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Abstract

We propose a method to define and investigate finite size systems in general relativity

in terms of their matter plus gravitational energy content. We achieve this by adopting

a generic formulation, that involves the embedding of an arbitrary dimensional time-

like worldsheet into an arbitrary dimensional spacetime, to a 2+2 picture. In our case,

the closed 2-dimensional spacelike surface S, that is orthogonal to the 2-dimensional

timelike worldsheet T at every point, encloses the system in question. The corre-

sponding Raychaudhuri equation of T is interpreted as a thermodynamic relation for

spherically symmetric systems in quasilocal thermodynamic equilibrium and leads to

a work-energy relation for more generic systems that are in nonequilibrium.

In the case of equilibrium, our quasilocal thermodynamic potentials are directly re-

lated to standard quasilocal energy definitions given in the literature. Quasilocal ther-

modynamic equilibrium is obtained by minimizing the Helmholtz free energy written

via the mean extrinsic curvature of S. Moreover, without any direct reference to sur-

face gravity, we find that the system comes into quasilocal thermodynamic equilibrium

when S is located at a generalized apparent horizon. We present a first law and the

corresponding worldsheet–constant temperature. Examples of the Schwarzschild,

Friedmann–Lemaître and Lemaître–Tolman geometries are investigated and com-

pared. Conditions for the quasilocal thermodynamic and hydrodynamic equilibrium

states to coincide are also discussed, and a quasilocal virial relation is suggested as

a potential application of this approach.

For the case of nonequilibrium, we first apply a transformation of the formalism of our

previous notation so that one may keep track of the quasilocal observables and the

null cone observables in tandem. We identify three null tetrad gauge conditions that

result from the integrability conditions of T and S. This guarantees that our quasilocal

system is well defined. In the Raychaudhuri equation of T, we identify the quasilocal

charge densities corresponding to the rotational and nonrotational degrees of free-
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Abstract

dom, in addition to a relative work density related to tidal fields. We define the corre-

sponding quasilocal charges that appear in our work-energy relation and which can

potentially be exchanged with the surroundings. These charges and our tetrad con-

ditions are invariant under the boosting of the observers in the direction orthogonal

to S. We apply our construction to a radiating Vaidya spacetime, a C-metric and the

interior of a Lanczos-van Stockum dust metric. Delicate issues related to axially sym-

metric stationary spacetimes and possible extensions to the Kerr geometry are also

discussed.
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1 Introduction

In physics, what we ultimately want to understand is how things work. Those things

in question, of course, changed over the history of science as we gathered larger

amounts of physical data and invented/discovered better mathematics. From point ob-

jects to electromagnetic waves, from subatomic particles to their corresponding fields,

the very definition of ‘things’ has changed over time. Also it was with the advent of

thermodynamics and statistical mechanics that we started asking deeper questions

by investigating ensembles of particles in a conscious way. The ‘thing’ under investi-

gation is then referred to as a system. This is the first keyword of this thesis.

Moreover, in terms of the dynamics of the things, i.e., how/why things work, New-

ton’s construction of classical mechanics was the basis of all subsequent mathemat-

ical physics. Later with the Lagrangian and Hamiltonian formulations we obtained a

more physically and mathematically concrete understanding of the dynamics of things.

From that point on the energy concept became very important in physics. In fact, it

is interesting that the word energy was introduced in the literature by Young just a

few decades before the advent of Hamilton’s formulation [1]. Energy is the second

keyword of the thesis.

Today, hundred years after Einstein presented his theory of gravity, general relativity

(GR) is still lacking unique definitions of a system and energy. It is true that we have a

good understanding of the dynamics of matter particles on a curved background. We

can calculate their momentum and energy. However, general relativity is not a theory

which solely investigates the objects on a pre-defined geometry. In GR, the spacetime

geometry itself is the fundamental object which possesses energy. Geometry is our

last keyword.

The search for conserved quantities in general relativity started from its earliest days

and it has been a very hot topic ever since then. We know that the stress-energy
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tensor, Tµν , is covariantly conserved, i.e., DµTµ
ν = 0 due to the Bianchi identities.

However, this tensor is defined only for the matter fields. Then one can ask whether

there is an analogous energy-momentum tensor that incorporates the effect of gravi-

tational fields. In the late 1950s Bel [2] came up with a concrete proposal by defining

a 4th-rank tensor, tµναβ. This traceless tensor, tµναβ, is defined via the Weyl tensor

and is analogous to the electromagnetic stress-energy tensor that is constructed from

the electromagnetic field. It can be shown that in general relativity the Bel tensor is

divergence-free. However, this holds only in vacuum.

For many researchers, the actual aim has been to find a total stress-energy ten-

sor which includes the effect of both matter and gravitational fields, that is locally

conserved. Accordingly, much research interest has focused on pseudotensors

[3, 4, 5, 6, 7]. In particular, suppose we define the total stress-energy tensor via

Tµν = Tµν + τµν, where τµν is the object that carries information about the gravita-

tional energy-momentum content. For various definitions of τµν it can be shown that

DµT µ
ν = 01. However, this can be achieved for those τµν which are not tensors, but

rather pseudotensors. This means that the resulting conservation law is coordinate

dependent which is an unwanted property for a covariant theory.

In classical field theories, our understanding of conserved quantities is directly related

to the corresponding continuous symmetries on account of Noether’s Theorem. For

example, in simple words, if a system has rotational symmetry then the angular mo-

mentum is conserved and if it has time symmetry then the total energy of the system is

conserved. In general relativity, it is the object that is called the Killing vector that gen-

erates the infinitesimal spacetime isometries. Therefore, if one is after a conserved

energy definition in general relativity, one can start the investigation with a timelike

Killing vector, if the spacetime possesses one.

In fact, this is how one obtains the Komar mass [11] which can be defined via a

3-dimensional volume integral of a special combination of the matter stress-energy

tensor, observer 4-velocity and the timelike Killing vector that the spacetime may pos-

sess [12]. Therefore, the Komar mass is defined for a finite domain of a stationary

spacetime only. If in addition the spacetime is asymptotically flat, there exist two well-

constructed, well-known, global energy definitions in general relativity: the Arnowitt-

Deser-Misner (ADM) mass-energy [13] and the Bondi mass-energy [14]. The former,

ADM mass-energy definition, requires the flatness of 3-spaces at spatial infinity, i.e.,

1See [8, 9, 10] for recent, detailed reviews.
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when the observers are located at r→∞.2 Similarly Bondi’s mass-energy definition

is obtained via the asymptotic symmetries of the spacetime at null infinity.

On the other hand, in general relativity, we do not only consider isolated objects, i.e.,

asymptotically flat spacetimes. We would like to understand systems in dynamical

spacetimes as well. Moreover, we want to investigate the strong field regime rather

than those regions where gravity behaves according to certain fall-off conditions.3

Accordingly, more concrete mass-energy definitions have been introduced in the liter-

ature since the 1990s. Among them, the Brown-York [24], Kijowski [25], Epp [26] and

Liu-Yau [27] energies are some of the ones which are constructed on or can be linked

to a canonical Hamiltonian formalism. These energy definitions are made for finite do-

mains of spacetime, i.e., they are quasilocal constructions. Also they do not require

any specific spacetime symmetry and therefore applicable for more generic space-

times. We will refer to the quasilocal energy definitions of Brown and York, Kijowski,

Epp and Liu and Yau many times throughout this thesis.

Our current work grew out of wanting to understand fundamental questions about the

nature of quasilocal energy in cosmology. According to the supervisor of this thesis,

David L. Wiltshire, the dark energy problem we have today is mainly a result of our

misinterpretation of the quasilocal energy differences of finite regions in the universe

that have different average Ricci curvature.4 When this PhD study started, he was

after a rigorous formalism that relates energy-like quantities defined on small scales

to those of statistical averages in cosmology. Therefore the initial goal of this research

was to: i) identify the quasilocal kinetic energy corresponding to the expansion of small

scale regions in the universe , ii) find the most relevant averaging method associated

with it in order to understand the global effects on the large scale.

2We will discuss the ADM Hamiltonian formalism in more detail in the next chapter.
3In relativistic astrophysics, for example, black holes provide excellent laboratories for understanding

some of the important physical mechanisms in the universe. However, the very definition of a black
hole is teleological as the entire information about the spacetime has to be known for its existence
[15]. In addition to that, in the actual universe, black holes are not just isolated massive stars that
have collapsed long time ago and do not interact with their surroundings any longer. On the con-
trary, in most of the numerical relativity simulations, we investigate the results of their collisions,
their behaviour with their binary companions or their accretion mechanisms. Accordingly, our mea-
surements should be considered during a period of time evolution of the system. To accommodate
this, the dynamical horizon concept has become very popular over the last two decades. Dynam-
ical horizons are quasilocal constructions and their definition is not as demanding as the one of
an event horizon. Some of the main contributors of this field are Hayward [16, 17, 18, 19, 20] and
Ashtekar and Krishnan [21, 22] for 2 + 2 and 3 + 1 formulations respectively. One can see [23] for a
review and for some of the other examples in this field.

4See [28, 29, 30, 31] for Wiltshire’s Timescape cosmology and his conceptual ideas.
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However, for anyone who starts working on energy definitions in a gravitational the-

ory, it is immediately obvious that this problem is like a ball of string with many ends.

The identification of concepts such as kinetic and potential mass-energies for a finite

region of spacetime is immensely difficult for the generic case due to the non-linear,

coupled nature of gravity. Even to start such an investigation, one needs to fully un-

derstand how to best define ensemble and time averages of microstates of gravity.

This prompts one to look for a statistical theory of gravity and the corresponding equi-

librium states. Those equilibrium states are then expected to fit in a thermodynamic

picture which is usually applied to only horizons in general relativity.

After the realization of the fact that we were actually trying to bite off more than we

could chew, we focused on broader questions about quasilocal energy in general

relativity. The main consideration was then how to derive a rigorous method which

would allow us to identify at least some of the concepts that we mentioned above.

Therefore, in this thesis, we basically present a purely geometric method which allows

us to achieve this by consistently defining a system and the corresponding mass-

energies it possesses.

The outline of the thesis is as follows. In Chapter 2 we present various formal mathe-

matical preliminaries. This will help for familiarization with the Hamiltonian formulation

of field theory and energy definitions in GR. Also we present the mathematical foun-

dations of our approach, which follow from Capovilla and Guven’s purely geometric

construction [32]. Therefore Chapter 2 is the one in which energy and geometry come

into play.

The definition of a gravitating system is crucial for Chapter 3 in which we introduce

thermodynamic concepts.5 We consider systems only defined in spherically sym-

metric spacetimes which are at thermodynamic equilibrium with their surroundings.

This follows from our geometrically defined equilibrium condition. We define certain

thermodynamic potentials and present an associated first law. Also, whether or not

the thermodynamic equilibrium coincides with the hydrodynamic equilibrium is inves-

tigated. This leads us to a virial relation which accounts for both the matter and

gravitational energy content of a finite region in question.

However, what we really mean by a system will be only clear in Chapter 4 in which

we investigate the finite regions of more generic spacetimes that are not in equilib-

5This chapter was published as an article in Class. Quantum Grav. 32:165011 [33], arXiv:1506.05801.
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rium with their surroundings.6 We present a more mathematically concrete approach

by applying a translation of our formalism from that of Capovilla and Guven [32] to

that of Newman and Penrose [34]. We discuss the conditions that one needs to im-

pose on the null cone of the observers, who define those finite regions, in order to

end up with well defined energy-like quantities. Following this, we define energy-like

quantities which can potentially be exchanged with the surroundings, and a resulting

work-energy relation.

In terms of the applications, we consider Schwarzschild, Friedmann-Lemaître-

Robertson-Walker and Lemaître-Tolman geometries in Chapter 3. We investigate

the effects of time dependence and matter field inhomogeneities on the equilibrium

point and the corresponding thermodynamic potentials. In Chapter 4 we apply our

construction to a radiating Vaidya geometry, a C-metric and the interior of a Lanczos-

van Stockum dust metric. We obtain certain results which might initially seem counter

intuitive in a Newtonian framework. However, once we explain the physical content

behind these results, they will become more clear.

Although there are various studies in terms of both the energy definitions and the ge-

ometric approaches of GR in the literature, this thesis has essentially emerged after

careful reading and blending of the ideas presented in three papers: Kijowski’s [25],

Epp’s [26] and Capovilla and Guven’s [32]. Kijowski’s work presents a big picture of

the Hamiltonian formulation of GR in terms of its foundational and mathematical as-

pects. Epp’s work presents a very intuitive investigation in terms of understanding

energy and angular momentum by geometric means. This lead us to look for a more

concrete geometric construction in the 2 + 2 picture that would allow one to link the

geometry of 2-surfaces to the observables of finite regions. Such a geometric con-

struction, for arbitrary dimensions, is provided in the work of Capovilla and Guven.

We will refer to these papers many times throughout the thesis, as they provide the

conceptual and mathematical basis for our own ideas. The reader is advised to refer

to them whenever the details we provide here are not clear enough.

Note that we will use natural units in which c,G, h̄,kB are taken to be 1 throughout the

thesis. The metric signature will be (−,+,+,+).

6This chapter has been submitted for publication and can be found in arXiv:1602.07861.
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2 Preliminaries

In this chapter, we would like to summarize the investigations and mathematical con-

structions that will be relevant throughout this thesis. We will provide two main sec-

tions: i) Hamiltonian formulations and some of the quasilocal energy definitions in

general relativity, ii) A geometrical construction that leads one to the Raychaudhuri

equation of a 2-dimensional timelike worldsheet.

Since our investigation is essentially about how to best define the mass-energy of a

relativistic system, understanding the necessity behind defining the system’s proper-

ties quasilocally is crucial in order to fully appreciate the original contributions that are

given in this thesis.

Therefore, firstly, we will help the reader to get familiar with the Hamiltonian formu-

lations. We will form analogies between the Hamiltonian formulations of classical

mechanics, field theories and general relativity. In order to present an example of

canonical Hamiltonian formulation of dynamics of the gravitating systems, we will out-

line Kijowski’s approach [25, 35]. Following this, other quasilocal energy definitions

– that are either derived via or related to the Hamilton-Jacobi formulation – will be

summarized.

Secondly, we will give a short summary of Capovilla and Guven’s geometric construc-

tion presented in [32]. The extrinsic variables of a timelike worldsheet T, and a space-

like surface S, orthogonal to it at every spacetime point will be introduced. Later, we

will present a derivation of Capovilla and Guven’s generalized Raychaudhuri equation

while also providing the steps one should follow to derive the Raychaudhuri equation

of a worldline in a standard way.

At first, the connection between those two sections will probably not be clear to the

reader. However, once we start defining the thermodynamic potentials in Chapter
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2 Preliminaries

3 and define a work-energy relation in Chapter 4, those connections will be more

transparent.

2.1 Hamiltonian formulations and quasilocal energy

definitions in the literature

The Hamiltonian formulation of general relativity can be obtained by taking the vari-

ation of the action with respect to the spacetime metric, gµν. The metric gµν, i.e., the

gravitational field, acts as a source for gravitational energy while at the same time

defining the rulers and clocks of the observers who would like to measure and quan-

tify the gravitational energy in question. Note that there is no additional background

via which the dynamics of gµν can be investigated.

Moreover, according to the strong equivalence principle, one can always find a local

frame in which gµν reduces to the metric of flat spacetime1. This means that for any

gravitational energy definition which is built upon the curvature of the spacetime via

gµν and its first derivatives locally, the gravitational energy is locally zero. Therefore

defining the gravitational energy is a challenge for general relativity.

There have been numerous attempts to define the gravitational energy locally via

pseudotensors [3, 4, 5, 6, 7]. Construction of those non-tensorial objects requires a

vector which generates the symmetries of the given spacetime and a covariant deriva-

tive operator associated with either a non-dynamical auxiliary background metric or

a connection. There exist pseudotensors defined by using the partial derivatives of

the local coordinates as well. The resultant gravitational energy calculated via the

pseudotensor is of course required to be independent of the non-physical background

metric or the coordinates. Note that although pseudotensors are helpful for defining

the gravitational energy for preferred observers in certain situations, most of the time,

they cannot succeed in reflecting the coupled matter plus gravitational energy of the

1In general relativity we assume local flatness. On a Riemannian manifold, we can always choose
normal coordinates within an open neighbourhood of a point such that the metric is written as

gµν = ηµν−
1
3

Rµανβ x̂α x̂β + O(x3), (2.1)

in which xµ refer to the arbitrary coordinates and x̂µ refer to the transformed, normal coordinates.
Therefore one needs to keep in mind that gµν = ηµν is true only up to first order [36].
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system. Moreover, only certain classes of them satisfy the conservation equation with

the correct weight 2 [37].

A careful application of the Hamiltonian approach to the theory of general relativity

shows that: i) Part of the Hamiltonian that appears as a 3-dimensional volume in-

tegral gives us the constraints, i.e., the first order Einstein field equations. ii) The

2-dimensional boundary Hamiltonian is in fact non-vanishing and it is the part that

is physically relevant for the mass-energy measurements of the observers [24, 25].

Because of this, the matter plus gravitational energy of a system is at best defined

quasilocally in general relativity.

On the other hand, quasilocality is not only demanded for the consistent definition of

the matter plus gravitational energy of a relativistic system on account of the equiv-

alence principle. In fact, quasilocality is at the heart of the very idea of measure-

ment. The observables we measure are all obtained by finite size ‘laboratories’ in

finite amounts of time [38]. Also in terms of quantum field theory considerations,

physical observables should be associated with finite regions of spacetime [39].

Now that the importance of quasilocal energy definitions is emphasised, we will

present more details in terms of the Hamiltonian formulations of general relativity. To

do that, we will mostly follow references [25] and [35] of Kijowski in which analogies

between Hamiltonian formulations of classical mechanics, field theories and general

relativity are formed. This allows one to see the big picture in terms of a canonical

Hamiltonian formulation of general relativity. We will also discuss those quasilocal

energy definitions which are most relevant to our investigation. Note that a detailed

review of quasilocal energy definitions can be found in [37].

2Let tµν(2k) be a gravitational stress-energy pseudotensor with k ∈ R. Some of the well known pseu-

dotensors in GR can be defined via 2|g|k+1
(
8πG tαβ(2k)−Gαβ

)
:= ∂µ∂ν

(
|g|k+1

[
gαβgµν−gανgβµ

])
. Then

the Einstein field equations imply that ∂α
(
|g|k+1

[
tαβ(2k) + Tαβ

])
= 0 where Tαβ is the matter stress en-

ergy tensor. This shows that there is only one pseudotensor, tµν(−2), which satisfies the conservation
of the “total” stress-energy tensor with the correct weight.

9
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2.1.1 Generating functions in classical mechanics, “control” and

“response” variables

In order to formulate the dynamics of a system in classical mechanics, consider the

function L as a generating function of a 2n-dimensional Lagrangian submanifold D, in

the 4n-dimensional symplectic space P. In P, let qi describe the positions, q̇i veloci-

ties, pi momenta and ṗi forces acting on particles. Here {i = 1, ...,n} and an overdot

corresponds to the Newtonian time derivative. Then the Euler-Lagrange equation,

i.e.,

dL
(
qi,
.
qi)

=
.
pidqi + pid

.
qi (2.2)

formulates the dynamical equations for a system. This means that given a system with

known particle positions and velocities, once we perturb those values infinitesimally

we can get information about the momenta and forces acting on the particles via the

mapping {
.
pi = ∂L

∂qi , pi = ∂L
∂
.
qi }. For such a case, we have the schematic description of

the system as

qi,
.
qi

Control variables

.
pi, pi

Response variables

Mapping

.
pi = ∂L

∂qi , pi = ∂L
∂
.
qi

Rather than talking about dependent and independent variables, here we introduce

Kijowski’s language in terms of the “control” and “response” variables in which the

former refers to those that can be varied within the system and the latter are the ones

that result from such variations. The mapping between those two sets of variables

are obtained via the relevant partial derivatives of the generating function. Note that

in order to model the same dynamics one can pick another generating function in the

same symplectic space which satisfies

P =
[
spaceo f controlvariables

]
×

[
spaceo f responsevariables

]
(2.3)

Different choices of such a splitting depend on different “control modes” which corre-

spond to different generating functions.

10



2.1 Hamiltonian formulations and quasilocal energy definitions in the literature

Now let us apply a Legendre transformation on dL by substituting

pid
.
qi

= d
(
pi
.
qi)
−
.
qidpi (2.4)

in eq. (2.2). Then one can define another generating function, −H
(
qi, pi

)
by

H = pi
.
qi
−L, (2.5)

and

−dH
(
qi, pi

)
=
.
pidqi−

.
qidpi (2.6)

formulates the same dynamics. In that case we have the following sketch

qi, pi

Control variables

.
pi,
.
qi

Response variables

Mapping

.
pi = −∂H

∂qi ,
.
qi

= ∂H
∂pi

Note that both of the generating functions, Lagrangian L and Hamiltonian H, keep the

symplectic structure

ω :=
(
dpi∧dqi

).
= d

.
pi∧dqi + dpi∧d

.
qi (2.7)

invariant.

2.1.2 Boundary terms of the Hamiltonian in field theories

In field theory, the information about the dynamics of field, φ, is contained in

δL (φ,∂νφ) =
(
∂νpν

)
δφ+ pνδ (∂νφ) . (2.8)

Here the field φ plays the role of coordinates qi in classical mechanics where pν are

the momenta canonically conjugate to it. The time derivative operator, overdot, is

11
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replaced by the partial derivatives with respect to the coordinates xν with {ν= 0,1,2,3}.
Then we have

φ, ∂νφ

Control variables

∂νpν, pν

Response variables

Mapping

∂νpν = δL
δφ , pν = δL

δ(∂νφ)

For a Hamiltonian formulation we need some sort of “time” evolution. Therefore let us

apply a (3 + 1) splitting to eq. (2.8) and write

δL (φ,∂0φ,∂Aφ) = (πδφ).+∂A
(
pAδφ

)
, (2.9)

with {A = 1,2,3}. The timelike coordinate is denoted by “0” and π := p0. Now we

integrate δL over a 3-dimensional spacelike domain V and write

δ

∫
V

L =

∫
V

( .
πδφ+πδ

.
φ
)
+

∫
∂V

p⊥δφ, (2.10)

where the second term on the r.h.s. emerges from Stokes’ Theorem since ∂V is the

closed boundary of V and p⊥ is the component of pA orthogonal to it. Now apply a

Legendre transformation between π and
.
φ by writing

πδ
.
φ = δ

(
π
.
φ
)
−
.
φδπ, (2.11)

so that one can define a new generating function

H =

∫
V

H =

∫
V

(
π
.
φ−L

)
(2.12)

that models the same field dynamics by

−δH =

∫
V

( .
πδφ−

.
φδπ

)
+

∫
∂V

p⊥δφ. (2.13)

In that case we have the following sketch,

12



2.1 Hamiltonian formulations and quasilocal energy definitions in the literature

φ, π

V

φ

∂V

Control variables

.
π,
.
φ

p⊥

∂V

V
Response variables

Mapping

.
π = −δH

δφ ,
.
φ = δH

δπ

only if no boundary terms remain after one applies the integration by parts. This

is obtained by hand when one chooses a Dirichlet type boundary condition, i.e.,

φ
∣∣∣
∂V = constant. This is typical for field theories. Note that without such a choice

of boundary condition, the evolution of the system contained in φ is influenced by

external fields and the system cannot be determined by a Hamiltonian formulation.

