

3.4.3 FREEZE-TCP

Freeze-TCP [Goff, Moronski, Phatak, & Gupta, 2000] is a mechanism that places the sender

in persist mode prior to a disconnection through signal strength measurements. In this method,

mobile host monitors the signal strength and sends zero window advertisement (ZWA) if it

detects an impending disconnection. By exploiting the properties of the receiver advertised

window, a TCP connection can be frozen. If the receiver sets the receiver window to zero, then

the sender leaves its CWND unchanged until the receiver advertises a new receiver window. This

prevents segments from getting lost and unnecessary congestion control action to be taken by the

sender. Upon reconnection detection, the receiver sends three copies of acknowledgements of

last received prior to the disconnection, as in [Caceres & Iftode, 1995], in order to awake the

sender and to resume the transmission at the same rate as before. A possible drawback of Freeze-

TCP is that it depends on the ability of the lower layers to detect an incoming disconnection and

notify the TCP sender of this in a timely manner.

3.4.4 DELAYED DUPLICATE ACKNOWLEDGEMENT

The delayed duplicate acknowledgement scheme proposed in [Nitin H. Vaidya, 2002] is an

end-to-end scheme that attempts to mimic the behavior of Snoop protocol. In this method, the

receiver delays the third and subsequent duplicate ACKs for a predetermined interval while the

base station performs link level retransmissions. During this time, if the receiver receives the

missing data, it will transmit cumulative ACKs and discards the delayed duplicate ACKs.

Otherwise, it will release the delayed duplicate ACKs when the timer expires. This is an attempt

to prevent the fixed host from triggering congestion control action while the base station

retransmits the data over the wireless link. One disadvantage of this scheme is that if the

duplicate ACKs are caused by congestion, delaying the duplicate ACKs will unnecessarily delay

the error recovery process. Explicit loss notification to the receiver (ELNR) proposed in [Mehta

& Vaidya] is an enhancement to the delayed duplicate acknowledgement scheme.

3.4.5 WIRELESS TRANSMISSION CONTROL PROTOCOL

The wireless transmission control protocol (WTCP) [Sinha, Nandagopal, Venkitaraman,

Sivakumar, & Bharghavan, 1999] uses a rate based approach as in TCP Westwood to control the

transmission rate. The ratio of the inter-packet separation at the receiver and the sender is used as

 43

the primary metric for transmission control rather than using packet losses and retransmit

timeouts. In WTCP, the receiver performs the rate control mechanisms and computes the

transmission rate for the sender; the sender transmits its current inter-packet separation with each

packet. The receiver uses this information and its local state to update the transmission rate. The

sender must receive ACKs, which carries both the reliability and transmission control

information, periodically in order to react to the new transmission rate and perform flow control.

WTCP uses selective acknowledgements scheme and does not use retransmission timers for loss

recovery. It tries to remain in congestion avoidance phase at all times by detecting and reacting to

incipient congestion. This makes the WTCP be more resilient to non-congestion related packet

losses, thereby improving the performance over wireless links.

3.4.6 TCP EIFFEL

The Eifel described in [R. Ludwig & R. H. Katz] [RFC 3522, 2003] eliminates the

retransmission ambiguity, thereby solving the problems caused by spurious timeouts and

spurious fast retransmits. It allows the sender to detect whether an already initiated error recovery

mechanism is in fact necessary or not by monitoring the first ACK that covers previously

unacknowledged data. The sender uses the timestamp option to determine this is an

acknowledgement of the original segment or of the retransmitted segment. If this ACK is for the

original segment, the sender considers the retransmission is spurious and it does not have to

reduce the transmission rate. The original segment is not lost due to congestion, therefore it

should been delayed before it arrived at the receiver.

3.4.7 TCP REAL

TCP Real [C. Zhang & V. Tsaoussidis, 2001] is a rate based scheme extending the TCP Reno.

In TCP Real, the receiver controls the sender transmission rate. The receiver uses changes in the

rate of incoming segments to compute the CWND and then includes this estimate with

acknowledgement that goes back to the sender. TCP Real takes the data-receiving rate as a metric

to predict the network conditions. Decrease in the rate of incoming segments indicates that there

is an increase in the network load therefore the CWND should be reduced. After a segment loss,

the CWND is adjusted to the network conditions sooner than in the standard TCP, since the

estimate of the CWND is included in the ACK. These modifications constitute the foundation

for an efficient recovery strategy over heterogeneous environments with wire-line or wireless

networks.

 44

3.4.8 CONCLUSION

The end-to-end proposals described above are based on various ideas. the SMART handles

multiple losses within a window of data, which is highly likely in the wireless environments, but

invoke congestion control with the assumption that all losses are due to congestion. The rate

based proposal try to avoid congestion and to recover quickly from random errors. Freeze TCP

prevents additional data loss by making a pause in the data transfer during disconnections or

handoffs. The TCP Eifel, on the other hand, limits performance degradation when delay of a

segment is misinterpreted as a sign of congestion. The advantage of the end-to-end proposals are

the preserve the end-to-end semantics of TCP and do not support from any intermediate nodes,

thereby no additional processing is required in the network.

3.5 SUMMARY OF ABOVE PROPOSED OPTIMIZATIONS

Optimization proposals presented above use different types of approaches to improve TCP

performance over wireless networks, and are categorized into four groups; split-connection, link-

layer, explicit notification and end-to-end protocols.

Split-connections protocols manage to completely hide the wireless link from the wire-line

part of the network by terminating the TCP connection at the base station and establishing

another connection from the base station to mobile host. The transport protocol used in the

latter connection can be a standard TCP or any other protocols that suit for the wireless

environment, such as selective repeat protocol. The major advantage of split-connection

protocols is that they provide backward compatibility with the existing protocols, thus they do

not require any modification at the fixed hosts. However, they violate the end-to-end semantics

of TCP and need to translate from one protocol to the other at the base station, leading

significant overhead to the base station.

The link layer approaches use link layer retransmissions to improve the performance of TCP.

They operate independently of higher layer protocols and try to make the wireless link appear as

higher quality link, but reduced effective bandwidth. They rely on determined network elements,

which collaborate at link level in order to reduce the effects of wireless link. The requirements on

the link layer service may vary depending on the application. For example, the radio link protocol

in the UMTS network allows many configuration parameters, such as the maximum number of

retransmissions to be set. The main advantage of link layer proposals is that no modifications are

required in the end points and preserve the end-to-end semantics of TCP. However, link layer

 45

protocols could adversely affect the TCP performance [Balakrishnan, Padmanabhan, Seshan, &

Katz, 1997]. Link layer protocols indeed improve the wireless link performance but fail to

synchronize with the TCP sender that may help to improve the TCP performance.

Most explicit notification proposals require TCP awareness of the intermediate nodes that are

responsible for transmitting explicit notifications. The sender can distinguish congestion from

data loss due to wireless errors since it receives information about the transmission status. Based

on this, the sender can make more informed decision. Thus, if a segment is lost for reasons other

than congestion, then the sender can take appropriate actions. The main drawback of these

schemes is that the end points need modifications to handle the explicit notification signal.

End-to-end proposals are based on the idea that complexity belongs in the end hosts rather

than in the network. The end points are responsible for performing the necessary changes to

ensure a good adaptation and do not need any support from the intermediate nodes. The main

advantage of these schemes is that they can be used in any situation.

3.6 OUR PROPOSALS TO IMPROVE TCP PERFORMANCE OVER WIRELESS LINK

We have carefully analyzed the extensive literature on TCP optimizations over wireless

networks. They all have the same goal to improve the TCP performance over wireless networks,

but use different approaches to achieve the goal. The efficiency of those optimizations is network

dependent. Based on the findings and considering the inefficiency of the TCP over wireless link,

we propose some new schemes that optimize the TCP performance. We consider the following

optimizations in our proposed schemes.

• Distinguish congestion losses from non-congestion losses to fine tune the TCP to

perform well in both wired and wireless environment

• Use link layer approach without local retransmissions (retransmissions of cached

packets by the proxy) to minimize the base station overhead

• Minimize the intermediate node dependencies

• Early timeout detection to speed up the recovery process

• Analyzing the impact of packet loss pattern on the performance of TCP

 46

• Using dynamic congestion window size based in loss probability

• Design an analytical model with enhanced recovery mechanism

• Wireless timeout detection to minimize spurious timeouts

Since it is very difficult to cover the entire area of congestion avoidance and control issues and

due to the time constraint, our research scope is restricted to the improvement of TCP

performances over wireless networks without countering hand-offs effects. We have

implemented our proposed schemes in the WLAN and UMTS networks and demonstrated their

efficacy in the performance improvement of TCP in the following Chapters.

 47

C h a p t e r I V .

4. RNF Scheme for TCP Enhancement over a 802.11

Wireless LAN

In this Chapter, we propose a wireless loss detection technique that allows the TCP sender to

distinguish wireless packet losses from the congestion related packet losses. This scheme employs

an enhancement proxy, called wireless loss detector (WLD), in the base station that monitors the

TCP flow between the base station and the mobile host in both directions, and detects the

wireless packet loss. When a wireless packet loss is detected, it sends a radio network feedback

(RNF) with the acknowledgements that arrive from the mobile host. One of the TCP header

reserved bits is utilized to carry the RNF and a minimal change to the standard TCP congestion

control mechanism is required to accommodate this effect.

Section 4.1 gives an overview of wireless LAN (WLAN) technology and motivates the need

for the RNF mechanism. The concept behind the RNF mechanism and the methodology applied

in developing the RNF mechanism are explained in Section 4.2. The implementation details of

the RNF mechanism in a WLAN environment is outlined in Section 4.3. The performance of

our proposed scheme is explained and compared with that of the standard WLAN and the

WLAN with Snoop enhancing proxy in Section 4.4. At last, we draw our conclusions and present

the guidelines for further improvement.

4.1 OVERVIEW OF WIRELESS LOCAL AREA NETWORK

Wireless LANs are now one of the most important access network technologies in the

Internet today. Although many technologies and standards for wireless LANs were developed in

the 1990s, the IEEE 802.11 WLAN, also known as Wi-Fi, has emerged as the initial standard for

WLANs [Kurose & Ross, 2003]. There are several 802.11 standards for WLANs technology,

including 802.11a, 802.11b, and 820.11g. Main characteristics of these standards are summarized

in Table 4.1. The 802.11 standards share many characteristics; they all use the same medium

access protocol, use the same frame structure for their link layer frames, have the ability to

 48

support multiple transmission modes in order to reach out over greater distances and allow for

both infrastructure mode and ad hoc mode. However, as can be from Table 4.1, 802.11 standards have

some major differences at the physical layer.

Table 4-1 Summary of IEEE 802.11 Standards

The 802.11a WLANs operate in the 5 GHz frequency range and can offer transmission rate

up to 54 Mbps, but they have a shorter transmission distance for a given power level and suffer

more from multi-path fading. The 802.11b WLANs have data rate of 11 Mbps and operate in the

unlicensed frequency bands of 2.4 – 2.485 MHz, competing for frequency spectrum with 2.4

MHz phones and microwave ovens. 802.11g WLANs operate in the same lower frequency band

as 802.11b, but with the higher transmission rate of 802.11a. They employ orthogonal frequency

division multiplexing (OFDM), the modulation scheme used in 802.11a WLAN, to obtain higher

data rate and can fall back to speeds of 6 Mbps. This feature makes 802.11b and 802.11g WLAN

devices compatible within a single network. The 802.11n is a proposed amendment, which

improves upon the previous standards by adding multiple-input multiple-output (MIMO) and

many other new features.

4.1.1 THE 802.11 ARCHITECTURE

Figure 4.1 illustrates the principal components of the 802.11 WLAN architecture. An 802.11

WLAN is based on a cellular architecture where the system is subdivided into cells. Each cell,

called Basic Service Set (BSS), is controlled by a Base Station called Access Point (AP). When a

WLAN is formed from several BSSs, APs are connected through a backbone network, typically

Ethernet, called a Distribution System (DS). The whole interconnected WLAN including the

different BSSs with their respective APs and the DS is called an Extended Service Set (ESS).

Wireless LANs that deploy APs are often referred to as infrastructure wireless LANs.

 49

Figure 4-1 IEEE 802.11 WLAN Architecture

Figure 4.2 shows that 802.11 stations can also group themselves together to form an ad hoc

network; a network with no central control and with no connection to the Internet. In ad hoc

networks, several wireless stations join together to establish a peer-to-peer communication. Each

client communicates directly with the other clients within the network. Ad hoc mode is designed

such that only the clients within the transmission range of each other can communicate. If a

client in an ad hoc network wishes to communicate outside the cell, a member of the cell must

operate as a gateway and perform routing. They typically require no administration and share the

network resources without a central server. There has been tremendous interests in ad hoc

networking as communicating portable devices continue to grow. However, we will focus our

studies on the infrastructure wireless LANs.

 50

Figure 4-2 An IEEE 802.11 ad hoc network

4.1.2 THE 802.11 MAC PROTOCOL

The 802.11 standard specifies the MAC and Physical layers that provide a variety of functions

to support the operation of 802.11 wireless LANs. The MAC layer manages and maintains

communications between 802.11 stations by coordinating access to a shared radio channel. As

illustrated in Figure 4.3, the 802.11 physical layer has Frequency Hopping (FH) Spread Spectrum,

Direct Sequence (DS) Spread Spectrum and the Infrared (IR). The MAC interacts with the

physical layer by passing the MAC frame and receiving the MAC frame.

Figure 4-3 IEEE 802.11 MAC Layer

Besides the standard MAC layer functionality, the 802.11 MAC performs other functions,

such as packet fragmentation, retransmissions and acknowledgements. The MAC provides access

to the medium through coordinated functions (CFs) to support both asynchronous and time-

 51

bound traffic; the Distributed Coordination Function (DCF) and the Point Coordination

Function (PCF).

The DCF is basically a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

mechanism and provides contention-based access. In CSMA/CA, a wireless station that wants to

transmit performs the following sequence as illustrated in Figure 4.4.

1. Senses the medium. If the medium is idle for a specified time called Distributed Inter

Frame Space (DIFS) then the station moves into a contention window and starts a

random back off timer when waiting for the contention window.

2. If it is the first station to finish its allocated number of slot times, it transmits (RTS)

signal, otherwise it stops counting down their back off timer until the medium

becomes idle again.

3. The target receiver replies with clear to send (CTS) signal after inter frame space (IFS)

interval, which is the time interval between transmissions of frames.

4. On receiving CTS, the sender can transmit the data frame. All other stations set the

network allocation vector (NAV) value. Each station calculates the amount of time

required to send the frame based on the length of the frame and the data rate and

places this value in the duration field of the MAC header, which is then used by the

other station as a basis for setting their NAV value.

5. If the receiver gets the frame correctly, it sends an ACK to the sender after SIFS

interval.

6. If the sender does not receive the ACK, it will keep transmitting the packet after

randomly backing off until it either gets acknowledged or is discarded after a certain

number of retransmissions.

7. Any other station that attempts to the medium waits for DIFS and a back-off

procedure is invoked.

 52

Figure 4-4 CSMA/CA mechanism

An important aspect of the DCF is a random back off timer. If the medium is busy the station

must wait for DIFS interval plus a random number of slot times. The time between the end of

DIFS and the beginning of the next frame is known as the contention window. Each station

starts a random back off timer when waiting for the contention window. The first station to

finish its allocated number of slot times begins transmission and the other stations stop counting

down their back off timer until the medium becomes idle again. The random delay causes

stations to wait for different period of times and avoid all of them sensing the medium at exactly

the same time. This in turn reduces the number of collisions and corresponding retransmissions

significantly.

The 802.11 MAC protocol also includes a scheme using RTS/CTS control frames that helps

avoid collisions even in the presence of hidden terminals, which are defined as the terminals

beyond the communication range of the transmitter but within that of the receiver. Although the

RTS/CTS exchange can help collisions, it also introduces delay and consumes channel resources.

For this reason, the RTS/CTS exchange is only used to reserve the channel for the transmission

of a long data frame. In practice, each wireless channel can set RTS threshold such that the

RTS/CTS sequence is used only when the frame is longer than threshold. For many wireless

stations, the default RTS threshold value is larger than the maximum frame length, so the

RTS/CTS sequence is skipped for all data frames sent [Kurose & Ross, 2005].

PCF provides contention free access and service for supporting time sensitive data via a totally

centralized polling mechanism. In PCF, APs send beacon frames at regular intervals. Between

these beacons frames, PCF defines two periods; the contention free period (CFP) and contention

 53

period (CP). In CP, the DCF is simply used. In CFP, the AP sends contention free beacon frame

to each station in the BSS after it confirms that the medium is idle for point inter frame space

(PIFS). Beacon frame contains the information on the maximum duration of the CFP, beacon

interval, and BSS identifier. All stations in BSS set their NAV value and not to send any packet in

the CFP after receiving a beacon.

4.1.3 THE IEEE 802.11 FRAME

 The 802.11 frame shown in Figure 4.5 contains a number of fields that are specific to its use

for wireless links. The payload field can hold data up to 2312 bytes. However, it is typically fewer

than 1500 bytes, holding IP datagram or an ARP packet. As with an Ethernet frame, an 802.11

frame includes a cyclic redundancy check (CRC) so that the receiver can detect any bit errors in

the received frame. The CRC is more useful in wireless LANs, since it has very high bit errors.

There are four address fields, each of which can hold up to 6 bytes MAC address.

• Address 1 is the MAC address of the station that transmits the frame.

• Address 2 is the MAC address of the station that is to receive the frame.

• Address 3 is the MAC address of the router interface to which BSSs are connected.

• Address 4 is only used in ad hoc networks.

The sender may send multiple copies of a given frame if the acknowledgement gets lost. The

use of sequence number field allows the receiver to distinguish between a newly transmitted

frame and the retransmission of previous frame. The 802.11 protocol allows a transmitting

station to reserve the channel for period of time required to send the frame, including the time to

transmit its data frame and the time to transmit the acknowledgement. This duration value is

placed in the duration field.

 54

Figure 4-5 The 802.11 Frame

The control frame assists in the delivery of data frames between stations and includes many

subfields. The type and subtype fields are used to distinguish the association RTS, CTS, ACK,

and data frames. The To AP and From AP frame are used to define the different address fields.

More fragments field is used to indicate that more fragments belonging to the same frame

following this current fragment. Retry field indicates that this fragment is a retransmission of a

previously transmitted fragment. This will be used by the receiver station to recognize duplicate

transmission of frames. Finally, the wired equivalent privacy (WEP) field indicates whether

encryption is enabled or not. More complete description of MAC frame can be found in [O'Hara

& Petrick].

4.2 THE RADIO NETWORK FEEDBACK MECHANISM

One of the most challenging and interesting trends in recent computer networks is the

integration of mobile communications. Wireless LANs based on the IEEE 802.11 MAC protocol

[O'Hara & Petrick] are becoming ubiquitous as they can deliver services commonly found in

wired networks. However, the performance of transport layer protocols, such as TCP, over

802.11 may be degraded considerably due to the characteristics of the wireless medium that

suffers from significantly high bit error rates. In this Chapter, we present a technique that detects

wireless packet losses and enables the TCP sender to completely distinguish wireless packet

losses from congestion related losses. It also helps the TCP sender to minimize the unnecessary

TCP timeouts, which leads to a reduction in CWND and unnecessary retransmissions of packets

using Go-Back-N mechanism, when non-congestion related losses occur.

4.2.1 PROPOSED RNF SCHEME

In previously proposed schemes in the literature, TCP performance has been improved

essentially by enhancing link layer protocols. We adopt the alternative view that TCP

 55

improvements should be achieved by tuning TCP itself to utilize the available network resources

efficiently in both wire-line and wireless environments. Our proposed scheme introduces a proxy

called wireless loss detector (WLD) that monitors the WLAN network radio interface and, with

the aid of one of the TCP header reserved bits, notifies the TCP sender of packet losses across

the wireless link. The TCP End-to-End semantic is maintained but it is modified in order to

adapt to the characteristics of the wireless environment.

WLD enhancement proxy is introduced between the 802.11 WLAN MAC and the IP layers

of 802.11 WLAN base stations. It monitors the TCP flow between the mobile hosts and the base

station. On receiving data packets from the IP layer that are destined for mobile hosts, WLD

proxy obtains the TCP header information from the IP datagram, assuming it is not encrypted,

and maintains them in a Cache Table. It also keeps a Connection Table in order to be able to

support multiple TCP connections. Figure 4.6 shows the flow control to extract the TCP header

information from IP datagram packets. It should also be noted that RNF scheme cannot

distinguish a wireless packet loss due to contention or due to channel BER. However, RNF can

be further modified to incorporate this. We leave this a future work.