In addition to applying a Legendre transformation on the volume integral, one can con-

sider a Legendre transformation on the boundary integral. For example, consider

p⊥δφ = δ
(
p⊥φ

)
−φδp⊥ (2.14)

and substitute this into eq. (2.13). Then a new Hamiltonian is defined via

H = H +

∫
∂V

p⊥φ, (2.15)

and a corresponding generating formula is

−δH =

∫
V

( .
πδφ−

.
φδπ

)
−

∫
∂V
φδp⊥ (2.16)

which carries information about the same dynamics. However, now, the evolution

takes place in a different phase space. In order to have the same Hamiltonian for-

mulation, one has to make the boundary term in eq. (2.16) vanish, as we did in

eq. (2.13) for H . This requires imposing Neumann-like boundary conditions, i.e.,

p⊥
∣∣∣
∂V = constant.

Note that those boundary conditions are not unique. In a generic case, boundary con-

ditions can affect the field evolution. Most importantly, different boundary conditions

correspond to different “insulation” of the physical system.

13
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2.1.3 A canonical Hamiltonian formulation in GR: Kijowski’s

approach

In the Lagrangian formulation of GR, the gravitational field strength, gµν, and the

spacetime Ricci curvature, R, play the central role. The standard Lagrangian den-

sity is given by [40]

L =
1

16π

√
|g|R, (2.17)

where g = detgµν. In order to construct an action principle, one can either follow

the Einstein-Hilbert formulation and consider the variation of L with respect to gµν,

or alternatively take variations of L with respect to both gµν and the connection Γλµν

which are treated independently. The latter version is the metric affine formulation of

Palatini [41]. One can also pick a Lagrangian function in which the metric does not

appear explicitly and the variation is taken with respect to Γλµν. In that case, gµν is

treated as the momentum canonically conjugate to the connection. This is the purely

affine formalism of Kijowski [42].

The Hamiltonian formulation of GR follows from one of the variational principles

listed above. Among many Hamiltonian formulations of GR, the Arnowitt-Deser-

Misner (ADM) formalism [13] is one of the most widely used. The ADM Hamiltonian,

HADM, follows from an appropriate Legendre transformation of the Einstein-Hilbert

Lagrangian density, (2.17).

In order to present HADM, let us first assume
(
M,gµν

)
to be a globally hyperbolic

spacetime. Then one can pick a global time function, t, such that each t = constant 3-

surface is a Cauchy surface. Then the manifold M can be foliated with these Cauchy

hypersurfaces, Σ, such that the topology of M is R× Σ. Let us denote u to be the

timelike unit vector field normal to Σ at each spacetime point with components

uµ =

(
1
N
,−

NA

N

)
, (2.18)

where N is the lapse function and NA is the shift vector with {A = 1,2,3}. Then one

decomposes the spacetime metric as the following

g00 = −N2 + hABNANB, g0A = NA, gAB = hAB, (2.19)

14



2.1 Hamiltonian formulations and quasilocal energy definitions in the literature

in which hAB is the 3-metric induced on Σ. The corresponding extrinsic curvature of Σ

is given by

KAB = −hC
AhD

BDCuD (2.20)

and Dµ is the spacetime covariant derivative. Let us define an object by

PAB =
√

h
(
K hAB−KAB

)
, (2.21)

where h = det hCD, K = KABhAB is the trace of the extrinsic curvature of Σ. Here

hAB plays the role of qi in classical mechanics (or φ in field theories) and PAB is the

geometrically defined canonical momentum conjugate to hAB.

The ADM Hamiltonian, HADM, follows from applying a Legendre transformation to L

and integrating the result on Σ, i.e.,

HADM =

∫
Σ

(
PAB

.
hAB−L

)
. (2.22)

Now consider splitting the terms that appear in the Lagrangian (2.17) into their (3 + 1)
components. By substituting those terms back into eq. (2.22), one may write HADM

as a functional of the canonical momentum, lapse and shift by

HADM =
1

16π

∫
Σ

(
N H + NA HA

)
, (2.23)

where H is the quadratic constraint and it is given by

H =
1
√

h

(
PABPAB−

1
2

P2−R
√

h
)
, (2.24)

and HA is the momentum constraint that is given as

HA = −2DBPAB. (2.25)

Here P2 = hABPAB and R is the Ricci scalar defined with respect to the induced 3-

metric. Note that no boundary integral appears in eq. (2.23). Also recall that in

eqs. (2.13) and (2.16), which correspond to different Hamiltonians for the same field

theory, the boundary integrals were set to zero only by imposing Dirichlet and Neu-

mann type boundary conditions. For a general case in general relativity, the total

Hamiltonian of any canonical approach involves those boundary terms which do not

15
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necessarily vanish. In the ADM formalism, one sets the boundary terms to zero by

imposing an asymptotic flatness condition on the spacetime metric. Therefore, HADM

cannot be considered as the Hamiltonian of a generic system in general relativity.

Note that the symplectic structure of ADM, ωADM, in the space of initial data
(
PAB,hAB

)
is, accordingly, given by only a volume integral

ωADM =
1

16π

∫
Σ

(
dPAB∧dhAB

)
. (2.26)

In his canonical formalism [25], Kijowski considers the same Lagrangian density,

(2.17), defined for vacuum3. To construct an action principle, the total variation of

L is given as

δL = δ

(
1

16π

√
|g|gµνRµν

)
= −

1
16π

√
|g|Gµνδgµν︸                  ︷︷                  ︸

[δL]1

+
1

16π

√
|g|gµνδRµν︸               ︷︷               ︸
[δL]2

, (2.27)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor. Thus the entire information of the

Einstein-Lagrange equations, [δL]1 = 0, should be given in [δL]2 = 0 in order for δL = 0
to hold. From this point on, Kijowski [25] focuses on the [δL]2 term only and shows

that once [δL]2 is integrated over a finite 3-dimensional space, one obtains those

boundary terms that should appear in the Hamiltonian formulation of GR and which

are missing in the original ADM formalism.4 This is achieved via writing [δL]2 as a

total divergence according to

[δL]2 =
1

16π

√
|g|gµνδRµν =

1
16π

∂λ
( √
|g|gµνδAλµν

)
(2.28)

with

Aλµν := Γλµν−δ
λ

(µΓ
κ
ν)κ, (2.29)

which is written purely in terms of the connection. In that case, Aλµν plays the role

of the “field” and the weighted inverse metric, 1
16π

√
|g|gµν, of spacetime acts as its

canonically conjugate momentum according to the analogy.

3However, inclusion of matter fields does not change any of the results that will be presented here.
4The fact that manifolds with boundary require a remedy was first realised by York [43]. Later Gibbons

and Hawking [44] added a boundary action to the Einstein-Hilbert action as a solution. This action
is now known as the Gibbons-Hawking-York action whose variation results in the same dynamics
as the one of the ADM formalism, once one fixes the metric on the spatial 3-slices.
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Now let us, once again, consider a (3 + 1) splitting of spacetime and integrate [δL]2

over the Cauchy surface Σ in adapted coordinates. Then∫
Σ

[δL]2 =
1

16π

∫
Σ

( √
|g|gµνδA0

µν

).
+

1
16π

∫
S

√
|g|gµνδA1

µν. (2.30)

Here the overdot refers to the derivative with respect to the time function of the folia-

tion, S is the closed spacelike boundary of Σ and the index “1” refers to the spacelike

adapted coordinate x1 which is constant on S. Once again, the second term on the

r.h.s. of eq. (2.30) follows from Stokes’ Theorem. The final form of eq. (2.30) is ob-

tained by Kijowski as the following,∫
Σ

[δL]2 = −
1

16π

∫
Σ

(
hAB δPAB

).
+

1
8π

∫
S

(λδα).−
1

16π

∫
S
γxy δΠ

xy, (2.31)

where {x,y = 0,2,3}. In order to introduce the new terms that appear in eq. (2.31),

let us consider a 3-dimensional worldtube, B, which is spanned by S during its time

evolution.

To study the geometry of B, Grabowska and Kijowski introduce four unit vectors [35],

i) u is the timelike unit vector orthogonal to Σ,

ii) ũ is the timelike unit vector tangent to B,

iii) n is the spacelike unit vector tangent to Σ,

iv) ñ is the spacelike unit vector orthogonal to ũ.

The configuration of these vectors is sketched in Fig. 2.1 and it shows that the most

generic foliation is considered in [35]. In other words, in general, u , ũ and n , ñ. In

the last term of eq. (2.31), the metric induced on B is denoted by γxy. The associated

extrinsic curvature of the worldtube is then

Θxy = −γz
xγ

w
yDzñw. (2.32)

The conjugate momentum of γxy, analogous to the ADM canonical momentum, (2.21),

is defined via

Πxy =
√
|γ|

(
Θγxy−Θxy) , (2.33)

where γ = det γwz and Θ = Θxyγ
xy is the trace of the extrinsic curvature of B. In the sec-

ond term, on the r.h.s. of eq. (2.31), α represents the tilt angle between the worldtube

B and the Cauchy hypersurface Σ, i.e., α = arcsinh (ũ |n). The term λ represents the
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ũu

n

ñ

B

Σ

S

α

Figure 2.1: Configuration of unit vectors defined with respect to the worldtube B and Cauchy
surface Σ. The spacelike 2-surface S is taken as either the boundary of B or the
boundary of Σ. Here α is the tilt angle between B and Σ.

density of the induced metric, σi j, of the 2-surface S. It is given by λ =
√
|det γi j| =

√
σ

with σ = det σi j and {i, j = 2,3}.

The Hamiltonian description is obtained once one performs a Legendre transforma-

tion to eq. (2.31) both on the 3-dimensional volume integral, i.e.,(
hAB δPAB

).
=
.
hAB δPAB +δ

(
hAB

.
P

AB)
−
.
P

AB
δhAB, (2.34)

and on the 2-dimensional area integral, i.e.,

(λδα). =
.
λδα+δ

(
λ
.
α
)
−
.
αδλ. (2.35)

Then with a Hamiltonian function

HK = −
1

16π

∫
Σ

(
hAB

.
P

AB
−L

)
+

1
8π

∫
S
λ
.
α, (2.36)
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one obtains the generating formula

−δHK =
1

16π

∫
Σ

( .
P

AB
δhAB−

.
hABδPAB

)
+

1
8π

∫
S

( .
λδα−

.
αδλ

)
−

1
16π

∫
S

(
γxyδΠ

xy
)
. (2.37)

Note that the generating formula of ADM corresponds to

δHADM =
1

16π

∫
Σ

( .
P

AB
δhAB−

.
hAB δPAB

)
(2.38)

and this clearly shows that the symplectic structure (2.26) corresponding to the ADM

Hamiltonian has to be modified. In Kijowski’s approach the total symplectic structure

is given by

ωK = −
1

16π

∫
Σ

(
δhAB∧δPAB

)
+

1
8π

∫
S

(δλ∧δα). (2.39)

We observe that in addition to the volume integral which corresponds to ωADM, there

exists a boundary integral indicating that the phase space should be enlarged.

Note that HK can be rewritten by using the ADM constraints as

HK =
1

8π

∫
Σ

(
N H + NAHA

)
+

1
16π

∫
S

(
Πi jγi j−Π00γ00

)
(2.40)

which becomes a pure boundary integral, once the quadratic and momentum con-

straints {H = 0, HA = 0} are imposed, i.e.,

HK =
1

16π

∫
S

(
Πi jγi j−Π00γ00

)
. (2.41)

Equation (2.41) can further be simplified and written as a functional of the extrinsic

variables of the spacelike 2-surface S, once the (2+1) decomposition of the worldtube

B is considered.

For this, let the time evolution vector of B be split into parts that are orthogonal and

tangent to S, i.e.,
∂

∂x 0 = −s ũ + si ∂

∂x i (2.42)

where s is the lapse function of B and si is the shift vector, so that we have

γ00 = −s2 + sisi (2.43)

analogously to the decomposition of g00 given in eq. (2.19). Likewise, Πxy is decom-
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2 Preliminaries

posed accordingly and the integrand of eq. (2.41) is found to be

Πi jγi j−Π00γ00 =
(
Πklσ

kiσl j
)
γi j−2Π0

i si + s2 Π00. (2.44)

Now let us denote Π
i j
⊥ := Πklσ

kiσl j. Under the (2 + 1) splitting, the generating formula

(2.37) follows as

−δHK =
1

16π

∫
Σ

( .
P

AB
δhAB−

.
hAB δPAB

)
+

1
8π

∫
S

( .
λδα−

.
αδλ

)
−

1
16π

∫
S

(
γ00 δΠ

00 + 2γ0i δΠ
0i +γi j δΠ

i j
⊥

)
. (2.45)

Case 1

This is the point where Kijowski starts discussing about the relevant “control” and

“response” variables of the boundary Hamiltonian of general relativity. He applies

further Legendre transformations between γi j and Π
i j
⊥ and writes another formula that

gives the dynamics of spacetime by

−δHK1 =
1

16π

∫
Σ

( .
P

AB
δhAB−

.
hAB δPAB

)
+

1
8π

∫
S

( .
λδα−

.
αδλ

)
−

1
16π

∫
S

(
γ00 δΠ

00 + 2γ0i δΠ
0i−Π

i j
⊥ δγi j

)
. (2.46)

This corresponds to a new boundary Hamiltonian which is written as

HK1 = −
1

16π

∫
S

(
Π00γ00

)
−E0, (2.47)

where E0 is a constant. Note that we are always allowed to add an arbitrary constant

to any generating function. This is because it is the generating formula, −δHK1, but

not the generating function that models the dynamics of the system. Physically this

E0 can be understood as a “reference energy” that provides one with a “datum”. It

is only after we specify such a datum that the measured value of the energy of the

system makes physical sense.

The (2 + 1) splitting of the worldtube B, allows eq. (2.47) to be written in terms of the

objects that are related to the extrinsic geometry of the spacelike boundary S. Under

a certain type of control, which we will discuss in a few paragraphs, HK1 takes its
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simplest form as

HK1 = −
1

16π

∫
S
λ

(
k2− l2− k2

0

)
k0

. (2.48)

Here k is the trace of the extrinsic curvature of S when embedded into Σ and l is the

trace of the extrinsic curvature of S when embedded into B, which are respectively

given as

k := σi jki j = σi j
[
σk

iσ
l
jDk ñl

]
, (2.49)

l := σi jli j = σi j
[
σk

iσ
l
jDk ũl

]
, (2.50)

and the term k0 is the extrinsic curvature scalar of a hypothetical S embedded into a

spacelike hypersurface Σ of Minkowski. Then it is easy to observe that HK1 becomes

zero for Minkowski space.5 This makes sense since in a spacetime with no matter

and curvature one would expect to measure zero quasilocal energy.

The simplification of HK1 in (2.47) can be made by means of the geometric identities

sΠ00 = −λ (k coshα+ lsinhα) , (2.51)

−
1
s

[ .
λ−∂i

(
λsi

)]
= −λ (k sinhα+ lcoshα) ,

Π0
i + P1

i = −λ∂iα.

which follow from the definition and the 2 + 1 decomposition of the canonical momen-

tum Πxy defined on B. This clearly shows that by controlling Π00, Π0
i and γi j = σi j as

is done in eq. (2.46), one actually controls the values of the tilt angle, α, the lapse, s,

and shift vector components, si. Then by choosing

Π00 = −λk0,

Π0i = 0,
.
λ =

(√
|det γi j|

).
= 0.

and making use of the equation set (2.51), the equation (2.47) simplifies into eq. (2.48)

on account of s2 =
(
k2− l2

)
/k2

0. Note that in this approach, k0 emerges due to the

controls Kijowski imposes on the system to exclude the effects of boosts, rotations

and translations in HK1 which is achieved by assigning flat values to Π00 and Π0i.

5Note that for Minkowski, l = 0 automatically.
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Case 2

Alternatively, Kijowski applies another Legendre transformation between the terms

{s2,Π00} and {si,Π0
i} in the boundary integral of eq. (2.46). Then one has a new

generating formula

−δHK2 =
1

16π

∫
Σ

( .
P

AB
δhAB−

.
hAB δPAB

)
+

1
8π

∫
S

( .
λδα−

.
αδλ

)
+

1
16π

∫
S

(
Π00 δ

(
−s2

)
+ 2Π0

i δsi +Π
i j
⊥ δγi j

)
. (2.52)

with the corresponding Hamiltonian

HK2 = −
1

8π

∫
S

(
Π00γ00 +Π0iγ0i

)
−E0. (2.53)

From eq. (2.52) we observe that the control variables are now {s, si,γi j} which include

the entire information encoded in the worldtube metric γxy. Therefore, by imposing

certain values on the new control variables, one fixes the metric on B.

After substituting the following choice of control variables

s2 = 1, (2.54)

si = 0, (2.55)
.
λ = 0, (2.56)

into the equation set (2.51), then solving for Π00,α and Π0i, one can write the Hamil-

tonian (2.53) in terms of the extrinsic curvature scalars of S by

HK2 = −
1

8π

∫
S
λ
( √

k2− l2− k0

)
. (2.57)

From now on we will denote HK1 and HK2 as EK1 and EK2 respectively, to indicate that

they do refer to energy rather than any other quantity. We will discuss their physical

interpretations together with other quasilocal energy definitions in the literature in the

next few subsections. Note that we do not follow a chronological order in terms of the

introduction of those definitions to the literature.
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2.1.4 Brown-York (BY) Energy

Brown and York [24] also followed a Hamilton-Jacobi approach to define a quasilocal

energy on a 2-dimensional spacelike boundary, S, of the worldtube B.

Hamiltonian formulation of BY is fundamentally different than the ones of ADM or

Kijowski in the sense that the starting point of the action principle is not the Einstein-

Hilbert Lagrangian, (2.17). Rather, they consider an action, I, by adding extra bound-

ary terms to the standard Einstein-Hilbert action by

I =
1

16π

∫
M

√
|g|R +

1
8π

∫
Σ

√
h K −

1
8π

∫
B

√
|γ|Θ, (2.58)

and write its variation as

δI =
1

16π

∫
M

√
|g|Gµν δgµν+

1
8π

∫ Σt

Σt0

√
h PAB δhAB−

1
8π

∫
B

√
|γ|Πxy δγxy. (2.59)

Then, when the Einstein field equations are satisfied, one has to fix hAB on Σt0 and

Σt, and also fix γxy on B in order to have δI = 0. These give the boundary condi-

tions/“controls” of the BY formalism.

According to this approach, the so-called gravitational stress-energy tensor, Tµν
B , de-

fined on B captures the coupled effects of matter and gravitation6. It is defined via the

canonical momentum of γxy by

T xy
B =

2√
|γ|

Πxy =
2√
|γ|

δI
δγxy

. (2.60)

When one projects this stress-energy tensor tangentially and normally to the spacelike

2-boundary of B, one obtains the quasilocal energy, momentum and spatial stress

densities. The Brown-York quasilocal energy density (energy per 2-surface area) is

then written as

ε = uxuyT xy
B . (2.61)

After one splits T xy
B into its (2 + 1) components, the quasilocal energy corresponding

6In order for Tµν
B to include the effect of matter fields, one simply adds the matter action to I. This

does not change any of the results.
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to ε reads as [24],

EBY = −
1

8π

∫
S

√
σ (k− k0) (2.62)

where k is again the extrinsic curvature scalar of S when it is embedded in Σ and k0

is the corresponding extrinsic curvature evaluated for a suitable reference spacetime.

Brown and York also emphasise the fact that for a positive curvature embedding of

S into flat spaces of the chosen reference spacetime, one is guaranteed a unique

embedding 7.

Note that Kijowski’s quasilocal energy EK2, given in eq. (2.57), becomes equal to EBY

in a specific gauge, i.e., l = 0. This is mainly because in both of the definitions, one

chooses the same boundary condition by imposing a fixed metric on B. However, EK2

has an extra gauge freedom, due to the metric on Σ not being fixed.

2.1.5 Epp’s (E) Energy

Epp follows the BY formalism and considers a modification of EBY by forming an anal-

ogy between the special relativistic (SR) proper mass of a particle and the “invariant”

mass-energy of a system [26]. According to his analogy√
E2− p2 (S R) −−−−−→

√
k2− l2 (GR), (2.63)

where E and p are the relativistic energy and momentum of the particle respectively.

According to Epp, it is the mean extrinsic curvature of S, i.e.
√

k2− l2, rather then

k that reflects the total mass-energy content within a bounded region. Therefore, in

7Whether there exists an embedding of a generic 2-dimensional surface with a positive definite metric,
into the 3-dimensional Euclidean space is known as the “Weyl problem” [45]. In the early 1950s,
Pogorelov [46] and Nirenberg [47] independently showed that there exists an isometric embedding
of a 2-surface into the Euclidean 3-space only if it possesses a Riemannian metric and has pos-
itive Gaussian curvature. The isometric embedding in question was claimed to be unique up to
Euclidean rigid motions. This theorem was used many times in quasilocal energy definitions that
involve the k0 term [24, 25, 27]. However, later, it was seen that a full description of the existence
and uniqueness of such isometric embeddings requires additional conditions. In 2008, Wang and
Yau came up with a new existence and uniqueness theorem [48] and stated that those additional
conditions are: i) The mean curvature vector, corresponding to the embedding of a closed 2-surface
into Minkowski space, has to be spacelike. ii) The spacetime, that includes the 2-surface, has to
satisfy the dominant energy condition.
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order to define the invariant quasilocal mass energy he considers [26],

EPhysical
E = −

1
8π

∫
S

√
σ

√
k2− l2, (2.64)

EReference
E = −

1
8π

∫
S

√
σ

√
k2

re f − l2re f , (2.65)

so that

EE = EPhysical
E −EReference

E . (2.66)

Note that for the case of the reference spacetime being Minkowski, EE does not ex-

actly reduce to EK2 due the definition of mean extrinsic curvature having an extra

factor of 1/2 in Epp’s approach [26].

2.1.6 Liu-Yau (LY) Energy

In Liu and Yau’s work [27] there is no reference to a timelike 3-dimensional boundary.

Liu and Yau considered the embedding of S directly into a spacetime domain D by

taking its two normal null vectors and the corresponding mean extrinsic curvature.

That provides a well-defined quasilocal energy under the direct embedding of a 2-

dimensional spacelike surface into a 4-dimensional spacetime. In fact, this idea is

closest to the heart of the method we use in this thesis. When Liu and Yau’s work is

converted from their original notation into the one used here, their energy expression

becomes [37]

ELY = −
1

8π

∫
S

√
σ

[√(
k2− l2

)
− k0

]
. (2.67)

The reference energy is obtained by embedding S into the 3-dimensional Euclidean

space, R3, and calculating its mean extrinsic curvature, k0. This isometric embedding

is unique up to the isometries of R3. Note that their quasilocal energy expression is

exactly equal to Kijowski’s energy given by (2.57). The positivity of the Kijowski-Liu-

Yau energy, denoted EKLY from now on, has been proven by Liu and Yau [27, 49]. It

is a widely accepted quasilocal energy definition [50, 37].
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Important Remark:

The literature is divided into two camps in terms of the definition of the extrinsic scalars

k and l. For example, according to the definition given in eq. (2.49), k0 = +2
r for a round

2-sphere. This notation was used in Epp’s [26], Liu and Yau’s [27] and in Szabados’s

review article [37]. On the other hand, Brown and York [24] and Kijowski [25] follow

the formal notation for the extrinsic curvature, so that eqs. (2.49) and (2.50) have an

extra negative sign. Accordingly k0 = −2
r for a round 2-sphere in their notation. In

this thesis, we follow the notation used by the first camp since the “positivity” theorem

was first presented in this notation [27]. Moreover, we suspect most researchers

refer to Szabados’ review article to compare and contrast various quasilocal energy

definitions. Therefore, in Kijowski’s and Brown and York’s original papers, EK1, EK2

and EBY are given in a different form than the one in eqs. (2.48), (2.57) and (2.62)

respectively.

2.1.7 Misner-Sharp-Hernandez (MSH) Energy

In Chapter 3 we will focus on systems that are in thermodynamic equilibrium with

their surroundings and in horizon thermodynamics there is a broad consensus [18,

51, 52, 53, 54] on the choice of the internal energy of a generic spherically symmetric

spacetime. It is usually taken as the Misner-Sharp-Hernandez energy [55, 56] which

does not follow from a Hamiltonian approach.

Let us consider a spherically symmetric spacetime metric with coordinates {yα, θ,φ}

where {yα} = {t,r},

ds2 = Υαβdyαdyβ+ R2(y)
(
dθ2 + sin2 θdφ2

)
, (2.68)

R being the areal radius. In order to study time evolution, one can pick a preferred

timelike vector, called the Kodama vector [57], which can be used to define surface

gravity for dynamic spherically symmetric spacetimes [18]. The surface gravity, up to a

constant, is in general related to the temperature defined on the horizon. The Kodama

vector is unique and it is parallel to the timelike Killing vector in static spacetimes. Its

components are given by,

Kα(y) = εαβ∂βR, Kθ = 0, Kφ = 0, (2.69)
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where εαβ is the Levi-Civita tensor in 2-dimensions. Now consider a 3-dimensional

spacelike hypersurface, Σ, with induced metric, hAB, and unit normal, nν, aligned with

the Kodama vector. The Kodama vector is associated with conserved charges includ-

ing an energy

EMSH =

∫
Σ

√
hTµνKµnν, (2.70)

where Tµν is the stress-energy tensor of matter in the 4-dimensional spacetime. This

defines the Misner-Sharp-Hernandez energy which can also be written8

EMSH =
R
2

(
1−Υαβ∂αR∂βR

)
. (2.71)

2.1.8 On radial boost invariance

The quasilocal energies EK1, EE and EKLY of a system are obtained via the mean ex-

trinsic curvature of a 2-dimensional spacelike boundary, which we will call the screen.

For a spherically symmetric spacetime, for example, the generator of the quasilocal

energy is not just a single timelike vector. Rather, one needs to consider both the fu-

ture pointing timelike normal and the outward pointing radial spacelike normal in order

to calculate the mean extrinsic curvature of the screen.

Recall that following the ideas of Epp [26] EKLY can be interpreted as a proper mass-

energy of the system. It is known that both EKLY and EK1 are invariant under radial

boosts of the quasilocal observers who define the 2-surface [25, 37, 26, 27]. Such a

property is necessary to define a system consistently since one needs the ability to

keep constant the degrees of freedom that define the screen enclosing the system. In

the case of spherical symmetry, {θ,φ} are the coordinates on the screen that are kept

constant. Then the evolution of the system is investigated by perturbing the screen

along the remaining degrees of freedom, parametrized by the {t,r} coordinates. Thus

the screen observers agree on the quasilocal energy content of the same system

irrespective of them being boosted or having instantaneous radial accelerations with

respect to any other screen.

We note that in this picture, the Kodama vector is an object that resides on the

8This is the original definition of EMSH which does not follow from a conserved charge formulation.
The MSH energy is also commonly used for vacuum spacetimes, on account of its geometric form
presented by Misner and Sharp even though their initial investigation, [55], was on spherically
symmetric spacetimes that involve a matter stress–energy tensor.
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temporal-radial plane. The fact that the Kodama vector is associated with a con-

served Misner-Sharp-Hernandez energy has previously been described as a miracle

[58]. Here we emphasize that since EK1 matches EMSH under spherical symmetry,

this “miracle” is a natural consequence of any consistent quasilocal Hamiltonian for-

malism of general relativity. Thus one does not need to define a single preferred

observer in the energy calculations.

The distinction of the degrees of freedom that are used to define the system and the

ones used in the investigation of its evolution is crucial for the interpretation of the

formalism introduced in the next section.

2.2 Raychaudhuri equation and the geometry of a

timelike worldsheet

In [32], Capovilla and Guven construct a formalism to investigate the extrinsic geom-

etry of an arbitrary dimensional timelike worldsheet embedded in an arbitrary dimen-

sional spacetime. In Chapter 3 and Chapter 4 we will use their formalism to investigate

the properties of a 2-dimensional worldsheet embedded in a 4-dimensional space-

time. In this section, we will present the full details of their geometric construction as

applied to the specific case of a (2 + 2) geometry.

2.2.1 Geometry of the worldsheet

Let us consider an embedding of an oriented worldsheet with an induced metric, ηab,

written in terms of orthonormal basis tangent vectors, {Ea},

g(Ea,Eb) = ηab, (2.72)

where gµν is the 4-dimensional spacetime metric. Now consider the two unit normal

vectors, {Ni}, of the worldsheet which are defined up to a local rotation by,

g(Ni ,N j ) = δi j (2.73)
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g(Ni,Ea) = 0, (2.74)

where {a,b} = {0̂, 1̂} and {i, j} = {2̂, 3̂} are the dyad indices and the Greek indices refer

to 4-dimensional spacetime coordinates. Also note that to raise (or lower) the indices

of tangential and normal dyad indices one should use ηab (or ηab) and δi j (or δi j)

respectively. We choose ηab = diag(−1,1) and δi j = diag(1,1) throughout this thesis.

Capovilla and Guven define three types of covariant derivatives whose distinction we

will now introduce. Let the torsionless covariant derivative defined by the spacetime

coordinate metric be Dµ and its projection onto the worldsheet be denoted by Da =

Eµ
aDµ. On the worldsheet T, ∇a is defined with respect to the intrinsic metric and ∇̃a

is defined on tensors under rotations of the normal frame which we call S. Likewise

the projection of the spacetime covariant derivative on the instantaneous spacelike

2-surface S is Di = Nµ
i Dµ. On S, ∇i is defined with respect to the intrinsic metric and

∇̃i is defined on tensors under rotations of the tangent frame, T.

To study the deformations of T and S, the following extrinsic variables are introduced

[32]. The extrinsic curvature, Ricci rotation coefficients and extrinsic twist of T are

respectively defined by,

K i
ab = −gµν

(
DaEµ

b

)
Nνi = K i

ba , (2.75)

γabc = gµν
(
DaEµ

b

)
Eν

c = −γacb, (2.76)

w i j
a = gµν

(
DaNµi

)
Nν j = −w ji

a (2.77)

while the extrinsic curvature, Ricci rotation coefficients and extrinsic twist of S are

respectively defined by,

J i j
a = gµν

(
DiEµ

a

)
Nν j, (2.78)

γi jk = gµν
(
DiN

µ
j

)
Nν

k = −γik j, (2.79)

S i
ab = gµν

(
DiEµ

a

)
Eν

b = −S i
ba . (2.80)

By using those extrinsic variables one can investigate how the orthonormal basis

29



2 Preliminaries

{Ea,N
i} varies when perturbed on T according to,

DaEb = γ c
ab Ec −K i

ab Ni , (2.81)

DaNi = K i
ab Eb + w i j

a N j , (2.82)

or perturbed on S according to,

DiEa = S abiE
b + Jai j N

j, (2.83)

DiN j = −Jai j E
a +γ k

i j Nk . (2.84)

For an arbitrary tensor Φi1...in the worldsheet covariant derivative, ∇̃a, is then written

as

∇̃aΦi1...in = ∇aΦi1...in −w i1 j
a Φ

i2...in
j − ...−w in j

a Φ
i1...in−1

j, (2.85)

in which w i j
a transforms as a connection with respect to a normal frame rotation and

∇aΦb = DaΦb−γabcΦ
c (2.86)

is the covariant derivative defined via the induced metric on T. Likewise, the normal

frame covariant derivative, ∇̃i , is defined via

∇̃iΦa1...an
= ∇iΦa1...an

−S a1biΦ
b

a2...an
− ...−S anbiΦ

b
a1...an−1

, (2.87)

where S i
ab transforms as a connection under the tangent frame rotation and

∇iΦ j = DiΦ j−γi jkΦk (2.88)

is the covariant derivative defined via the induced metric on S.

Later in this section we will see that the generalised Raychaudhuri equation can be

written in terms of these extrinsic variables and their relevant covariant derivatives.

Therefore, at this point, we will give a break from the CG formalism and remind the

reader of more familiar form of the Raychaudhuri equation in the (3+1) formalism.
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2.2.2 Raychaudhuri equation of a worldline

For a timelike flow, the gradient of the velocity field can be split into three parts: shear,

vorticity and expansion as the following

Dνuµ = σµν+ωµν+
1
3

hµνΘ−aµuν. (2.89)

Here uµ is the 4-velocity of observers, aµ = uνDνuµ is the 4-acceleration and

hµν = gµν+ uµuν (2.90)

is the operator that projects tensors onto the 3-dimensional surfaces locally orthog-

onal to the flow9. The expansion is the pure trace part of the divergence and given

by

Θ = Dµuµ. (2.91)

The symmetric, traceless part is the shear and it is defined as10

σµν =
1
2

(
Dµuν+ Dνuµ

)
−

1
3

hµνΘ. (2.92)

The vorticity is the antisymmetric traceless part, i.e.,

ωµν =
1
2

(
Dνuµ−Dµuν

)
. (2.93)

The derivation of the Raychaudhuri equation in a standard way in the (3+1) formalism,

can be obtained by first defining a second rank tensor by Bµν = Dµuν and evaluating

the quantity uαDαBµν [12]. Then once one splits this identity into pure trace, trace-

less symmetric and traceless antisymmetric parts one obtains the following equations

9By the Frobenius Theorem, these spaces form hypersurfaces if only if the vorticity vanishes, ωµν = 0.
We consider the general case with nonvanishing vorticity.

10It is unfortunate that σµν is used to denote both the shear tensor and the induced 2-metric of a closed
spacelike boundary in the literature. We hope it is clear to the reader which one we are actually
referring to depending on the context.
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respectively,

dΘ

dχ
= −

1
3

Θ2−σ2 +ω2−Rµνu
µuν, (2.94)

dσµν
dχ

= −
2
3

Θσµασ
α
ν−ωµαω

α
ν+

1
3

hµν
(
σ2−ω2

)
+Cανµβuαuβ+

1
2

R̃µν, (2.95)

dωµν
dχ

= −
2
3

Θω
µ
ν−2σα[νωµ]α. (2.96)

where χ is an affine parameter on integral curves of uµ which can be chosen as the

proper time for timelike curves, σ2 = σµνσ
µν, ω2 = ωµνω

µν, Cανµβ is the Weyl tensor

and

R̃µν = hµαhνβR
αβ−

1
3

hµνhαβR
αβ (2.97)

with Rαβ being the Ricci tensor. Note that the identities (2.94)-(2.96) are purely ge-

ometric relations. The Einstein field equations are not imposed on them. Also, it is

usually the trace part, eq. (2.94), that is referred to as the “Raychaudhuri equation” by

many researchers even though the traceless identities, (2.95) and (2.96), also carry

information about the dynamics of the timelike congruences. For other delicate issues

and a recent review of the Raychaudhuri equation one can see, for example, [59].

2.2.3 Raychaudhuri equation of a worldsheet

Now we will present a derivation of the generalized Raychaudhuri equation of

Capovilla and Guven. In the case of the (3+1) formalism, the timelike vector field

Eµ
a that lives on T can directly be set to uµ. In that case the Raychaudhuri equation

of CG would contain the same information as equations (2.94)-(2.96), providing us

with the knowledge of the dynamics of how much a congruence of timelike worldlines

expands, shears or rotates. However, in section (2.1) we observed that the extrinsic

curvature of a closed spacelike 2-surface – when it is perturbed both in a timelike and

in a spacelike direction – gives information about the quasilocal matter plus gravita-

tional energy of a system that it encloses. Therefore, we will apply the CG formalism

to a 2-dimensional worldsheet embedded in 4-dimensional spacetime. Then Eµ
a, with

{a,b} = {0̂, 1̂}, will represent the Lorentzian signature dyad orthogonal to the spacelike

2-surface S. The Raychaudhuri equation constructed from this dyad carries informa-
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tion about how much the congruence of timelike worldsheets – rather than worldlines

– expands, shears or rotates.

Now analogously to defining the tensor Bµν = Dµuν, one can define J i j
a =

gµν
(
DiEµ

a

)
Nν j which actually corresponds to the extrinsic curvature of S given in

eq. (2.78). Then the derivation of the generalized Raychaudhuri equation can be

obtained via ∇̃bJ i j
a in analogy to the object uαDα Bµν in the standard approach. Note

that here one needs to use the worldsheet covariant derivative ∇̃b in order to find the

‘divergence’ of J i j
a , as it is the operator which successfully transforms the tensors on

the worldsheet. Then by using eqs. (2.85) and (2.86) we write

∇̃bJai j = DbJai j︸ ︷︷ ︸
1

−γ c
ba Jci j −w k

bi Jak j −w k
b j Jaik . (2.98)

Let us start with considering the object DbJai j . By using the definition (2.78) and the

metric compatibility condition we get

1 = DbJai j = Db
[
gµνN

µ
j DiE

ν
a

]
= gµν

(
DbNµ

j

) (
DiE

ν
a

)︸                    ︷︷                    ︸
2

+gµνN
µ

j Db Di
(
Eν

a
)︸                 ︷︷                 ︸

3

. (2.99)

In order to simplify 2 we use eqs. (2.82) and (2.83) and write

2 = gµν
(
Kbc j E

µc + wb jkNµk
) (

S adiE
νd + Jail N

νl
)

(2.100)

= gµνE
µcEνdKbc jS adi + gµνN

µkNνlwb jkJail

+ gµνE
µcNνlKbc j Jail N

νl + gµνE
νdNµkwb jkS adi. (2.101)

Since g
(
Ec,Ed

)
= ηcd, g

(
Nk,Nl

)
= δkl and g

(
Ec,Nk

)
= 0 we end up with

2 = K c
b jS aci + w k

b j Jaik . (2.102)

In order to simplify 3 we will use the Ricci identity11 for Eµ
a, i.e.,

DbDiEν
a −DiDbEν

a −D(DbNi−DiEb)Eν
a = RνµbiE

µ
a, (2.103)

11For an arbitrary vector, Aµ, the Ricci identity is given as DαDβAµ −DβDαAµ −D[eα,eβ]Aµ = RµναβAν,
where Rµναβ is the Riemann tensor of the spacetime and the last term on the l.h.s. vanishes only
for coordinate basis vectors, eα.
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and hence

DbDiEν
a = DiDbEν

a +
(
DbNi

)ρ
DρEν

a −
(
DiEb

)ρ
DρEν

a + Rνabi. (2.104)

Then using eq. (2.104) we find,

3 = g
(
N j,DbDiEa

)
(2.105)

= g
(
N j,DiDbEa

)︸            ︷︷            ︸
4

+g
(
N j,

(
DbNi

)ρ
DρEa −

(
DiEb

)ρ
DρEa

)︸                                           ︷︷                                           ︸
5

+g
(
N j,R (Eb,Ni) Ea

)︸                  ︷︷                  ︸
6

.

where R (Eb,Ni) Ea = Rνabi. By using eq. (2.81) we can write

4 = g
(
N j,DiDbEa

)
= g

(
N j,Di

[
γ c

ba Ec
])
−g

(
N j,Di

[
K k

ba Nk
])
, (2.106)

and by further considering eqs. (2.83) and (2.84) we get

4 = g
(
N j,γ

c
ba

[
S cdiE

d + Jcil N
l
])

+ g
(
N j,EcDiγ

c
ab

)
− g

(
N j,K k

ba

[
−Jdik Ed +γ l

ik Nl

])
−g

(
N j,NkDiK k

ba

)
,

= γ c
ba Jci j −K k

ba γik j −DiKba j , (2.107)

in which the final equality comes from the fact that g
(
Nk,Nl

)
= δkl and g

(
Ec,Nk

)
= 0.

Simplification of 5 is obtained once eqs. (2.82) and (2.83) are considered, i.e.,

5 = g
(
N j,

(
DbNi

)ρ
DρEa −

(
DiEb

)ρ
DρEa

)
= g

(
N j,

[
K c

b i E
ρ
c + w k

bi Nρ
k

]
DρEa

)
−g

(
N j,

[
S c

b iE
ρ
c + J k

bi Nρ
k

]
DρEa

)
.(2.108)

Substitution of eqs. (2.81) and (2.83) into eq. (2.108) gives

5 = g
(
N j,

[
K c

b i −S c
b i

] [
γ d

ca Ed −K k
ca Nk

])
+ g

(
N j,

[
w k

bi − J k
bi

] [
S adkEd + J l

ak Nl

])
,

= −Kca j K
c

b i + Kca jS
c

b i + Jak jw
k

bi − Jak j J
k

bi . (2.109)

Now recall that what we ultimately want to derive is ∇̃bJai j , i.e., rewriting eq. (2.98)

34



2.2 Raychaudhuri equation and the geometry of a timelike worldsheet

∇̃bJai j = DbJai j − γ c
ba Jci j − w k

bi Jak j − w k
b j Jaik .

↓

1

↓

2 + 3

↓

4 + 5 + 6

Substituting eqs. (2.102), (2.107), (2.109) and 6 = g
(
N j,R (Eb,Ni) Ea

)
into above

equation we get

∇̃bJai j = −
[
DiKba j + K k

ba γik j −K c
b jS aci−Kca jS

c
b i

]
− Jak j J

k
bi −Kca j K

c
b i + g

(
N j,R (Eb,Ni) Ea

)
+ γ c

ba Jci j + w k
b j Jaik + Jak jw

k
bi −γ

c
ba Jci j −w k

bi Jak j −w k
b j Jaik . (2.110)

Now due to relations (2.87) and (2.88) we have

∇̃iKab j = ∇iKab j︸ ︷︷ ︸
DiKab j −γi jkK k

ab

−S aciK
c

b j − S bciK
c

a j . (2.111)

Moreover Kba j is symmetric with respect to the first two indices and γik j is antisymmet-

ric with respect to the last two indices. Therefore the first line of eq. (2.110) can simply

be written as −∇̃iKab j . Also the terms that appear on the last line of eq. (2.110) cancel

each other. Then finally we obtain the Raychaudhuri equation of the worldsheet as(
∇̃bJai j

)
= −

(
∇̃iKab j

)
− Jbik J k

a j −Kbci K
c

a j + g(R(Eb,Ni )Ea,N j ), (2.112)

with g(R(Eb,Ni )Ea,N j ) = RαβµνE
µ

bNν
i E

β
aNα

j . After we contract the Raychaudhuri

equation with the orthogonal basis metrics ηab and δi j we get(
∇̃bJai j

)
ηabδi j = −

(
∇̃iKab j

)
ηabδi j− Jbik J k

a jη
abδi j−Kbci K

c
a jη

abδi j

+ g(R(Eb,Ni )Ea,N j )η
abδi j. (2.113)

This is the central equation which we will refer to many times throughout the thesis.

We finalize the Preliminaries chapter here. Mathematical constructions and concepts

that are introduced in this chapter will be used to investigate quasilocal systems that

are in thermodynamic equilibrium and in nonequilibrium in the following two chap-

ters.
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thermodynamics

A thermodynamic description of general relativity has been a long-sought goal [60, 61]

which intensified with the advent of black hole mechanics [62, 63, 64]. Most studies

in the literature focus on equilibrium thermodynamics1 of horizons, without stating

the conditions that bring them into equilibrium. In fact, in gravitational physics there

are no well-defined conditions for defining equilibrium in terms of the behaviour of a

system itself. In this chapter we will take steps to remedy this by defining a quasilocal

thermodynamic equilibrium condition using a purely geometric approach. We will

focus on the extrinsic geometry of the closed spacelike 2–surface that appears both

in various quasilocal energy definitions [25, 26, 27] and the generalized Raychaudhuri

equation of Capovilla and Guven [32] that we have reviewed in Section 2.1 and in

Section 2.2 respectively.

In general, if one wants to investigate the energy exchange mechanisms of a grav-

itational system from the thermodynamic viewpoint, the system should have a finite

spatial size. Energy definitions which refer to the spatial asymptotic behaviour are

not good candidates for general thermodynamic equations. Thus quasilocal energy

definitions, which refer to a Hamiltonian on the 2-dimensional spacelike boundary

[24, 25], are very important for general relativistic thermodynamics. Here we will link

such definitions to a generalized notion of the work done in the deviation of world-

sheet congruences, to define quasilocal thermodynamic potentials in a natural way.

This will help us to define the quasilocal thermodynamic equilibrium. We also provide

a quasilocal first law by considering a worldsheet total variation, in which a quasilocal

temperature can be understood as a worldsheet–constant.

Although early investigations dealt with equilibrium thermodynamics of black hole

1See [65, 66, 67, 68] for some exceptions.
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event horizons, in the last few decades more general trapping, apparent and dy-

namical horizons of generic spacetimes have been introduced [16, 19, 22, 69, 54].

Hayward’s construction of equilibrium thermodynamics on trapping horizons [16] high-

lights the significance of generalized apparent horizons. While the original definition of

apparent horizons applies to black holes which require asymptotically flat spatial hy-

persurfaces [15], Hayward’s generalized apparent horizon which was first constructed

for black holes, has also been applied in more general cases [70, 54, 71]. These in-

clude cosmological applications, where the generalized apparent horizon is not nec-

essarily spacelike but can be timelike or null depending on the equation of state of the

cosmic fluid [54].

In this chapter we will consider a spherically symmetric gravitational system of arbi-

trary size which is not in equilibrium with its surroundings. As one of our results we will

show that when a particular equilibrium condition is applied to such a system then the

2–surface enclosing the system is located at the generalized apparent horizon of [16].

This result makes no direct reference to the surface gravity, which is conventionally

used to define the temperature of the horizon.

This chapter is constructed as follows. In Section 3.1 we remind the reader about

the generalized Raychaudhuri equation of Capovilla and Guven [32] and our moti-

vation to use it as a quasilocal thermodynamic relation. Following this, a quasilocal

thermodynamic equilibrium condition and the corresponding thermodynamic poten-

tials are introduced. In Section 3.2 these results are applied to the Schwarzschild,

Friedmann-Lemaître-Robertson-Walker and Lemaître-Tolman spacetimes. In Sec-

tion 3.3 we highlight the difference between local thermodynamics of matter fields

on curved background and quasilocal gravitational thermodynamics, as a precursor

to suggesting a potential application of our approach to a quasilocal virial relation in

Section 3.4.

3.1 Raychaudhuri equation and gravitational

thermodynamics

Recall that in Section 2.2 we introduced the geometric construction developed by

Capovilla and Guven [32] in order to generalize the Raychaudhuri equation. This
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equation, (2.113), gives the focusing of an arbitrary dimensional timelike worldsheet

that is embedded in an arbitrary dimensional spacetime. Also in Section 2.1 we ob-

served that the extrinsic curvature of a closed spacelike 2-surface when it is perturbed

along both a timelike and a spacelike direction gives information about the quasilocal

matter plus gravitational energy of the system that it encloses.

When we apply the CG formalism to a 2-dimensional timelike worldsheet, T, em-

bedded in a 4-dimensional spacetime we observe that the Raychaudhuri equation

of Capovilla and Guven includes those terms related to the extrinsic curvature of a

closed spacelike 2-surface. This surface, S, is in fact the normal frame of the world-

sheet T and its extrinsic geometry is closely related to how much the worldsheet

focuses. This gives us enough motivation to start investigating the Raychaudhuri

equation in the 2 + 2 formalism on the basis of quasilocal matter plus gravitational

energy.

We presented a derivation of the generalized Raychaudhuri equation of Capovilla and

Guven, (2.113), in Section 2.2 and ended up with the following contracted Raychaud-

huri equation of [32], which for convenience we rewrite as

−∇̃TJ = ∇̃SK + J 2 + K 2−RW , (3.1)

where we denote ∇̃TJ := ηabδi j∇̃bJai j , ∇̃SK := ηabδi j∇̃iKab j , J 2 := Jbik Jal jη
abδi jδlk,

K 2 := Kbci Kad jη
abηcdδi j, RW := g(R(Eb,Ni )Ea,N j )η

abδi j. This form, eq. (3.1), will be

the central equation of our investigation.