 56

Figure 4-6 WLD flow control for caching TCP header information

On the arrival of ACK packets from the MAC layer, WLD proxy uses both the Cache Table

and Connection Table to detect wireless packet losses. If a wireless packet loss is detected, it

notifies the TCP sender of this effect by utilizing the control bit next to the CWR flag in the

reserved field of the TCP header, called Radio Network Feedback (RNF) flag, as shown in Figure

 57

4.7. It should be noted that the maximum header length is 60 bytes. TCP header length is usually

20 bytes, but can have up to 40 bytes for options. Since we only cache the TCP header

information, which is of 20 bytes long, our proposed scheme does not add much overhead to the

base station.

Source port number (16-bits) Destination port number (16-bits)

Sequence number

Acknowledgement number

4-bit

Header

length

U

R

G

A

C

K

P

S

H

R

S

T

S

Y

N

F

I

N

Receiver window size (16-bits)

Checksum (16-bits) Urgent Data (16-bits)

Options

E

C

E

W

C

R

R

N

F

Reserved

bits

Figure 4-7 TCP header with RNF flag

 Flow control for the wireless packet loss detection is shown in Figure 4.8. The main

contribution of this scheme is the wireless loss detection, which is the key to successful TCP

performance improvement, and the TCP modification to accommodate this effect. Once the

TCP sender can completely distinguish between the packet losses due to the congestion and

wireless errors, TCP congestion control mechanism can be tuned to adapt to the network

environments. It is critical to decide whether to reduce the CWND size when a TCP sender

detects wireless packet losses. We define α to be the bandwidth (BW) utilization factor that the

TCP sender uses to calculate the CWND size during the fast retransmit and recovery phase. The

value of α can be between 0.5 and 1. In the standard TCP Reno and TCP New Reno, the α is

assigned value of 0.5; they halve the CWND when a packet drop is detected by three duplicate

ACKs. The value of α can be optimized for wireless packet loss recovery and it is discussed in

detail in Section 4.3.5.

 58

Figure 4-8Wireless loss detection flow control

 59

4.3 THE IMPLEMENTATION DETAILS OF THE RNF MECHANISM

The implementation of the proposed scheme, and the rationale for it, are briefly explained.

The scheme consists of two parts; wireless loss detection and fine-tuning of the TCP congestion

control mechanism to adapt to the network condition.

4.3.1 WIRELESS LOSS DETECTION

WLD proxy maintains three data structures to handle the wireless loss detection; the TCP

Information Structure, the TCP Connection Table and the Global Structure for Cache Table, as

shown in Figures 4.9, 4.10 and 4.11 respectively.

Figure 4-9 TCP Information Data Structure

 60

Figure 4-10 TCP Connection Table Data Structure

Figure 4-11 Global Structure for Cache Table

WLD proxy maintains five states, as shown in Figure 4.12, depending on the transition

variables, and its functionality is explained as follows.

• INIT state initializes both the Cache Table and the TCP Connection Table with the

necessary information for each TCP connection passing through the base station.

• WAIT state is the default state and depending on the transition variables, the state will

change between the corresponding state and the default state.

 61

• Monitor Data state extracts TCP header information from the IP datagram and

determines the extracted TCP header is already in the Cache Table. If this TCP header is

not in the Cache Table, it will add it to the Cache Table after confirming that this

connection information exists in the TCP Connection Table. Otherwise, it will first add

the connection information to the TCP Connection Table and then cache the TCP

header information to the Cache Table.

• Monitor ACK state extracts TCP header information from the IP datagram, coming

form the mobile receiver, and determines this is an ACK packet before triggering its

WLD algorithm to detect wireless packet loss. It uses the extracted TCP header

information, the Cache Table and the TCP Connection Table to confirm a wireless

packet loss, as illustrated in the Wireless loss detection flow control in Figure 4.8. If a

wireless packet loss is detected, it will set the RNF flag of the ACK packet and forward it

to the TCP sender. Otherwise it will forward the packet as it enters. On receiving a new

ACK, it will destroy the entries in the Cache Table up to this ACK in order to further

reduce the overload at the base station. Finally, it will destroy entries both in the Cache

Table and the Connection Table on receiving the ACK packet with FIN bit set.

• Timeout state maintains a timer that can be used to make the TCP sender aware of delay

spikes, defined as sudden large delays, across the wireless link that causes spurious TCP

timeouts. TCP can be further enhanced to distinguish spurious timeouts from the normal

timeouts. It should be noted that Monitor DATA state and the Monitor ACK state can

be utilized to record the arrival times of data packets and their corresponding ACKs at

the base station. Timeout state can then use this information to calculate the wireless

RTT (W-RTT) and the wireless RTO (W-RTO) and to detect delay spikes. This feature is

not considered in this proposal and is left for our future work.

 62

H
O
S
T
_P
K
T
_A
R
R
IV
A
L

M
O
B
_P
K
T
_A
R
R
IV
A
L

Figure 4-12 WLD Process Model

4.3.2 TCP CONGESTION CONTROL MODIFICATION

The standard TCP congestion control mechanisms are tuned to perform well in traditional

wire-line networks, where packet losses occur mostly because of congestion. However, networks

with wireless links suffer form significant losses due to high bit errors and handoffs. TCP

responds to all losses by invoking congestion control and avoidance algorithms, resulting in

degraded End-to-End performance in wireless environment. The TCP congestion control should

be modified to utilize the available bandwidth efficiently in wireless environments. WLD proxy

enables the TCP sender to confirm a packet loss due to wireless error when it receives an

acknowledgement with the RNF flag set. The RNF flag is added to the TCP header as;

#define TCPC_FLAG_RNF 0x100

In standard TCP implementations, the TCP sender concludes that the network has dropped a

packet when it receives three duplicate ACKs. It then immediately retransmits the dropped

packet without waiting for the retransmission timer to expire. The rationale is that the sooner the

fast retransmit occurs, the better TCP performs because it avoids unnecessary TCP timeouts.

With this in mind, and the fact that TCP sender can confirm any wireless packet drops when it

receives duplicate ACKs with the RNF flag set, it is fine tuned to retransmit the packets dropped

across the wireless link when it receives two duplicate ACKs with the RNF flag set. It should be

noticed that the TCP sender, considering the delayed packet arrivals at the base station, still waits

 63

for two duplicate ACKs with RNF flag set even though it has received confirmation that the

packet has been dropped across the wireless link.

Now it comes to deciding whether to reduce the CWND when a TCP sender detects a

wireless packet drop. It is very important to keep the existing implementation of TCP while

modifying it to accommodate new features. We have added two new features to the standard

TCP without making any changes to its current implementation; one is to enable the TCP sender

to process the fast retransmit and fast recovery mechanism depending on the cause of a packet

loss. The other implements wireless fast retransmit and fast recovery mechanism to quickly

recover form wireless related losses with the use of the BW utilization factor, which will have a

great impact on the TCP performance improvement over wireless links.

For example, if BW utilization factor is assigned the value of 1, it will improve the TCP

throughput performance by CWND/2 per RTT after each wireless packet recovery given that

the receiver window is bigger than the CWND. It will also increase the chance of recovering

multiple packet losses within a window of data, which are highly likely in wireless environments,

thereby reducing unnecessary TCP retransmission timeouts. However, this may have some

adverse effect on networks in case of heavy loss across the wireless links. The BW utilization

factor can be optimized to perform well over network with wireless links. We leave this

phenomenon for our future work and with this scheme, we implement the wireless fast

retransmit and fast recovery mechanism with the BW utilization factor of 0.75 and 1.

Figure 4.13 shows the flow control for the TCP ACK processing, which distinguishes

between packet losses due to congestion and packet losses due to wireless error with the aid of

RNF flag. It triggers the standard fast retransmit and fast recovery processing if the loss is due to

congestion, otherwise call the wireless fast retransmit and fast recovery processing, which is

added to the standard TCP as part of the TCP modification to enhance its performance over the

wireless networks.

 64

ACK Arrives

Is ACK bit set?

Yes

Get TCP Header

Success?

Yes

Is FIN bit set?

No

SEG_ACK <

SEND_UNACK

No

Yes

DUPACK_COUNT = 0;

If SEG_LENGTH > 0

 /* Accept its DATA even though

 this segment is not in order.

 However, do not process the other

 details. */

 Process the DATA;

Yes

Do FIN Processing;

No

/*Unable to get the header fields

 from the received packet.*/

Do not process the DATA;

/* This in not an ACK */

Do not process the DATA.
No

SEG_ACK =

SEND_UNACK

Yes

This DUPACK contains new

data or a window update?

SEND_MAX >

SEND_UNACK

SEG_ACK = ACK_NUM

OLD_SEND_UNACK = SEND_UNACK

No

If DUPACK_COUNT < THRESHOLD

 DUPACK_COUNT = 0;

Yes

No

DUPACK_COUNT

< THRESHOLD

Yes

Do not process the DATA;No

/* This segment is a true duplicate ACK. Now there is

outstanding unacknowledged data which may have

been lost. Perform fast-retransmission, if applicable.*/

If RNF bit set

 /* It indicates wireless packet drops.*/

 tcp_frfr_processing_for_wireless();

Else

 /* Congesion loss*/

 tcp_frfr_processing ();

Yes

No

/* Completely duplicate ACK, but

 there is no outstanding data.*/

 Discard the packet;

If (SEG_ACK > MAX(SEND_NEXT, SEND_UNACK))

 /* TCP received ACK of DATA not yet sent*/

 Do not process the DATA;

Else

 Process the newly received ACK;

Figure 4-13 ACK processing with RNF flag

 65

4.3.2.1 The Wireless Fast Retransmit and Fast Recovery Processing

The wireless fast retransmit and fast recovery processing triggers wireless fast retransmit

algorithm when it receives two duplicate ACKs with RNF flag set. Similar to the standard TCP

fast retransmit algorithm, it considers the flight size, which is the number of unacknowledged

packets in the network, in calculating the SSTHRESH value. On fast retransmitting the lost

packet, the CWND is set to SSTHRESH times the BW utilization factor. The number of new

packets can be transmitted during the fast recovery process depend on the CWND value. If BW

utilization factor is assigned a value of 0.5, there can be maximum of (CWND/2 -PD) number of

packets transmitted, where PD is the number of dropped packets within that window of data. It

should be noted that it will take the TCP sender CWND/2 of RTT period to utilize the available

BW in which it was operating prior to a single packet drop experienced. If the packet drop were

due to wireless error, TCP sender under-utilizes the available BW, causing performance

degradation.

4.4 PERFORMANCE EVALUATION OF OUR PROPOSED SCHEME BASED ON

OPNET SIMULATION

The OPNET [OPNET Technologies Inc] simulation tool is used throughout our studies to

implement and evaluate the proposed scheme based on simulation studies. We have

implemented the WLD scheme in both an 802.11 WLAN Server and an 802.11 WLAN Router

and Extensive simulations were run to get the mean TCP throughput with less than 5% error

margin. Modified TCP Reno with the default parameters is used in all simulation scenarios.

Selected TCP Reno and WLAN parameter values [OPNET Technologies Inc]are given in Tables

4.2 and 4.3, respectively. The received power of a packet is inversely proportional to the distance

that it travels. The lower the reception power threshold, the greater will be the transmission range

of a packet since packets with lower power will be accepted by the radio receiver. The higher the

transmission power, the greater the distance that the packet can be transmitted over. With

11Mbps data rate, 5mW transmission power and -95 dBm, the transmission rate can be up to

1094m [OPNET Technologies Inc].

 66

Table 4-2 Selected TCP Reno Parameter values

 67

Table 4-3 Selected WLAN Parameter values

4.4.1 EXPERIMENT WITH AN 802.11 WLAN SERVER

The network model used in this study is shown in Figure 4.14. It consists of two WLAN

nodes, a WLAN Server and Mobile Hosts (MHs). The two WLAN nodes are Application

Configuration and the Profile Configuration nodes, which are configured to generate FTP traffic

comprising a 160,000 byte file upload. The WLAN Server is implemented, in turn, with a

standard WLAN, a WLAN with the Snoop proxy and a WLAN with WLD proxy to compare

their relative performances. OPNET representations of a WLAN Server with the WLD proxy

and a WLAN MH with wireless loss packet generator (WL-PEG) are shown in Figures 4.15 and

4.16 respectively. MHs are configured to drop 2 % of IP datagrams, using a uniform probability

distribution. Modified TCP Reno with the default parameters is used in all simulation scenarios.

Selected TCP Reno and WLAN parameter values are given in Tables 4.2 and 4.3, respectively.

 68

Figure 4-14 WLAN network model with an 802.11 WLAN Server

 69

Figure 4-15 OPNET representation of a WLAN Server with WLD proxy

Figure 4-16 OPNET representation of a WLAN MH with WL-PEG

 70

4.4.1.1 Simulation Results and Discussion

Extensive simulations were run to compare the performance of a WLAN with the WLD

enhancement proxy with a standard WLAN and a WLAN with the Snoop proxy. Figure 4.17

shows the TCP CWND size responses together with packet drops. It can be seen that the

proposed scheme successfully distinguished packet losses due to wireless error from congestion

and recovered from wireless packet losses without reducing the CWND while the standard

WLAN, as expected, reacted to each packet loss and reduced its CWND. WLD proxy helped the

TCP sender to avoid unnecessary spurious TCP timeouts. The WLAN with Snoop proxy also

managed to recover from most of the wireless errors. However, it experienced timeouts due to its

inability to exchange the wireless effects with the TCP sender.

Figure 4-17 Comparison of TCP CWND responses with for MH-5

 71

The TP timeouts makes the TCP sender perform slow-start, assuming all outstanding

unacknowledged packets are lost. This effect can be observed from Figures 4.17 and 4.18 and it

can be highly undesirable form user’s perspective because the system may look like unstable.

Figure 4-18 Compariosn TCP sent segmet sequence number responses for MH-5

Figure 4.19 shows the average number of cached packets, which reflect the amount of data

transmitted within an RTT period of each TCP connection. The higher the packets in the Cached

Table implies larger the TCP throughput for a given number of TCP connections. Since the

WLD proxy only caches the TCP header information, it does not create more overhead at the

base station than Snoop does.

 72

Figure 4-19 Average number of cached packets

Figure 4.20 shows the number of WLAN data traffic sent. It can be seen that WLAN with

Snoop sent higher number of packets than the WLAN with WLD while achieving lower TCP

throughput than the WLAN with WLD does. This implies the Snoop wastes the valuable

network resources by competing for retransmission with the TCP sender.

Figure 4-20 WLAN data traffic sent (packets/sec)

 73

Our main objective is to detect all wireless packet losses and to make the TCP sender aware of

this and perform wireless enhanced fast retransmit of those lost packets without reducing the

CWND, taking the network utilization factor a value of 1.0. In order to see this effect, we have

included the standard WLAN behavior without any packet losses in Figure 4.18, and it can be

seen that the WLD proxy performs as expected; WLD scheme closely follows the performance

of standard WLAN without any packet losses. Even though the proposed scheme has

significantly improved the TCP performance in accordance with the intuition behind it, we

further investigate its ability to deal with more rigorous wireless environments, for example with

high packet drops rate, in the next experiment scenario.

4.4.2 EXPERIMENT WITH AN 802.11 WLAN ETHERNET ROUTER

The network model used for this study is shown in Figure 4.21. The Local Area Network

(LAN) is extended using an 802.11 WLAN Ethernet router that forms a WLAN together with

MHs. The model consists of two Servers, and some fixed hosts (FHs) and MHs. Servers and

FHs are connected to the WLAN router through switches using 10baseT point-to-point link

model. The Application and Profile Configuration nodes are configured to generate different

applications such as HTTP, FTP Database and Email. FHs are configured to utilize some of

these services in parallel with MHs in order to make the network analyzes be realistic and to

show that the proposed scheme can be implemented in any WLAN devices.

 74

Figure 4-21 OPNET Network Model

All MHs are configured to download FTP files from Server-1 simultaneously. Packets coming

from the Server-1 are dropped at the MAC layer of MH clients, using a uniform probability

distribution and Table 4.4 shows the packet drop rates of MHs. The MAC layer is modified to

generate bursty packet drops, as illustrated in Figure 4.22, so that the base station will perform its

local retransmission and discard the packets once the threshold number of retry limit reaches.

The packets that experience base station local retransmission before get successfully transmitted

will imitate characteristics of wireless links, thereby impacting the end-to-end RTT. Figure 4.23

shows the OPNET representation of 802.11 WLAN Ethernet Router with the WLD proxy.

 75

Table 4-4 Mobile Host Configuration

 Figure 4-22 Pseudo code for MAC layer packet drops

 76

Figure 4-23 the OPNET representation of 802.11 WLAN Ethernet Router with WLD proxy

The WLAN Router is implemented, in turn, with a standard WLAN and a WLAN with WLD

proxy to compare their relative performances. Modified TCP Reno with the default parameters

is used in all simulation scenarios. Selected TCP Reno and WLAN parameter values are as given

in Tables 4.2 and 4.3, respectively.

4.4.2.1 Simulation Results and Discussion

Figure 4.24 shows the TCP CWND size, sent segment sequence number, the MAC packet

drops and the number of cached TCP headers responses during FTP file upload by MH-4 with

the proposed scheme, WLAN with WLD, and the standard WLAN. Figures 4.25 and 4.26 show

a snapshot of TCP CWND and TCP sent sequence number responses for MH-4. Comparison of

WLD proxy
introduced in WLAN
Ethernet Router

 77

the TCP sent segment sequence number responses for MH-4, MH-5, MH-6, MH-7 and MH-8 is

given in Figure 4.27.

Figure 4-24 Responses during MH-4 client FTP file upload

 78

Figure 4-25 A Snapshot of TCP CWND response for MH-4

Figure 4-26 A Snapshot of TCP sent segment number response

 79

Figure 4-27 Comparison of TCP sent segment responses

From Figures 4.24 - 4.27, it can be seen that proposed scheme does not add much overhead

to the WLAN Router and significantly improves the CWND and throughput responses

compared to that of the standard TCP; there is a maximum of 353 TCP headers (7060 bytes)

cached during the entire simulation period. The simulation was repeated many times with

different seed values, which generated different MAC packet drop patterns, and the TCP mean

throughput value was obtained with less than 5% error margin. Table 4.5 summarizes the TCP

throughput performances. Figure 4.28 shows the TCP throughput improvement with the

proposed scheme versus the MAC packet drop rates.

 80

Table 4-5 Sumarry of TCP throughput performance

Figure 4-28 TCP Throughput improvement Vs Packet drop rates

From Table 4.5 and Figure 4.28, it can be observed that the proposed scheme has improved

the TCP throughput performance of MHs with MAC packet drops. It should also be noticed

that the proposed scheme has decreased the TCP throughput performance of MH-1, which does

not drop any MAC packets. It demonstrates that TCP with enhanced fast retransmit and

recovery algorithms to handle wireless packet drops is much fairer than the standard TCP Reno

implementation. With the proposed scheme, the available BW across the wireless medium is

more fairly shared among the 802.11 mobile hosts.

4.5 CONCLUSIONS AND FUTURE WORK

A new RNF scheme was presented that detects and distinguishes wireless packet losses from

congestion related packet losses. TCP Reno was modified to distinguish wireless packet losses

from the congestion losses, with the aid of the RNF flag, and to trigger the enhanced fast

Drop rate (%)

 81

retransmit and recovery algorithm accordingly. The standard TCP header was slightly modified to

achieve this.

The RNF scheme was implemented in an 802.11 WLAN Server, with the bandwidth

utilization factor α = 1.0, in OPNET. The simulation results showed that it improved the TCP

performance significantly compared to that of both the standard WLAN and the WLAN with

the Snoop proxy. In particular, it detected all the wireless losses and enabled the TCP sender to

trigger wireless enhanced fast retransmit and recovery algorithm to recover from those lost

packets without reducing the congestion window.

It was also implemented in an 802.11 WLAN Ethernet Router in OPNET, with the

bandwidth utilization factor α = 0.75. Simulation results showed that the proposed scheme

improved the TCP performance significantly compared to that of the standard WLAN. It also

enabled the modified TCP Reno to distinguish wireless packet losses from the congestion-related

losses and to trigger the wireless enhanced fast retransmit and fast recovery mechanisms to

quickly recover from wireless packet losses. However, it could not completely avoid spurious

TCP timeouts. The effects of spurious TCP timeouts can be minimized enabling the TCP sender

to distinguish spurious timeouts from the normal timeouts. We leave this for our future work.

Simulation results also showed that the proposed scheme can handle multiple nodes and

multiple TCP connections, and utilized the available network resources efficiently and fairly by

adapting to the network characteristics. The advantage of this scheme is that it does not inject

any additional packet into the network to provide feedback when it detects wireless packet losses;

it does not compete for bandwidth and only sets the RNF flag of the ACK in case of a wireless

detection. Finally, the proposed scheme only requires the software changes and can be easily

implemented in real time network. Further validation of the scheme with different TCP flavors in

different networks is left for future work.

 82

C h a p t e r V .

5. RNC Feedback Scheme for TCP Enhancement

over a UMTS Network

Universal Mobile Telecommunications System (UMTS) is one of the most significant

advances in the evolution of telecommunications into Third Generation (3G) networks. UMTS

allows many more applications to be introduced to a worldwide base of users and provides a vital

link between today’s multiple Global System for Mobile Communications (GSM) and the

ultimate single worldwide standard for all mobile telecommunications, International

Telecommunications-2000 (IMT-2000). Development of advanced 3G networks and services

makes it necessary to find a way of improving TCP’s efficiency and resource utilization. TCP

optimization for wireless networks to deal with packet losses due to fading, shadowing and

contention should preferably maintain TCP end-to-end semantics with minimal dependence on

intermediate nodes. Previous research on this issue suggests that TCP needs radio network

feedback to distinguish wireless related losses from congestion related losses.

In this Chapter, we first give an overview of UMTS technology and, based on the RNF

mechanism implemented in 802.11 WLAN environments, devise the radio network control

(RNC) feedback mechanism in Sections 5.1 and 5.2, respectively. The RNC mechanism requires

only a minimal change to the standard TCP implementation. Section 5.3 provides an incentive to

the RNC development and outlines the advantages of the RNC mechanism over the RNF. The

RNC mechanism is implemented in a UMTS network and the TCP performance with the RNC

proxy is analyzed and compared with that of the standard UMTS in Section 5.4. The conclusions

drawn and directions for future work are outlined in Section 5.5

5.1 AN OVERVIEW OF UMTS TECHNOLOGY

Third Generation (3G) technology is revolutionizing the capabilities of mobile

communications. 3G networks are the next generation of mobile cellular networks, and their

 83

origin is an initiative of the International Telecommunication Union (ITU). The main objective is

to provide high-speed and high-BW wireless services to support a wide range of advanced

applications, specially tailored for mobile personal communication such as telephony, paging,

messaging and Internet access. 3G mobile networks are expected to provide more enhanced

services than are possible over existing cellular systems, including higher bit rates services and

greater capacity and service capability.

Universal Mobile Telecommunications System (UMTS) is one of the main 3G wireless

technologies developed by the European Telecommunications Standards Institute (ETSI) within

the IMT-2000 framework proposed by the ITU [Samukic, 1998]. UMTS evolved from global

systems for mobile communications (GSM) and supports both existing services and offering new

services including multimedia and access to the Internet with a speed of up to 2 Mbps; it

provides network and service infrastructure convergence for fixed and mobile networks by

allowing network operators to flexibly and efficiently offer services to customers irrespective of

their access means [Mason, Cullen, & Lobley, 1996]. Currently, the Third Generation Partnership

Project (3GPP) [3GPP], formed by a cooperation of standards organization, is in charge of

developing UMTS technical specifications. UMTS systems have already been deployed in most

European countries, although new and advance terminals, as well as many specifications, are still

under development.

5.1.1 UMTS ARCHITECTURE

A UMTS network consists of three interacting domains: Core Network (CN), UMTS

Terrestrial Radio Access Network (UTRAN) and User Equipment (UE). Figure 5.1 [Jamalipour,

2003] shows the UMTS architecture based on 3G TS 25.401 UTRAN Overall Description. The

packet domain CN includes the serving GPRS support node (SGSN) and the gateway GPRS

support node (GGSN). The GPRS support nodes (GSNs) include all GPRS functionality needed

to support GSM and UMTS packet services. The SGSN monitors user location and performs

security functions and access control. The GGSN contains routing information for packet-

switched (PS) attached users and provides internetworking with external PS networks, such as

packet data network (PDN).

 84

Figure 5-1 The UMTS network architecture

At the packet domain CN, UMTS mainly reuses the GSM/GPRS network elements. The

MSCU performs transcoding and bridges the cellular network to the public switched telephone

network (PSTN). The circuit-switched (CS) core network includes the mobile switching center

(MSC)/visitor location register (VLR). The MSC/VLR is used in the packet domain architecture

to efficiently coordinate PS and CS services and functionality. Connection of the UMTS user

terminal to the public telephony network is provided via an UMTS-type MSC, shown as MSCU in

the Figure 5.1. Access network domain, UTRAN manages specifications of the access technology

of the UMTS, the wideband Code Division Multiple Access (W-CDMA). The BTS in the UMTS

network is called a Node B and BSC uses the new name of radio network controller (RNC). The

RNC provides data link layer services and the Node B supplies the physical (radio) channel

access. User equipment (UE) is the end user UMTS cellular phone and provides data and voice

services to the system users.

5.1.2 UTRAN ARCHITECTURE

Figure 5.3 provides an overview of UTRAN architecture showing the relationship between

the CN and the UTRAN. Both CN and UTRAN are designed independently and are connected

to each other through a set of standard interfaces. The UMTS core network consists of CS

service domain and PS service domain, which are responsible for providing appropriate services

to the CS traffic and PS traffic.

 85

 Figure 5-2 UTRAN architecture

The UTRAN consists of a set of Radio Network Subsystems (RNS) connected to CN

through Iu interfaces. An RNS consists of a Radio Network Controller (RNC) and one or more

Node-Bs. An RNC manages a set of base stations, referred as Node-Bs, through Iub interfaces.

The RNC exerts admission control for new mobiles or services attempting to use the Node-B.

Admission control ensures that mobiles are only allocated radio resources up to what the

network has available. The RNC is also responsible for the Handover decisions that require

signaling to the UE. Each UE has exactly one Serving RNC and can have one or more Drift

RNCs, where the mobile physical layer communications terminate. Drift RNCs communicate

with the Serving RNC via the Iur interface. A Drift RNC may also be the Serving RNC where no

soft handover activity is in progress. Each Node B is responsible for connecting many end user

terminals, UEs, to the UTRAN through the Uu interface. Detail description of UMTS access

technology is given in the following Sections.

5.1.3 WIDEBAND CODE DIVISION MULTIPLE ACCESS (W-CDMA)

W-CDMA defines the air interface access of the UMTS network and is termed as UTRA.

Unlike GSM and GPRS, which uses time division multiple access (TDMA) and frequency

division multiple access (FDMA), W-CDMA allows all users to transmit at the same time and to

share the same radio frequency (RF) carrier. In W-CDMA, instead of dividing users by frequency

 86

or time as shown in Figure 5.3, they are divided into codes and specific data streams are assigned

to particular users. Each mobile user is uniquely identified by a specialized code and frequency.

Figure 5-3 Comparison of multiple access schemes

In WCDMA Spread Spectrum technology, the information contents are spread by unique,

digital codes (spreading sequence). The basic unit of a code sequence is one chip. Each user

channel is uniquely identified by a code, which is a combination of a scrambling code and an

orthogonal variable spreading factor (OVSF) code. Scrambling code is unique for each device

and allows the recipient to identify from the other devices. The OVSF codes are used to separate

traffic in a W-CDMA signal. W-CDMA uses a variable length code (4 to 512 chips), known as

the spreading factor (SF). The SF may be updated as often as every 10 ms. This permits the

overall data capacity of the system to be used more efficiently. Any user equipment that receives

a transmitted data sequence and attempts to demodulate it using the wrong OSVF would

interpret the information as noise. The noise, when integrated over time, will net to zero, which is

an important property of the orthogonal codes in W-CDMA systems. The OVSF codes can be

reused by each base station and user equipment within the same location, since the scrambling

codes identify the transmitting device.

The CDMA digital mobile communication system has great potential power. In the CDMA

system, system capacity is a soft capacity concept. For example, the system manager may raise the

frame error rate to increase the available channels during peak hours of telephone traffic. Again,

the CDMA system is a self-interference system, when its neighbor cells have less load,

interference sent to the cell is smaller, so the capacity can be increased adequately.

 87

One of the most important characteristics of W-CDMA is the fact that power is the common

shared resource for users. In the downlink, the total transmitted power of an RF carrier is shared

between the users transmitting from the base station by code division multiplexing (CDM). In

the uplink, there is a maximum tolerable interference level at the base station receiver. This

maximum interference power is shared between the transmitting user equipments in the cell, each

contributing to the interference [Haardt et al., 2000]. Power as the common resource makes W-

CDMA very flexible in handling mixed services and services with variable bit rate demands.

Radio resource management is done by allocating power to each user to ensure that maximum

interference is not exceeded. Reallocation of codes and time slots is normally not needed as the

bit rate demand changes, i.e. the physical channel allocation remains unchanged even if the bit

rate changes.

5.1.4 UMTS MODES OF OPERATION

ETSI special mobile group (SMG) defines two different mode of operation for the UTRA;

frequency division duplex mode (FDD) [Dahlman, Gudmundson, Nilsson, & Skold, 1998],

where the uplink and downlink are transmitted on different frequencies, and time division duplex

(TDD) [Haardt et al., 2000], where the uplink and downlink are transmitted on the same

frequency and are multiplexed in time. These modes are illustrated in Figure 5.4.

UTRA FDD is based on 5 MHz W-CDMA with a basic chip rate of 4.096 Mchips/s,

corresponding to a bandwidth of approximately 5 MHz. Higher chips rates of 8.192 and 16.384

Mchips/s are also specified intended for future evolution of the W-CDMA air interface towards

data rates higher than 2 Mbps [Dahlman, Gudmundson, Nilsson, & Skold, 1998]. The basic radio

frame has a length of 10 ms, allowing for low delay speech and fast control messages, and is

divided into 15 slots. W-CDMA carriers are located on a 200 kHz carrier grid with typical carrier

spacing in the range of 4.2 – 5.0 MHz. Spreading factors vary from 256 to 4 for an FDD uplink

and from 512 to 4 for an FDD downlink. With these spreading factors, data rates of up to 2

Mbps are attainable.

 88

T
im
e

P
o
w
e
r

T
im
e

P
o
w
e
r

Figure 5-4 UTRA FDD and TDD modes of operation

UTRA TDD is based on TD/CDMA technology. During the subsequent ETSI process, the

parameters of the TDD mode have been completely harmonized to the FDD mode. TDD is the

only method that can flexibly share the system capacity to uplinks and downlinks [Jamalipour,

2003]. The main difference between the FDD and TDD modes is that the TDD mode includes

an additional TDMA component, allowing for interference avoidance by means of dynamic

channel allocations. Since in TDD, the uplink and downlink are transmitted on the same

frequency it is possible to allocate different ratio of TDD time slots to uplinks and downlinks in

accordance to the service requirements at a particular time. This flexibility is not available in an

FDD mode, as a fixed amount of total system capacity is devoted to the uplink and the rest to

the downlink.

5.1.5 UMTS RADIO INTERFACE PROTOCOL ARCHITECTURE

The UMTS radio interface protocol architecture is shown in Figure 5.5. The architecture

consists of a control plane (C-plane) for signaling and user plane (U-plane) for data information

transportation.

 89

C
o
n
tr
o
l

C
o
n
tr
o
l

C
o
n
tr
o
l

C
o
n
tr
o
l

C
o
n
tr
o
l

Figure 5-5 UMTS radio interface protocol architecture

The design of the radio interface protocol stack has focused on a clear structuring of the

layers. The main functionality layers are physical layer (PHY), medium access control layer

(MAC), radio link control layer (RLC), broadcast/multicast control layer (BMC), packet data

convergence protocol layer (PDCP) and radio resource control layer (RRC). The services

provided by each layer and the physical and logical channels at the physical layer and MAC layer

are briefed, respectively, in the following.

The physical layer is responsible for the transmission of transport blocks over the air interface.

This includes forward error correction (FEC), multiplexing of different transport channels on the

same physical resources, rate matching, modulation, spreading and RF processing. The error

indication in the physical layer is important for the realization of incremental redundancy

protocols. Physical channels could be of one of the following types:

 90

• Random access channel (RACH) is a contention based uplink transport channel for initial

channel access to the network as well as for short data bursts. The RACH is always

received from the entire cell and is characterized by a collision risk and by being

transmitted using open loop power control.

• Common packet channel (CPCH) is a contention based used for transmission of bursty

data traffic. This channel only exists in FDD mode and only in the uplink direction.

The CPCH employs fast power control and is shared by the UE in a cell and

therefore, it is a common resource.

• Forward access channel (FACH)

• Downlink shared channel (DSCH)

• Broadcast channel (BCH)

• Paging channel (PCH)

• Dedicated channel (DCH)

MAC layer maps the logical channels of the RLC on the transport channels provided by the

physical layer. Its main functionality is multiplexing different data streams. The MAC layer is

informed about resource allocations by the RRC and performs priority handling between

different data flows that are mapped on the same physical resource. The logical channels

provided by the MAC layer are as follows:

• Control channel (CCH)

- Broadcast control channel (BCCH)

- Paging control channel (PCCH)

- Dedicated control channel (DCCH)

- Common control channel (CCCH)

 91

- Shared control channel (SHCCH)

• Traffic channel (TCH)

- Dedicated traffic channel (DTCH)

- ODMA dedicated traffic channel (ODTCH)

- Common traffic channel (CTCH)

RLC layer provides transparent, unacknowledged, or acknowledged mode data transfer to the

upper layers. The acknowledged mode transfer uses a sliding window protocol with selective

reject-automatic repeat request (ARQ). The RLC also provides segmentation and retransmission

services for both users and control data. It offers services to higher layers via service access

points (SAP), which describes how the RLC layer handles the data packets. On the C-plane, the

RLC services are used by the RRC layer for signaling transport. On the U-plane, the RLC

services are used either by the service specific protocol layers (PDCP or BMC) or by the higher

layer U-plane functions.

Packet data convergence protocol (PDCP) layer is located in the U-plane and provides header

compression functions for network protocols such as TCP/IP and UDP/IP [RFC 2507] . It also

handles transmission and reception of protocol data units (PDUs) using services provided by the

RLC protocol and supports for SRNs loss-less relocation.

RRC layer handles the C-plane signaling of layer 3 between UTRAN and the UE. It is also

responsible for controlling the available radio resources. This includes the assignment,

reconfiguration, and release of radio resources as well as continuous control of the requested

quality of service. The TDD mode requires additional features in the RRC layer such as dynamic

channel allocation, handling of the outer loop power control, ad timing advance control.

5.1.6 NODE B

The Node B is the function within the UMTS network that provides the physical radio link

between the user equipment and the network. UMTS uses Wideband Code Division Multiple

Access (WCDMA) to carry the radio transmissions. A Node-B can support FDD, TDD or dual-

mode operation. Node B connects with the UE via the W-CDMA Uu radio interface and with

 92

the RNC via the Iub ATM based interface, and performs the conversion of data to and from the

Uu radio interface. It determines the frame error rate (FER), based on the quality and strength of

the connection, and transmits these data to the RNC as a measurement report for handover and

macro diversity combining. The macro diversity combining is carried out independently,

eliminating the need for additional transmission capacity in the Iub interface.

Node B also participates in power control as it enables the user equipment to adjust its power

using downlink transmission power control (TPC) commands via an inner-loop power control

on the basis of uplink TPC information. The UMTS standard specifies a downlink power

adjustment procedure for adjusting the Node B transmitted power of the radio links in the active

set. However, the standard leaves opens the specific method used to compute and apply the

adjustment corrections.

5.1.7 RADIO NETWORK CONTROLLER (RNC)

The RNC handles protocol exchanges between Iu, Iur and Iub interfaces and is responsible

for centralized operation and maintenance of the entire RNS with access to the operating

subsystem. Since the interfaces are ATM based, the RNC switches ATM cells between them. The

user’s circuit switched and packet switched data coming from Iu-CS and Iu-PS interfaces are

multiplexed together for multimedia transmission via Iur, Iub and Uu interfaces to and from the

user equipment. The RNC uses the Iur interface to autonomously handle radio resource

management (RRM), eliminating the burden from the core network. Serving control functions

such as admission, RRC connection to the UE, congestion and handover/macro diversity are

managed entirely by the serving RNC (SRNC). If another RNC is involved in the active

connection through an Inter-RNC Soft Handover, it is declared a drift RNC and is responsible

for the allocation of code resources.

5.1.8 3GGP RELEASE 5

The initial standards for UMTS were completed by 3GPP in April of 1999 and termed

Release 1999 (R’99). These standards are the basis for a majority of the current commercially

deployed UMTS systems previously discussed. In April of 2001, a follow up release to R’99 was

standardized in 3GPP, termed Release 4 (Rel’4), which provided minor improvements of the

UMTS transport, radio interface and architecture. In March 2002, Release 5 (Rel’5) [3GPP] of

UMTS was completed which defined features such as the High Speed Data Packet Access

(HSDPA) channel, the IP Multimedia Subsystem (IMS) and IP UTRAN that provide significant

 93

spectral/network efficiency, performance and functionality advantages over the R’99 and Rel’4

standards.

The Rel’5 UMTS standards were developed such that the Rel’5 enhancements can co-exist on

the same RF carrier as currently deployed R’99 UMTS. Thus, a current R’99 UMTS carrier can be

upgraded to support legacy R’99 as well as new Rel’5 terminals in the same 5 MHz band.

HSDPA is one of the key Rel’5 features that offers significantly higher data capacity and data user

speeds on the downlink (theoretically up to 14 Mbps peak) compared to R’99 UMTS through the

use of very dynamic adaptive modulation, coding and scheduling with Hybrid Automatic

Retransmission Request (H-ARQ) processing. Through HSDPA, operators will benefit from a

technology that will provide improved end-user experience for web access, file download and

streaming services. Wireless Broadband access to the Internet, intranet and corporate LAN will

benefit greatly from HSDPA. In addition to HSDPA, UMTS Rel’5 introduces the IP Multimedia

System (IMS) architecture that promises to greatly enhance the end-user experience for integrated

multimedia applications and offer the mobile operator an efficient means for offering such

services. The IMS enables new and more advanced multimedia applications for operators

(including VoIP), the ability for these services to interact and the ability to fully integrate real-

time, near real-time as well as non-realtime services. UMTS Rel’5 also introduces the IP UTRAN

concept to realize network efficiencies and reduce network costs.

5.2 RADIO NETWORK CONTROLLER FEEDBACK MECHANISM

A study of Wireless TCP proposals with proxy servers in the GPRS network [Rendon,

Casadevall, & Carrasco, 2002] analyses the Split mechanism [Bakre & Badrinath, 1995] and the

Snoop protocol [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997] and concludes that the

Snoop protocol does not perform well because of the high delays in the GPRS radio channel and

the Split mechanism slightly improves the TCP throughput. Snoop is a link-layer protocol that

retransmits the lost packets locally, trying to hide packet losses across the wireless link from the

TCP sender, while the Split mechanism attempts to separate loss recovery over the wireless link

from that over the wire-line network. A cross-layer congestion avoidance scheme in [Kliazovich

& Granelli, 2005] gathers network capacity information such as BW and delay at the link layer

and, based on these measurements, it adjusts the outgoing data stream. Link layer proposals

[Wong & Leung, 1999] try to hide packet losses across the wireless link from the TCP sender by

employing error correction using techniques such as FEC and retransmitting the lost packets

 94

locally in response to the ARQ message. Adaptive-TCP [Seok, Youm, kim, & Kang, 2003] is a

TCP-aware link layer protocol and performs local retransmission, sender freezing and flow

control in order to hide the wireless environment from the TCP sender.

The abovementioned protocols attempt to either hide or separate the wireless effects from

that of traditional wire-line network. However, they all fail to completely recover from the

wireless effects [Balakrishnan, Padmanabhan, Seshan, & Katz, 1997; Sinha, Nandagopal,

Venkitaraman, Sivakumar, & Bharghavan, 1999]. In this Chapter, we propose a new technique

that utilizes the RNC feedback (RNC-FB) to completely distinguish the wireless packet losses

form the congestion related losses.

5.2.1 PROPOSED RNC FEEDBACK MECHANISM

Previous studies show that minimizing the wireless environment effects could improve the

TCP performance. In reality, they do optimize the link layer protocols and this in effect improves

the TCP performance. The actual TCP improvements should be achieved by tuning the TCP

itself to utilize the available network resources efficiently in both wire-line and wireless

environments. We propose a scheme that monitors the UMTS network radio interface and

notifies the TCP sender of any effects caused by the wireless link. The TCP End-to-End

semantic is maintained but it is modified in order to adapt to the characteristics of the wireless

environment.

An IP packet entering the UMTS network is double encapsulated, as shown in Figure 5.6, to

cross the UMTS network. The GPRS Tunneling Protocol (GTP) sets up the GTP tunnels

between the GGSN and SGSN. When this packet reaches the RNC node, the original IP

datagram is obtained at the GTP layer of the RNC protocol stack, shown in Figure 5.7, and

passed on to the RNC layer for delivery to the destination UE. Our proposed scheme modifies

the GTP layer of RNC protocol stack in order to be able to monitor the IP datagram flows and

to extract TCP header information, assuming that the IP datagram is not encrypted. Extracted

TCP header information is maintained in a cache table and used to observe wireless environment

effects and prepare the RNC feedback to the TCP sender. The functionality of the GTP layer

and the required modifications is briefly explained next.