Now let us consider a general spherically symmetric spacetime. For radially moving

observers, the extrinsic curvature and the extrinsic twist of T both vanish as well as

the extrinsic twist of S. Then the first and the third terms on the r.h.s of eq. (3.1) vanish

and the equation reduces to

−∇̃TJ = J 2−RW , (3.2)

We will now interpret eq. (3.2) as a thermodynamic relation for a quasilocally defined

spherically symmetric system while presenting our motivation for doing so.
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3.1.1 Quasilocal thermodynamic equilibrium conditions

At this point one needs to take care with the definitions of the thermodynamic vari-

ables under equilibrium and nonequilibrium conditions. In general, equilibrium can

be seen as a specific state of a system that is ordinarily in nonequilibrium with its

surroundings. Given specific equilibrium conditions, the equilibrium state acts as an

attractor to bring the system into a preferably stable state [72]. Moreover, in classi-

cal thermodynamics, only in the equilibrium case are the existence of thermodynamic

potentials guaranteed [73]. For such equilibrium states the thermodynamic potentials

are Lyapunov functions2, and they can be written as linear combinations of each other

[75].

Let us recall the definitions of thermodynamic potentials in classical thermodynamics

at the equilibrium state [76],

Helmholtz Free Energy : F .
= U −T S , (3.3)

Gibbs Free Energy : G .
= F + W , (3.4)

Enthalpy : H .
= G + T S .

= U + W , (3.5)

where U is the internal energy, and W represents the work terms which may include

PV type and other types of work in general. The ‘ .=’ sign will be used for equations

that hold only at quasilocal thermodynamic equilibrium from now on.

Note that Helmholtz free energy is the amount of reversible work done on a system

in an isothermal process [77]. It is one of the thermodynamic variables that can be

defined both in equilibrium and in nonequilibrium states [78]. Moreover, one way

of defining the thermodynamic equilibrium is to set the Helmholtz free energy to its

minimum value [75]. For this reason the Helmholtz free energy provides a physically

natural means to interpret eq. (3.2) thermodynamically.

2 Lyapunov functions are nonnegative functions that have at least one local maximum or minimum at
a point of interest. They are continuous functions with continuous first order derivatives and they
vary monotonically with the evolution parameter [74].

40



3.1 Raychaudhuri equation and gravitational thermodynamics

3.1.1.1 Helmholtz free energy density

We will take the extrinsic curvature scalar of S as a measure of the matter plus gravi-

tational Helmholtz free energy density and define3

f afa := 2J 2. (3.6)

since

f :=
√

f afa =
√

k2− l2. (3.7)

is the object that appears in the quasilocal energy definitions of Section 2.1 4. Note

that one can relate Jbik Jal jη
abδi jδlk := J 2 and k2− l2 through 2J 2 = k2− l2 on account

of specific choices of double dyad vectors {Eµ
a,N

µ
i } that exist naturally in spherically

symmetric systems for radially moving observers. We will discuss more about this in

Chapter 4 and provide a generic relation between J 2 and k2 − l2 for arbitrary space-

times. Then the Helmholtz free energy of the system is obtained once f is integrated

on S, i.e.,

F =
1

16π

∮
S

f ·dS. (3.8)

Since the equilibrium condition is defined in this case by the minimum of the Helmholtz

free energy, other thermodynamic potentials should be written as linear combinations

of each other once one sets F = Fmin. Thus at equilibrium, the Gibbs free energy and

the internal energy should read

G .
= Fmin + W , (3.9)

U .
= Fmin + T S . (3.10)

where W , T and S are to be defined. The Helmholtz free energy density defined by

eq. (3.6) and eq. (3.7) is required to be a nonnegative real scalar, and the minimum

value it can take is zero. This brings us to write the equations above with Fmin = 0 as

G .
= W , (3.11)

3The J 2/4 term appears in the definition of the Hawking [79] and Liu-Yau [27] mass-energies, as the
term µρ in the notation of these authors.

4Throughout this thesis, we will assume that k2 > l2. This requires the mean curvature vector of S to
be spacelike. One also needs to impose the dominant energy condition in order for the sign of the
mean curvature vector not to flip. These conditions are crucial for the proof of the positivity of mass
theorem [27] and the unique isometric embedding of S into Minkowski space [48].
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U .
= T S . (3.12)

Then when f =

√
f afa =

√
k2− l2 .

= 0, eq. (3.2) becomes

−∇̃TJ = −RW , (3.13)

Recalling the fact that thermodynamic potentials are nonnegative real functions at

equilibrium, we will force the terms in eq. (3.13) to take nonnegative values by taking

the absolute value of each side before we start making further quasilocal thermody-

namic interpretations. Thus, ∣∣∣−∇̃TJ
∣∣∣ =

∣∣∣−RW
∣∣∣ . (3.14)

3.1.1.2 Work density

We will now give a thermodynamic interpretation to the quantity on the r.h.s. of

eq. (3.14). In the 3+1 formalism, when one considers two observers on neighbour-

ing timelike geodesics the deviation of the geodesics determines the relative accel-

erations of the observers. If we consider the spacelike separation 4-vector, ~ξ, that

connects the neighbouring geodesics, then the components of the relative tidal accel-

eration are given by the geodesic deviation equation [12]

d2ξµ

dτ2 = Rµνρσuνuρξσ, (3.15)

where τ is the proper time. Thus for a spherically symmetric spacetime we define a

relative work density term that mimics W = ~F · ~x by(
d2ξµ

dτ2

)
ξµ = Rγνρσuνuρξσξγ. (3.16)

This relative work density term can be interpreted as a measure of energy expended

within the surface of a body to stretch or contract it under the influence of tidal forces,

if we assume ~ξ lives on the screen, S.

Our interpretation is similar to that of Schutz [80] who considered the limits of validity

of the geodesic deviation equation and calculated the second order contributions. He

also acknowledged the fact that connecting two geodesics with a separation vector is

essentially nonlocal. Thus the reason eq. (3.15) is valid only for nearly parallel, neigh-
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3.1 Raychaudhuri equation and gravitational thermodynamics

bouring geodesics is simply due to observers trying to measure a nonlocal quantity,

locally. Consequently eq. (3.16) has a more fundamental quasilocal interpretation and

the
∣∣∣∣−g(R(Eb,n

j)Eb,n j)
∣∣∣∣ =

∣∣∣−RW
∣∣∣ term on the r.h.s. of eq. (3.14) might be taken as a

measure of work density attributed to S.

To understand this intuitively, consider the analogy of a soap bubble. The work done

per unit area to create the surface of a bubble is [76]

Wclass =

∮
γ ·dA, (3.17)

where γ is the surface tension and dA is a surface area element of the bubble. Accord-

ing to classical theory, surface tension arises due to the unbalanced intermolecular

forces in the bubble. Likewise, according to the analogy formed here,
∣∣∣−RW

∣∣∣ is a

measure of energy density due to the relative tidal forces that observers experience

when they move along radial worldlines. This is of course applicable for observers

who share the same screen S. Therefore at quasilocal thermodynamic equilibrium,

we can define a general work density, namely a type of surface tension, according to

w :=
√

w awa :=
√

2
∣∣∣−RW

∣∣∣, (3.18)

so that the amount of corresponding work is given by

W .
=

1
16π

∮
S

w ·dS. (3.19)

3.1.1.3 Gibbs free energy density

In classical thermodynamics, when equilibrium is defined by the minimum of the

Helmholtz free energy, the Gibbs free energy reads [76]

Gclass
.
=

∮
γ ·dA, (3.20)

for the thermodynamics of surfaces with constant pressure. Following the analogy

with the surface of a soap bubble,

Wclass =

∮
γ ·dA⇔W .

=

∮
S

w ·dS, (3.21)
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so that

Gclass
.
=

∮
γ ·dA⇔ G .

= W (3.22)

should hold. This is consistent with eq. (3.11) which states that G .
= W since the

minimum Helmholtz free energy is zero according to the equilibrium condition defined

here. Thus, the l.h.s. of eq. (3.14) can be taken as a measure of the quasilocal Gibbs

free energy density:

g :=
√

g aga :=
√

2
∣∣∣−∇̃TJ

∣∣∣, (3.23)

with ∇̃TJ = ηabδi j∇̃bJai j from which the Gibbs energy can be obtained by

G .
=

1
16π

∮
S

g ·dS. (3.24)

Note that, in general, the Raychaudhuri equation becomes nonlinear if one wants

to write it in terms of the energy densities defined here. However, recall that the

existence of thermodynamic potentials is guaranteed only in the equilibrium case in

which the potentials can be written linearly in terms of each other. In classical surface

thermodynamics, the surface tension, pressure gradient across the surface and mean

curvature of the surface can be related via the Young-Laplace equation [81]. Ideally,

in order to reach the equilibrium, fluids tend to extremize their surfaces until they have

zero mean curvature. This is when the surface tension takes its critical value. In

the formalism presented here, which is in line with our analogy, this happens when

f =

√
f afa =

√
k2− l2 .= 0, which defines the apparent horizon of a given spacetime.

Here we use a general apparent horizon [16], defined by the marginal surfaces on

which at least one of the expansion scalars of the null congruences is zero, i.e.,

θ(l)θ(n) = 0, where la (na) is the outward (inward) pointing future-directed normal. Both

the conditions {θ(l) > 0, θ(n) = 0} and {θ(l) = 0, θ(n) < 0} have previously been used to

define apparent horizons [54, 70, 71]. Here J i j
a Ja

ji in eq. (3.6) gives a measure of

θ(l)θ(n). Thus when it is equated to zero, one can conclude that at least one of the

expansion scalars of the incoming or outgoing null congruences converges without

knowing which one actually does.
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3.1 Raychaudhuri equation and gravitational thermodynamics

3.1.1.4 Internal energy density

On introducing the quasilocal energy definitions in Section 2.1, we stated that EK1 of

Kijowski is a good candidate for the total matter plus gravitational energy content of

a system. It is derived via a Hamilton-Jacobi formalism with Dirichlet boundary con-

ditions. According to Kijowski those boundary conditions are associated with the true

degrees of freedom of the quasilocally defined domain that gives the true energy [25].

When the equilibrium condition is imposed, the internal energy density in eq. (2.48)

can be written as

u .
= k0. (3.25)

Thus the quasilocal internal energy at equilibrium becomes

U .
=

1
16π

∮
S

k0 ·dS. (3.26)

which should satisfy the equilibrium condition (3.12) without any PV type term. This

requires that we define a quasilocal entropy and temperature at equilibrium.

Since the 2-surface S located at the generalized apparent horizon enters naturally, we

can follow the traditional approach of Bardeen [64] and define the quasilocal equilib-

rium entropy as

S .
=

Area (S)
λ

, (3.27)

where λ is a constant which is usually taken to be 4 in gravitational equilibrium ther-

modynamics of horizons. By eq. (3.12), at equilibrium the quasilocal temperature of

the system is then given by

T .
=

U
S
, (3.28)

without any direct reference to surface gravity.

3.1.1.5 First law of thermodynamics

According to the formalism constructed here, the first law should be written as

δU .
= δ

(
T S

) .
= T δS , (3.29)
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since we defined the quasilocal thermodynamic equilibrium via the minimization of

the Helmholtz free energy which is applicable for isothermal processes. The problem

with some of the gravitational thermodynamic constructions is that the total variation

of the internal energy and entropy is performed in specific directions for which the

first law does not have the dimensions of energy5. However, in our framework the

quasilocal behaviour of the system sets the degrees of freedom with respect to which

the total variation can be defined. These are the degrees of freedom that reside on

the instantaneously defined timelike surface T. Hence, we will set the total variation

to be the one on the worldsheet and write

δU :=
1
2

√
∇̃aU ∇̃aU. (3.30)

Thus the first law should read

1
2

√
∇̃aU ∇̃aU .

= T
(
1
2

√
∇̃aS ∇̃aS

)
, (3.31)

with

δT :=
1
2

√
∇̃aT ∇̃aT .

= 0, (3.32)

where {a,b} = {0̂, 1̂}. Thus the temperature will be a worldsheet–constant rather than

a constant with respect to some coordinate time. For the examples that are presented

in the next section, it is easy to check that eq. (3.32) is satisfied. Note that, in general,

∇̃a→∇a→ Da→ Eµ
aDµ→ Eµ

a∂µ, (3.33)

can be used for the scalar functions that appear in equations (3.31) and (3.32).

Remark:

Note that for a static blackhole the temperature and entropy might be argued to be

intrinsically quantum mechanical, since they involve h̄,

T ∼
h̄c3

GkB [M]
, S ∼

kBc3 [L]2

h̄G
,

5For example see [54].
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where [M] refers to mass dimensions and [L] refers to length dimensions. However,

since we lack a theory of quantum gravity it is difficult to say whether such a simple

argument based on simple dimensional analysis is relevant. In our case, the ther-

modynamic potentials U .
= T S ,F .

= U −T S ,G .
= F + W are classical quantities and

therefore classical thermodynamic laws should apply.6

3.2 Examples

3.2.1 Schwarzschild geometry

Consider the Schwarzschild metric in standard coordinates

ds2 = −

(
1−

2M
r

)
dt2 +

(
1−

2M
r

)−1

dr2 + r2dΩ2, (3.34)

where dΩ2 = dθ2 + sin2 θdφ2. As stated previously, to define a consistent system ob-

servers should have fixed angular coordinates. As one example consider static radial

observers with double dyad

Eµ

0̂
=

 1√(
1− 2M

r

) ,0,0,0
 , Eµ

1̂
=

0,
√(

1−
2M

r

)
,0,0

 , (3.35)

Nµ

2̂
=

(
0,0,

1
r
,0

)
, Nµ

3̂
=

(
0,0,0,

1
r sinθ

)
. (3.36)

The choice of static observers is inconsequential for our results, which also apply to

observers with an arbitrary instantaneous radial boost with respect to this frame. For

such observers, eq. (3.6) implies

f =

√
faf a = 2

√(
r−2M

r3

)
, (3.37)

which can be substituted in the Raychaudhuri equation, (3.2), in the general nonequi-

librium case to give a notion of nonequilibrium quasilocal energy exchange.

In order to set the quasilocal thermodynamic equilibrium condition, F should be min-

6This was actually spotted by one of the examiners of the thesis.
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imized. It is easy to see that, this occurs when r = 2M which coincides with the

location of the black hole horizon. Now let us calculate the internal energy at equi-

librium. Given the metric in (3.34) and the isometric embedding of S into Euclidean

3-space, one finds k0 = 2/r. Then according to equations (3.12) and (3.26),

U .
= T S .

= M, (3.38)

with T .
= λ/(8πr) .= λ/(16πM), and S .

= Area(S)/λ .
= (16πM2)/λ where λ is a constant.

For those who wish to relate this temperature to the Hawking temperature [82], there

is a problem of factor of two, which has been encountered in similar context before

[83, 84, 85, 86, 87]. For λ = 4 the temperature gives twice the Hawking temperature,

i.e., T = 2TH = 2(8πM)−1. The literature is divided into two camps when it comes to

the value of the temperature of radiation for a particle that tunnels through the horizon.

Usually, those who favour T = 2TH also favour the idea of dividing the entropy by 2 in

order to satisfy Hawking’s original first law [85, 87]. However, according to Hawking’s

original first law [82], for a static black hole [88],

Energy
2

= Temperature×Entropy. (3.39)

Thus, if λ = 4 then one should not divide the original entropy expression by 2 in order

to get the correct internal energy on the l.h.s. of eq. (3.39).

Also it is easy to check eq. (3.32),

δT =
1
2

√
∇̃a

(
λ

8πr

)
∇̃a

(
λ

8πr

)
.
= 0. (3.40)

This states that the system can be assigned a single temperature value which is a

worldsheet–constant. One also finds the corresponding work term, (3.19), and Gibbs

free energy term, (3.24),

W .
=

1
16π

√
2
∣∣∣∣∣−4M

r3

∣∣∣∣∣ (4πr2
)
, G .

=
1

16π

√
2
∣∣∣∣∣2(r−4M)

r3

∣∣∣∣∣ (4πr2
)

(3.41)

which are equal at the quasilocal thermodynamic equilibrium, i.e.,

G .
= W .

= M. (3.42)
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3.2.2 Friedmann-Lemaître-Robertson-Walker (FLRW) geometry

Now consider the FLRW metric in comoving coordinates

ds2 = −dt2 +

(
a2(t)

1− κr2

)
dr2 + a2(t)r2dΩ2, (3.43)

where κ = {−1,0,1} for open, flat and closed universes respectively and the comoving

observer dyads are

Eµ

0̂
= (1,0,0,0) , Eµ

1̂
=

0, √1− κr2

a
,0,0

 , (3.44)

Nµ

2̂
=

(
0,0,

1
ar
,0

)
, Nµ

3̂
=

(
0,0,0,

1
ar sinθ

)
. (3.45)

Again note that the resultant thermodynamic potential densities do not change for

observers with an arbitrary instantaneous radial boost with respect to the comoving

observers. For such a set up, Helmholtz free energy density is

f =

√
faf a =

√
2
(
2−2κr2−2ȧ2r2

a2r2

)
. (3.46)

If we consider the equilibrium case where free energy takes its minimum value, one

can find the equilibrium condition to be

r .=
1

√
κ+ ȧ2

, or rA
.
= (ar) .=

1√
H2 + κ/a2

, (3.47)

where H is the Hubble parameter. This corresponds to the location of the apparent

horizon of the FLRW geometry [69, 54].

The internal energy density is found by isometrically embedding S into an Euclidean

3-geometry and calculating its extrinsic curvature as k0 = 2/(ar). Thus according to

equations (3.12) and (3.26),

U .
= T S .

=
1
2

1√
H2 + κ/a2

, (3.48)

with T .
= λ/(8πar) .= λ

√
H2 + κ/a2/(8π), and S .

= Area(S)/λ .
= 4π/

[
λ
(
H2 + κ/a2

)]
.
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For λ = 4, this result matches the one of [69, 89, 90, 91], where the temperature

attributed to the apparent horizon is found to be TA = 1/ (2πrA).

This temperature, assigned to the whole system, can be shown to be a worldsheet–

constant by the variation

δT =
1
2

√
∇̃a

(
λ

8πar

)
∇̃a

(
λ

8πar

)
.
= 0. (3.49)

When this condition holds, the work term (3.19) and the Gibbs free energy (3.24) are

also found to be

W .
=

1
16π

√
2
∣∣∣∣∣2κ+ 2aä + 2ȧ2

a2

∣∣∣∣∣ (4πa2r2
)
, G .

=
1

16π

√
2
∣∣∣∣∣2ä

a
+

2
r2a2

∣∣∣∣∣ (4πa2r2
)
. (3.50)

By (3.47),

G .
= W .

=
1
2

√∣∣∣∣∣κ+ aä + ȧ2

a2

∣∣∣∣∣ 1
H2 + κ/a2 (3.51)

so that when the Friedmann equations are inserted we obtain

G .
= W .

=
1
4

√∣∣∣∣∣1−3p/ρ
4πρ

3

∣∣∣∣∣, (3.52)

where p is the pressure, ρ is the energy density of the perfect fluid and their ratio is

ω = p/ρ. Alternatively, we can compare the work required to create a quasilocal 2-

surface that encloses a system filled with either vacuum energy (ω = −1), stiff matter

(ω = 1), dust (ω = 0) or radiation (ω = 1/3). For the same value of the perfect fluid

energy density, at equilibrium, the results state

WVacuum > WS ti f f > WDust > WRadiation = 0, (3.53)

meaning that a system filled with stiff matter has a greater tendency to store the po-

tential relative work than a system filled with dust or radiation. Note that the surface

tension is independent of the spatial size of the system in a FLRW spacetime, con-

sistent with the fact that the FLRW geometry models a homogeneous universe. To

see the differences with an inhomogeneous universe one may consider the Lemaître-

Tolman spacetime.
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3.2.3 Lemaître-Tolman (LT) geometry

The LT metric can be written in the comoving coordinates as

ds2 = −dt2 +

(
R′2(t,r)

1 + 2K(r)

)
dr2 + R2(t,r)dΩ2, (3.54)

where X′ = ∂X
∂r and Ẋ = ∂X

∂t for an arbitrary function X. One can choose a comoving

observer dual dyad

Eµ

0̂
= (1,0,0,0) , Eµ

1̂
=

0, √1 + 2K
R′

,0,0
 , (3.55)

Nµ

2̂
=

(
0,0,

1
R
,0

)
, Nµ

3̂
=

(
0,0,0,

1
Rsinθ

)
. (3.56)

Then the Helmholtz free energy density for such an observer is given by

f =

√
2
(
2 + 4K −2Ṙ2

R2

)
. (3.57)

Minimizing F to obtain the condition for quasilocal thermodynamic equilibrium we find

Ṙ2 .
= 1 + 2K, (3.58)

which again gives the location of the generalized apparent horizon of the LT geometry

[92]. In the absence of the cosmological constant, the evolution equation for the LT

spacetime may be written as

Ṙ2 = 2K +
2M
R
, (3.59)

where M = M(r) is an arbitrary function which is said to play the role of the active

gravitational mass within a constant radius shell in LT solutions. Therefore, another

way of defining the apparent horizon is R(t,r) .= 2M(r).Then after computing the in-

ternal energy density as k0 = 2/R by equations (3.12) and (3.26), the internal energy

becomes

U .
= T S .

= M(r), (3.60)

with T .
= λ/(8πR) .= λ/(16πM), and S .

= Area(S)/λ .
= (16πM2)/λ. If we take λ = 4, then

the temperature assigned to the system takes the same value as the temperature

attributed to the apparent horizon in [93]. The work term (3.19) and the Gibbs free

51



3 Quasilocal equilibrium thermodynamics

energy (3.24) are also found as:

W .
=

1
16π

√
2
∣∣∣∣∣− 2K′

RR′
+

2R̈
R

+
2ṘṘ′

RR′

∣∣∣∣∣ (4πR2
)
, (3.61)

G .
=

1
16π

√
2
∣∣∣∣∣2R̈

R
−

2Ṙ2

R2 +
2(2K + 1)

R2 −

(
2K′−2ṘṘ′

)
RR′

∣∣∣∣∣ (4πR2
)
. (3.62)

Substituting eq. (3.59) and R(t,r) .= 2M(r) into the equations above gives

G .
= W .

= M(r)/
√

2. (3.63)

In contrast to the homogeneous cosmology, the surface tension in eq. (3.61) depends

on the radial position of the quasilocal observers who define the inhomogeneous sys-

tem.

One can check the thermodynamic potentials of the LT system reduce to those of the

FLRW and Schwarzschild spacetimes in the appropriate limit. In particular, for [92]

R = a(t)r and M =

∫
4πρR2R′dr (3.64)

the relative work term (3.63) agrees with the dust case of eq. (3.52) for the FLRW

geometry as expected. Likewise, if we take R = r and use the spatial derivative of the

evolution equation (3.59) to eliminate K′(r) then at equilibrium eq. (3.61) agrees with

(3.41) for the Schwarzschild geometry. However, the general relative work (3.63) of

LT differs from the Schwarzschild case (3.42), on account of the competing terms in

eqs. (3.61) or (3.62). Recall that the Gibbs free energy is a measure of how much

potential the system possesses to do work. In the static limit the second and third

terms inside the square root in eq. (3.61) vanish. In that case, the system stores all of

the gravitational energy due to the spatial term −2K′/(RR′) as potential work without

being compelled to expend some of this energy as the system evolves in time.
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3.3 Local versus quasilocal equilibrium

3.3 Local versus quasilocal equilibrium

In Newtonian physics a system composed of particles which are in local thermody-

namic equilibrium with each other is not always expected to be in global thermody-

namic equilibrium. In the case of global equilibrium, one can assign single values of

thermodynamic variables to the whole system. Likewise, in our case we have defined

a quasilocal thermodynamic equilibrium condition so that one can assign a single

temperature value to the whole system.