 95

Figure 5-6 IP Datagram double encapsulation

Figure 5-7 OPNET representation of RNC node model

When receiving a packet from the lower layer (UDP Layer), the GTP layer in the RNC

protocol stack takes one of the two possible actions, depending on the packet types:

 96

• If the packet is a GTP signaling message, GTP processes it locally and acts

accordingly, otherwise decapsulates and forwards the packet to the higher layer.

• If a packet is delivered by the upper layer (RNC layer), it encapsulates and tunnels the

packet or directly delivers the packet to the UDP layer if the Iur interface

implementation is ready.

We modify the implementations of both GTP encapsulation and decapsulation states in the

GTP process model shown in Figure 5.8 to generate RNC feedback.

S
TA
R
T_
TU
N
N
E
L

S
E
N
D
_
G
T
P
_
M
S
G

Figure 5-8 GTP process model

GTP encapsulation state is modified to monitor all the packet flows and to maintain a Cache

Table with the TCP header information, including the TCP connection information to support

multiple TCP connections. GTP decapsulation state is modified to utilize the cached TCP header

information to provide RNC feedback to the TCP sender as follows; it monitors all the packet

flows and uses the Cache Table to detect wireless packet losses. If a wireless packet loss is

detected, it notifies the TCP sender of this by utilizing the control bit next to the CWR flag in the

reserved field of the TCP header, called the Radio Network Feedback (RNF) flag. The standard

TCP should be tuned to accommodate this effect so as to avoid unnecessary congestion window

reduction and spurious timeouts due to wireless environment effects.

 97

Impact of transmission errors on TCP reduces the network resource utilization; it forces the

TCP to reduce the CWND by invoking unnecessary congestion control measures, resulting in

poor throughput. TCP is modified to accept the RNF control flag and is tuned to perform

wireless fast retransmit without reducing the congestion window if the RNF flag is set. Wireless

fast retransmit is triggered when the TCP sender receives two duplicate ACKs with RNF flag set

to quickly recover from the wireless packet losses. The sooner the fast retransmit occurs, the

better TCP performs because the TCP recovery phase ends and the congestion avoidance phase

is entered sooner. It also minimizes the spurious TCP timeouts, resulting in further TCP

performance improvement. It should be noted that this scheme does not introduce a proxy at the

RNC node. It requires only the software change at the RNC node and does not add much

overhead to the RNC node since only the TCP header information is cached.

5.3 OPNET IMPLEMENTATION OF THE RNC FEEDBACK MECHANISM

There are eleven states in OPNET implementation of GTP process model shown in Figure

5.8. Modifications of “GTP DECAP” and “GTP ENCAP” states are required to implement the

proposed RNC feedback (RNC-FB) scheme. Figures 5.9 and 5.10 show the flow controls for

modifying the “GTP DECAP” and “GTP ENCAP” states respectively. Note that our

modification to the “GTP DECAP” state looks only for the IP datagram flow to extract TCP

header information because the information flow between SGSN and UE is not only data

packets. There is also some UMTS management frames exchanged between these nodes.

Actually, before any data flow can happen, first the UE has to complete its GMM GPRS

attachment with the CN, and then go through packet data protocol (PDP) Context Activation

with the SGSN node for the Quality of Service (QoS) class of the data flow.

 98

Data Packet Arrives

Is RNC-FB

Supported?

Yes

Get TCP Header

Info Success?

Yes

Is TCP Data

Size = 0?

No

Is This in

Cache Table?

No

Is This in

Connection

Table?

No

Yes
Cache the TCP Header Information

and forward the packet

It is the first packet in this connection, so add

this to the connection table.

Cache the TCP Header Information and forward

the packet.

Yes
It is already in the Cached table.

So, it must be the retransmitted

packet.

Forward the packet.

Yes
It is not a data packet and could be

a control packet. We do not have to

cache this header information.

Forward the packet.

No We cannot extract TCP header

information.

Forward the packet.

No modification required since

RNC-FB is not supported.

Forward the packet.

No

Is GTP Payload

IP datagram?

Yes

It is not IP datagram and must be
UMTS management frames. So,
no modification required.
Forward the packet.

No

 Figure 5-9 Modifications of “GTP DECAP” state

 99

Figure 5-10 Modifications of “GTP ENCAP” state

 100

TCP Reno [RFC 2001, 1997], the current de facto standard for TCP, is fine-tuned to minimize

the wireless effects on its performance by adding the RNF flag into TCP header. When TCP sees

the ACK with RNF flag set it can confirm that packet is lost and retransmit that packet.

However, it is tuned to perform wireless fast retransmit on receiving two duplicate ACKs with

RNF flag set because unnecessary TCP retransmissions will contribute to the waste of valuable

network resources and significant degradation of TCP end-to-end throughput. Required TCP

modifications details are not given here because it is the same as the one implemented in Chapter

4 to enhance the TCP performance over 802.11 WLAN environments.

5.4 SIMULATION RESULTS AND DISCUSSION

To demonstrate the effectiveness of our proposed scheme, the UMTS network model shown

in Figure 5.11 is implemented, in turn, with the standard RNC and the modified RNC process

model in the RNC protocol stack. The FTP server is configured to generate files of sizes 100

Kbytes and 2 Mbytes. UEs are configured to download 100 Kbyte FTP files except for one UE

(UE_1), which downloads 2 Mbyte FTP files and is used for analyzing our simulation results.

Modified TCP Reno and UMTS RNC with their default parameters [OPNET Technologies

Inc]are used in all simulation scenarios. An extract of the TCP Reno and UMTS RNC parameter

values are given in Table 5.1 and 5.2 respectively.

Figure 5-11 UMTS network model

 101

Table 5-1 TCP Reno parameters

 102

Table 5-2 UMTS RNC parameters

Wireless packet drops are generated in user equipments (UEs) using a uniform probability

distribution as explained in Figure 4.22 (Section 4.4.2).

5.4.1 SCENARIO 1 RESULTS AND OBSERVATIONS

Extensive simulations were run to obtain the TCP mean throughput value with less than 5%

error margin. Figures 5.12 and 5.13 show the number of dropped packets, number of cached

TCP headers and the TCP CWND size response of the proposed scheme and that of the

standard TCP over UMTS model for packet drop rates of 2% and 5% respectively. Figure 5.14

compares the TCP sent segment sequence number performance of our proposed scheme with

that of the standard UMTS for different packet drops rate. In Figures 12 and 13, it is seen that

our proposed scheme, with the aid of RNC-FB, significantly increases the TCP congestion

window size; it recovers most of the wireless packet losses and minimizes the number of spurious

timeouts by early triggering the enhanced wireless fast retransmit and recovery algorithm.

 103

Figure 5-12 TCP CWND, dropped and cached packets

 104

Figure 5-13 TCP CWND, dropped and cached packets

 105

Figure 5-14 TCP sent segment size number

From the TCP performance summary, shown in Table 5.3, it is also observed that our

proposed scheme significantly improves the TCP performance with high packet error rates. The

number of cached TCP headers, in Figures 5.12 and 5.13, shows that our proposed scheme adds

very little overhead to the RNC process model. Since the TCP header information is cached at

the RNC, it can also be used to provide additional performance enhancement by freezing the

TCP to handle TCP timeouts caused by either handoffs or by temporary wireless disconnections.

 106

Table 5-3 Summary of TCP performance

5.4.2 SCENARIO 2 RESULTS AND OBSERVATIONS

This scenario is designed to see the effects of using TCP Reno with the SACK option enabled

on our proposed scheme. Figure 5.15 compares the number of dropped packets, number of

cached TCP headers and the TCP CWND size response of our proposed scheme with and

without the SACK option enabled for a 10 % packet drop rate. Figure 5.16 compares the TCP

sent segment sequence number response of TCP Reno with and without the SACK option

enabled for different packet drops rate. In Figure 5.15, it is seen that TCP Reno with SACK

option enabled performs much better than does TCP Reno with the SACK option disabled.

However, with the packet drop rates of 2% and 10 %, its performance seems to be similar to that

with the SACK option disabled. This effect is shown in Figure 5.16.

 107

Figure 5-15 TCP CWND, dropped and cached packets

 108

Figure 5-16 TCP sent sequence number

Figure 5.17 shows the total number of RNC down-link packets for WLAN standard, WLAN

with RNC-FB with and without the SACK option enabled for different packet drops rate. It can

be seen that the RNC-FB without the SACK option better utilizes the wireless resources,

compared to that of RNC-FB with the SACK option, with higher packet drops rate. The SACK

option will also add additional bytes to the TCP header, thereby reducing the TCP throughput.

 109

Figure 5-17 Total number of RNC down-link packets

5.5 CONCLUSIONS AND FUTURE WORK

We have proposed and implemented a RNC-FB mechanism in the UMTS network model and

run simulation studies to validate the model by comparing its performance with that of the

standard TCP over UMTS model. The simulation results showed that the RNC-FB mechanism

significantly improved the TCP performance compared to that of standard TCP over UMTS.

Specifically, the RNC-FB scheme recovered most of the wireless packet losses and minimized the

number of spurious timeouts by early triggering of the enhanced wireless fast retransmit and fast

recovery algorithm, introduced in TCP Reno as a modification to accommodate this effect.

Utilizing one of the reserved control flags (RNF) enabled the TCP sender to successfully

distinguish wireless packet losses from losses due to congestion, thereby avoiding unnecessarily

 110

invocation of the congestion control mechanism, resulting in a higher TCP performance. A

minimal modification to the standard TCP is required while maintaining its End-to-End

semantics.

The effect of using TCP Reno with the SACK option was also investigated. It was found that

our proposed scheme with the TCP Reno SACK option enabled performs better than with the

SACK option disabled when the packet drops rate is moderate. Otherwise, RNC-FB without the

SACK option better utilizes the network resources.

The size of the cache table required to record TCP headers is quite small and so would not

add significant overhead to the RNC process. The TCP header information cached at the RNC

can also be used to provide additional performance enhancement by freezing the TCP sender to

handle timeouts caused by either handoffs or by temporary wireless disconnections. We are

currently investigating the effect of freezing TCP during handoffs on UMTS network

performance and also implementing the RNC-FB scheme with other TCP flavors to investigate

whether they, too, would benefit from it.

 111

C h a p t e r V I .

6. TCP Enhancement over Wireless Links by

Minimizing Spurious TCP Timeouts

In this Chapter, we analyze the adverse effect on the network performances due to the

spurious TCP timeouts and motivate the requirements for improving the TCP congestion

control to be able to distinguish spurious timeouts form the traditional timeouts and to behave

accordingly. In Section 6.1, we propose a mechanism called wireless enhancement proxy

(WENP) that provides radio network feedback to the TCP sender with the aid of two of the

TCP header reserved bits. WENP extends our proposed schemes in Chapters 4 and 5 to detect

packet loss and large delay across the wireless link and to notify the TCP sender of these events

with the aid of two reserved bits in the TCP header. The WENP is implemented in both 802.11

WLAN and UMTS networks and the TCP performance over the WLAN and UMTS networks

with and without the wireless timeout detection are explained and compared in Section 6.2 and

6.3, respectively. At last, we draw our conclusions and present the guidelines for further

improvement in Section 6.4.

Delay spikes are defined as a sudden and significant change in the RTT between a TCP sender

and its receiver. High delay variability has also been observed in fixed wired networks and can be

caused, for example, by route flipping [M. Allman & V. Paxson]. In wireless networks on the

other hand, the delay variability can be attributed to several factors, most notably the time-

varying quality of the wireless link and the hand-off delay. Large and sudden variations in packet

transmission delays are often unavoidable in wireless networks. Such large delays are likely to

exceed the typical TCP round trip time value. A retransmission timer is a prediction of the upper

limit of the RTT. In common TCP implementations, an adaptive retransmission timer accounts

for RTT variations [Jacobson, 1988]. A spurious timeout occurs when the RTT suddenly

increases to the extent that it exceeds the retransmission timer that had been determined priori.

On a spurious timeouts, TCP assumes that all outstanding segments are lost and retransmits

them unnecessarily by entering into the slow-start phase.

 112

Spurious TCP timeouts have major impact on congestion control [A. Gurtov & Ludwig]; on

one hand, the CWND and the slow-start threshold are reduced unnecessarily after a spurious

timeout as no data loss has been yet detected that would otherwise indicate congestion in the

network. On the other hand, TCP makes an assumption that all outstanding segments were lost

and left the network. In fact, they are likely to be still located in the bottleneck queue. Therefore,

Go-back-N retransmissions performed in slow-start phase lead to aggressive sender behavior.

That is, while the original transmissions are draining from the queue, the transmission get twice

the link rate assuming the receiver generates an ACK for each segment received. This behavior

violates the packet conservation principle [Jacobson, 1988] and cause real packet loss due to

congestion [R. Ludwig & R. H. Katz].

Delay spikes have been observed and measured independently in [Gurtov, Passoja, Aalto, &

Raitola, 2002], [Korhonen, Aalto, Gurtov, & Lamanen, 2001] and [Yavuz & Khafizov, 2002].

The effects of large delays and delay variability on the TCP behavior have been investigated in

[Shaojian, Atiquzzaman, & Ivancic, 2002] and [A. GURTOV]. Particularly, it is shown that sudden

increase in the delay may lead to spurious TCP timeouts that makes the TCP sender enter into

slow-start, leading to a low throughput.

TCP Eifel [R. Ludwig & R. H. Katz] solves the retransmission ambiguity by using time stamp

option. It can successfully discriminate spurious timeout and normal timeout, but the time stamp

option requires additional 12 bytes in the TCP header, resulting in increased overhead in

bandwidth constrained wireless networks. In addition, TCP Reno with Eifel experiences

performance degradation on the path with sudden delay accompanied by multiple packet losses

within one window of data. In this case, resuming the transmission of unsent data can cause

multiple timeouts. How to continue with the congestion control when detecting spurious TCP

timeouts still remains as research issues.

6.1 PROPOSED WIRELESS TIMEOUT DETECTION SCHEME

We propose a mechanism called wireless enhancement proxy (WENP) that provides radio

network feedback, in the form of wireless packet loss and wireless timeout, to the TCP sender.

WENP extends our proposed schemes in Chapters 4 and 5 to detect both the packet loss and

large delay increase across the wireless link and to notify the TCP sender of them with the aid of

two reserved bits, called wireless loss notification (WLN) and wireless timeout notification

(WTN), in the TCP header, as illustrated in Figure 6.1.

 113

Figure 6-1 TCP header with WLN and WTN reserve bits

Figure 6.2 shows the WENP process model. The MONITOR DATA state and MONITOR

ACK state are used to record the arrival times of data packets and their corresponding ACKs at

the base station in order to measure the wireless round trip time (W-RTT) and to detect wireless

timeouts with the aid of a timer, similar to the standard TCP retransmission timer, which times

out when acknowledgements are not received in time across the wireless link. WENP modifies

the TCP Connection Table data structure and the Global structure for Cache Table defined in

Chapter 4 and Chapter 5, as shown in Figures 6.3 and 6.4 respectively, to be able to detect both

the wireless packet loss and large delay across the wireless link.

Figure 6-2 WENP process model

 114

Figure 6-3 TCP Connection Table Data Structure

Figure 6-4 Global Structure for Cache Table

Note that the variable time_rcvd in the Global structure for Cache Table holds the actual time

the data packet received and is used to measure the W-RTT on receiving an ACK for that packet.

 115

WENP measures the W-RTT only if a packet is successfully acknowledged, i.e., on receiving a

new ACK, as the standard TCP does. The MONITOR ACK state is designed to calculate the

wireless RTT (W-RTT) and the wireless RTO (W-RTO) as explained in the following Section.

6.1.1 WIRELESS RTT MEASUREMENT

A pseudo code for measuring W-RTT is shown in Figure 6.5. W-RTT measurement and the

update of wireless timeout value is based on Karn’s algorithm [P. Karn & C. Partridge, 1995].

Note that Karn’s algorithm restricts retransmission timeout updates for retransmitted segments

in order to avoid retransmission ambiguity. The reason is that if the RTT measurement is based

on the actual transmission time of the original packet, the RTT estimate may be too pessimistic.

If the RTT measurement is based on the transmission time of the most recent retransmitted

packet may result in too pessimistic estimate [Fu & Atiquzzaman, 2005]. WENP restricts W-RTT

measurement not only for the retransmitted packet but also for the packets that are being

acknowledged after a packet loss recovery by utilizing get_wrtt_enable variable that is set as

shown in Figure 6.6.

Figure 6-5 A pseudo code for measuring W-RTT

 116

ACK Arrives

Is this a new

ACK?

Yes

No

This is a duplicate

ACK.

Reset get_wrtt_enable;

Is

get_wrtt_enable

set?

No

This ACK arrives after

recovery of a lost

packet. We should

avoid W-RTT

measurement in this

case because the

measurement may be

too pessimistic.

Set get_wrtt_enable;

This ACK acknowledges the data without

waiting for any delayed or out of order packet

arrivals at TCP receiver. Update the W-RTT.

get_wireless_RTT()

Yes

Figure 6-6 Setting get_wrtt_enable variable

On receiving a data packet from the TCP sender, WENP caches the TCP header, updates the

TCP Connection Table and sets a timer for this data packet, with the timeout value obtained as

shown in Figure 6.5. The timer expires when an excessive delay is experienced over the wireless

link. When this timer expires, WENP enters into the TIMEOUT state that sends a duplicate

ACK packet to the TCP sender with WTN flag set and backs off the timer as the standard TCP

does. The feedback ACK packet with the WTN flag set enables the TCP sender to distinguish

spurious timeouts from normal timeouts. Note that the TCP Connection Table Data Structure

holds the last acknowledged packet for each TCP connection. In the event of a wireless timeout,

this ACK packet is used by the TIMEOUT state to prepare and send a feedback packet.

The RTT across the wireless link, which has just one hop, will be short and retransmissions

due to packet corruption make W-RTT fluctuate considerably. It is important not to inject many

feedback packets into the network because this may cause a negative impact on the TCP

performance. In fact, WENP does not inject any additional packet into the network when it

detects wireless packet loses, rather it sets the WLN flag. In the case of wireless timeout

detection, WENP does inject feedback packets into the network but limited to only one packet

per a window of data.

 117

6.1.2 REQUIRED TCP CONGESTION CONTROL MODIFICATIONS

In a standard TCP implementation, the TCP sender concludes that the network has dropped a

packet when it receives three duplicate ACKs. It then immediately retransmits the dropped

packet in order to avoid the expiry of the retransmission timer. The rationale is that the sooner

the fast retransmit occurs, the better TCP performs because it avoids unnecessary TCP timeouts.

WENP enables the TCP sender to confirm a wireless packet loss when it receives an

acknowledgement with the WLN flag set. As proposed in Chapters 4 and 5, the standard TCP is

fine tuned to retransmit the packets dropped across the wireless link without reducing the

congestion window when it receives just two duplicate ACKs with the WLN flag set.

Another new feature added to the standard TCP enables the system to distinguish spurious

timeouts from normal timeouts. Recall that WENP utilizes the last acknowledged packet that was

cached in its Connection Table to send a feedback packet to the TCP sender with WTN flag set

when its timer expires, indicating a large delay across the wireless medium. When the timer

expires, WENP sets the WTN flag only if it determines that it has received packets form the TCP

sender since it has last acknowledged a packet. This confirms that no timeout occurred in the

wireline part of the network and so avoids misinterpreting a normal timeout as a wireless

timeout. Now, if the TCP sender receives duplicate ACK with the WTN flag set, it should

consider the following cases to decide how to proceed with the transmission:

• If both WTN and WLN flags are set, it indicates that TCP sender has already received a

duplicate ACK with only the WLN flag set. Now it has received the second duplicate

ACK as a result of wireless timeout. It implies that there is a packet flow exists across the

wireless link, but has experienced a sudden large delay. This is the cause for spurious TCP

timeout. In this case, TCP sender is modified to trigger wireless fast retransmit without

reducing the congestion window.

• If only the WTN flag is set, it indicates that the wireless link is congested. In this case, it

is highly possible that multiple packets are lost across the wireless link or even at the base

station due to buffer overflow. Considering the wireless link is also a part of the network,

we treat this case as congestion in the network and leave TCP to handle it using its

standard fast retransmit and recovery mechanism or its timeout recovery mechanism,

depending on the way the packet loss is detected.

 118

6.2 EXPERIMENT - 1: 802.11 WLAN NETWORK WITH THE PROPOSED SCHEME

The network model used for this study is shown in Figure 6.7. The LAN is extended using a

WLAN Ethernet router that forms a WLAN together with some mobile hosts (MHs).

Figure 6-7 WLAN network model

The model consists of two Servers and some fixed hosts and mobile hosts. Servers and fixed

hosts are connected to the WLAN router through switches using 10baseT point-to-point link

model. Servers are equipped with modified TCP Reno while the WENP is introduced between

the MAC and IP layer of the WLAN Router. The Application and the Profile Configuration

nodes are configured to generate different applications such as HTTP, FTP Database and Email.

LAN Network

 119

Fixed hosts are configured to utilize some of these services in parallel with MHs in order to make

the network analyzes be realistic.

All MHs are configured to download 1.6 MByte FTP files simultaneously with different

packet drops rate as shown in Table 6.1. All MHs download FTP files from Server 1 while the

FHs download different applications from both Servers 1 and 2. Data Packets coming from FTP

Servers are dropped in MHs, at the MAC layer, using a uniform probability distribution. The

MAC layer is modified to generate bursty packet drops, as illustrated in Figure 4.22, so that the

base station will perform its local retransmission and discard the packets once the threshold

number of retry limit reaches. The packets that experience base station local retransmission

before get successfully transmitted will imitate characteristics of wireless links, thereby impacting

the End-to-End RTT.

Table 6-1 MHs configurations

The WLAN Router is implemented, in turn, with a standard WLAN, a WLAN with Snoop

and a WLAN with WENP to compare their relative performances. Modified TCP Reno with the

default parameters is used in all simulation scenarios. Selected WLAN and TCP Reno parameter

values are given in Tables 6.2 and 6.3, respectively.

 120

Table 6-2 WLAN parameters

 121

Table 6-3 TCP parameters

6.2.1 SIMULATION RESULTS AND DISCUSSION

Figure 6.8 shows TCP CWND size, number of MAC packets dropped and number of cached

TCP headers while Figure 6.9 shows the W-RTT measurements during FTP file upload, with

different packet drops rate, with the proposed scheme. From Figure 6.8, it can be seen that

WENP adds little overhead to the WLAN Router and has successfully recovered from most of

the wireless packet losses and minimized the number of spurious timeouts by early triggering the

enhanced wireless fast retransmit and fast recovery algorithm. However, it can be observed that

the WENP experienced a few TCP timeouts with higher packet drops rate. It can be attributed to

the TCP Reno’s inability to recover form multiple losses within a window of data. It should also

 122

be noted that if a retransmitted packet is dropped, it can only be recovered by the TCP timeout

process.

Figure 6-8Responses during MH-3 FTP file upload

As expected, W-RTT measurement, shown in Figure 6.9, was obtained using the cached table

seems to fluctuate. However, it helps WENP to detect wireless timeouts and enables the system

to minimize the spurious TCP timeouts, thereby further improving the TCP performance.

 123

Figure 6-9 W-RTT measurement

Notice that WENP is designed to improve the TCP performance without changing its original

behavior. For example, TCP Reno cannot recover from multiple packet losses within a window

of data. This effect can be observed in Figures 6.8.

 Figures 6.10 and 6.11 compare the TCP CWND history and TCP sent segment sequence

number responses, respectively, for the different cases. It is seen that the proposed scheme

significantly improves the TCP performance in comparison with the standard WLAN both

without and with the Snoop protocol.

 124

Figure 6-10 TCP CWND size responses

The WENP implementation with only wireless packet loss detection is also included to show

the effects of wireless timeouts on TCP performance. From Figures 6.10, it can be observed that

TCP CWND size response of WENP without wireless timeout detection experiences more

timeouts with higher MAC packet drops rate. However, WENP equipped with the timer helps

TCP to minimize unnecessary spurious TCP timeouts, thus providing further enhancement to

TCP performance.

 125

Figure 6-11 TCP Sent Segment Sequence Number responses

The average WLAN throughput and WLAN delay responses shown in Figure 6.12 indicates

that WENP has efficiently utilized the available wireless resources by adapting to the wireless

channel characteristics. It should also be noted that the Snoop performance was degraded. This

can be attributed to Snoop’s inability to synchronize with the TCP sender in order to be able to

avoid unnecessary spurious TCP timeouts and competing for retransmissions. WENP adds much

less overhead to the base station than Snoop does because it only caches the TCP header

information. It thereby improves the WLAN delay response as well.

 126

Figure 6-12 WLAN throughput and Dealy (sec) responses

Table 6.4 summarizes the total TCP throughput performance during the FTP file upload with

different packet drops rate with 5% error margin. Notice that we run this simulation, by allowing

all mobile hosts to drop MAC packets with the same rate, in order to see how the proposed

scheme utilizes the available network resources. From Figures 6.10 and 6.11, and Table 6.4, it can

be seen that the proposed scheme recovered from wireless effects by early triggering of the

enhanced fast retransmit and recovery mechanism, better utilized the available network resources

and has dramatically increased the TCP throughput compared to that of the standard WLAN,

both without and with the Snoop protocol.

 127

Table 6-4 Summary of TCP throughput performacne

6.2.2 CONCLUSIONS

A new scheme, WENP, was presented that detects and distinguishes wireless packet losses

and wireless timeouts from congestion related packet losses and timeouts. WENP was

implemented in a WLAN model in OPNET with modified TCP Reno as the transport protocol.

Simulation results showed that WENP improved the TCP performance significantly compared to

that of both the standard WLAN and a WLAN with Snoop. It enabled the modified TCP to

trigger enhanced wireless fast retransmit and fast recovery mechanisms to recover from wireless

packet losses sooner using the WLN flag.

WENP also implemented a timer that detects wireless timeouts and enables the TCP sender

to avoid spurious TCP timeouts with the aid of both the WTN and WLN flags, further

enhancing the TCP performance. Simulation results also showed that WENP can handle multiple

TCP connections and utilized the available network resources efficiently by adapting to the

network characteristics. WENP does not inject any additional packet into the network to provide

feedback when it detects wireless packet loses; it only sets the WLN flag. In case of wireless

timeout detection, WENP does inject feedback packets into the network but limited to only one

packet per a window of data.

 128

6.3 EXPERIMENT 2: UMTS NETWORK WITH THE PROPOSED SCHEME

The proposed scheme WENP is implemented in UMTS RNC protocol stack as described in

Section 5.3. Specifically, the GTP layer in the RNC protocol stack is equipped with WENP, as

shown in Figure 6.13, to detect and notify the TCP sender of any wireless loss or wireless

timeouts. The detection of wireless packet losses and wireless timeouts are the same as explained

in Section 6.1.

S
TA
R
T_
TU
N
N
E
L

S
E
N
D
_
G
T
P
_
M
S
G

Figure 6-13 GTP process model with WENP

To demonstrate the effectiveness of our proposed scheme, the UMTS network model shown

in Figure 6.14 is implemented, in turn, with the standard RNC and the modified RNC process

model in the RNC protocol stack. The FTP server is configured to generate FTP files of 100

Kbytes, 500 Kbytes and 1 Mbytes. User equipments are configured to download FTP files with

packet drops, generated using a uniform probability distribution function, as described in Table

6.5. Modified TCP Reno and UMTS with their default parameters [OPNET Technologies Inc]

are used in all simulation scenarios. Selected UMTS RNC parameter values are given in Table 6.6.

Table 6-5 Mobile host configurations

 129

Table 6-6 Selection of UMTS parameters

Figure 6-14UMTS network model

 130

6.3.1 SIMULATION RESULTS AND DISCUSSION

Extensive simulations were run to get the mean TCP throughput with less than 5% error

margin. Figures 6.15 shows the results of W-RTT measurement, number of cached TCP headers,

number of dropped packets, and the TCP CWND size response of our proposed scheme and

that of the standard TCP over UMTS model for packet drop rates of 6%. Notice that our

scheme without the wireless timeout detection is also included to show the effect of spurious

TCP timeouts. It can be observed that the proposed scheme has quickly recovered from both

wireless loss and wireless timeouts; it has experienced only one TCP timeout and it can be

attributed to the standard behavior of TCP Reno itself. As expected, one can see considerable

fluctuations of WRTT. However, it helps WENP to detect wireless timeouts and enables the

system to minimize spurious TCP timeouts, thereby further improving the TCP performance.

It can also be seen that there is a maximum of 16 TCP header information items cached

during the transmission period, which adds very little overhead to the RNC process model. Since

the TCP header information is cached at the RNC, it can also be used to provide additional

performance enhancement by freezing TCP to handle TCP timeouts caused by handoffs.

Figures 6.16 compares the TCP CWND size responses of the proposed scheme with that of

the standard UMTS for different packet drops rate. It can be seen that the proposed scheme,

WENP, significantly increases the TCP CWND size; it has recovered most of the wireless packet

losses and has reduced the number of spurious timeouts by early triggering the enhanced wireless

fast retransmit and recovery algorithm. However, it can be noted that even with the proposed

scheme, TCP timeouts occurred at higher packet drops rate. This can be attributed to the TCP

Reno’s inability to recover from multiple losses within a window of data. It should be noted that

if a retransmitted packet is dropped, it can only be recovered by the TCP timeout process.

 131

Figure 6-15 W-RTT, cached and dropped packets and TCP CWND

 132

Figure 6-16 TCP CWND size responses

The performance of the proposed scheme with and without SACK option enabled is also

implemented in this UMTS model and it was found that the SACK option enabled does not have

any impact on the proposed scheme. It can be seen from Figure 6.17, which shows comparisons

of TCP sent segment sequence number responses for different packet drops rate.

 133

Figure 6-17 Comparisons of TCP sent segment sequence number responses

From the TCP performance summary, shown in Table 6.7, it is observed that the proposed

scheme significantly improves the TCP throughput with high packet error rates. However, the

rate of improvement is not proportional to the packet drops rate since wireless error recovery

mechanism not only depends on the proposed scheme but also on the TCP Reno behavior; the

TCP Reno cannot recover form multiple losses within a window of data. The average UMTS

Node-B throughput shown in Figure 6.18 indicates that the proposed scheme has utilized the

available wireless network resources efficiently.

 134

Table 6-7 TCP performance summary

Figure 6-18 UMTS Node B throughput

6.3.2 CONCLUSIONS AND FUTURE WORK

We proposed a modified TCP Reno with a WENP mechanism and implemented it in a

UMTS network modeled in OPNET. Extensive simulation studies were undertaken to compare

 135

its performance with that of the standard TCP Reno over UMTS implementation. The

simulation results showed that the new WENP scheme significantly improved the TCP

performance compared to that of standard scheme. Specifically, the new scheme enabled

recovery of packets lost in wireless medium, and reduced the number of spurious timeouts, by

allowing the TCP sender to successfully distinguish wireless losses from congestion-related

losses.

The modification to the standard TCP to early detect wireless packet loss and spurious TCP

timeouts help the system to quickly recover form transmission errors and to utilize the network

resources efficiently. The effect of using modified TCP Reno with the SACK option with the

proposed scheme was also investigated. It was found that the proposed scheme with the TCP

Reno SACK option enabled does not have any impact on the proposed scheme.

The size of the cache table required to record TCP headers is quite small and so would not

add significant overhead to the RNC process. The TCP header information cached at the RNC

can also be used to provide additional performance enhancement by freezing the TCP sender to

handle timeouts caused by handoffs.

 136

C h a p t e r V I I .

7. TCP Performance Improvement over Wireless

Networks via Early Packet Loss Recovery

In this Chapter, we propose a new technique that enables the TCP to early detect packet

losses, which cannot be detected and retransmitted using the standard fast retransmit mechanism,

and to quickly retransmit those packets without waiting for a timeout to occur, thereby

improving TCP performance. Early Packet Loss Recovery (EPLR) is achieved by considering the

expected number of acknowledgements and the number of packets in a flight during the fast

retransmit phase of the TCP mechanism. It adds a new flavor to the TCP fast retransmit and

recovery mechanism without requiring any other modification to the standard TCP

implementation.

We analyze the standard TCP implementations and outline their inability to recover from

multiple packet losses within a small window of data, which is highly likely in wireless

environments in Section 7.1. The proposed EPLR scheme, which modifies the TCP Reno to

handle multiple losses within a window of data, and its implementation details are given in

Sections 7.2 and 7.3 respectively. In Section 7.4, the proposed scheme is implemented over a

UMTS network and extensive simulation studies are carried out to compare its performance with

that of both TCP Reno and TCP New Reno. Based on the simulation results and the analysis, we

draw our conclusion in Section 7.5.

7.1 THE STANDARD TCP MULTIPLE PACKET RECOVERY MECHANISM

There are many TCP flavors, such as Tahoe [Jacobson, 1988], Reno [Jacobson, January 1995],

New Reno [S. Floyd & Henderson, April 1999] and SACK [Mathis .M, Mahdavi .J, Floyd .S, &

Romanow .A, April 1996], which differ in how they react to packet loss. A packet loss is detected

either by the arrival of three duplicate ACKs or the absence of an ACK for the packet within the

retransmission timeout. All TCP implementations reset CWND after the retransmission timeout

expiration to one MSS. However, they may proceed differently after duplicate ACKs are received.

 137

The missing segment is always retransmitted immediately, but transmission of new or

unacknowledged data depends on the selected TCP flavor. Consider a scenario illustrated in

Figure 7.1, where packets PN, PN+4 and PN+5 are lost while there is F number of packets in the

flight.

Figure 7-1 A flight of data in the network

 TCP Tahoe [Jacobson, 1988] retransmits the lost packet PN and enters into slow-start phase,

setting its CWND to one MSS. The next ACK that acknowledges the packets up to PN+3 allows

the sender to increase its CWND to two MSS and resend the packets PN+4 and PN+5. The ACK

for PN+4 increases the sender’s CWND to three MSS and packets PN+6 and PN+7 can be sent. The

ACK for PN+5 acknowledges packets up to PN+F-1. The sender then continues transmitting new

data. Notice that the packets PN+6 and PN+7 are unnecessarily retransmitted, assuming F > 7, and

TCP Tahoe recovers from the packet losses within a window of data without retransmission

timeout expiration.

TCP Reno [Jacobson, January 1995] retransmits the lost packet PN and enters into fast

recovery phase, setting its CWND to (F/2 + 3) times MSS. The sender then continues receiving

more duplicate ACKs and increases its CWND by one MSS for each ACK. The ACK for

retransmitted packet PN takes the sender out of fast recovery and the CWND is set to F/2 times

MSS. The sender then waits for another three duplicate ACKs to retransmit the packet PN+3. If

the sender receives three duplicate ACKs, it will retransmit the packet PN+3 otherwise, it has to

wait for the retransmission timer to expire. This increases the application response time

considerably.

TCP New Reno [S. Floyd & Henderson, April 1999] retransmits the packet PN , resets the

CWND and enters into recovery phase as it does in Reno. The process then continues receiving

more duplicate ACKs and increases its CWND by one MSS for each received ACK. Unlike in

Reno, the ACK for the retransmitted packet PN does not take New Reno out of the recovery

process. Partial ACKs add one MSS to CWND and decrease it by the amount of acknowledged

data. Notice that during the fast recovery process, it retransmits the unacknowledged data packets

 138

whenever it receives a partial ACK without waiting for the three duplicate ACKs to arrive, which

allows the process to resend the packets PN+4 and PN+5.

TCP SACK [Mathis .M, Mahdavi .J, Floyd .S, & Romanow .A, April 1996], similar to the

flavors explained above, retransmits packet PN using the fast retransmit algorithm. However, it

uses a different approach to determine when and which packets are sent out during fast recovery.

It calculates the amount of in-flight data based on selective acknowledgements that it has

received. Data can be sent only if the amount of outstanding data is lower than the size of the

CWND. Because it has information about which packets were received, it is able to resend only

missing segments and then continues with transmission of unsent data.

7.1.1 SUMMARY OF TCP VARIANTS IN MULTIPLE LOSS RECOVERY

TCP Tahoe can successfully recover from multiple losses within a window of data, assuming

the retransmitted segments are not lost. However, the assumption it makes that all outstanding

segments are lost on receiving three duplicate ACKs leads to unnecessary retransmissions and

inefficient use of valuable network resources. TCP Reno introduces a major improvement over

TCP Tahoe by changing the way it reacts to detecting a packet loss through duplicate ACKs

when a single packet is dropped from a window of data, but still suffers from performance

problem when multiple packets are dropped from a window of data. TCP New Reno adds

further improvements to the TCP Reno to be able to recover from multiple losses within a

window of data. However, it can retransmit only one packet per RTT, thereby reducing the

throughput performance and increasing the application response time. TCP SACK, on the other

hand, can recover from multiple losses from a window of data, but requires additional bytes in

the TCP header, resulting in increased overhead in bandwidth constrained wireless networks.

7.2 THE PROPOSED EPLR SCHEME

The proposed EPLR scheme takes the number of packets in a flight as the system metric to

quickly fast retransmit the dropped packet that can only be recovered by TCP timeout with the

existing fast retransmit and recovery algorithms, such as Reno and New Reno.

Let CWND be W, the number of dropped packets be N, where N ≥ 1, LI be the dropped

packets within that window of data, as shown in Figure 7.2, DI be the number of packets from LI

to PW and the flight size be F. Number of packets can be recovered by TCP fast retransmit and

recovery algorithms depend on W, N and DI. The TCP sender can only transmit new packets if

 139

minimum of the CWND and the receiver window is grater than F, defined as the amount of data

that has been sent but not yet acknowledged. We assume that the receiver window is bigger than

W for the ease of analysis.

Figure 7-2 A window of data with multiple packet drops

7.2.1 TCP RENO CONGESTION WINDOW ANALYSIS

7.2.1.1 One packet recovery

In order to recover the first dropped packet, it requires that W ≥ N+3. During this recovery

process, there can be up to W/2-N number of new packets transmitted, causing the flight size F

to grow from W to 3W/2-N. On receiving the ACK for the retransmitted packet L1, F will be

equal to D2 + (W/2-N) and CWND is set to W/2.

7.2.1.2 Two packets recovery

Notice that on receiving the first partial ACK, there can be maximum of one new packet

transmitted if and only if N-D2 = 1. It makes F = CWND = W/2. Assuming it is not the case,

there will be only W/2-N number of packets to be acknowledged out of (D2+W/2-N) number of

packets in the network. It requires W ≥ 2(N+3) to be able to recover the second dropped packet.

During this recovery process, (W/4 - D2) number of new packets can be transmitted, provided

W/4 > D2. On receiving the ACK for the retransmitted packet L2, F will be equal to D3 + (W/2-

N)+(W/4–D2), and CWND is set to W/4.

7.2.1.3 Three or More packets recovery

Third packet recovery requires W/4-D2 ≥ 3 and allows (W/8- D3) number of new packets to

be transmitted, provided W/8 > D3. It can be generalized that it requires (W/2N-1-DN-1 ≥ 3) to

recover form the Nth packet, provided (N-1)th packet is recoverable and N > 2.

 140

7.2.2 TCP NEW RENO CONGESTION WINDOW ANALYSIS

TCP New Reno only requires W ≥ N+3 to initiate the fast retransmit and recovery

algorithms. Because, once entered into the recovery phase, it can recover from multiple packet

drops within a window of data by retransmitting the unacknowledged packets whenever it

receives a partial ACK.

7.2.3 INTUITION BEHIND THE PROPOSED SCHEME

In order to proceed with packet transmissions, dropped packets must be retransmitted as

quickly as possible. TCP Reno and New Reno fast retransmit and recovery algorithms are well

defined and designed to handle this effect. However, they fail to consider situations where the

fast retransmit and recovery algorithms cannot be even initiated.

• If the CWND size is less than or equal to the duplicate acknowledgement threshold,

which is normally assigned to be three, either the TCP Reno or New Reno cannot even

initiate the fast retransmit and leave this packet to be recovered by means of TCP

timeout process.

• TCP Reno cannot initiate the fast retransmit to recover from multiple packets if CWND

< 10.

Our insight is that if the congestion window size or the expected number of duplicate

acknowledgement packets is too small to initiate the fast retransmit, it must be handled

separately.

We modify the TCP Reno fast retransmit algorithm in order to recover from up to two

packets within a window of data if CWND is too small to initiate the fast retransmit. Now, it

comes to deciding when to retransmit the unacknowledged packet. Clearly, the TCP sender

cannot confirm a received duplicate ACK was due to packet loss because packets in a flight could

take different route and reach the destination out of order. Given the number of packets in a

flight is F and is equal to the CWND, we can safely assume that a packet is dropped if the sender

receives (F–1) number of duplicate ACKs and allow the sender to quickly retransmit that packet

if the flight size is too small to initiate the fast retransmit and recovery algorithms. However, due

to the sender’s inability to confirm the packet loss, we decide to allow the sender to transmit a

new data packet by increasing the CWND by one MSS. It enables the sender to receive threshold

 141

number of duplicate ACKs and either to fast retransmit the lost packet if a third duplicate ACK

is received or to continue transmitting new data if a non duplicate ACK is received. This will

considerably increase the TCP throughput and application response time while minimizing the

number of TCP timeouts.

7.3 IMPLEMENTATION DETAILS OF THE PROPOSED SCHEME

TCP Reno is optimized for the case when a single packet is dropped within a window of data

[Fall & Floyd, 1996] and is the most widely used TCP implementation in the Internet today

[Dongkyun, Hanseok, Jeomki, & Cano, 2005]. The proposed scheme modifies the TCP Reno

fast retransmit and recovery algorithm to recover form multiple losses within a window of data.