In general, there is no reason for a system in local (or global) equilibrium to be in

hydrodynamic equilibrium as well. One requires additional conditions for them to co-

incide [94], so we should be careful to distinguish these concepts.

A typical example of the local thermodynamics of matter fields on a curved back-

ground is given by Gao [95] who generalizes early work of Sorkin, Wald and Zhang

[96] to a generic perfect fluid. He investigates the connection between local ther-

modynamic equilibrium and hydrostatic equilibrium. Gao considers a collection of

monatomic ideal gas particles with p = p(T ), ρ = ρ(T ) and s = s(ρ,n) where s is the

locally defined entropy density and n is the number density of the particles. By max-

imizing the local matter entropy, an equation for local hydrostatic equilibrium is ob-

tained. This is not a unique way of defining the local thermodynamic equilibrium but

this specific thermodynamic equilibrium condition also satisfies the local hydrostatic

equilibrium. Also it is important to note that the fluid particles are not necessarily in a

local thermal equilibrium here.

Now let us consider the analogous problem of the conditions under which quasilocal

thermodynamic equilibrium and quasilocal hydrodynamic equilibrium coincide for a

general system containing both matter and gravitational energy contributions. We

will assume that locally defined condition given by Green, Schiffrin and Wald [94] for

matter fields also holds in the quasilocal case. This requires the quasilocally defined

entropy to have its extremum value with respect to a total variation defined by relation

(3.31). In order to compute this one can consider a generic spherically symmetric

spacetime metric

ds2 = −A2(r, t)dt2 + B2(r, t)dr2 + R2(r, t)dΩ2, (3.65)

where A(r, t) and B(r, t) are arbitrary functions, R(r, t) is the areal radius of S, and our
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double dyad is

Eµ

0̂
=

(
1

A(r,t) ,0,0,0
)
, Eµ

1̂
=

(
0, 1

B(r,t) ,0,0
)
, (3.66)

Nµ

2̂
=

(
0,0, 1

R(r,t) ,0
)
, Nµ

3̂
=

(
0,0,0, 1

R(r,t) sinθ

)
. (3.67)

Then, quasilocal Helmholtz free energy takes its minimum value when A2R′2 .
= B2Ṙ2,

and the total variation of the quasilocally defined entropy, (3.27), at equilibrium is

δS =
1
2

√
∇̃aS ∇̃aS

=
1
2

√
Eµ

a∂µ

(
4πR2

λ

)
ηabEν

b∂ν

(
4πR2

λ

)
.
= 0,

showing that the entropy is an extremum. This allows us to conclude that the quasilo-

cal thermodynamic equilibrium and quasilocal hydrodynamic equilibrium should coin-

cide. The interpretation of this result is crucial for the next section.

3.4 Quasilocal virial relation

Here we will sketch how the formalism above might be adapted to give a quasilocal

virial condition which differs in character from previous attempts to define a virial the-

orem in general relativity [97, 98, 99, 100]. In previous studies only matter fields have

been investigated, in which the central object is the energy-momentum tensor defined

at each spacetime point. However, a full description of the virial theorem in general

relativity should also include gravitational energy, which cannot be defined at a point

due to the equivalence principle.

Ordinarily in classical mechanics the virial theorem is obtained by considering a sys-

tem with motions confined to a finite region of space. If the potential energy is a

homogeneous function of the coordinates, then the virial theorem gives a relation be-

tween the time averaged values of the total kinetic and potential energies [101]. For

such a system one can define a virial function G by [102] G(t) =
∑

i ~pi.~ri, where ~ri are

the coordinates and the ~pi are the momenta of the particles in the system. If G(t) is a

bounded function, then the mean value of its time derivative is zero, i.e.,

〈 d
dt

∑
i

~pi.~ri

〉 =

〈∑
i

(
~pi.~vi

)〉
+

〈∑
i

(
~ri.~̇pi

)〉
= 0. (3.68)
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3.4 Quasilocal virial relation

Therefore, for a system under gravitational potential, the virial theorem reads

2 〈K.E〉 = −〈P.E〉 , (3.69)

where 〈K.E〉 and 〈P.E〉 are the time averaged values of the total kinetic and potential

energies.

When it comes to including relativistic effects, however, this result changes. For the

ultrarelativistic limit (v→ c), the virial theorem takes the form [103]

〈K.E〉 = −〈P.E〉 . (3.70)

In astrophysics, the virial theorem is used when the thermal and the gravitational

forces acting on an isolated system balance each other so that the system neither ex-

pands nor contracts. This state of the system is defined by its hydrostatic equilibrium

[104]. In general the system is assumed to be composed of ideal gas particles which

are in local thermal equilibrium with each other, which guarantees stability [94]. The

value of the internal energy of the system, Ein, is then equal to the ensemble average

of the kinetic energies of the particles creating the system [105], i.e.,

Ein = K.E, (3.71)

where the overbar denotes the ensemble average at a given time. Note that the

equipartition theorem is an application of the virial theorem. If thermal equilibrium

coincides with hydrostatic equilibrium, then the temporal average of the kinetic energy

of the total system becomes equal to the ensemble average of the kinetic energies of

the particles at a given time [106], i.e., 〈K.E〉 |{t1→t2} ≡ K.E|{t}. Consequently, for this

case, one can rewrite (3.69) and (3.70) as

2Ein = −〈P.E〉 (nonrelativistic) (3.72)

and [103]

Ein = −〈P.E〉 (ultrarelativistic) (3.73)

In our case, quasilocal thermodynamic equilibrium is set by the minimum of the

Helmholtz free energy which holds for systems with worldsheet–constant temperature

and volume. This occurs when the mean extrinsic curvature of S is zero. Thus if one

perturbs S along T, it neither expands nor contracts. Furthermore, the quasilocally
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3 Quasilocal equilibrium thermodynamics

defined entropy of the system then takes its extremum value. We can then expect the

quasilocal thermodynamic and hydrodynamic equilibria to coincide.

By analogy to the case of matter fields only, a virial theorem might hold also in our

quasilocal formalism. In particular, we will suggest a natural bound,

Ematter+grav
.
= EKLY−Emin

B . (3.74)

from which a quasilocal virial relation follows. Here Ematter+grav represents the com-

bined energy of the matter and gravitational fields, while Emin
B is the minimum binding

energy of the system. Furthermore, the interpretation of EKLY as an invariant proper

mass-energy for generic spacetimes is agreed upon by many authors [26, 27, 50].

We demonstrate that (3.74) agrees with known results in particular limits, but will not

attempt a formal proof of this bound or consequently of a virial theorem, which would

require a detailed definition of Ematter+grav in terms of suitable ensemble averages.

We first recall that Bizon, Malec and Ó Murchadha [107] introduced a mass bound for

a collection of spherical shells under collapse, given by

M ≤ Mp−EB, (3.75)

where M is the total ADM energy of the shells, Mp is the total proper mass and EB is

the binding energy. The equality holds when binding energy is minimum, which turns

out to be the Newtonian limit. Later, Yu and Caldwell [108] included this argument in

their calculation of the binding energy of a Schwarzschild black hole and showed that

M = Mp−Emin
B , (3.76)

and Mp = EBY in the Schwarzschild geometry for static observers at any r. Since

EBY = EKLY for static observers in the Schwarzschild geometry, (3.76) is seen to

coincide with (3.74) in the Schwarzschild geometry.

Now let us specialize to observers at quasilocal hydrostatic equilibrium in the

Schwarzschild geometry, at r = 2M, where the Kijowski-Liu-Yau energy gives

EKLY =
−1
8π

∫
S

dS


2
√

1− 2M
r

r
−

2
r

 .= 2M. (3.77)
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3.4 Quasilocal virial relation

Since the internal energy, Ein
K = EK1 (2.48), at equilibrium corresponds to the usable

matter plus gravitational energy, the l.h.s. of (3.74) should read

Ematter+grav = Ein
K

=
−1
16π

∫
S

dS


4
(
1− 2M

r

)
r2 − 4

r2

2
r

 .= M.

Hence Emin
B

.
= M. The minimum binding energy of such a system can also be found by

calculating the work done in bringing the spherical mass shells from infinity to r = 2M

by observers who are instantaneously at rest in the Newtonian limit [108]. Thus at

hydrostatic equilibrium,

Ematter+grav
.
= Emin

B , (3.78)

which is analogous to the virial relation (3.73) in the ultrarelativistic limit, since bind-

ing energy is negative of the potential energy, and only the so-called reference term

survives in Ein
K at quasilocal thermodynamic equilibrium.

Now we will generalize this result by assuming that (3.74) holds for generic spher-

ically symmetric spacetimes at quasilocal hydrodynamic equilibrium. At quasilocal

hydrodynamic equilibrium
√

2J 2 =
√

k2− l2 .
= 0, by (2.48) and (2.57),

Ematter+grav
.
= Ein

K
.
=

1
16π

∮
S

k0 dS. (3.79)

EKLY
.
= 2

(
1

16π

∮
S

k0 dS
)
, (3.80)

Hence from eq. (3.74) we find

EKLY−Ematter+grav
.
= Emin

B
.
=

1
16π

∮
S

k0 dS, (3.81)

where k0 = 2/R(r, t) is the extrinsic curvature of S when embedded in Euclidean 3-

space and R(r, t) is the areal radius of S. Therefore, by (3.79) and (3.81) one obtains

(3.78) as a virial relation for any spherically symmetric distribution at quasilocal hydro-

dynamic equilibrium whose matter and gravitational contributions to the total content

cannot be decoupled.

A key inference is that the proper mass–energy, usable matter–energy and the bind-

ing energy of a system make most sense when referred to measurements made by
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3 Quasilocal equilibrium thermodynamics

the same set of quasilocal observers. Therefore the idea of comparing certain energy

definitions for systems with different sizes in a given spacetime can lead to paradoxes.

For example, Frauendiener and Szabados argued that [109] “...if the quasi-local mass

(EKLY) should really tend to the ADM mass as a strictly decreasing set function near

spatial infinity, then the Schwarzschild example shows that the quasi-local mass at

the event horizon cannot be expected to be the irreducible mass.” This is true simply

because a system with a spatial size coinciding with the event horizon has different

binding energy requirements than the one whose spatial size tends to infinity. The

latter one has zero binding energy, because no work has to be done by the system

defined by quasilocal observers located already at infinity. The authors continue with

the statement “...there would have to be a closed 2-surface between the horizon and

the spatial infinity on which the quasi-local mass would take its maximal value. How-

ever, it does not seem why such a (geometrically, and hence, physically) distinguished

2-surface should exist.” Here we note that such a closed spatial 2-surface does exist

with a location matching the apparent horizon. It encloses a system whose quasilocal

thermodynamic equilibrium coincides with quasilocal hydrodynamic equilibrium. This

might also serve as a physical interpretation for a generalized apparent horizon for

the case when its location matches the one of a marginally outer trapped surface.

The outgoing null rays of a system enclosed by such a trapped surface do not tend

to leave the system because systems in quasilocal thermal equilibrium simply do not

radiate.

3.5 Discussion

When the equilibrium thermodynamics of horizons was first introduced in the 1970s

[62, 63, 64], the quasilocal energy definitions that we have today were unknown. It

is now known that the physically relevant boundary Hamiltonian of general relativity

lies on a closed 2-dimensional spacelike surface, S, of a spacetime domain [24, 25],

which we call the screen. In this chapter we have focused on a spherically symmetric

system enclosed by a screen, S, as the central object of gravitational thermodynamics

rather than horizons.

Isolated systems are natural objects in classical thermodynamics. In general relativ-

ity, however, no system can be totally decoupled from the rest of the universe due to

the nonlinear nature of the gravitational interaction. The systems we consider in this
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chapter have arbitrary size and are generally in nonequilibrium with their surround-

ings. Only after quasilocal thermodynamic equilibrium conditions are introduced does

it follow that the screen is located at the apparent horizon of [16], where the standard

equilibrium thermodynamic laws apply.

We believe that this approach may ultimately prove useful in general relativity, since

the issues associated with quasilocal gravitational energy on one hand, or with grav-

itational entropy on the other, are generally studied in isolation. In fact, the problem

of gravitational entropy is so complex that often researchers simply seek definitions

in terms of geometric quantities which are nondecreasing with time [110, 111, 112],

giving rise to a “second law”, without directly investigating whether the entropies so

defined obey any of the other properties one might reasonably demand of a genuine

thermodynamic potential. The fact that the second law of classical thermodynamics

can be viewed as a consequence of entropy not being rigorously defined in nonequi-

librium [72] is usually overlooked.

On account of the equivalence principle, statistical macroscopic properties of the grav-

itational field are necessarily nonlocal. To interpret quasilocal gravitational energy in

terms of thermodynamic laws it is necessary to have a measure of the “work done”

by the tidal forces on the screen associated with the quasilocal observers. For this

reason, we have adapted the generalized Raychaudhuri equation of an arbitrary di-

mensional worldsheet embedded in an arbitrary dimensional spacetime [32], to the

special case of a 2-dimensional timelike surface, T, (orthogonal to S at every point),

which we embed directly into 4-dimensional spacetime.

The mean extrinsic curvature of S, that appears in the quasilocal energy definitions

[25, 26, 27], gives the expansion of S when it is perturbed along T. Degrees of

freedom residing on T are, therefore, understood to be those which describe the

changes of thermodynamic potentials, while the degrees of freedom residing on the

screen, S, are required to consistently define a system. Hence, in order to write the

first law, the total variations of the thermodynamic variables are taken along the 2-

surface T rather than variations along the integral curve of a single vector.

It is known that quasilocal energy definitions which involve the mean extrinsic cur-

vature of S are invariant under radial boosts. In our formalism this boost invariance

holds for all thermodynamic potentials that appear in the generalized Raychaudhuri
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equation (3.1), once the definitions (3.6), (3.18) and (3.23) are made. This is possible

on account of radially moving observers of a spherically symmetric spacetime.

Our spherically symmetric formalism might be easily extended to situations which

are approximately spherically symmetric, in a perturbative scheme. Furthermore,

we believe that similar reasoning to ours could also apply to spacetimes with other

symmetries, such as axial symmetry. In that case one should be able to introduce

additional quantities, which account for rotational energy, for example. In such a case

the first and third terms on the r.h.s. of the generalized Raychaudhuri equation (3.1)

are nonzero, making a thermodynamic interpretation considerably more complicated.

We will discuss these issues in the next chapter.

As an application of our formalism, we have sketched a natural bound involving the

quasilocal gravitational energy plus matter fields, which might suggest a virial relation.

To rigorously prove a virial theorem requires that we have a proper understanding of

the degenerate states of matter and gravitational fields contained within the screen, S,

which are consistent with the same worldsheet–constants on S. Such an understand-

ing of course requires going far beyond this thesis, as it effectively means probing

fundamental questions related to the holographic interpretation which are important

to both statistical and quantum gravity.

Other questions for future work relate to the question of nonequilibrium quasilocal

gravitational thermodynamics for systems that are close to equilibrium. The Helmholz

free energy, (3.8), is defined for all states of the system, whereas the other thermo-

dynamic potentials have only been defined at quasilocal thermodynamic equilibrium.

This is simply because equilibrium was defined by minimization of F , which may not

be the only way to define a useful quasilocal thermodynamic equilibrium condition.

Other types of equilibrium conditions could be applied to the generalized Raychaud-

huri equation.

For the case of thermodynamic nonequilibrium, the existence of thermodynamic vari-

ables is not guaranteed and their consistent definition becomes murky even in clas-

sical thermodynamics. Losing the linearity condition among the thermodynamic vari-

ables makes their interpretations much more difficult. However, the Raychaudhuri

equation of the worldsheet (3.1) should still quantify the energy fluxes into and out of

the system. That is what we will focus on in the next chapter.
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Recently, Freidel [67] presented an approach to study nonequilibrium thermodynam-

ics by using geometrical objects in a 2+2 formalism. Our language is similar to his

in terms of the quasilocal nature of the thermodynamic potential densities introduced

on a screen S. However, our formalism differs fundamentally in character by the exis-

tence of a worldsheet T on which both of the degrees of freedom are treated equally

in terms of their roles in evolving the potentials. Whether or not investigation of this

difference provides a passage from quasilocal equilibrium to nonequilibrium thermo-

dynamics is a point of interest.

In the next chapter, we will focus on systems that are not in quasilocal thermody-

namic equilibrium. Moreover, we will relax the condition of spherical symmetry. Our

investigation will mainly involve the quasilocal energy exchange of the system. The

thermodynamic interpretation, which does not exist for systems far from equilibrium

even in classical thermodynamics, will be abandoned.
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4 Quasilocal energy exchange and

the null cone

In general relativity, there is no unique definition of matter plus gravitational energy ex-

change definition for a system. For the case of pure gravity, for example, gravitational

radiation and the energy loss associated with it, can be identified unambiguously only

at null infinity, I+, of an isolated body [14]. Essentially it is assumed that observers

are sufficiently far away from the body in question so that the asymptotic metric is flat

and the perturbations around it correspond to the gravitational radiation. Also it is as-

sumed that the spacetime admits the peeling property, i.e., the Weyl scalars behave

asymptotically 1 and outgoing null hypersurfaces are assumed to intersect I+ through

closed spacelike 2-surfaces whose departure from the unit sphere is small [113]. It

is known that the wave extraction and the interpretation of the physically meaningful

quantities are often challenging for numerical relativity simulations based on those

asymptotic regions.

On the other hand, for astrophysical and larger scale investigations, we would like to

know how systems behave in the strong field regime. We would like to understand

the behaviour of binary black hole or neutron star mergers and how those objects

affect their close environment. Considering the fact that gravitational energy cannot

be localised due to the equivalence principle, there have been a considerable number

of attempts to understand the energy exchange mechanisms of arbitrary gravitating

systems quasilocally, on top of the earlier global investigations [114, 115, 116]. How-

1Weyl tensor obeys a peeling property, meaning that it can be expanded as the following [12]

Cµναβ =
C(1)
µναβ

λ
+

C(2)
µναβ

λ2 +
C(3)
µναβ

λ3 +
C(4)
µναβ

λ4 + O
(

1
λ5

)
, (4.1)

where λ is the affine parameter that parametrizes the null geodesics. As one takes λ→∞ the first
term on the right hand side dominates and the curvature tensor acts like the one of a Petrov type-IV
(N) spacetime. This means it shows similar behaviour to the pp-waves.
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4 Quasilocal energy exchange and the null cone

ever, not all of the quasilocal energy investigations are constructed on, or translated

into, the formalism that the numerical relativity community uses. In the present chap-

ter, we aim to present a method with which one can investigate the quasilocal energy

exchange of a system. This involves the observables of timelike congruences, how-

ever, we present the corresponding null cone observables as well once we perform a

transformation between the two formalisms.

In Chapter 2 we presented Capovilla and Guven’s generalized Raychaudhuri equa-

tion which gives the focusing of an arbitrary dimensional timelike worldsheet that is

embedded in an arbitrary dimensional spacetime. Previously, in Chapter 3, we ap-

plied their formalism to a 2-dimensional timelike worldsheet, T, embedded in a 4-

dimensional spherically symmetric spacetime. This allowed us to define quasilocal

thermodynamic equilibrium conditions and the corresponding quasilocal thermody-

namic potentials in a natural way.

In the present chapter, we will consider more generic systems, which are not in equi-

librium with their surroundings. Also the systems we consider here are not neces-

sarily spherically symmetric. Our main aim is to present a method for the calculation

of the energy-like quantities of these systems which can be exchanged quasilocally.

While doing so, we will switch from Capovilla and Guven’s notation to the notation of

Newman-Penrose (NP) formalism [34]. Firstly, this will ease our calculations. Sec-

ondly, the transformation of the original formalism of CG to NP poses basic questions

about the null tetrad gauge invariance of numerical relativity in terms of quasilocal con-

cerns. Namely, if one wants to investigate a system quasilocally one needs to define it

consistently throughout its evolution by keeping the boost invariance of the quasilocal

observers. This fixes a gauge for the complex null tetrad constructed through their

local double dyad in our 2+2 approach.

The construction of this chapter is as follows. In Section 4.1, we survey some of

the local, global and quasilocal approaches in the literature to investigate matter plus

gravitational mass-energy exchange. We will show just how broad the literature is

in terms of energy exchange investigations. In Section 4.2 we start to question how

to best define a quasilocal system properly and introduce our choice of system def-

inition. In Section 4.3 we present the contracted Raychaudhuri equation in the NP

formalism and demonstrate how our gauge conditions affect it. Later, in Section 4.4,

we give physical interpretations to the variables of the contracted Raychaudhuri equa-

tion in terms of the quasilocal charge densities. We define the associated quasilocal
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4.1 Mass-energy exchange: local, global and quasilocal

charges and end up with a work-energy relation. According to our interpretation, the

contracted Raychaudhuri equation of the worldsheet of the quasilocal observers gives

information about how much rotational and nonrotational quasilocal energy the sys-

tem possesses, in addition to the work that should be done by the tidal fields to create

such a system. In Section 4.5 we present applications of our method to a radiat-

ing Vaidya spacetime, C-metric and interior of a Lanczos-van Stockum dust source.

We present the delicate issues related to our construction in Section 4.6 and give a

summary and a discussion in Section 4.7. Our derivations, together with the relevant

equations of the NP formalism , are presented in Appendices A, B and C.

Note that since we use (−,+,+,+) signature for our spacetime metric in this thesis,

one has to be careful about the definitions of the spin coefficients and curvature

scalars when comparing them to Newman and Penrose’s original construction in [34].

However, that is not a complication for our contracted Raychaudhuri equation as it is

independent of the metric signature.

4.1 Mass-energy exchange: local, global and

quasilocal

4.1.1 Local approaches

For local investigations of the gravitational energy flux, the Weyl tensor plays the cen-

tral role. Newman and Penrose introduce five complex Weyl curvature scalars which

incorporate all of the information of the Weyl tensor by [34]

ψ0 = Cµναβlµmνlαmβ, (4.2)

ψ1 = Cµναβlµnνlαmβ, (4.3)

ψ2 = Cµναβlµmνmαnβ, (4.4)

ψ3 = Cµναβlµnνmαnβ, (4.5)

ψ4 = Cµναβnµmνnαmβ, (4.6)
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4 Quasilocal energy exchange and the null cone

where Cµναβ is the Weyl tensor of the spacetime, {lµ,nµ,mµ,mµ} is the NP complex

null tetrad and the only surviving inner products of the null vectors with each other are

〈l,n〉 = −1 and
〈
m,m

〉
= 1.

The dynamics of timelike observers, who live in different Petrov-type spacetimes, was

investigated by Szekeres previously [117]. In this method, one can assign physical

meanings to the Weyl scalars. However, we note that this is only possible once we

adapt our NP tetrad to the principal null direction(s) of the spacetime in question.

Once we relax this condition, Weyl curvature scalars cannot be interpreted as the

way it was done in Szekeres’ work.

Let us decompose the Weyl tensor into its electric and magnetic parts. One can

define a super-Poynting vector through them via [118] Pµ = εµαβEα
νBβν, where Eµν =

hαµhβνCασβγtσtγ is its electric part, Bµν =−1
2hαµhβνεασγκC

γκ
βρtσtρ is the magnetic part,

tµ is the timelike vector orthogonal to the 3-dimensional spacelike hypersurfaces, hµν
is the corresponding projection operator and εµναβ is the Levi-Civita tensor. The super-

Poynting vector represents the gravitational energy flux density following its electro-

magnetic analogy. In [119] it is shown that choosing a transverse tetrad, rather than

a principal tetrad, aligns the gravitational wave propagation direction with the super-

Poynting vector. Authors indicate that if we have a device which in principle works like

Szekeres’ ‘gravitational compass’ [117] we can detect the gravitational waves locally.2

This is of course applicable for a purely gravitational case.

4.1.2 Global approaches

For gravitational waves, Bondi mass loss [14] is one of the most widely used expres-

sions to determine the energy lost by the system via gravitational radiation at null

infinity. For an asymptotically flat spacetime, with NP variables, the Bondi mass reads

as [37]

MB = −
1

4π

∫
S

(
ψ(0)

2 +σ(0)
.
σ

(0)
)
dS , (4.7)

where S is the closed spacelike surface located at null infinity, σ = −〈m,Dml〉 is one

of the NP spin coefficients and the superscript ‘(0)’ represents the leading order part

2In fact, recently, it has been announced that the gravitational waves have been detected by local
measurements of the two LIGO interferometers [120].
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4.1 Mass-energy exchange: local, global and quasilocal

of the object with respect to a radial expansion. The mass loss associated with the

gravitational waves is determined once the ‘time’ derivative, denoted by the overdot, of

the Bondi mass is calculated in Bondi coordinates. Note that in the tetrad formalism

approach of Bondi, the null tetrad is required to satisfy certain conditions. In the

Bondi-Metzner-Sachs gauge one has

κ = π = ε = 0, ρ = ρ, τ = α+β, (4.8)

which gives the symmetry group of the conformal boundary at null infinity.

In terms of other global investigations, the energy loss of a relativistic body through its

interaction with the external field can be traced back to Misner, Thorne and Wheeler’s

mass definition [121] constructed via an effective energy-momentum pseudotensor.

Developed by many, including [114, 122, 123, 124], the methodology for calculation of

the mass-energy loss of an isolated relativistic body via its interaction with an external

field is in fact very similar to the Newtonian analysis [115].

One can calculate the mass-energy loss via [114, 115]

−
dMS

dt
=

∫
∂S

(−g) t0JnJr2dΩ, (4.9)

where MS is the mass inside the 3-sphere S which gives the mass of the isolated ob-

ject, M, to leading order under the slow rotation assumption; ∂S is the 2-dimensional

boundary of S , −g is the square of the 4-metric density, tαβ is the Landau-Lifshitz pseu-

dotensor [5], nJ = xJ/r are the radial vector components and dΩ is the 2-dimensional

volume element. If one keeps only the EI cross terms, where EJK = RJ0K0, Rµναβ is

the Riemann tensor of the external field and IJK is the mass quadrupole moment of

the isolated body, one gets

−
dMS

dt
=

d
dt

(
1

10
E JK IJK

)
+

1
2

E JK dIJK

dt
, (4.10)

in which only the zeroth and first order time derivatives and the leading order term in

the perturbative expansion are considered. In this approach, the first term on the right

hand side is interpreted as the rate of change of the interaction energy of the body

and the external field, whereas the second term is interpreted as the rate of work

done by the external field on the body. Therefore,

dW
dt

= −
1
2

E JK dIJK

dt
(4.11)
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4 Quasilocal energy exchange and the null cone

is sometimes referred to as tidalheating even though the energy loss/gain is not solely

via the cooling/heating of the body in question [115].

There have been debates about whether or not the total mass of the body, which is

taken as the sum of the self energy and the interaction energy, is ambiguous in this

picture [114, 115, 116] 3. For the time being, let us bear in mind that results obtained in

this approach are true up to the leading order of the energy calculations of an external

field and of an asymptotically flat spacetime which models a slowly rotating body at

null infinity. Also, in general, one should be careful about using energy-momentum

pseudotensors to calculate the mass-energy of a system due to the delicacies we

mentioned in Chapter 2.

4.1.3 Quasilocal approaches

As mentioned previously, in Chapter 2, the effective matter plus gravitational energy,

momentum and stress energy densities can be attributed to the extrinsic or intrin-

sic geometry of a closed, spacelike, 2-dimensional surface in many applications of

general relativity. Note that these spacelike 2-surfaces can be considered as the t-

constant surfaces of the (2+1) timelike boundary, B , of the spacetime. Alternatively

they can be considered as the embedded surfaces of spacelike 3-hypersurfaces or

embedded surfaces of the spacetime itself [79, 125, 24, 25, 126, 26, 27].

Recall from Section 2.1.4 that Brown and York [24] define T xy
B = (Θγxy−Θxy)/ (8π) as

the object that carries information about the matter plus gravitational energy content

of a given system by following a Hamiltonian approach. Here Θxy is the extrinsic

curvature of the worldtube and γxy is the 3-metric induced on it that is fixed. Then the

matter plus gravitational energy flux density, fBY , follows from the worldtube derivative

of the matter plus gravitational energy tensor, i.e.,

fBY = γ α
µ Dα

(
Tµν

B tν
)
, (4.12)

where tµ is a timelike vector field which is not necessarily orthogonal to the t-constant

3The discussion began with Thorne and Hartle’s statement that there exists an ambiguity in the total
mass-energy of the body [114]. Later, Purdue concluded that there is no ambiguity at least in the
rate of work done on the system up to leading order [115]. Furthermore, Favata considered different
“localisations” of gravitational energy and concluded that the total mass-energy of the system does
not depend on the choice of the energy-momentum pseudotensor and is thus unambiguous [116].
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4.1 Mass-energy exchange: local, global and quasilocal

spacelike surfaces St, γ α
µ is the projection operator on to the worldtube and Dα is the

spacetime covariant derivative.

In [127], the authors define the rate of work done on a quasilocal system via eq. (4.12)

by specifically choosing tµ not to be a timelike Killing vector field of the worldtube

metric. According to Booth and Creighton, in vacuum, the rate of work done on the

system by its environment is given by

dW
dt

= −
1
2

∫
St

d2x
√
−γTµν

B $tγµν, (4.13)

where $t is the operator that is obtained by projecting the covariant derivative operator

defined by the induced metric of B on the spacelike 2-surface. Equation (4.13) is used

to calculate the tidal heating quasilocally in the weak field limit, which serves as an

excellent example to compare the quasilocal formalisms with the global ones. Their

results show that the leading terms of the rate of work done is not exactly equal to the

one given by the global method, eq. (4.11). It is only the so-called irreversible part,

the portion that is expended to deform the body, that is equal to 1
2E JKdIJK/dt and

hence attributed to tidal heating. However, there exists an additional portion which is

stored as the potential energy in the system, called the reversible part, which differs

from the results of the global method.

In [128], Epp et al. take one step further and come up with a more concrete definition

of matter plus gravitational energy flux between the initial, Si, and final, S f , slices of

a worldtube. This approach is more concrete in the sense that the 2-surfaces have

certain conditions on them. The authors define a rigid quasilocal frame by demanding

the 2-surfaces to have zero expansion and shear when they are considered to be

embedded in the worldtube. In this approach, the energy flux density in vacuum is

calculated as αµP µ. Here αµ is the proper acceleration of the observers projected on

the 2-surface, P µ are constructed via the normal and tangential projections of Tµν
B , as

defined by Brown and York [24]. On the spacelike 2-surfaces Pµ = σµνuρT
νρ
B and σµν

is the metric induced on the 2-surfaces. This is a coordinate approach. However, the

conditions they impose on the spacelike 2-surface can be translated into null tetrad

gauge conditions once a change of formalism is applied. In the next section, we will

see that our definition of a system is not as restrictive as the one of Epp et al..
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4 Quasilocal energy exchange and the null cone

4.2 Null tetrad gauge conditions and the quasilocal

calculations

In the present chapter, we have no intention to discuss the advantages and disad-

vantages of numerical relativity calculations at finite distances4. However, we would

like to keep track of the quasilocal observables and the null cone observables si-

multaneously as they are not always investigated in tandem in numerical relativity

simulations.

Consider the case of a perturbed rotating black hole. In real astrophysical cases,

our ultimate goal is to get information about the properties – such as the mass, an-

gular momentum and their dissipation rates – of this black hole via the gravitational

radiation we detect. In such a case, we have the freedom to choose a null tetrad

for gravitational radiation calculations and a corresponding orthonormal tetrad for the

quasilocal energy calculations. One of our aims, in this chapter, is to check whether or

not those tetrad choices are consistent with each other when the different formalisms

are considered.

For example, there is a geometrically motivated transverse tetrad, the so-called quasi-

Kinnersley tetrad [132], which is considered to be one of the best choices to study

the gravitational wave extraction from a perturbed Kerr black hole [133, 134, 135].

In [119], Zhang et al. investigate the directions of energy flow using the super-

Poynting vector and show that the wave fronts of passing radiation are aligned with

the quasi-Kinnersley tetrad. However, in the current section, we introduce certain

null tetrad gauge conditions for a quasilocal system which are not satisfied by the

quasi-Kinnersley tetrad. This might mean that even though one can measure the

gravitational radiation emitted from a region properly, one might not be able to extract

the quasilocal properties of its source consistently. What we mean by this sentence

will be more clear once we introduce our formalism and give a detailed discussion of

this specific issue in Section 4.6.

When the quasilocal properties are taken into consideration, one has to start the in-

vestigation with a proper definition of a system. This is the missing ingredient in many

4For example see Gómez and Winicour’s discussion on this issue [129]. Also see [130] for a con-
struction of a conformal method and see [131] for a pedagogical review of conformal methods in
numerical relativity.
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4.2 Null tetrad gauge conditions and the quasilocal calculations

quasilocal approaches in the literature. In the present chapter, we use a rigorous ge-

ometrical method to define a generic system via the mathematical properties of our

2-surfaces T and S which we introduced in the previous chapters.

Recall that previously we considered an embedding of an oriented worldsheet with an

induced metric, ηab, written in terms of orthonormal basis tangent vectors, {Ea},

g(Ea,Eb) = ηab. (4.14)

The two unit normal vectors, {Ni }, of the worldsheet were defined up to a local rotation

by,

g(Ni ,N j ) = δi j, (4.15)

g(Ni,Ea) = 0, (4.16)

where {a,b} = {0̂, 1̂} and {i, j} = {2̂, 3̂} are the dyad indices and the Greek indices will

refer to 4-dimensional spacetime coordinates.

For a physically meaningful construction, we want the tangent spaces of these em-

bedded surfaces, T and S, to be integrable [32]. According to Frobenius Theorem,

involutivity is a sufficient condition for the existence of an integral manifold through

each point [136]. In other words, let Dk be a k-dimensional distribution on a manifold

M, which is required to be C∞. Dk is involutive if for the vector fields X,Y ∈ Dk their Lie

bracket satisfies [X,Y] ∈ Dk [137].

Therefore our tangent basis vectors {Ea,Ni} need to satisfy

[Ea,Eb] = f c
ab Ec, (4.17)[

Ni,N j
]

= hk
i jNk. (4.18)

Note that one can construct a complex null tetrad, {l,n,m,m}, via an orthonormal
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4 Quasilocal energy exchange and the null cone

double dyad and vice versa according to

Eµ

0̂
=

1
√

2

(
lµ+ nµ

)
, (4.19)

Eµ

1̂
=

1
√

2

(
lµ−nµ

)
, (4.20)

Nµ

2̂
=

1
√

2

(
mµ+ mµ) , (4.21)

Nµ

3̂
= −

i
√

2

(
mµ−mµ) . (4.22)

Now let us see the gauge conditions that the Frobenius theorem, when applied to

the tangent spaces of T and S, imposes on a null tetrad constructed via the tangent

vectors of T and S. We can rewrite eq. (4.17) as

Eµ
aDµEν

b −Eµ
bDµEν

a = f c
ab Eν

c := Fν
ab . (4.23)

Considering the only non zero component of Fab, i.e., F0̂1̂ = −F1̂0̂ and expressions

(4.19)-(4.20) we can write

Fν
0̂1̂

= Eµ

0̂
DµEν

1̂
−Eµ

1̂
DµEν

0̂
= f 0̂

0̂1̂
Eν

0̂
+ f 1̂

0̂1̂
Eν

1̂

=
1
2

[(
lµ+ nµ

)
Dµ

(
lν−nν

)
−

(
lµ−nµ

)
Dµ

(
lν+ nν

)]
=

1
√

2

[
f 0̂

0̂1̂

(
lν+ nν

)
+ f 1̂

0̂1̂

(
lν−nν

)]
. (4.24)

Thus,

(
Dlnν−Dnlν

)
= −

1
√

2

[(
f 0̂

0̂1̂
+ f 1̂

0̂1̂

)
lν+

(
f 0̂

0̂1̂
− f 1̂

0̂1̂

)
nν

]
. (4.25)

Now if we take the inner product of both sides of eq. (4.25) with the null vector m we

get

〈m,Dln〉− 〈m,Dnl〉 = π− (−τ) = 0, (4.26)

which follows from the propagation equations (A.10) and (A.12) of the spin coefficients

of the Newman-Penrose formalism [34].

Likewise when we rewrite eq. (4.18) we get

Nµ
i DµNν

j −Nµ
j DµNν

i = hk
i jN

ν
k := Hν

i j . (4.27)
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If we consider the non-vanishing component H2̂3̂ with the expressions (4.21)-(4.22)

we can write

Hν
2̂3̂

= Nµ

2̂
DµNν

3̂
−Nµ

3̂
DµNν

2̂
= h2̂

2̂3̂
Nν

2̂
+ h3̂

2̂3̂
Nν

3̂

= −
i
2
(
mµ+ mµ)Dµ

(
mν−mν)+

i
2
(
mµ−mµ)Dµ

(
mν+ mν)

=
1
√

2

[
h2̂

2̂3̂

(
mν+ mν)

− ih3̂
2̂3̂

(
mν−mν)] .

(4.28)

Hence,

(
Dmmν

−Dmmν) = −
1
√

2

[
mν

(
h3̂

2̂3̂
+ ih2̂

2̂3̂

)
−mν

(
h3̂

2̂3̂
− ih2̂

2̂3̂

)]
. (4.29)

Taking the inner product of both sides of eq. (4.29) with the null vectors l and n re-

spectively gives,

〈
l,Dmm

〉
−

〈
l,Dmm

〉
= ρ−ρ = 0, (4.30)〈

n,Dmm
〉
−

〈
n,Dmm

〉
= (−µ)− (−µ) = 0, (4.31)

which follow from the propagation equation (A.18).

Therefore we will state that for quasilocal energy calculations in our 2+2 approach,

the following three null gauge conditions must be satisfied,

τ+π = 0, ρ = ρ, µ = µ. (4.32)

It is easy to check that under a Type-III Lorentz transformation of the complex null

tetrad, i.e.,

l → a2l, (4.33)

n →
1
a2 n, (4.34)

m → e2iθm, (4.35)

m → e−2iθm, (4.36)

the gauge conditions (4.32) are preserved. This is because transformation of the spin
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coefficients τ, π, ρ, µ under Type-III Lorentz transformation follows as [138]

τ → e2iθτ, (4.37)

π → e−2iθπ, (4.38)

ρ → a2ρ, (4.39)

µ →
1
a2µ, (4.40)

in which a2 and 2θ respectively refer to the boost and spin parameters in Newman-

Penrose formalism. They are arbitrary real functions. Note that this transformation

corresponds to

Eµ

0̂
→ γ

(
Eµ

0̂
−βEµ

1̂

)
, (4.41)

Eµ

1̂
→ γ

(
Eµ

1̂
−βEµ

0̂

)
, (4.42)

where

β =
a4−1
a4 + 1

and γ =
1√

1−β2
, (4.43)

meaning that a Type-III Lorentz transformation of the null tetrad corresponds to the

boosting of the timelike observers along Eµ

1̂
on T. This is the property we want to

preserve in the definition and the investigation of our quasilocal system.

4.3 Raychaudhuri equation with the Newman-Penrose

formalism

We use the relations (4.19)-(4.22) in order to rewrite the contracted Raychaudhuri

equation of our 2-dimensional timelike worldsheet, eq. (2.112), in the language of the

NP formalism. This will allow us to compare the results of the investigations of the

energy exchange mechanisms built on null cone variables and the notation that is

used in quasilocal energy calculations.

Note that eq. (2.112) is built on the extrinsic geometry of T and S. Those extrinsic

objects, like curvature, rotation and twist, are all measures of how much the dyad

vectors change when they are propagated along each other. Likewise in the NP

formalism, spin coefficients are defined via the changes of null vectors when they are
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4.3 Raychaudhuri equation with the Newman-Penrose formalism

propagated along each other with the relevant projections. A short summary of the

NP formalism and the detailed calculations of our formalism transformation can be

found in Appendices A and B respectively.

When the formalism transformation is applied, the contracted Raychaudhuri equation,

(2.112), of T can be conveniently written as

∇̃TJ = −∇̃SK − J 2−K 2 + RW , (4.44)

where

∇̃TJ := ηabδi j∇̃bJai j =
[
Dn (ρ+ρ)−Dl (µ+µ)

]
(4.45)

−
[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
+ 2

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
,

∇̃SK := ηabδi j∇̃iKab j = Dm (π−τ) + Dm (π−τ) (4.46)

−
[
(α−β) (π−τ) +

(
α−β

)
(π−τ)

]
+ 2

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
,

J 2 := Jbik Jal jη
abδi jδlk = 2

(
µρ+µρ+σλ+σλ

)
, (4.47)

K 2 := Kbci Kad jη
abηcdδi j = −2(κν+ κν+πτ+πτ) , (4.48)

RW := g(R(Eb,Ni )Ea,N j )η
abδi j = Dn (ρ+ρ)−Dl (µ+µ) + Dm (π−τ) + Dm (π−τ)

−
[(
α−β

)
(π−τ) + (α−β) (π−τ)

]
−

[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
−2(κν+ κν)

+ 2
(
ρµ+ρµ+λσ+λσ

)
. (4.49)

An alternative, more compact expression for RW is

RW = −2
(
ψ2 +ψ2 + 4Λ

)
. (4.50)

Now if we substitute the terms (4.45)-(4.50) back into eq. (4.44) we see that the Ray-

chaudhuri equation is not yet satisfied. This is simply because Capovilla and Guven

impose the integrability condition in their formalism to define the extrinsic objects5 and

we did not impose it after our change of formalism. We must further impose the null

tetrad gauge conditions introduced in Section 4.2. Thus, with τ+π = 0, ρ = ρ and µ = µ

5This can be seen by checking the symmetries of the extrinsic objects introduced at the previous
section.
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we get

∇̃TJ = 2(Dnρ−Dlµ)−2
[
(ε+ε)µ+ (γ+γ)ρ

]
, (4.51)

∇̃SK = 2
(
Dmπ−Dmτ

)
−2

[
(α−β)π+

(
α−β

)
π
]
, (4.52)

J 2 = 4µρ+ 2
(
σλ+σλ

)
, (4.53)

K 2 = −2(κν+ κν) + 2(ππ+ττ) , (4.54)

RW = 2
[
Dnρ−Dlµ

]
+ 2

[
Dmπ−Dmτ

]
− 2

[
(α−β)π+

(
α−β

)
π
]
−2

[
(ε+ε)µ+ (γ+γ)ρ

]
− 2(κν+ κν) + 2(ττ+ππ) + 4µρ+ 2

(
σλ+σλ

)
, (4.55)

and the alternative expression (4.50) is unchanged. These variables now satisfy the

Raychaudhuri equation as expected.

We further note that since the Einstein field equations have not yet been applied,

(4.51)-(4.55) are purely geometrical results irrespective of the underlying gravitational

theory that governs the dynamics of the quasilocal observers. In order to satisfy the

Einstein equations, all 16 of the field equations of the spin coefficients should be satis-

fied. However, we need to emphasise that this version of the contracted Raychaudhuri

equation contains all the information contained in two of the NP spin field equations.

Let us consider the following NP spin field equations

Dlµ−Dmπ = µρ− (ε+ε)µ+σλ+ππ− (α−β)π− κν+ψ2 + 2Λ, (4.56)

Dn ρ−Dm τ = −µρ+ (γ+γ)ρ−σλ−ττ−
(
α−β

)
τ+ κν−ψ2−2Λ. (4.57)

If we take (4.56) + (4.56)∗ − (4.57)− (4.57)∗, where ∗ denotes the complex conjugate,

then the result is the contracted Raychaudhuri equation of the worldsheet under our

gauge conditions. We will not attempt to restrict the general set of equations (4.51)-

(4.55) by further imposing the Einstein equations. Rather, we will apply it to space-

times that are already solutions of the Einstein field equations.

4.4 A work-energy relation

In this section we are going to define quasilocal charges by using the terms that

appear in the Raychaudhuri equation. Ultimately we will make definitions so as to end
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4.4 A work-energy relation

up with a work-energy relation that looks like the following

ETotal = EDilatational + ERotational + WTidal. (4.58)

In doing so, one of Kijowski’s quasilocal energy definitions will be our anchor. Let us

recall the two energy definitions made by Kijowski which are derived from a gravita-

tional action [25],

EK1 = −
1

16π

∮
S

dS
H2− k2

0

k0

, (4.59)

EK2 = −
1

8π

∮
S

dS
[ √

H2− k0

]
, (4.60)

Previously, in Chapter 3, we identified eq. (4.59) as internal energy since it was as-

sociated with the quasilocal energy of a system in equilibrium which can potentially

be used to do work, dissipate heat or exchange energy in other forms. The second

expression (4.60) is usually interpreted as the invariant mass energy of the system

that is an analogue of a proper mass of a particle [26]. Therefore if we are after an ex-

pression which represents the energy that can be exchanged by the system, square

of the mean extrinsic curvature, H2, should be our central object.

The quasilocal energy definitions EK1 and EK2 of Kijowski both have the functional

form
(
H2

)p
with p = 1 and p = 1/2 respectively. This is due to Kijowski applying a

Legendre transform on the boundary Hamiltonian with different boundary conditions

as mentioned in Chapter 2. However, this does not cause any problem in terms of

the dimensionality of the quasilocal energies as the so-called reference terms, which

make sure that the energy definitions are boost invariant, do not appear in the same

format.

In Chapter 3, we defined quasilocal thermodynamic potentials at equilibrium for spher-

ically symmetric spacetimes by using the terms that appear in the contracted Ray-

chaudhuri equation, (2.112), of T. We applied our formalism for metrics with boundary

conditions g00 = 1, g0A = 0 when the quasilocal observers are located at the apparent

horizon6. Therefore the quasilocal charges defined in [33] take the same form as EK2.

Note that this refers to a very special state of the system in question.

In the present chapter, we would like to define quasilocal charges for nonequilibrium

6For the Schwarzschild case, this corresponds to quasilocal observers at event horizon in which
g00→ 0 at the quasilocal thermodynamic equilibrium defined in Chapter 3.
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4 Quasilocal energy exchange and the null cone

states and we would like to go beyond spherical symmetry. We will consider space-

times with an embedded S whose induced 2-metric components are time indepen-

dent, just as Kijowski did to define EK1. In order to define the quasilocal charges

we will first multiply the contracted Raychaudhuri equation (4.44) by two7, and add

the reference energy term, k2
0, to each side. Since all of the terms that appear in

eq. (4.44) have dimension (length)−2 on account of their relationship to the Riemann

tensor, to obtain a quasilocal energy expression we further divide by k0 before integrat-

ing the equation on our closed 2-surface S. Then we obtain the following quasilocal

charges

ETot = −
1

16π

∮
S

dS

−
(
2∇̃TJ + k2

0

)
k0

, (4.61)

EDil = −
1

16π

∮
S

dS
2J 2− k2

0

k0

, (4.62)

ERot = −
1

16π

∮
S

dS
[
2∇̃SK + 2K 2

k0

]
, (4.63)

WTid = −
1

16π

∮
S

dS
[
−2RW

k0

]
, (4.64)

so that

ETot = EDil + ERot + WTid (4.65)

is satisfied.