Figure 7.3 shows the CWND evolution during the first packet recovery where three packets are

dropped from a window of data. Note that the flight size F on receiving the first partial ACK is

(D2+W/2– 3) even though the CWND is set to W/2. New packets can only be transmitted if the

CWND is grater than the flight size.

Figure 7-3 CWND evolution during the fist packet recovery

In order to recover the next dropped packet within that window, the new transmitted packets

should be greater than three, which is the duplicate ACK threshold to trigger the fast retransmit

and fast recovery algorithm. The proposed scheme uses the number of newly transmitted packets

during the fast recovery process as the system metric and based on this, it allows the TCP sender

to transmit new packets that will enable the system to receive threshold number of duplicate

ACKs. This way multiple packets can be recovered without waiting for the TCP timeout to

occur.

Figure 7.4 shows the flow control for EPLR ACK processing. Notice that the inflating the

CWND size during the fast recovery phase plays an important role in the process of recovering

multiple packets from a window of data. However, it is the successful retransmissions of the

 142

dropped packets that take the process out of the recovery phase. If a retransmitted packet is

dropped, the only way to recover form the losses is the TCP timeout process.

DUPACK_COUNT ≥
THRESHOLD

Yes

EPLR Process the newly

received ACK as follows:

ACK Arrives

Is ACK bit set?

Yes

Get TCP Header

Success?

Yes

Is FIN bit set?

No

SEG_ACK <

SEND_UNACK

No

Yes

DUPACK_COUNT = 0;

If SEG_LENGTH > 0

 /* Accept its DATA even though

 this segment is not in order.

 However, do not process the other

 details. */

 Process the DATA;

Yes

Do FIN Processing;

No

/*Unable to get the header fields

 from the received packet.*/

Do not process the DATA;

/* This in not an ACK */

Do not process the DATA.
No

SEG_ACK =

SEND_UNACK

Yes

This DUPACK contains new

data or a window update?

SEND_MAX >

SEND_UNACK

SEG_ACK = ACK_NUM

OLD_SEND_UNACK = SEND_UNACK

No

If DUPACK_COUNT < THRESHOLD

 DUPACK_COUNT = 0;

Yes

No

DUPACK_COUNT <

THRESHOLD

Yes

Do not process the DATA;No

/* This segment is a true duplicate ACK. Now there is

outstanding unacknowledged data which may have

been lost. Perform fast-retransmission, if applicable.*/

 tcp_frfr_processing ();
Yes

No

/* Completely duplicate ACK, but there is no

 outstanding data.*/

 Discard the packet;

SEG_ACK >

MAX(SEND_NEXT,

SEND_UNACK)

Yes
 /* TCP received ACK of DATA not yet sent*/

 Do not process the DATA;

No

No

Yes

/* It indicates that the process is

just coming out of the recovery

phase. */

Reset DUPACK_COUNT;

NEWLY_TRANSMITTED_

PACKETS < THRESHOLD

/* Allow the sender to transmit (THRESHOLD

- NEWLY_TRANSMITTED_PACKETS) new

packets. */

Set CWND = CWND/2;

/* It indicates that the process

should be either in slow-start or

congestion avoidance phse. No

modification required*/

Reset DUPACK_COUNT;

Process the packet as usual;

/* No modification required. */

Process the packet as usual;

No

Figure 7-4 the flow control for EPLR ACK processing

7.4 PERFORMANCE EVALUATION OF THE PROPOSED SCHEME OVER UMTS

NETWORK

We have implemented the proposed scheme in two UMTS models and run extensive

simulations to get the mean TCP throughput with less than 5% error margin. TCP and UMTS

with their default parameters are used in all simulation scenarios and an extract of the TCP and

UMTS parameter values are given in Tables 7.1 and 7.2, respectively.

 143

Table 7-1 TCP parameter values

 144

Table 7-2 UMTS parameter values

7.4.1 SIMULATION SCENARIO 1

To demonstrate the effectiveness of the proposed scheme, the UMTS network model shown

in Figure 7.5 is implemented, in turn, with different TCP fast retransmit algorithms at the

standard FTP server: Reno, New Reno and Modified Reno. The FTP server is configured to

generate files of 1 Mbyte size. User equipments are configured to download 1 Mbyte FTP files

simultaneously with different packet drops rate as shown in Table 7.1. Data Packets coming from

FTP server are dropped in UEs, at the IP layer, using a uniform probability distribution.

 145

Figure 7-5 UMTS network model

Table 7-3 User equipments configurations

7.4.1.1 Results and Observations

Figures 7.6 and 7.7, respectively, compare the TCP sent segment sequence number and the

TCP CWND size responses of the proposed scheme with that of TCP Reno and New Reno

implementations for different packet drops rate, espectively. A summary of the average TCP

throughput and the TCP performance improvements with the proposed scheme over that of

Reno and New Reno are given in Table 7.4 and Table 7.5 respectively. It can be seen that our

proposed scheme improved the TCP throughput compared to that of TCP Reno significantly in

all cases. This improvement can be directly attributed to the reduction of TCP timeouts, which

can be observed in Figure 7.7.

 146

Figure 7-6 TCP sent segment sequence number

 147

Figure 7-7 TCP CWND response

 148

Table 7-4 Summary of average throughput performances

Table 7-5 Average TCP throughput performance improvement

Figure 7-8 TCP retransmission count for UE-4

 149

In order to prove the point that we have not overloaded the network, the number of

retransmission counts during the file download by UE-4 is given in Figure 7.8. It can also be

observed that the proposed scheme seems to start the retransmissions sooner than does TCP

Reno. To explain and compare the proposed fast retransmit and recovery mechanisms with that

of the standard TCP Reno, a snapshot of the TCP sent and ACK sequence number responses,

during UE-4 file download, with TCP Reno and Modified Reno is given in Figure 7.9.

Figure 7-9 TCP sent and ACK number for UE-4

In Case-1, the sender with Modified Reno receives the first duplicate ACK with the flight size

equal to four packets. It therefore does wait for the third duplicate ACK to arrive to trigger the

fast retransmit. Since it has not received the third duplicate ACK in time, it times out and

retransmits using the TCP timeout process.

Case-1

Case-2

Case-3

Case-4

 150

In Case-2, the sender receives the first ACK with the flight size equal to two packets. The

Modified Reno then allows the sender to transmit a new packet for each duplicate ACK. It

enables the sender to receive three duplicates ACKs and to confirm the packet loss. As expected,

it does receive the third duplicate ACK and the dropped packet gets retransmitted without

waiting for a TCP timeout that would occur with either the Reno or New Reno retransmit

mechanisms.

In Case-3, the sender with Reno receives the first duplicate ACK with the flight size is equal

to four packets. It therefore does wait for the third duplicate ACK to arrive to trigger the fast

retransmit. Since it has received the third duplicate ACK in time, the dropped packet gets

retransmitted without a TCP timeout.

In Case-4, the sender receives the first ACK with the flight size equal to three packets. The

Reno sender then waits for the third duplicate ACK to arrive to confirm the packet loss. Since

the sender will never receive three duplicate ACKs, this dropped packet can only be recovered by

the TCP timeout process.

Compared to TCP New Reno, our proposed scheme does always outperform in all scenarios.

This is because New Reno also undergoes the same problem when the flight size is too small to

trigger the fast retransmit. This can be observed from the TCP CWND response in Figure 7.7,

where New Reno experiences more timeouts than the Modified Reno does. Finally, in order to

show that our proposed scheme has utilized the available network resources efficiently, a

comparison of the UMTS Node-B downlink throughput performance is shown in Figure 7.10.

 151

Figure 7-10 UMTS Node-B Downlink Throughput

7.4.2 SIMULATION SCENARIO 2

In this scenario, the UMTS network model shown in Figure 7.11 is implemented, in turn, with

different TCP fast retransmit algorithms at the standard FTP server: Reno, New Reno and

Modified Reno. The FTP server is configured to generate files of 10 Mbytes size. User

equipments are configured to download 10 Mbytes FTP files simultaneously with different

packet drops rate as shown in Table 7.6. Data Packets coming from FTP server are dropped in

UEs, at the IP layer, using a uniform probability distribution.

 152

Figure 7-11 UMTS network model

Table 7-6 UEs configurations

7.4.2.1 Results and Observations

Extensive simulations were run to get the mean TCP throughput with less than 5% error

margin. Figures 7.12 shows a snapshot of the comparison of the TCP sent segment sequence

number and the CWND size responses of the proposed scheme with that of TCP Reno and

New Reno implementations for packet drops rate of 8% and 15%. Figure 7.13 compares the

TCP sent segment sequence number responses while Figure 7.14 shows the average TCP

throughput and the TCP performance improvements of the proposed scheme with that of TCP

Reno and New Reno for different packet drops rate. A summary of the average TCP throughput

performance with different packet drops rate is given in Table 7.7.

 153

From Figures 7.12, 7.13 and 7.15, and Table 7.7, it can be seen that the proposed scheme

improved the TCP throughput compared to that of TCP Reno and New Reno significantly. This

improvement can be directly attributed to the reduction of TCP timeouts, observed in Figure

7.12. The higher the packet drops rate means higher the TCP timeouts. From Figure 7.14, it can

be observed that the proposed scheme increases the TCP throughput improvement with packet

drops rate.

Figure 7-12 TCP sent segment sequence number

 154

Figure 7-13 TCP sent segment sequence number responses

Table 7-7 summary of the average TCP throughput performance

 155

Figure 7-14 Mean TCP throughput and TCP improvement versus packet drop rates

Finally, in order to show that the proposed scheme has utilized the available network

resources efficiently, a comparison of the UMTS RNC throughput performance is shown in

Figure 7.15.

Figure 7-15 UMTS RNC Throughput

 156

7.5 CONCLUSIONS

TCP Reno fast retransmit algorithm was modified with a new Early Timeout Detection

mechanism to speed up the packet recovery process and to reduce the number of TCP timeouts

over networks with heavy packet losses, such as wireless networks. Modified Reno was

implemented in a UMTS network and its performance was compared with that of Reno and New

Reno. Simulation results showed that Modified Reno improved the TCP performance and

application response time significantly compared to that of both Reno and New Reno by

reducing the TCP timeouts, which is the main cause of degradation of the TCP performance in a

wireless environment.

 157

C h a p t e r V I I I .

8. Analytical Model of TCP with Enhanced Recovery

Mechanism for Wireless Environments

In this Chapter, we extend the analytical model for the TCP steady state throughput as a

function of the network utilization factor, round trip time and packet drop rate for unlimited data

transfer to capture the fast retransmit and recovery mechanisms. These mechanisms are

frequently activated on connections over wireless links. We model TCP with a modified fast

retransmit and recovery algorithm that allows packet recovery with smaller congestion window

sizes than possible with TCP Reno or New Reno, thereby reducing the likelihood of timeouts.

We also propose a further modification that dynamically adjusts its congestion window by

considering the packet drop rate as the input parameter. This will further enhance the TCP

performance over wireless networks and can be used to provide quality of services.

We first give an overview and comparison of analytical TCP models in Section 8.1, and then

extend the analysis done in Chapter 7 to further enhance the TCP Reno fast retransmit and fast

recovery algorithm in Section 8.2. Motivated by the analysis, we propose an analytical model for

the TCP steady state throughput that can predict TCP performance accurately over a wide range

of packet loss rates in Section 8.3. A further enhancement is proposed in Section 8.4 to

dynamically adjust the TCP CWND based on the packet loss rate. In Section 8.5, we evaluate the

proposed model using simulation studies in a UMTS network and demonstrate that the proposed

model can predict TCP performance accurately over a wide range of packet loss rates. The

conclusions drawn and directions for future work are outlined in Section 8.6.

8.1 AN OVERVIEW AND COMPARISON OF ANALYTICAL TCP MODELS

Today, most popular Internet applications, including the World Wide Web (WWW), e-mail,

file transfer protocol (FTP) and remote login, use TCP as the transport protocol [Cardwell,

Savage, & Anderson, 2000]. As a consequent, modeling TCP performance has attracted research

attention over the past decade. Several analytical models have recently been proposed in [Padhye,

 158

Firoiu, Towsley, & Kurose, 2000], [E. Altman, K. Avrachenkov, & C. Barakat], [Kassa &

Wittevrongel, 2006], [Cardwell, Savage, & Anderson, 2000], [Mellia & Zhang, 2002] and [Mathis,

Semke, & Mahdavi].

TCP models can be classified based on transfer length: short [Mellia & Zhang, 2002], long

[Jitendra Padhye, Victor Firoiu y, Don Towsley, & Jim Kurose; Mathis, Semke, & Mahdavi] and

arbitrary [Cardwell, Savage, & Anderson, 2000]. The transfer length determines the congestion

control algorithms and the packet loss detection mechanisms that need to be incorporated in to

the model. In case of short-lived transfers, TCP performance is strongly affected by the

connection establishment and slow-start phases, with packet losses mostly being detected by TO.

Models for long-lived transfers capture the steady state performance of TCP, which is dominated

by the congestion avoidance (CA) phase, and packet loss recovery by three duplicate

acknowledgements (TD) as well as timeout (TO).

In [Mathis, Semke, & Mahdavi], steady-state throughput (T) is predicted as a function of MSS,

RTT and packet loss rate (p) for bulk transfer TCP flow. It only considers the congestion

avoidance phase and packet loss recovery using TD and assumes that segment loss process is

periodic with a constant probability of p. It implies that every segment loss is followed by the

successful delivery of 1/p segments. Consequently, the evolution of CWND will follow a

periodic saw-tooth pattern during the equilibrium. Given a maximum CWND of WM the

minimum value of CWND is WM/2. Hence, the duration of each period is (WM/2 x RTT) and

the throughput T is gives as:

p

K

RTT

MSS
T = Equation 8.1

Where, K is a constant that depends on the TCP receiver acknowledgement strategy. If the

receiver does not employ the delayed acknowledgement, then K = √3/2.

In [Padhye, Firoiu, Towsley, & Kurose, 2000], steady-state throughput is predicted for bulk

transfer TCP flow by considering packet loss detection by TD during CA phase and timeout

(TO). The behavior of TCP congestion control is modeled in terms of rounds. A round starts

with the transmission of the first segment within a window of data and ends when the ACK for

that packet is received. Therefore, the duration of the round will be equal to one RTT period. It

 159

assumes that the packet losses are correlated; if a segment is lost, all the remaining segments in

the same round are considered to be lost. Stochastic system techniques is used to determine the

expected values of the number of segments transmitted in a round and the duration of the round

in terms of the loss probability p that a packet is lost, given that either it is the first packet in its

round or the preceding packet in its round is not lost. The throughput T is approximated as:

()2

0 321
3

2
3,1min

3

2

1
)(

pp
bp

T
b

RTT

pB

+









+

≈ Equation 8.2

Where T0 is the initial value of RTO and b is the number of packets that are acknowledged by

the TCP receiver.

[Mellia & Zhang, 2002] propose a recursive, analytical model for the TCP short-lived flows to

estimate the completion time as a function of the average loss rate and the RTT along the flow

path. The connection establishment latency E[LCE] is calculated using (8.3) with pr = pf = ps,

where, pf is the segment loss rate in the forward path from the server to the client, pr is the loss

rate in the reverse path, ps is the loss rate of SYN segment and RTO0 is the initial RTO value.

[]













−

−

−
+

−

−
+= 2

21

1

21

1
0

f

f

r

r

CE
p

p

p

p
RTORTTLE Equation 8.3

The latency LM
W is defined as the average time spent to successfully transmit M segments with

an initial CWND of W. Note that 2

1

1

1

1

−+= nn CCC since after the TCP sender receives the

ACK for the first transmitted segment, it transmits the remaining segments using an initial

CWND of two. The latency LM
W is calculated recursively as a function of p, RTT and RTO. For

example;

P

P
RTORTTL

21

1

1
−

+= Equation 8.4

() () ()1

2

21

1

1

1

22

2 LRTOpLRTOpqLRTTRTOqpRTTqL +++++++= Equation 8.5

 160

Where, p is uniformly distributed and (q = 1 – p)

8.2 THE TCP RENO ANALYSIS

Let the CWND be W, PW be the last packet within that window of data, the number of

dropped packets be N, where N ≥ 1, and LI, I = 1, 2, …, N index the dropped packets within

that window of data, as shown in Figure 8.1. Also let DI be the number of packets from LI to PW,

inclusive, and the flight size, defined as the amount of data that has been sent but not yet

acknowledged, be F.

Figure 8-1 A window of data with multiple packet drops

The number of packets that can be recovered by TCP fast retransmit and recovery algorithms

depend on W, N and DI. The TCP sender can only transmit new packets if minimum of the

congestion window and the receiver window is grater than F. We assume that the receiver

window is larger than W for the ease of analysis.

8.2.1 FIRST PACKET RECOVERY

Recovery of the first dropped packet requires W ≥ (N+3). During this recovery process, there

can be up to (W/2-N) new packets transmitted, causing the flight size F to grow from W to

(3W/2-N). On receiving the ACK for the retransmission of packet L1, F will be equal to

(D2+W/2-N) and CWND is set to W/2.

8.2.2 SECOND PACKET RECOVERY

Notice that on receiving the first partial ACK, there can be maximum of one new packet

transmitted if and only if (N-D2) = 1. It makes F = CWND = W/2. Assuming it is not the case,

there will be (W/2-N) packets remaining to be acknowledged out of (D2+W/2-N) packets in the

network. It requires W ≥ 2(N+3) to be able to recover the second dropped packet. During this

recovery process, (F/2+W/2-N-F) = (W/2-N-D2)/2 new packets can be transmitted, provided W

 161

> 2(N+D2). On receiving the ACK for the retransmission of packet L2, F will be equal to

(D3+(W/2-N) + 1/2(W/2–N-D2)) and CWND is then set to ½ (D2+W/2-N).

8.2.3 THIRD PACKET RECOVERY

Third packet recovery requires ½ (W/2-N-D2) ≥ 3. Since (F/2+½(W/2-N-D2))–F = -¼ (W/2-

N+2D3+D2) < 0, there will not be any new packets transmitted during this recovery process. It

implies that standard TCP Reno cannot recover from four (or more) packet drops within a

window of data.

A summary of TCP Reno packet recovery mechanism is given in Table 8.1. Notice that third

packet recovery depends on error pattern.

Table 8-1 Summary of TCP Reno congestion window analysis

8.2.4 REQUIRED MODIFICATIONS

In order to proceed with packet transmissions, dropped packets must be retransmitted as

quickly as possible. TCP Reno and New Reno fast retransmit and recovery algorithms are well

defined and designed to handle this effect. However, they fail to consider situations where the

fast retransmit and recovery algorithms cannot be even initiated.

 162

• If the CWND size is less than or equal to the duplicate ACK threshold, which is normally

assigned to be three, either the TCP Reno or New Reno cannot even initiate the fast

retransmit and leave this packet to be recovered by means of TCP timeout process.

• TCP Reno cannot initiate the fast retransmit to recover from multiple packets if CWND

< 2(N+3).

Our insight is that if the CWND size is too small to initiate the fast retransmit, it must be

handled separately.

We modify the TCP Reno fast retransmit algorithm in order to recover from packet drops

within a window of data, which can only be recovered by a TCP timeout process in the TCP

Reno implementation. We assume that the retransmitted packets are not dropped. If the

retransmitted packets are dropped, these packets can only be recovered using TCP timeout

process.

8.2.4.1 Recovery of a single packet drop if CWND < 4

The TCP sender cannot confirm a received duplicate ACK was due to packet loss because

packets in a flight could take different route and reach the destination out of order. Given the

number of packets in a flight is F and is equal to the CWND, we can safely assume that a packet

is dropped if the sender receives (F–1) number of duplicate ACKs and allow the sender to

quickly retransmit that packet if the flight size is too small to initiate the fast retransmit and

recovery algorithms. However, due to the sender’s inability to confirm the packet loss, we decide

to allow the sender to transmit new data packets by increasing the CWND by one MSS. It

enables the sender to receive threshold number of duplicate ACKs and either to fast retransmit

the lost packet if a third duplicate ACK is received or to continue transmitting new data if a non

duplicate ACK is received. This will considerably increase the TCP throughput and application

response time while minimizing the number of TCP timeouts.

8.2.4.2 Recovery of multiple packet drops if CWND > (N+3)

On receiving a partial ACK, the TCP sender can confirm the next packet drop within that

window of data and can retransmit that packet without waiting for the third duplicate ACK to

arrive. From the TCP Reno congestion window analysis, it can be observed that the flight size

during the fast retransmit process depends on the position of the dropped packets except for the

 163

first packet recovery; flight size during the first, second and third packet recovery is W,

(D2+W/2-N) and D3+½(W/2-N-D2) respectively. We modify the TCP Reno to handle the

multiple packet drops as follows.

• On receiving the partial ACK, it retransmits the next unacknowledged packet as TCP

New Reno does.