In the following sections, we will discuss our reasons for these quasilocal charge

definitions. The reasons behind naming our quasilocal charges like energy associated

with dilatational or rotational degrees of freedom and work done by tidal fields of the

system will be explained.

4.4.1 Energy associated with dilatational degrees of freedom

In spherical symmetry, we were able to write J 2 := Jbik Jal jη
abδi jδlk in terms of the

square of the mean extrinsic curvature, H2, of S via 2J 2 = H2. Note that confining the

quasilocal observers to radial world lines in a spherically symmetric system results

7The reason behind this factor of 2 will be more clear in the following sections.

78



4.4 A work-energy relation

in corresponding, purely radial, null congruences that are shear-free. Indeed, for the

generic case,

H2 := Jaik Jb jlη
abδikδ jl = 2(ρ+ρ) (µ+µ) , (4.66)

J 2 := Jail Jb jkη
abδikδ jl = 2

(
µρ+µρ+σλ+σλ

)
. (4.67)

Therefore with two of our null tetrad gauge conditions, ρ = ρ, µ = µ and the shear-free

case, σ = 0,

H2 = 2J 2 = 4
(
µρ+µρ+σλ+σλ

)
= 8µρ. (4.68)

This is natural for radially moving observers of spherically symmetric systems. How-

ever, it is not clear which of the terms in (4.66) and (4.67) carries more information

about the generic system in question.

According to the Goldberg-Sachs theorem, there exists a shear-free null congruence,

kµ, for a vacuum spacetime if [12]

k[µCν]αβ[γkσ]kαkβ = 0 (4.69)

is satisfied. This means that if we wish to have the shear-free property, we need

to pick a principal null tetrad for our systems in vacuum. However, there is no such

a priori necessity for our formalism to hold.

In [139], Adamo et al. investigate the shear free null geodesics of asymptotically flat

spacetimes in detail. They note that the shear-free or asymptotically shear-free null

congruences may provide information about the asymptotic center of mass or intrinsic

magnetic dipole in certain cases. Also the importance of the twistor theory, which is

solely constructed on shear-free null congruences, cannot be denied. At this point, we

should also emphasise that the spacetimes we are interested in are not necessarily

asymptotically flat.

In [140], Ellis investigated shear-free timelike and null congruences. He concluded

that by imposing a shear-free condition on the null congruences, one puts a restriction

on the way the distant matter can influence the local gravitational field. In that case,

there is an information loss. Note that shear is also the central concept of Bondi’s

mass loss formulation. It is only if the null congruence has shear, that one can define

a news f unction which is solely responsible for the mass loss via gravitational radiation
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4 Quasilocal energy exchange and the null cone

at null infinity [14]. Ellis also emphasised the fact that, a nonrotating null congruence in

vacuum cannot shear without expanding or contracting. Thus we cannot completely

separate the effects of dilatation and shear for null congruences. We will combine

them in the quasilocal charge constructed from the J 2 term, (4.53), and write

EDil = −
1

16π

∮
S

dS
2J 2− k2

0

k0


= −

1
16π

∮
S

dS

8µρ+ 4
(
σλ+σλ

)
− k2

0

k0

. (4.70)

Since we claim that the Raychaudhuri equation of the worldsheet incorporates the

physically meaningful quasilocal energy densities, one might ask what is the direct

connection of our J 2 term (4.67) to the boundary Hamiltonian which is generically

written in terms of the mean extrinsic curvature H, (4.66). The link lies in the Gauss

equation of the 2-surface S when it is embedded directly into spacetime [141], i.e.,

g(R(Nk,Nl)N j,Ni) = Ri jkl− Jaik Jb jlη
ab + Ja jk Jbilη

ab, (4.71)

where Ri jkl is the Riemann tensor associated with the 2-dimensional metric induced

on S. If we contract eq. (4.71) with δikδ jl we find

J 2 = H2−RS + 2
(
Ψ2 +Ψ2−2Λ−2Φ11

)
, (4.72)

in which RS := Ri jklδ
ikδ jl is the scalar intrinsic curvature of S and the derivation of

g(R(Nk,Nl)Nl,Nk) = −2
(
Ψ2 +Ψ2−2Λ−2Φ11

)
can be found in Appendix C. Equation

(4.72) not only allows us to connect our J 2 term to the boundary Hamiltonian of gen-

eral relativity, but it can also be used to relate different quasilocal energy definitions

which are built on either the extrinsic or intrinsic curvature of S.

4.4.2 Energy associated with rotational degrees of freedom

In the previous subsection we defined the quasilocal energy associated with the di-

latational degrees of freedom by combining the real divergence and the possibly ex-

isting shear of the null congruence which is constructed from the timelike dyad that

spans the timelike surface T. Now we will distinguish which spin coefficients are most

significant in defining the energy associated with the rotational degrees of freedom.
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4.4 A work-energy relation

Recall that by imposing the integrability conditions on our local dyad we made sure

that the tangent vectors of the spacelike surface S always stay within the surface.

Later, we transformed our construction into the NP formalism and stated that these

conditions imply that the null vectors {m,m}, constructed from the spacelike dyad of S,

should satisfy certain null gauge conditions throughout the evolution of the quasilocal

system. Then, under such gauge conditions, the magnitude of the change of these

null vectors should be related to how much the quasilocal system rotates. Note that

this interpretation makes sense only when one forces the spacelike dyad, constructed

from {m,m}, to stay on S throughout the evolution.

Now let us define the spacetime covariant derivative via the directional covariant

derivatives of the null tetrad and write

Dµ = −lµDn−nµDl + mµDm + mµDm. (4.73)

Then the change in components of {m,m} follow as

Dµmµ = −〈l,Dnm〉− 〈n,Dlm〉+
〈
m,Dmm

〉
+

〈
m,Dmm

〉
,

Dµmµ = −
〈
l,Dnm

〉
−

〈
n,Dlm

〉
+

〈
m,Dmm

〉
+

〈
m,Dmm

〉
,

By using equations (A.15)-(A.18) we get

Dµmµ = (π−τ) + (β−α) ,

Dµmµ = (π−τ) +
(
β−α

)
.

Therefore, the spin coefficients {π, τ, α, β}, their complex conjugates and their

changes when one perturbs them on S can be used to define the energy associ-

ated with the rotational degrees of freedom. Since the terms ∇̃SK , (4.52), and K 2,

(4.54), involve these spin coefficients and their changes we define

ERot = −
1

16π

∮
S

dS
[
2∇̃SK + 2K 2

k0

]
= −

1
16π

∮
S

dS
4
[
Dmπ−Dmτ−π (α−β)−π

(
α−β

)
+ππ+ττ− κν− κν

]
k0

(4.74)

Note that the term (κν+ κν) vanishes if one picks the null vector l or n, constructed

from the timelike dyad that spans T, to be a geodesic, i.e., κ = 0 or ν = 0. In that
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4 Quasilocal energy exchange and the null cone

case ERot can be written purely in terms of the spin coefficients {π, τ, α, β}. However,

there is no geometric or physical reason for us to demand our null congruences to be

geodesic, and we will not impose the geodesic condition for the time being.

4.4.3 Work done by tidal distortions

If we want to understand the properties of a system via its energy exchange mech-

anisms we need to account for the different types of associated energies, especially

in the nonequilibrium case. One needs to be careful about what is actually measured

by the quasilocal observers. What is physical for any one observer is the tidal ac-

celeration as measured by that observer’s local ruler and clock. The work done by

tidal distortions of the whole system, however, requires the quasilocal observers to be

placed in such a geometric configuration that the observers all agree on the fact that

they are measuring the properties of the same system. In the previous sections, we

stated that this is guaranteed by our integrability conditions.

In [142], Hartle investigates the changes in the shape of an instantaneous horizon

of a rotating black hole through the intrinsic scalar curvature, RS, of a spacelike 2-

surface when it is embedded into a 4-dimensional spacetime. He chooses a null tetrad

gauge so that RS can be written in terms of a simple combination of Ψ2 and the spin

coefficients in vacuum. In the end, he finds RS = 4Re (−Ψ2 +ρµ−λσ). In [16], Hayward

provides a quasilocal version of the Bondi-Sachs mass via the Hawking mass [79],

in which the central object is again the complex intrinsic scalar curvature given by

R H
S = −Ψ2 +σσ′−ρρ′+Φ11 +Π, in the formalism of weighted spin coefficients.

We believe that the RW term that appears in eq. (4.55) has a more fundamental

meaning than RS in terms of the tidal distortion. Recall that in Chapter 3, we defined

a relative work density term, that mimics W = ~F · ~x by(
d2ξµ

dτ2

)
ξµ = Rγνρσuνuρξσξγ, (4.75)

by considering the geodesic deviation equation. We noted that, in the 3+1 pic-

ture, connecting the two worldlines is essentially nonlocal. The reason for apply-

ing the geodesic deviation equation only for neighbouring worldlines is due to the

fact that the observers are trying to approximate the value of a quantity, which is

essentially quasilocal, locally. Therefore the quantity (4.75) in the 2+2 picture, i.e.,
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4.4 A work-energy relation

RW = g(R(Eb,Ni )Ea,N j )η
abδi j = −2

(
ψ2 +ψ2 + 4Λ

)
, should have a more fundamental

importance, as it is an intrinsically quasilocal quantity. Therefore by eq. (4.50)

WTid = −
1

16π

∮
S

dS
[
−2RW

k0

]
= −

1
16π

∮
S

dS

4
(
ψ2 +ψ2 + 4Λ

)
k0

. (4.76)

Note that the quasilocal tidal work of the system is written purely in terms of the

Coulomb-like Weyl curvature scalar, ψ2, and the Ricci scalar of the spacetime due to

Λ = R/24. This interpretation does not contradict our intuition, since one would expect

the quasilocal observers to measure greater magnitude of tidal distortion under higher

Coulomb-like attraction and a higher Ricci curvature.

4.4.4 Total energy

In Chapter 3 we associated the
√

2J 2 term with the Helmholtz free energy density for

spherically symmetric systems in equilibrium. Likewise
√

2
∣∣∣∇̃TJ

∣∣∣ was interpreted as

the Gibbs free energy density of the system that includes the energy that is sponta-

neously exchanged with the surroundings to relax the system into its current state.

However, in the present chapter, we do not attempt to give a thermodynamic inter-

pretation to the Raychaudhuri equation of Capovilla and Guven since systems far

from equilibrium cannot be assigned unique thermodynamic relations even in classi-

cal thermodynamics [75]. Therefore, by using the term ∇̃TJ , (4.51), the total energy

is represented by

ETot = −
1

16π

∮
S

dS

−
(
2∇̃TJ + k2

0

)
k0


= −

1
16π

∮
S

dS

−
(
4
[
Dnρ−Dlµ

]
−4

[
(ε+ε)µ+ (γ+γ)ρ

]
+ k2

0

)
k0

. (4.77)

Here the total energy combines two types of terms: (i) the quasilocal energy the

system possesses, (ii) the energy that is expended by the ‘internal’(tidal) forces to

bring the quasilocal observers in a geometric configuration to define S. The first piece

further splits into the energy associated with dilatational and rotational degrees of
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4 Quasilocal energy exchange and the null cone

freedom. The second piece can be viewed as the energy that has already been

expended by the system in order for it to create ‘room’ for itself.

4.4.5 On the boost invariance of the quasilocal charges

Previously, in Section 4.2, it was shown that our tetrad conditions, (4.32), are invariant

under Type-III Lorentz transformations which correspond to the boosting of physical

observers in the only spacelike direction, Eµ

1̂
, defined on T. We also stated that for

a well defined construction, one would expect the matter plus gravitational energy of

the system to be boost invariant.

In Appendix C.2 we show that all of the terms, (4.51)-(4.55), that appear in the con-

tracted Raychaudhuri equation are invariant under such spin-boost transformations.

Therefore all of the quasilocal charges we defined in the current section are invariant

under the boosting of the observers along the spacelike direction orthogonal to S.

4.5 Applications

4.5.1 Radiating Vaidya spacetime

The Vaidya spacetime is used in investigations of radiating stars. It is associated with

a spherically symmetric metric which reduces to the Schwarzschild metric when the

mass function of the body is taken to be a constant. In standard coordinates with null

coordinate, u, Vaidya metric is

ds2 = −

(
1−

2M(u)
r

)
du2−2dudr + r2dθ2 + r2 sin2 θdφ2. (4.78)
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Let us pick the following complex null tetrad, {l,n,m,m}, with

lµ = ∂u−

(
1
2
−

M(u)
r

)
∂r, (4.79)

nµ = ∂r, (4.80)

mµ =
1
√

2

(
1
r
∂θ +

i
r sinθ

∂φ

)
. (4.81)

For such a complex null tetrad, κ, ν, σ, λ, τ, π all vanish so that π+ τ = 0 is trivially

satisfied. Also ρ= ρ, µ= µ as expected. Therefore all of our integrability conditions are

satisfied. When we evaluate the spin coefficients, their relevant directional derivatives

and the curvature scalars, then substitute them in eq. (4.44) we get

∇̃TJ =
−2
r2 +

8M(u)
r3 , (4.82)

∇̃SK = 0, (4.83)

J 2 =
2
r2 −

4M(u)
r3 , (4.84)

K 2 = 0, (4.85)

RW =
4M(u)

r3 . (4.86)

Here we immediately notice that the terms that have been associated with the rota-

tional degrees of freedom, i.e., ∇̃SK and K 2, are zero. This is expected since Vaidya

is a spherically symmetric spacetime.

In order to calculate our quasilocal charges we need to first find the so-called refer-

ence curvature k0. This requires the isometric embedding of the u = constant, r =

constant surface to the M 4, Minkowski spacetime, which is considered in the spheri-

cal coordinates {r̄, θ̄, φ̄}. For Vaidya, by setting {r̄ = r, θ̄ = θ, φ̄= φ} we see that the metric

induced on S is trivially isometric to that of the 2-surface embedded in M 4. Then k0

is given by the scalar curvature of a 2-sphere, i.e., k0 = 2/r̄ = 2/r. From eqs. (4.70),
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4 Quasilocal energy exchange and the null cone

(a) Vaidya at u = 0, i.e,
Schwarzschild geome-
try.

(b) Vaidya at u = 1, i.e,
Minkowski geometry.

(c) Time evolution of
quasilocal charges.

Figure 4.1: Our quasilocal charges give EK1 = EDil = WTid and ERot = 0 for each u value.
Charges are given in units of M0 and the time parameter is in units of M0/(ac)
where the speed of light, c, is 1 throughout the thesis.

(4.74), (4.76) and (4.77) we then have

ETot =
−1
16π

∫
S

dS
−
[
2
(
−2
r2 +

8M(u)
r3

)
+ 4

r2

]
2
r

= 2M (u) , (4.87)

EDil =
−1
16π

∫
S

dS

[
2
(

2
r2 −

4M(u)
r3

)
− 4

r2

]
2
r

= M (u) , (4.88)

WTid =
−1
16π

∫
S

dS

[
−2

(
4M(u)

r3

)]
2
r

= M (u) , (4.89)

ERot = 0. (4.90)

Note that we chose a null tetrad in order to satisfy our gauge conditions which turned

out to be shear-free. Therefore H2 = 2J 2 holds in this case and thus EDil = EK1. Also,

the spacetime Ricci scalar, 24Λ, vanishes. Therefore RW = −2
(
Ψ2 +Ψ2

)
= −4Ψ2 and

the RW term is solely determined by the Coulomb-like gravitational potential.

To visualize a simple evolution, consider the mass function M(u) = M0−au, where a is

a positive constant. These kind of linear mass functions have been used to investigate

the black hole evaporation previously in the literature (cf. [143], [144], [145]). With this

choice of mass function, at u = 0 we have the case of a Schwarzschild black hole (See

Fig. 4.1a.) which, given enough time, eventually evaporates so that the spacetime

becomes Minkowski (See Fig. 4.1b.). The quasilocal charges fall off linearly with the

time parameter u (See Fig 4.1c.).
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Now let us consider the ∇̃0̂EDil = ∇̃0̂ (EK1) = Eµ

0̂
∂µ (EK1). Following relation (4.19) and

with the choices we have made here for l and n,

∇̃0̂EDil =
1
√

2

[
∂u +

(
1
2

+
M(u)

r

)
∂r

]
M(u) =

1
√

2

∂M(u)
∂u

. (4.91)

According to the Einstein field equations, − 2
r2
∂M(u)
∂u = 8πρ̃, where ρ̃ is the energy den-

sity of the null dust. This shows that the dilatational energy of the system which could

potentially be lost by work, heat or other forms is lost purely due to radiation, for the

case of the Vaidya spacetime.

4.5.2 The C-metric

For our second application we want to consider a nonspherically symmetric space-

time. The C-metric is not spherically symmetric and it has many interpretations de-

pending on its coordinate representation. We will consider the coordinate represen-

tation which was introduced by Hong and Teo [146],

ds2 =
1

A2 (x + y)2

(
−F(y)dτ2 +

dy2

F(y)
+

dx2

G(x)
+G(x)dφ2

)
, (4.92)

where G(x) :=
(
1− x2

)
(1 + 2AMx) and F(y) := −

(
1− y2

)
(1−2AMy). Griffiths et al.

[147] transformed this cylindrical form of the metric into spherical coordinates by ap-

plying the coordinate transformation {τ = At, x = cosθ,y = 1/(Ar)} and gave physical

interpretations to the C-metric. The transformed metric is written as [147]

ds2 =
1

(1 + Ar cosθ)2

(
−Q(r)dt2 +

dr2

Q(r)
+

r2dθ2

P(θ)
+ P(θ)r2 sin2 θdφ2

)
, (4.93)

where Q(r) :=
(
1− 2M

r

) (
1−A2r2

)
and P(θ) := 1 + 2AM cosθ with A and M being con-

stants. Note that at r = 2M and at r = 1/A the metric has coordinate singularities and

one needs to satisfy the A2M2 < 1/27 condition in order to preserve the metric signa-

ture. Furthermore, eq. (4.93) reduces to the metric of the Schwarzschild black hole

in standard curvature coordinates when one sets A = 0. Because of this, following

Griffiths et al. [147], we will interpret the C-metric as the metric of an accelerated

black hole. At this point we note that the C-metric is sometimes interpreted as a met-

ric representing two causally disconnected black holes that are joined by a strut and
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accelerating away from each other [148, 149, 150]. However, this interpretation is

valid only when the metric is extended across each horizon, i.e., r = 2M and r = 1/A
[147]. For the application of our quasilocal construction we will not consider such an

extension of the metric, and the resulting quasilocal charges will correspond to the

charges of a single accelerated black hole.

Let us consider the following null tetrad that is generated by the double dyad of the

quasilocal observers,

lµ =
1
√

2

[
∆

Q(r)

]1/2

∂t −
1
√

2
[∆ Q(r)]1/2∂r,

nµ =
1
√

2

[
∆

Q(r)

]1/2

∂t +
1
√

2
[∆ Q(r)]1/2∂r,

mµ =
1
√

2

[
∆ P(θ)

r2

]1/2

∂θ +
i

√
2sinθ

[
∆

r2P(θ)

]1/2

∂φ,

where ∆ := (1 + Ar cosθ)2. For such a null tetrad, our integrability conditions {π+ τ =

0,ρ = ρ,µ = µ} hold. The only vanishing spin coefficients are κ, ν, λ and σ, meaning

that our null congruences, constructed from the timelike dyads residing on the 2-

surface T, are composed of geodesics which are shear-free. As noted earlier this

last property is not a necessary condition in our formalism. With the remaining non-

vanishing spin coefficients and the variables of the contracted Raychaudhuri equation

given in (4.51)-(4.55) we get

∇̃TJ =
1
r3

[
P(θ)

(
6r−2A2r3

)
−4Acosθr2 + 8(M− r)

]
, (4.94)

∇̃SK =
2A
r

[
2AM cos2 θ (2Acosθr + 3) + cosθ (Acosθr + 2) + A (r−2M)

]
, (4.95)

J 2 =
2Q(r)

r2 , (4.96)

K 2 = 2A2P(θ) sin2 θ, (4.97)

RW = 4M
(
1
r

+ Acosθ
)3

. (4.98)

In order to calculate the quasilocal charges we must first calculate the reference en-

ergy density, k0. We isometrically embed S into M 4, by setting

r2dθ2

∆ P(θ)
= r̄2dθ̄2, (4.99)

P(θ)r2 sin2 θdφ2

∆
= r̄2 sin2 θ̄dφ̄2. (4.100)
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and demand that the observers measure the same solid angle in both coordinate

systems. This is satisfied by choosing r̄ = r∆−1/2 and then k0 = 2/r̄. Here we

should note that for a generic C-metric the angular coordinates are defined within

{0 < θ < π,−Cπ < φ < Cπ} where C is the remaining parameter, other than A and M,

that parametrizes the spacetime. It is closely related to the ‘deficit/excess angle’ that

tells us how much S deviates from the spherical symmetry. For example, repeating

Griffiths et al.’s discussion,

circumference
radius

=


limθ→0

2πCP(θ) sinθ
θ = 2πC (1 + 2AM)

limθ→π
2πCP(θ) sinθ

π−θ = 2πC (1−2AM)

(4.101)

shows us that setting C = 1, as we choose to do here, will introduce excess and

deficit angles on the spacelike surface S due to the conical singularities that are intro-

duced. This, and our choices for coordinate functions of M 4 will guarantee that the

solid angle is the same for the quasilocal observers of the physical and the reference

spacetime.

We obtain the quasilocal charges by substituting the quasilocal charge densities, in

eqs. (4.94)-(4.98), into the definitions (4.61)-(4.64) and numerically integrating them.

The results are presented in Fig. 4.2 for a specific choice of A = 1/(
√

28M) to perform

the numerical integration.

Figure 4.2: Quasilocal charges of the C-metric which is parametrized with A = 1√
28M

. Those

quasilocal charges are meaningful only in the region 2M < r <
√

28M ≈ 5.29M
due to the coordinate singularities.
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4 Quasilocal energy exchange and the null cone

From Fig. 4.2 we immediately recognise that EK1 = EDil decreases as the size of the

system increases. For the case of Schwarzschild, i.e., A = 0, we expect this curve to

be flat, as in Fig. 4.1a. For lower values of acceleration, EDil gets flatter as expected.

This shows that in order for the black hole to be accelerated more, more energy should

be input to the system by an external agent. In other words, the potential work that

can be done by the system is lower. Note that after a certain size of the system,

EDil and ETot take negative values. It may seem counter-intuitive that quasilocal ob-

servers could measure a ‘negative energy’. To better understand this result, consider

the metric (4.93) and define gtt = − (Q(r)/∆) = − [1 + 2Φ(r, θ)] where Φ(r, θ) plays the

role of the ‘gravitational potential’. In Fig. 4.3 we plot Φ(r, θ) for observers located at

different polar angles. We observe that for none of the observers, except the ones

Figure 4.3: Radial behaviour of the gravitational potential of the C-metric, which is
parametrized with A = 1√

28M
, plotted for observers located at different polar an-

gles. Those potentials are meaningful only in the region 2M < r <
√

28M ≈
5.29M due to the coordinate singularities.

located at θ = π, Φ(r, θ) is monotonic. Moreover, for observers located at θ > 0.75π the

gravitational potential changes sign after a certain radial distance. This shows that the

effect of the external agent on the system is repulsive. Then the positive total energy

EDil + WTid, which corresponds to a system that has an otherwise attractive nature,

cannot overcome the repulsive effect of the external agent which causes the black

hole to accelerate. The ETot = 0 point can be viewed as the minimum energy state of

the system, below which it cannot exist without the energy exchange provided by an

external agent.