• It triggers the fast retransmit algorithm only during the first packet recovery, where slow-

start threshold (ssthresh) is set to α times the flight size. We define α to be the network

utilization factor, which is normally assigned the value 0.5.

• It resets the CWND to the slow-start threshold on receiving partial ACKs, as it does in

TCP Reno, and when the process first gets out of recovery process.

• No change is made to the fast recovery process

8.3 PROPOSED ANALYTICAL MODEL FOR THE TCP STEADY STATE

THROUGHPUT

We drive a TCP steady state throughput model, by considering long-lived TCP flow, with the

assumptions that packets transmitted during the fast retransmit and recovery phase are not

dropped and the CWND is not limited by the receiver’s advertised flow control window. We

define a round to be the period between the start of consequence congestion avoidance (CA)

phases as shown in Figure 8.2. A round includes a CA phase and a fast retransmit and recovery

phase. Figure 8.2 shows the CWND evolution during the ith round. The system variables are

defined as follows.

- Congestion window size at the end of CA phase (Wi)

- Number of packets transmitted during CA phase including the dropped packets (Si)

- Number of packets (δSi) transmitted during the last RTT period (δTi)

- Number of RTTs until the start of the last RTT period during CA phase (Ti)

- Total number of RTTs in the round (Pi)

- Time from the start of the last RTT and to the first packet retransmission (δTi)

- Total number of packets transmitted including retransmitted and dropped packets (Xi)

- Number of segments after which a dataless ACK will be sent (d)

 164

- Number of packets dropped (Ni)

- Packet drop rate (p)

- The network utilization factor (αs)

- Number of RTTs during the recovery process (Ri)

Figure 8-2 CWND evolution

We develop the model based on the CWND evolution shown in Figure 8.2. It requires Ni

number of RTTs to recover from Ni number of packets within a window of data.

ii NR = Equation 8.6

For simplicity, we ignore the term δRi , which is the time elapsed from the last ACK to the

third duplicate ACK, and obtain the period of the ith round as;

iiiiiiii TNTRTNTP δδδ ++≈+++= Equation 8.7

There will be αWi-Ni+1 packets, including the first dropped packet, transmitted during the

first packet recovery process. On receiving partial ACKs, it will retransmit the next dropped

 165

packet. When the process gets out of the recovery phase and enters into the next round, there

will be one new packet transmitted if Ni=1, otherwise αWi new packets will be transmitted.

1++= iii WSX α if Ni = 1

iii WSX α2+= if Ni > 1 Equation 8.8

During CA phase, CWND will grow by 1/d for each RTT period. Assuming, Ti is much

bigger than δTi , we obtain

d

T
W

d

TT
WW i

i
ii

ii +≈
+

+= −− 11 α
δ

α Equation 8.9

Si will be the sum of packets transmitted during Ti and δTi.

i

i

K

iii S

dT

dKTWS δα +












 −

+×= ∑
=

−

1

0

1

i

ii

iii S
d

TT
TWS δα +








−+×= − 1

2
1

Using (8.9), we obtain

() iii

i

i SWW
T

S δα +−+= − 1
2

1 Equation 8.10

We consider Wi to be a Markov regenerative process with rewards Xi and obtain the long-

term steady-state TCP throughput B as in [Padhye, Firoiu, Towsley, & Kurose, 2000]

[]
][PE

XE
B = Equation 8.11

Where, E[X] and E[P] are the expected value of number of packets and RTTs during the

round respectively. With the assumption that Ti and Wi are mutually independent sequences of

 166

identically distributed random variables, we obtain (8.12)–(8.15) from (8.7)–(8.10) respectively.

We also consider that δSi is uniformly distributed between 1 and Wi and have E[δS] = E[W]/2

and E[δT] = RTT/2.

RTTNETEPE 







++=

2

1
][][][Equation 8.12

1][][][++= WESEXE α if Ni = 1 Equation 8.13

][2][][WESEXE α+= if Ni > 1

d

TE
WEWE

][
][][+= α

()][1][WEdTE α−= Equation 8.14

()
2

][
1][)1(

2

][
][

WE
WE

TE
SE +−+= α Equation 8.15

It can be shown that the mean number of packets successfully acknowledged before a loss

occurs is 1/p [Padhye, Firoiu, Towsley, & Kurose, 2000]. It follows that total number of packets

transmitted during CA phase is:

1][
1

][−+= WE
p

SE Equation 8.16

From (8.14), (8.15) and (8.16), we obtain

)1(

)1(2

)1(2

)1(1

)1(2

)1(1
][

2

2

22 αα

α

α

α

−

−
+









−

−+
+

−

−+
=

pd

p

d

d

d

d
WE Equation 8.17

From (8.11), (8.12), (8.13), (8.14) and (8.17),

 167

RTTWE
d

WE
p

B








 −+
+









++

=

][
2

)1(21
1

][)1(
1

α

α

 if E[N] = 1 Equation 8.18

RTTWE
d

NE

WE
p

p

B








 −+
+









++

−

=

][
2

)1(21
][

][)21(
1

α

α

 if E[N]>1

If d = 2, (17) yields to

)1(

)1(

)1(4

23

)1(4

23
][

2

2

22 αα

α

α

α

−

−
+









−

−
+

−

−
=

p

p
WE Equation 8.19

Standard TCP implementation assigns α the value of 0.5. Recall that recovery of multiple

packets from a window of data depends on the number of newly transmitted packets during the

fast recovery phase. The network utilization factor α is the main factor that limits the number of

new packets transmitted during the fast recovery phase, assuming the receiver window is bigger

than the CWND size. Packet losses in network with wireless links can be bursty resulting in

multiple losses within a window of data. Having larger value for α can help the system to recover

from multiple losses. However, it may overload the network if the losses are due to congestion.

We use the packet drop rate p to dynamically calculate the value of α as explained in the next

Section.

8.4 PROPOSED SCHEME FOR DYNAMICALLY ADJUSTING THE TCP CWND

Standard TCP implementation assigns α the value of 0.5. In Equations (8.17) to (8.19), we also

assign α the value of 0.5 if p ≤ 0.01, otherwise, it is assigned dynamically. Network with wireless

links has high bit-error rates, which contributes to high packet drop rates and significantly

degrades the TCP performance. Figure 8.3 shows the CWND size versus packet drop rate,

obtained from (8.19), with different values for α, from 0.5 to 0.85 in step of 0.05. From Figure

8.3, we can obtain α as a function of packet drop rate for desired CWND improvement. Figure

8.4 shows CWND size versus packet drop rate with α, derived as a function of packet drop rate

using MATLAB curve fitting tool, to provide 10 percent CWND size improvement. It should be

 168

noted that (8.20) is applied only for high packet drop rate and can be used to provide quality of

service with different CWND improvement rates.

Figure 8-3 CWND versus packet drop rate (p)

62.000033.0 += pα Equation 8.20

 169

Figure 8-4 CWND size and CWND improvement versus packet drop
rate (p) with dynamic network utilization factor (α)

8.5 EVALUATION OF THE PROPOSED MODEL OVER A UMTS NETWORK

The proposed scheme is implemented in OPNET by adding a new TCP flavor, called

Modified Reno, to the TCP fast retransmit and recovery algorithms. We need to calculate the

packet drop rate to dynamically adjust the CWND, given in (8.20). The packet drop rate is

calculated with the use of a weighted average by the Average Loss Interval method explained in

[Sally Floyd, Handley, Padhye, & Widmer, August 2000]. The average loss interval ŝ(1,n) is defined

as a weighted average of the last n interval as follows:

 ŝ(1, n) =

∑

∑

=

=

n

i

i

n

i

ii

w

sw

1

1
 Equation 8.21

For weights wi:

swi = 1, if 1 ≤ i ≤ n/2 and wi =
12/

2/
1

+

−
−

n

ni
, if n/2 < i ≤ n

 170

Considering the most recent packet drop, the average loss interval (ŝ) is calculated as:

max(ŝ (1, n) , ŝ (0, n-1)) and the packet drop rate is 1/ ŝ.

To demonstrate the effectiveness of the proposed scheme, the UMTS network model shown

in Figure 8.5 is implemented, in turn, with TCP Reno and Modified Reno fast retransmit

algorithms at the standard FTP server. The FTP server is configured to generate files of 10

Mbyte size. User equipments are configured to download FTP files simultaneously with different

packet drop rates as shown in Table 8.2. Data Packets coming from FTP server are dropped in

UEs, at the IP layer, using a uniform probability distribution. UMTS and TCP with their default

parameters [OPNET Technologies Inc] are used in all simulation scenarios and an extract of the

UMTS and TCP parameter values are given in Tables 8.3 and 8.4 respectively.

Figure 8-5 UMTS network model

 171

Table 8-2 UEs configurations

Table 8-3 Selection of UMTS RNC parameters

 172

Table 8-4 Selection of TCP parameters

8.5.1 RESULTS AND OBSERVATIONS

Extensive simulations were run to get the mean TCP throughput with less than 5% error

margin. Figure 8.6 shows a snapshot of the comparison of the TCP CWND size and the TCP

sent segment sequence number responses of the proposed scheme with that of TCP Reno

implementations for packet drop rate of 10%. It can be observed that the proposed scheme

significantly reduced the number of TCP timeouts as expected.

 173

Figure 8-6 TCP CWND and sent segment sequence number responses
with 10% packet drop rate

Figure 8.7 compares the steady-state mean TCP CWND size response of our proposed

scheme with that of TCP Reno for 10 percent packet drop rates and their mean CWND values

are obtained to be 6925 and 6,278 bytes respectively, which closely match with the steady-state

CWND value obtained using our analytical model shown in Figure 8.4. Note that the proposed

model achieved high throughput performance during the transient phase and maintains its

throughput rate during the steady state phase. The reason why it cannot continue to gain

throughput improvement is due to the assumptions that receiver window is big enough and does

affect the sending rate. However, it achieves the expected CWND improvement as can be seen

from Figure 8.7.

Steady state

Transient

 174

Figure 8-7 TCP cwnd and sent segment sequence number responses
with 10% packet drop rate

Since the average CWND with 10% packet drop rates seems to be less than 5MSS, the TCP

Reno cannot recover from more than one packet drop within a window of data. This effect can

be observed form Figure 8 6. A comparison of the TCP sent segment sequence number

responses of the proposed scheme with that of Reno for different packet drop rates is shown in

Figure 8.8.

 175

Figure 8-8 TCP sent segment sequence number responses

Figure 8.9 compares the steady-state mean TCP CWND of the proposed scheme with that of

both the analytical value, shown in Figure 8.4, and TCP Reno for different packet drop rates. It

also shows the TCP CWND improvement with the proposed scheme over TCP Reno. From

Figure 8.9, it can be seen that the steady-state CWND value obtained using our analytical model

shown in Figure 8.4 closely matches with that of the simulation results.

 176

Figure 8-9 Mean TCP CWND and TCP CWND improvement versus
packet drop rates (p)

A summary of the average TCP throughput performance with different packet drop rates is

given in Table 8.5. From Figure 8.8, 8.9 and Table 8.5, it can be seen that our proposed scheme

improved the TCP throughput compared to that of TCP Reno.

Table 8-5 summary of the average TCP throughput performance

 177

We could not achieve 10 percent TCP throughput improvement with different packet drop

rates as expected because the assumptions made in deriving the model, such as the retransmitted

packets are not dropped and the CWND is not limited by the receiver’s advertised flow control

window, do not hold in our simulations studies. The loss of retransmitted packets causes TCP

timeouts. These effects can be observed from Figure 8.6.

8.6 CONCLUSION AND FUTURE WORK

A TCP throughput model was developed after modifying the TCP Reno fast retransmit

algorithm to avoid timeouts. The model captures the TCP fast retransmit mechanism and

expresses the steady state congestion window and throughput as a function of network utilization

factor, RTT and loss rate. Based on the new model, a further modification was proposed where

the TCP congestion window size is dynamically adjusted, depending on the packet drop rates.

This speeds up the packet recovery process and reduces the number of TCP timeouts over

networks with heavy packet losses, such as wireless networks. The network utilization factor,

derived as a function of packet drop rate, can also be used to provide quality of service.

The proposed model was implemented in OPNET for a UMTS network and its performance

was compared with that of TCP Reno. Simulation results showed that the proposed model

reduced the TCP timeouts and improved the TCP performance compared to that of TCP Reno.

It was found that the model provides a very good match to the steady-state congestion window

behavior. The model could not completely avoid timeouts because of the assumption that the

packets transmitted during the recovery process are not lost. This assumption can be relaxed and

the model can be modified to incorporate the packet loss detection by both three duplicate

acknowledgements and timeouts to predict more accurate TCP throughput performance. In

future work, we intend to incorporate this, and to further validate the model in other wireless

networks such as WiFi and WiMAX.

 178

C h a p t e r I X .

9. Conclusion

The main focus of this thesis is the investigation and improvement of the TCP performance

over wireless networks, such as IEEE 802.11 WLAN and UMTS networks. Based on a study of

the extensive literature on the enhancement of TCP performance over wireless networks, it

emphasizes the need to develop techniques to efficiently utilize the available network resources

by distinguishing non-congestion related packet losses from the congestion related losses. TCP’s

inability to distinguish wireless effects from the traditional wire-line effects is the main factor that

degrades its performance over networks with wireless links.

In this thesis, we concentrated on two main strategies for enabling the TCP congestion

control mechanism to determine the cause for a packet loss. One is the proxy based mechanism

that monitors the radio network interface and sends feedback to the source with the status of the

wireless link. The other one is based on end-to-end mechanism, in which the packet loss rate is

used as the system metric to fine-tune the congestion control mechanism.

The main objective of our proposed proxy based mechanisms is to explicitly inform the TCP

source of any effects caused by wireless links while maintaining the end-to-end design

philosophy. However, the implementation technique is network dependent. The major

contributions of the proxy based schemes are summarized as follows.

• Development and implementation of RNF feedback mechanism in an 802.11 WLAN network: A

new RNF scheme was developed to detect wireless packet losses and to distinguish them

from congestion related packet losses. The base station is equipped with the WLD proxy

to detect and notify the TCP sender of the wireless packet losses. TCP Reno was

modified to utilize the radio network feedback to distinguish the losses due to wireless

effects form the congestion and fine-tuned to perform wireless enhanced fast retransmit

and fast recovery mechanism. The RNF scheme was implemented in an 802.11 WLAN

model in OPNET. Simulation results showed that the RNF scheme successfully

 179

distinguished the packet losses due to wireless effects form the congestion and improved

the TCP performance significantly compared to that of the standard WLAN. It also

demonstrated that it can handle multiple TCP connections and utilized the available

network resources efficiently and fairly by adapting to the network characteristics.

• Development and implementation of RNC feedback mechanism in a UMTS network: The RNC

feedback mechanism, similar to the RNF scheme, was developed and implemented in a

UMTS network. The GTP layer of the UMTS RNC protocol stack was modified to

detect and notify the TCP sender of the wireless packet losses, which is the main

difference between the RNF and RNC mechanism. Since the RNC supports multiple

Node Bs, the RNC feedback mechanism can be extended to provide further TCP

performance enhancement by freezing the TCP sender to handle timeouts caused by

handoffs. The simulation results showed that the RNC feedback mechanism significantly

improved the TCP performance compared to that of standard TCP over

UMTS. Specifically, the scheme recovered from most of the wireless packet losses and

minimized the number of TCP timeouts by early triggering of the wireless enhanced fast

retransmit algorithm, introduced in TCP Reno. The effect of using TCP Reno with the

SACK option was also investigated. It was found that the proposed scheme with SACK

option enabled performs better than with the SACK option disabled when the packet

drops rate is moderate, otherwise the performances are quite similar

• Development and implementation of WENP to minimize spurious TCP timeouts in both 802.11

WLAN and UMTS networks: The WENP scheme was developed to detect both the

wireless packet losses and delay spikes in the wireless link, and enable the TCP sender to

distinguish them from wireline related packet losses and timeouts. Delay spikes, defined

as a sudden and significant change in the RTT, causes spurious TCP timeouts, which

have major impact on TCP performance. The WENP proxy is used to detect both the

wireless packet losses and the delay spikes. TCP Reno was further modified to utilize the

radio network feedback from the WENP to distinguish both packet losses due to wireless

effects from congestion and spurious timeouts from normal timeouts. It was also fine-

tuned to perform both the wireless enhanced fast retransmit and fast recovery

mechanism and the timeout mechanism. This scheme was implemented in both 802.11

WLAN and UMTS networks. The simulation results demonstrated that the proposed

 180

scheme markedly improved the TCP performance compared to that of standard WLAN

and UMTS implementations. Particularly, the scheme recovered from most of the

wireless packet losses and minimized the number of spurious timeouts by enabling the

TCP sender to successfully distinguish wireless effects from congestion related effects.

The effect of using modified TCP Reno with the SACK option with the proposed

scheme was also investigated. It was found that the proposed scheme with the TCP Reno

SACK option enabled does not have any impact on the proposed scheme.

The major advantages of the proposed proxy based mechanisms over the other proxy based

schemes, such as Snoop, are:

- Does not add much overhead to the base station since it only caches the TCP header

information.

- Does not compete for bandwidth with the TCP sender since it does not perform any

local retransmission. It only sends feedback with the ACK packet in the form of control

flags.

- Does not violate the end-to-end semantic of TCP.

- Enable TCP sender to completely distinguish wireless packet losses form congestion

losses.

- Enable the TCP sender to completely distinguish spurious TCP timeouts form normal

timeouts.

- Gives the flexibility to design the TCP congestion control to fine-tune its congestion

control mechanism to efficiently utilize the available network resources.

The only drawback of these schemes, like any split connection schemes, is the inability to

monitor the radio interface if the IP datagram is encrypted. In this case, the TCP header is

inaccessible since the TCP segment, including its header information, is encrypted and cannot be

decrypted at the intermediate nodes.

We further developed an end-to-end EPLR scheme by modifying the TCP Reno fast

retransmit algorithm to early detect packet losses and to speed up the packet recovery process to

 181

reduce the number of TCP timeouts over networks with heavy packet losses, such as wireless

networks. TCP Reno with EPLR scheme was implemented in a UMTS network and its

performance was compared with that of Reno and New Reno. Simulation results showed that

Reno with EPLR improved the TCP performance and application response time significantly

compared to that of both Reno and New Reno by reducing the TCP timeouts, which is the main

cause of degradation of the TCP performance in a wireless environment.

Finally, we developed an analytical TCP throughput model with enhanced TCP Reno fast

retransmit algorithm to avoid timeouts. The model captures the TCP fast retransmit mechanism

and expresses the steady state congestion window and throughput as a function of network

utilization factor, RTT and loss rate. Another new feature was added to the proposed model by

dynamically adjusting the congestion window size depending on the packet drop rates. This

speeds up the packet recovery process and reduces the number of TCP timeouts over networks

with heavy packet losses, such as wireless networks. The network utilization factor, derived as a

function of packet drop rate, can also be used to provide quality of service.

The proposed model was implemented in OPNET for a UMTS network and its performance

was compared with that of TCP Reno. Simulation results showed that the proposed model

reduced the TCP timeouts and improved the TCP performance compared to that of TCP Reno.

It was found that the model provides a very good match to the steady-state congestion window

behavior. The model could not completely avoid timeouts because of the assumption that the

packets transmitted during the recovery process are not lost. This assumption can be relaxed and

the model can be modified to incorporate the packet loss detection by both three duplicate

acknowledgements and timeouts to predict more accurate TCP throughput performance.

Optimizing the TCP performance to react to a packet loss other than congestion remains an

open research problem. Although we developed schemes to enhance the TCP performance over

wireless link, we have not further studied their effectiveness in mobile environments, i.e. the

hand-off effects on our proposed schemes. We believe these problems merit further exploration

for finding feasible solutions to make wireless networks even more efficient.

 182

INDEX

AIRMAIL... xi, 35

ARPANET .. 2

ARQ..xi, 33, 35, 91, 94

bandwidth5, 6, 12, 16, 20, 21, 27, 35, 41, 44, 57,

62, 81, 87, 112, 138, 180

Bit Error Rate ... xi

CDMA............... xi, xvii, 6, 8, 84, 85, 86, 87, 88, 91

CFP .. 52

CID .. 32

congestion avoidance .7, 8, 9, 11, 13, 20, 21, 22, 24,

32, 41, 43, 46, 93, 97, 158, 163

Core Network .. xii, 83

CRC ... 53

CSMA/CA.. xi, 51, 52

CWND... 19

CWR.. 37

DIFS .. xii, 51, 52

ECN ... 37

ECN-Echo ... xii, 37

ELN ... 37

ELN-ACK ... 38

ELNR... 42

EPLR iii, xii, 136, 138, 141, 142, 180

ETD ... xii, 7, 9

ETSI... 83

EWMA ...xiii, 17, 18

FACK ...xiii, 26

FDD ... 87

FDMA ..xiii, 85

FER.. 33, 92

FTP .. 157

GGSN .. 83

GSM .. 83

GSN ... 83

HTML... xiv, 3

HTTP.. xiv, 3

ICMP .. xiv, 38, 39

IMT-2000 ... xiv, 82, 83

ISO.. xiv, 2

I-TCP .. xiv, 30

LAN... 73

MAC.. 89, 118, 121

METP .. 31, 32

MSC... 84

MSR... 30

MSS ... 13

MTU .. 12, 14

NACK.. 35

NAV .. 51

NSF.. 2

NSFNET.. xvii, 2

OSI... 2

OVSF... 86

PDCP ... 89, 91

PDN ... 83

PSTN ... 84

RAND.. 1

RED ... xv, 37

RF .. xv, 85

RFC.. xv, 11

RLC ... xv, 89, 90, 91

RLP.. xv, 35

RNC...7, 8, 82, 84, 92

RNC-FB.....................xv, 94, 97, 102, 108, 109, 110

RNF ...7, 47, 56, 62, 82

RNS ... 85, 92

RRC ... xv, 89, 91

RRM .. xv, 92

RTO ... 17, 21, 159

RTT... xvi, 26

SACKxvi, 25, 26, 31, 106, 108, 110, 132, 135, 136,

138, 179, 180

SCMTP... xvi, 32

SMART .. xvi, 41

SMG ... xvi, 87

SR ... xvi, 41

SRP ... xvi, 31

TCP... xvi, 11

TCP/IP .. i, 2, 3, 27, 31, 91

TDD.. xvi, 87

TDM .. 33

Third Generation Partnership Project xvi, 83

TPC... xvi, 92

TULIP... xvi, 36

UDP ... xvii, 31

UMTS...............................xvi, 1, 44, 82, 88, 94, 102

UTRAN ..xvi, 83, 84, 85, 91

VLR ... 84

W-CDMA.. 87

WENP..xvii, 111, 115

WEP... xvii, 54

Wireless LAN.. 47

WLAN... xvii

WLD..xvii, 47, 55

WLN..xvii, 112, 117

W-RTO..xvii, 61, 115

W-RTT .. xvii

WTCP..xvii, 42, 43

WTD.. xvii

WTN..xvii, 112, 117

ZWA.. xvii, 42

 183

References

3GPP. The Third Generation Partnership Project (3GPP). Retrieved August 2, 2007, from

http://www.3gpp.org

A. Gurtov. Effect of delays on TCP performance, in Proceedings of IFIP Personal Wireless

Communications, Aug. 2001.

A. Gurtov, & Ludwig, R. Responding to spurious timeouts in TCP, in Proceedings of IEEE

INFOCOM, March 2003.

Bakre, A., & Badrinath, B. R. (1995). I-TCP: indirect TCP for mobile hosts. Paper presented at the

Distributed Computing Systems, 1995., Proceedings of the 15th International

Conference.

Balakrishnan, H., & Katz, R. H. Explicit Loss Notification and Wireless Web Performance. Proc. IEEE

Globecom Internet Mini-Conference, Nov. 1998.

Balakrishnan, H., Padmanabhan, V. N., Seshan, S., & Katz, R. H. (1997). A comparison of

mechanisms for improving TCP performance over wireless links. Networking,

IEEE/ACM Transactions on, 5(6), 756-769.

BERTSEKAS, D., & GALLAGER, R. (1996). Data Networks, Prentice-Hall International, Inc,

Englewood Cliffs, N.J., USA, 2nd ed.

Biaz, S., & Vaidya, N. (1997). TCP over wireless networks using multiple acknowledgements,

Texas A&M University, Technical Report 97-001, January

Brakmo, L. S., O'Malley, S. W., & Peterson, L. L. (1994). TCP Vegas: New Techniques for

Congestion Detection and Avoidance. ACM SIGCOMM, 24-35.

Bruyeron, R., Hemon, B., & Zhang, L. (1988). Experimentations with TCP selective

acknowledgment ACM Computer Communication Review, Vol. 28, No. 2, April, pp. 54–77.

C. Zhang, & V. Tsaoussidis. (2001). TCP Real: Improving real-time capabilities of TCP over

heterogeneous networks. Proceedings of the 11th IEEE/ACM NOSSDAV.

 184

Caceres, R., & Iftode, L. (1995). Improving the performance of reliable transport protocols in

mobile computing environments. Selected Areas in Communications, IEEE Journal on, 13(5),

850-857.

Cardwell, N., Savage, S., & Anderson, T. (2000). Modeling TCP latency. Paper presented at the

INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE.

Casetti, C., Geria, M., Lee, S. S., Mascolo, S., & Sanadidi, M. (2000). TCP with faster recovery. Paper

presented at the MILCOM 2000. 21st Century Military Communications Conference

Proceedings.

Cerf, V., & Kahn, R. (1974). A Protocol for Packet Network Intercommunication.

Communications, IEEE Transactions on [legacy, pre - 1988], 22(5), 637-648.

Chaskar, H., Lakshman, T. V., & Madhow, U. (1996). On the design of interfaces for TCP/IP over

wireless. Paper presented at the Military Communications Conference, 1996. MILCOM

'96, Conference Proceedings, IEEE.

CHIU D. M , & JAIN R. (1989). Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks. Computer Networks and ISDN Systems, Vol.

17, June , pp. 1–14.

Chockalingam, A., Zorzi, M., & Tralli, V. (1999). Wireless TCP performance with link layer

FEC/ARQ.

Cobb, J. A., & Agrawal, P. (1995). Congestion or corruption? A strategy for efficient wireless TCP sessions.

Paper presented at the Computers and Communications, 1995. Proceedings., IEEE

Symposium on.

Dahlman, E., Gudmundson, B., Nilsson, M., & Skold, A. (1998). UMTS/IMT-2000 based on

wideband CDMA. Communications Magazine, IEEE, 36(9), 70-80.

Dongkyun, K., Hanseok, B., Jeomki, S., & Cano, J. C. (2005). Analysis of the interaction between TCP

variants and routing protocols in MANETs. Paper presented at the Parallel Processing, 2005.

ICPP 2005 Workshops. International Conference Workshops on.

 185

Doshi, B. T., Johri, P. K., Netravali, A. N., & Sabnani, K. K. (1993). Error and flow control

performance of a high speed protocol. Communications, IEEE Transactions on, 41(5), 707-

720.

E. Altman, K. Avrachenkov, & C. Barakat. “A stochastic model of TCP/IP with stationary

random losses,” ACM Computer Communication Review, vol. 30, no. 4, pp. 231–242,

Oct. 2000.

Ender Ayanoglu, Sanjoy Paul, Thomas F. LaPorta, Krishan K. Sabnani, & Gitlin, R. D. (February

1995). AIRMAIL: A Link-Layer Protocol for Wireless Networks.

Fall, K., & Floyd, S. (1996). Simulation-based Comparisons of Tahoe, Reno, and SACK TCP.

ACM Computer Communication Review, Vol 26, No. 3, pp 5-21(3).

Fieger, A., & Zitterbart, M. (1997). Evaluation of migration support for indirect transport protocols. Paper

presented at the Global Telecommunications Conference, 1997. GLOBECOM '97.,

IEEE.

Floyd, S. (1994 October). TCP and Successive Fast Retransmits, Technical report. Retrieved 26

September, 2007, from ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

Floyd, S., & Fall, K. (1999). Promoting the use of end-to-end congestion control in the Internet.

Networking, IEEE/ACM Transactions on, 7(4), 458-472.

Floyd, S., Handley, M., Padhye, J., & Widmer, J. (August 2000). Equation Based Congestion Control

for Unicast Applications, Proceedings of the conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication Paper presented at the ACM Press.

FLOYD, S., & HENDERSON, T. (1999). RFC 2582 - The NewReno Modification to TCP's

Fast Recovery Algorithm.

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance.

Networking, IEEE/ACM Transactions on, 1(4), 397-413.

Fu, S., & Atiquzzaman, M. (2005). DualRTT: detecting spurious timeouts in wireless mobile environments.

Paper presented at the Performance, Computing, and Communications Conference,

2005. IPCCC 2005. 24th IEEE International.

 186

Gerla, M., Sanadidi, M. Y., Ren, W., Zanella, A., Casetti, C., & Mascolo, S. (2001). TCP Westwood:

congestion window control using bandwidth estimation. Paper presented at the Global

Telecommunications Conference, 2001. GLOBECOM '01. IEEE.

Goel, S., & Sanghi, D. (1998). Improving TCP performance over wireless links. Paper presented at the

TENCON '98. 1998 IEEE Region 10 International Conference on Global Connectivity

in Energy, Computer, Communication and Control.

Goff, T., Moronski, J., Phatak, D. S., & Gupta, V. (2000). Freeze-TCP: a true end-to-end TCP

enhancement mechanism for mobile environments. Paper presented at the INFOCOM 2000.

Nineteenth Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE.

Grieco, L. A., & Mascolo, S. (2003). End-to-end bandwidth estimation algorithms for Westwood TCP

congestion control. Paper presented at the Information Technology Interfaces, 2003. ITI

2003. Proceedings of the 25th International Conference on.

Gurtov, A., Passoja, M., Aalto, O., & Raitola, M. (2002). Multi-layer protocol tracing in a GPRS

network. Paper presented at the Vehicular Technology Conference, 2002. Proceedings.

VTC 2002-Fall. 2002 IEEE 56th.

Haardt, M., Klein, A., Koehn, R., Oestreich, S., Purat, M., Sommer, V., et al. (2000). The TD-

CDMA based UTRA TDD mode. Selected Areas in Communications, IEEE Journal on, 18(8),

1375-1385.

Haas, Z. J., & Agrawal, P. (1997). Mobile-TCP: an asymmetric transport protocol design for mobile systems.

Paper presented at the Communications, 1997. ICC 97 Montreal, 'Towards the

Knowledge Millennium'. 1997 IEEE International Conference on.

Hengartner, U., Bolliger, J., & Gross, T. (2000). TCP Vegas revisited.

Hoe, J. C. (1996). "Improving the Start-up Behavior of a Congestion Control Scheme for TCP’, Proceedings of

the ACM SIGCOMM’96, Vol. 26, No. 4, October, pp. 270–280. Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications.

Jacobson, V. (1990). Modified TCP congestion avoidance algorithm, end2end mailing list

(ftp://ftp.isi.edu/end2end-interest-1990.mail), April 30.

 187

Jacobson, V. (1988). Congestion Avoidance and Control. ACM SIGCOMM Computer

Communication Review, pp. 314-329, August 18 (4).

Jacobson, V. (January 1995). Congestion avoidance and control. ACM SIGCOMM, 25(1), 157 -

187.

Jamalipour, A. (2003). The wireless mobile Internet : architectures, protocols and services. Chichester: Wiley.

Jitendra Padhye, Victor Firoiu y, Don Towsley, & Jim Kurose. Modeling TCP Throughput: A

Simple Model and its Empirical Validation, May 30, 1998. SIGCOM.

Kassa, D. F., & Wittevrongel, S. (2006). An analytical model of TCP performance. Paper presented at

the Performance, Computing, and Communications Conference, 2006. IPCCC 2006.

25th IEEE International.

Kent, C., & Mogul, J. (1987). Fragmentation Considered Harmful. ACM Computer Communication

Review, vol. 17, no. 5, Aug. .

Keshav, S., & Morgan, S. P. (1997). SMART retransmission: performance with overload and random losses.

Paper presented at the INFOCOM '97. Sixteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE.

Kliazovich, D., & Granelli, F. (2005). Cross-layer congestion control in multi-hop wireless local area

networks. Paper presented at the Wireless Internet, 2005. Proceedings. First International

Conference on.

Korhonen, J., Aalto, O., Gurtov, A., & Lamanen, H. (2001). Measured performance of GSM, HSCSD

and GPRS. Paper presented at the Communications, 2001. ICC 2001. IEEE International

Conference on.

Kuang-Yeh, W., & Tripathi, S. K. (1998). Mobile-end transport protocol: an alternative to TCP/IP over

wireless links. Paper presented at the INFOCOM '98. Seventeenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE.

Kurose, J. F., & Ross, K. W. (2003). Computer networking : a top-down approach featuring the Internet

(2nd ed.). Boston: Addison-Wesley.

 188

Kurose, J. F., & Ross, K. W. (2005). Computer networking : a top-down approach featuring the Internet

(3rd ed.). Boston: Pearson/Addison Wesley.

Ladas, C., Amiee, R. M. E., Mahdavi, M., & Manson, G. A. (2002). Class based selective-ARQ scheme

for high performance TCP and UDP over wireless links. Paper presented at the Mobile and

Wireless Communications Network, 2002. 4th International Workshop on.

Leiner, B., Cole, R., Postel, J., & Mills, D. (1985). The DARPA internet protocol suite.

Communications Magazine, IEEE, 23(3), 29-34.

M. Allman, & V. Paxson. On estimating end-to-end network path properties, in Proceedings of

ACM SIGCOMM, Sept. 1999.

Mason, P. C., Cullen, J. M., & Lobley, N. C. (1996). UMTS architectures. Paper presented at the

Mobile Communications Towards the Next Millenium and Beyond, IEE Colloquium on.

Mathis .M, Mahdavi .J, Floyd .S, & Romanow .A. (April 1996). TCP Selective Acknowledgement

Options: RFC 2018.

Mathis, M., Semke, J., & Mahdavi, J. The Macroscopic Behavior of the TCP Congestion

Avoidance Algorithm. Computer Communication Review, 27(3), July 1997.

Mehta, M., & Vaidya, N. H. (February, 1998). Delayed duplicate acknowledgements: A proposal

to improve performance of TCP on wireless links. Tecnical Report (Texas A&M

University).

Mellia, M., & Zhang, H. (2002). TCP model for short lived flows. Communications Letters, IEEE,

6(2), 85-87.

Mohr, W., & Konhauser, W. (2000). Access network evolution beyond third generation mobile

communications. Communications Magazine, IEEE, 38(12), 122-133.

Nagle, J. (1984). Congestion control in IP/TCP internetworks. ACM Computer Communication

Review, vol. 14, no. 4, pp. 11–17, Oct. .

 189

Nitin H. Vaidya, M. N. M. C. E. P. G. M. (2002). Delayed duplicate acknowledgements: a TCP-

Unaware approach to improve performance of TCP over wireless. Wireless Communications

and Mobile Computing, 2(1), 59-70.

O'Hara, B., & Petrick, A. IEEE 802.11 Handbook : -- a designer's companion: New York : Standards

Information Network, IEEE, c2005.

OPNET. Making Networks and Applications Perform. from http://www.opnet.com/

OPNET Technologies Inc. Technologies Inc, Making Networks and Applications Perform.

Retrieved 2 August, 2007, from http://www.opnet.com/

P. Karn, & C. Partridge. (1995). Improving Round-Trip Time Estimates in Reliable Transport

Protocols, ACM SIGCOMM, August 1987. SIGCOMM Comput. Commun. Rev. , V 25, pp

66-74

Padhye, J., Firoiu, V., Towsley, D. F., & Kurose, J. F. (2000). Modeling TCP Reno performance:

a simple model and its empirical validation. Networking, IEEE/ACM Transactions on, 8(2),

133-145.

Parsa, C., & Garcia-Luna-Aceves, J. J. (1999). TULIP: A link-level protocol for improving TCP over

wireless links. Paper presented at the Wireless Communications and Networking

Conference, 1999. WCNC. 1999 IEEE.

R. Ludwig, & R. H. Katz. The Eifel algorithm: Making TCP robust against spurious

retransmissions. ACM Computer Communication Review, 30(1):30–37, January 2000.

Ramani, R., & Karandikar, A. (2000). Explicit congestion notification (ECN) in TCP over wireless

network. Paper presented at the Personal Wireless Communications, 2000 IEEE

International Conference.

Rendon, J., Casadevall, F., & Carrasco, J. (2002). Wireless TCP proposals with proxy servers in the

GPRS network. Paper presented at the Personal, Indoor and Mobile Radio

Communications, 2002. The 13th IEEE International Symposium.

RFC 761. (1980). Transmission Control Protocol. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc761.txt

 190

RFC 793. (1981). Transmission Control Protocol. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc793.txt

RFC 896. (1984). Congestion control in IP/TCP internetworks. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc896.txt

RFC 1063. (1988). IP MTU Discovery Options. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc1063.txt

RFC 1122. (1989). Requirements for Internet Hosts. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc1122.txt

RFC 1191. (1990). Path MTU Discovery. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc1191.txt

RFC 1323. (1992). TCP Extensions for High Performance. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc1323.txt

RFC 2001. (1997). TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery

Algorithms. Retrieved 27 Sept., 2007, from http://www.ietf.org/rfc/rfc2001.txt

RFC 2018. (1996). TCP Selective Acknowledgment Options. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc2018.txt

RFC 2309. (1998). Recommendations on Queue Management and Congestion Avoidance in the

Internet. Retrieved 27 Sept., 2007, from http://www.ietf.org/rfc/rfc2309.txt

RFC 2481. (1999). A Proposal to add Explicit Congestion Notification (ECN) to IP. Retrieved

27 Sept., 2007, from http://www.ietf.org/rfc/rfc2481.txt

RFC 2507. (1999). IP Header Compression. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc2507.txt

RFC 2525. (1999). Known TCP Implementation Problems. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc2525.txt

RFC 2581. (1999). TCP Congestion Control. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc2581.txt

 191

RFC 2914. (2000). Congestion Control Principles. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc2914.txt

RFC 2988. (2000). Computing TCP's Retransmission Timer. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc2988.txt

RFC 3390. (2002). Increasing TCP's Initial Window. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc3390.txt

RFC 3522. (2003). The Eifel detection algorithm for TCP. Retrieved 27 Sept., 2007, from

http://www.ietf.org/rfc/rfc3522.txt

S. Floyd, & Henderson, T. (April 1999). RFC 2582 - The NewReno Modification to TCP's Fast

Recovery Algorithm.

Samukic, A. (1998). UMTS universal mobile telecommunications system: development of

standards for the third generation. Vehicular Technology, IEEE Transactions on, 47(4), 1099-

1104.

Seok, S.-J., Youm, S.-K., kim, S.-W., & Kang, C.-H. (2003). A modification of TCP flow control

for improving end-to-end TCP performance over networks with wireless links. Computer

Communications, Volume 26(17), pp. 1998-2010.

Shaojian, F., Atiquzzaman, M., & Ivancic, W. (2002). Effect of delay spike on SCTP, TCP Reno, and

Eifel in a wireless mobile environment. Paper presented at the Computer Communications and

Networks, 2002. Proceedings. Eleventh International Conference.

Sinha, P., Nandagopal, T., Venkitaraman, N., Sivakumar, R., & Bharghavan, V. (1999). WTCP: a

reliable transport protocol for wireless wide-area networks, Proceedings of the 5th annual ACM/IEEE

international conference on Mobile computing and networking, Seattle, Washington, United States.

Stevens, W. R., & Wright, G. R. (1994). TCP/IP illustrated (Vol. 3): Addison-Wesley Pub. Co.

Tanenbaum, A. S. (2003). Computer networks (4th ed.). Upper Saddle River, NJ [London]: Prentice

Hall PTR ;Pearson Education.

 192

TANENBAUM. A.S. (3rd ed). (1996), Computer Networks: Prentice-Hall International, Inc, Upper

Saddle River, New Jersey 07458, USA

W.P. Chen, Y.C. Hsiao, J. C. Hou, Y. Ge, & Fitz, M. P. Syndrome: a light-weight approach to

improving TCP performance in mobile wireless networks , Communications and Mobile

Computing, (2):P 37-57, 2002.

Wenqing, D., & Jamalipour, A. (2001a). Delay performance of the new explicit loss notification TCP

technique for wireless networks. Paper presented at the Global Telecommunications

Conference, 2001. GLOBECOM '01. IEEE.

Wenqing, D., & Jamalipour, A. (2001b). A new explicit loss notification with acknowledgment for wireless

TCP. Paper presented at the Personal, Indoor and Mobile Radio Communications, 2001

12th IEEE International Symposium.

Wong, J. W. K., & Leung, V. C. M. (1999). Improving end-to-end performance of TCP using

link-layer retransmissions over mobile internetworks. Proc. IEEE ICC'99, 1, 324-328.

Xie, F., Hammond, J. L., & Noneaker, D. L. (2003). Evaluation of a split-connection mobile

transport protocol. Wirel. Netw. , V 9(Kluwer Academic Publishers), pp 593-603

Yavatkar, R., & Bhagawat, N. (1994). Improving end-to-end performance of TCP over mobile internetworks.

Paper presented at the Mobile Computing Systems and Applications, 1994. Proceedings,

Workshop.

Yavuz, M., & Khafizov, F. (2002). TCP over wireless links with variable bandwidth. Paper presented at

the Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE

56th.

Zimmermann, H. (1980). OSI Reference Model--The ISO Model of Architecture for Open

Systems Interconnection. Communications, IEEE Transactions on [legacy, pre - 1988], V 28(4),

pp 425-432.