Also recall that the C-metric is interpreted as two black holes which are accelerated
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(a) Φ(r,π) (b) Φ(r,π/2) (c) Φ(r,0)

Figure 4.4: Acceleration parameter dependence of Φ(r,const.). For each acceleration pa-
rameter A∗, we consider only the region 2M < r < 1/A∗.

away from each other. This is a signature of the repulsive behaviour we observe

here. Note that here we are investigating one of the most extreme cases for an accel-

erated black hole, since as for acceleration parameters greater than 1/
(√

27M
)

the

metric changes signature. Therefore the change in the behaviour of the gravitational

potential, and hence a change in the sign of the total energy of the system is not un-

expected. We do not observe such behaviour for the Schwarzschild geometry as the

gravitational potential is monotonic with constant sign for a static black hole. In order

to investigate how the acceleration parameter, A, affects the behaviour of the gravi-

tational potential, see Fig 4.4. We plot Φ(r, θ) for observers located at θ = π, θ = π/2
and θ = 0 respectively in figures 4.4a, 4.4b and 4.4c. For each case, we investigate

the effect of the acceleration parameter, A. We observe that only for A = 0 case does

the gravitational potential not change behaviour. For a more detailed investigation of

the behaviour of the gravitational potential of a C-metric, depending on the observer

position and on the acceleration parameter, one can see [151].

In order to understand what this means for the acceleration vector of an observer

of the quasilocal system, let us set the 4-velocity of the observer to be uµ = Eµ

0̂
=

1√
2

(lµ+ nµ). Then the acceleration vector is obtained by aµ = DE
0̂
Eµ

0̂
= ar∂r + aθ∂θ

with

ar = −
1
r2

[
A3r4 cosθ (AM cosθ+ 1) + A2r2 cos2 θ (r−3M) + A2r2 (r−2M)

+Ar cosθ (r−4M)−M] , (4.102)

aθ =
Asinθ

r
P(θ)∆1/2. (4.103)

As it can be seen from Fig. 4.5 the sign of the radial component of the acceleration
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4 Quasilocal energy exchange and the null cone

Figure 4.5: Radial and tangential dependence of the components of the acceleration vector.
ar is given on the left and aθ is given on the right.

vector changes depending on the radial and angular position. In Fig. 4.6 we plot the

Figure 4.6: Radial behaviour of ar for observers at different polar angles. We consider the
acceleration vector only in the region 2M < r <

√
28M ≈ 5.29M.

radial dependence of the radial component, ar, for different observer positions. We

observe that for all observers, except the one located at θ = π, the direction of the

radial acceleration flips. This is due to the change in the behaviour of the gravitational

potential and explains why EDil takes negative values after a critical point.

The reason that EDil and ETot diverge at r =
√

28M, in Fig. 4.2, results from this point

being the second coordinate singularity of our C-metric, as we chose A = 1/(
√

28M)
and the coordinate singularities occur at {r = 2M,r = 1/A}. This result is expected

since after this point, the nature of the spacetime geometry is different.

We also recognise that the system does not possess any energy which can be at-

tributed to rotational degrees of freedom. This is not immediately obvious since the
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densities (4.95) and (4.97) which appear in definition (4.74) are nonzero. However,

what is physical for the quasilocal observers are the quasilocal charges, not the

quasilocal densities. Having zero energy associated with the rotational degrees of

freedom is expected since the black hole in question is nonrotating.

Finally we observe that the work that has already been done by the tidal fields, WTid,

is positive for all system sizes and takes the same value as in the case of a static

black hole. This means that although the individual observers could measure tidal

squeezing and tidal stretching depending on their position, the overall effect on the

system corresponds to a positive quasilocal charge.

4.5.3 Lanczos-van Stockum dust

For our next application we would like to consider a rotating spacetime. For this,

we pick one of the simplest exact solutions of Einstein equations: a rigidly rotating

dust cylinder. This solution was first found by Lanczos [152], later rediscovered and

matched to a vacuum exterior by van Stockum [153]. Its physicality and mathematical

aspects have been investigated intensively in the literature [154, 155, 156, 157, 158,

159, 160, 161]. Also lately, rotating dust metrics have been used to model galaxies

in attempts to understand the general relativistic effects on the galaxy rotation curves

[162, 163, 164].

The original derivation of van Stockum does not end up with an asymptotically flat

spacetime. The energy density of the dust, ρ̃, increases exponentially with increasing

cylindrical radial coordinate, x, and it is given by ρ̃ =ω2eω
2x2
/(2π). This is not realistic.

Later investigations in the literature, naturally focus on creating more realistic models

which are asymptotically flat. In such cases, components of the line element are given

by series solutions [157, 162, 163, 160].

For our application in the current section, we want to focus on finding the quasilocal

energy of the spacetime that is associated with the rotational degrees of freedom. We

need to find an orthonormal dyad that satisfies the integrability conditions and this

already is not an easy task for axially symmetric stationary spacetimes.8 Therefore

we will consider the simplest interior solution given by van Stockum which has a line

8We discuss this in more detail in the next section.
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4 Quasilocal energy exchange and the null cone

element

ds2 = −dt2 + e−ω
2x2

dx2 + e−ω
2x2

dz2 +
(
x2−ω2x4

)
dφ2 + 2ωx2dt dφ, (4.104)

where ω is a constant that is associated with the angular velocity of the dust at x =

0 with respect to ‘distant stars’. Other than the singularity at x = 0, the spacetime

becomes singular at x = 1/ω for the metric in (4.104). Note that the gφφ component

of the metric changes sign when x > 1/ω. This introduces closed timelike curves into

the spacetime that are not physical. Therefore we will consider systems within the

0 < x < 1/ω range.

It is possible to transform the metric into spherical coordinates at this point and search

for a double dyad which satisfy our gauge conditions (4.32) 9. Eventually we would like

to calculate our quasilocal charges. However, if we apply such a transformation, we

lose the information about the actual symmetries of the system. Therefore, let us first

consider a null tetrad in cylindrical coordinates which satisfies our gauge conditions,

(4.32),

lµ =
1
√

2

[
∂t + eω

2x2/2∂x

]
, (4.105)

nµ =
1
√

2

[
∂t − eω

2x2/2∂x

]
,

mµ =
i
√

2

[
ωx∂t +

1
x
∂φ− ieω

2x2/2∂z

]
.

For such a tetrad {π = 0, τ = 0} so that the condition π+τ = 0 is trivially satisfied. Also

{µ= µ,ρ= ρ} holds. Now we can perform a coordinate transformation by {x = r cosθ,z =

r sinθ} to both the metric (4.104) and the tetrad (4.105). We then find

ds2 = −dt2 + e−ω
2r2 sin2 θ

(
dr2 + r2dθ2

)
+ r2 sin2 θ

(
1−ω2r2 sin2 θ

)
dφ2 + 2ωr2 sin2 θdtdφ,

9The reason for choosing spherical coordinates is that it simplifies the process of defining a smooth,
closed, spacelike 2-surface in order to integrate the quasilocal densities. Without the existence of
such a closed surface, quasilocal energies are not defined. This is closely related to the Stokes’
Theorem which comes up in the derivation of the non-vanishing boundary Hamiltonian from an
action principle of general relativity in a covariant formulation.
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and

lµ =
1
√

2

[
∂t + sinθeω

2r2 sin2 θ/2∂r +
cosθ

r
eω

2r2 sin2 θ/2∂θ

]
, (4.106)

nµ =
1
√

2

[
∂t − sinθeω

2r2 sin2 θ/2∂r −
cosθ

r
eω

2r2 sin2 θ/2∂θ

]
,

mµ =
i
√

2

[
ωr sinθ∂t +

1
r sinθ

∂φ− icosθeω
2r2 sin2 θ/2∂r + i

sinθ
r

eω
2r2 sin2 θ/2∂θ

]
.

For this null tetrad, after calculating the spin coefficients and by following (4.51)-(4.55),

we find the following variables that appear in the contracted Raychaudhuri equation,

∇̃TJ =
−eω

2r2 sin2 θ/2
(
r4ω4 sin4 θ+ 1

)
r2 sin2 θ

, (4.107)

∇̃SK = 0, (4.108)

J 2 =
−eω

2r2 sin2 θ/2
(
r4ω4 sin4 θ+ 1

)
r2 sin2 θ

, (4.109)

K 2 = −2ω2eω
2r2 sin2 θ/2, (4.110)

RW = −2ω2eω
2r2 sin2 θ/2 . (4.111)

In order to determine the reference energy density we isometrically embed S in M 4

by setting

e−ω
2r2 sin2 θr2dθ2 = r̄2dθ̄2, (4.112)(

1−ω2r2 sin2 θ
)
r2 sin2 θdφ2 = r̄2 sin2 θ̄dφ̄2. (4.113)

and once again demand that the observers measure the same solid angle in both

spacetimes. Then r̄ = re−ω
2r2 sin2 θ/4

(
1−ω2r2 sin2 θ

)1/4
and k0 = 2/r̄.

From relations (4.107) and (4.109) we recognize that the corresponding quasilocal

charge densities are singular at θ = 0 and θ = π. Therefore, for this specific example,

we need to take improper integrals to obtain our quasilocal charges, i.e.,

ETot = lim
ε→0

− 1
16π

∫ φ=π

φ=−π

∫ θ=π+ε

θ=ε
dS

−
(
2∇̃TJ + k2

0

)
k0


 , (4.114)

EDil = lim
ε→0

− 1
16π

∫ φ=π

φ=−π

∫ θ=π+ε

θ=ε
dS

2J 2− k2
0

k0

 . (4.115)

Then we observe that ETot→−∞ and EDil→−∞ for all values of r.
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4 Quasilocal energy exchange and the null cone

Let us try to understand what this result means. Previously, for asymptotically flat

versions of the rotating dust, it has been argued by Bonnor that there has to be an

infinitely large negative mass associated with the singularity, x = 0, in order to cancel

the effect of positive energy associated with the dust [154]. Later in [158] he argued

that one can add an infinitely large negative mass layer into the spacetime to observe

the same effect. Furthermore Bratek et al. [160] discussed the same issue and

concluded that singularities of the asymptotically flat rotating dust are associated with

the ‘additional weird stresses’ of the negative active mass.

Here our spacetime is not asymptotically flat. However, we observe a similar be-

haviour. Note that in our solution the energy density of the dust increases with in-

creasing x. In such a case one would expect the system to get ever closer to a

collapsed state as its size increases. Zingg et al. [159] and Gurlebeck [161] have

argued that such a collapse is in fact expected for a Newtonian dust cylinder. We end

up with a similar interpretation which agrees with their arguments. In our work, the

infinitely large negative quasilocal dilatational mass-energy must be attributed to the

work done by external fields that are required to exist outside our system to prevent

the system from collapsing.

Now let us calculate the quasilocal charges associated with the rotational degrees

of freedom and the tidal fields. Once we integrate the quasilocal charge densities

defined via equations (4.108), (4.110), (4.111) and k0 we get the charges plotted

in Fig. 4.7a. Note that we picked ω = 1/10 and therefore the radial coordinate r =
√

x2 + z2 is in the 0 < r < 10 range in order not to have closed timelike curves. We

numerically integrate eq. (4.74) and eq. (4.76) to obtain ERot and WTid. From Fig. 4.7a

we observe that the WTid is everywhere negative, corresponding to tidal stretching of

the surface on which the quasilocal observers are located. As the size of the system

increases, so does the energy density of dust according to ρ̃ = ω2eω
2x2
/(2π). This

requires greater negative work done by the tidal field. The magnitude of WTid is exactly

equal to the energy associated with the rotational degrees of freedom as shown in

Fig. 4.7a. We note that the observers who determine the quasilocal quantities are

timelike geodesic observers, i.e., with acceleration aµ = DE
0̂
Eµ

0̂
= 0 and furthermore

they are comoving with the dust. In other words, the orbital angular velocity of the

observers is zero with respect to the given coordinate system. In such a case one

might expect to get zero energy associated with the rotational degrees of freedom of

the system. However, for this set of observers, the vorticity of the timelike geodesics
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(a) Quasilocal charges of the van
Stockum dust. ETot and EDil diverges
to −∞.

(b) Dependence of the 2-surface area el-
ement on r and θ coordinates.

Figure 4.7: Charges are in length units which can be written as a function of individual
mass of the dust particles, m, and the total number density, n. In our spherically
symmetric coordinate system singularity is at {r = 1/ω, θ = π/2} with ω = 1/10
for our numerical application.

is nonzero. Indeed, the vorticity vector and vorticity scalar are given by

wµ =
1
2
η
µ
ναβg

νγgαρEβ

0̂
DρE

γ0̂
=

2ωcosθe2ω2r2 sin2 θ

r2 sinθ
∂r −

2ωe2ω2r2 sin2 θ

r3 ∂θ

w =
√

wµwµ =
2we3ω2r2 sin2 θ/2

r2 sinθ
, (4.116)

where ηµναβ is the Levi-Civita tensor, gµν is the spacetime metric and we set the ob-

server 4-velocity uµ = Eµ

0̂
= ∂t. This shows that every dust particle swirls around its

own axis. Recall that vorticity is a measure of global rotation of a spacetime. Also

previously it was shown by Chrobok et al. [165] that the rotation of the local mat-

ter elements, i.e. spin, can be directly linked to the global rotation of the spacetime,

i.e. vorticity. Therefore even though the system we investigate here is defined by the

set of observers with zero orbital angular velocity we can still calculate the energy

associated with the rotational degrees of freedom of the system.

As the size of the system reaches 1/ω, the density of the dust reaches its maximum

possible value. Accordingly, one might expect ERot and WTid to diverge to +∞ and

−∞ respectively at the singularity point 1/ω. The peaks we observe in ERot and WTid

curves of Fig. 4.7a is purely due to the distorted 2-surface area on which we are
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integrating our quasilocal densities. Fig. 4.7b depicts the area element of S. We

observe that at {r = 1/ω, θ = π/2} area element becomes zero. This causes S to have

a distorted shape on the overall. As ω → 0 and the surface becomes less distorted,

ERot and WTid diverge to +∞ and −∞ respectively as one expects.

4.6 The challenge of stationary, axially symmetric

spacetimes

After considering those somewhat unrealistic scenarios one might wonder whether

we can apply our formalism to more realistic cases. For example, can we calculate

the quasilocal charges of a rotating black hole? The short answer is: yes, we can.

However it poses an immense technical challenge.

Recall that we need to satisfy three null tetrad conditions, namely, {ρ = ρ,µ = µ,π+

τ = 0}. It is known that in general, the divergence of a null congruence around the

vector l, can be written as the linear combination of the expansion and the twist of

the congruence, i.e., ρ = Θ + iω. This means that we need to have nontwisting null

congruences for our formalism to hold.

Let us consider the case of the Kerr spacetime [166]. The circular orbits are the mostly

studied worldlines of Kerr because the trajectories follow the Killing vector fields and

this simplifies the investigations considerably. Note that in this case, the Killing vectors

∂t and ∂φ have nonzero twist. Moreover, the Kerr metric can be obtained by taking the

r coordinate of Schwarzschild to r + iacosθ [167], where a is the dimensionless an-

gular momentum parameter. This automatically means that for a principal null tetrad

of a static black hole, by transforming the real divergence, ρ = −1/r into a complex

divergence ρ = −1/(r + iacosθ), we obtain a rotating black hole.10 Our problem here

is that investigations of a rotating black hole are done mostly using the principal null

directions of the spacetime. We should also mention that there are other transverse

tetrads such as the quasi-Kinnersely tetrad, which is a powerful tool for exploring Kerr

[119]. However, once we focus on such null geodesics, that aid in the construction

of a principal or transverse tetrad, then we have no hope of finding null congruences

with a real divergence.

10See [168] for a recent review.
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On the other hand, twist-free – i.e., surface forming – null congruences exist in all

Lorentzian spacetimes [139]. It is just that we do not require them to be geodesic.

Brink et al. [169] have given a detailed investigation of axisymmetric spacetimes, fo-

cusing on the twist-free Killing vectors of the stationary axially symmetric spacetimes.

We note that there are very few studies in the literature that investigate such a prop-

erty. Bilge has found an exact twist-free solution whose principal null directions are

not geodesic [170]. It was also shown by Bilge and Gürses that those spacetimes are

not asymptotically flat and include generalised Kerr-Schild metrics [171]. Gergely and

Perjés later concluded that those solutions are actually homogeneous and anisotropic

Kasner solutions [172] and thus they are not physical. Therefore Brink et al. conclude

that “Future studies which aim to extract physical information about isolated dynami-

cal, axisymmetric spacetimes will have to focus on general spacetimes, where none

of the principal null directions are geodesics, and which do not fall within Bilge’s class

of metrics."

In our case we are looking for a null congruence, constructed from the timelike dyad

that resides on T, which does not even have to be aligned with the principal null

directions. It is not necessarily composed of geodesics and it is not required to be

composed solely of Killing vectors. All we want from our null tetrad is for it to satisfy

the three integrability conditions. To the best of our knowledge, for the case of Kerr,

none of the null tetrads introduced in the literature satisfies those conditions.

In order to find such a desired tetrad for the case of Kerr, one might consider the trans-

formations of the quasi-Kinnersely tetrad, for example, by applying two successive

Lorentz transformations to the null tetrad. First, apply a Type-II Lorentz transformation

around n with parameter A = a + ib and then a Type-I Lorentz transformation around l

with parameter B = c+ id where {a, b, c, d} are all real. Then for the twice transformed

spin coefficients we need to satisfy {ρ′′ = ρ′′,µ′′ = µ′′,π′′ + τ′′ = 0,π′′ + τ′′ = 0} where
′′ denotes the fact that the spin coefficients are transformed twice. After such a pro-

cedure we end up with four complex, highly coupled, non-linear first order differential

equations. The unknowns appear in the transformed tetrad condition equations with

a polynomial order that goes up to order five. This system of equations cannot be

solved by any iterative method that we are aware of.

Therefore, we observe that our formalism should, in principle, be applicable for more

realistic generic spacetimes than the ones we have presented here. However, the less

symmetry the system possesses, the more mathematically challenging it becomes to
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find a null tetrad which satisfies our integrability conditions. Arbitrary nontwisting null

congruences of twisting spacetimes are the key to resolving this issue.

The discussion we presented in Section 4.2 should now be more clear for the reader.

In the case of gravitational wave detection, one’s ultimate aim is to extract information

about the properties of the astrophysical objects that are the sources of radiation.

Those properties, such as mass-energy and angular momentum are at best defined

quasilocally in general relativity. Therefore the local tetrads of observers should be

chosen in such a manner that the quasilocal properties of the system can be well

defined throughout the evolution. In [119], Zhang et al. showed that the wave fronts

of passing gravitational radiation are aligned with the quasi-Kinnersley tetrad. This

means that the observers can measure the gravitational radiation locally. However,

since quasi-Kinnersley tetrad does not satisfy the integrability conditions of S and

T, the quasilocal charges corresponding to the quasi-Kinnersley tetrad are not well

defined. Therefore we conclude that even though one can measure the gravitational

radiation locally, there is not always a guarantee that one can extract the properties of

its source consistently.

4.7 Discussion

The energy and energy flux definitions that are made locally, globally or quasilocally,

are sometimes compared and contrasted without questioning for which system those

definitions are made. Actually, there exist well defined quasilocal energy definitions

that can be directly linked to the action principle of general relativity. What is ill-defined

is the specification of the system that is enclosed by a boundary surface on which the

quasilocal charges are to be integrated.

Let us make an analogy with classical thermodynamics and consider two systems:

(i) a constant pressure system which is expanding and (ii) a constant volume system

which has increasing pressure. If we use a barometer to measure the pressure values

obtained within these two systems, the readings will of course be different. However,

this is not because the barometer is not working properly, rather it is because the

barometer is not sensitive to the defining properties (or symmetries) of the two sys-

tems in question. Moreover, even if we find a way to define the system consistently

there exist many energies one can associate with a system. Going back to our anal-
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ogy, let us say we keep track of the pressure value and make sure that we are actually

investigating a system with constant pressure. Now we can define the internal energy

of that system or define the average kinetic energy of the particles which is not nec-

essarily related to internal energy unless there exist equilibrium. We can also define

work done by the system on the surroundings throughout the expansion process etc.

In that situation we would not expect all of those energies to give us the same value.

In this chapter, we presented a quasilocal work-energy relation which can be applied

to generic spacetimes in order to discuss quasilocal energy exchange. We identified

the quasilocal charges associated with the rotational and nonrotational degrees of

freedom, in addition to a work term associated with the tidal fields. This construction

was possible only after we defined a quasilocal system by constraining the double

dyad of the quasilocal observers, which is highly dependent on the symmetries of the

spacetime in question.

In Chapter 3, for spherically symmetric systems, we investigated the Raychaudhuri

equation of the worldsheet at quasilocal thermodynamic equilibrium, i.e., when the

observers are located at the apparent horizon. In the present chapter, we considered

more generic spacetimes that are in nonequilibrium with their surroundings. We also

relaxed the spherically symmetric condition.

By transforming our equations from Capovilla and Guven’s formalism, which is con-

structed on an orthogonal double dyad, to the Newman-Penrose formalism, which is

based on a complex null tetrad, we were able to present the contracted Raychaudhuri

equation in terms of the combinations of spin coefficients, their relevant directional

derivatives and some of the curvature scalars. We also imposed three null tetrad

gauge conditions which result from the integrability conditions of the 2-dimensional

timelike surface T and the 2-dimensional spacelike surface S. This spacelike 2-

surface is defined instantaneously and is orthogonal to T at every point. Our null

tetrad gauge conditions are shown to be invariant under Type-III Lorentz transfor-

mations which basically corresponds to boosting of the quasilocal observers in the

spacelike direction orthogonal to S. Ultimately we realised that, under such gauge

conditions, the contracted Raychaudhuri equation is a linear combination of two of

the spin field equations of the Newman-Penrose formalism.

Later, we defined certain quasilocal charges via the geometric variables that appear

in the contracted Raychaudhuri equation. By choosing the quasilocal energy defini-
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4 Quasilocal energy exchange and the null cone

tions made by Kijowski [25] as our anchor, we were able to define relevant quasilocal

charges for which a physical interpretation would be found. We also showed in Ap-

pendix C.2 that all of those quasilocal charges are invariant under Type-III Lorentz

transformations. Note that this property is desired for a well defined quasilocal con-

struction, as boosted observers should agree on the fact that they are measuring the

charges of the same system.

We applied our formalism to a radiating Vaidya spacetime, a C-metric and an interior

solution of the Lanczos-van Stockum dust cylinder. For the case of Vaidya we con-

cluded that the usable energy of the system decreases purely due to radiation. For a

C-metric we observed that the greater the acceleration of the black hole is, the more

energy should be provided to the system by an external agent. We concluded that the

decreasing trend in the total energy is due to the nonmonotonic, repulsive gravitational

potential that can be observed at the exterior region of an extremely accelerated black

hole. For the Lanczos-van Stockum dust we considered a nonasymptotically flat case.

We obtained an infinitely large negative mass-energy for the usable dilatational en-

ergy of the system independent of its size and concluded that this must be attributed

to external fields doing work on the system in order to prevent it from collapse. We

were also able to obtain the quasilocal energy associated with the rotational degrees

of freedom whose magnitude is exactly equal to the one of work done by the tidal

fields.

It is true that there exist various open problems and delicate issues related to our

construction. To start with, at a given spacetime point one has six tetrad degrees of

freedom and we imposed only three null tetrad gauge conditions to our system. That

means we have additional freedom to specify a gauge, i.e, to define the quasilocal

system. Although there exists no geometrically motivated reason we are aware of

in our current approach, one can choose additional conditions in order to compare

the quasilocal charges of different spacetimes constructed with other well known null

tetrad gauges.

Another delicate issue which may or may not be related to our null tetrad gauge free-

dom is shear. There is no a priori reason for us to impose the shear-free condition to

the null congruences, constructed from the timelike dyad that resides on T. However,

for generic spacetimes, one can find a gauge which satisfies our three gauge condi-

tions more easily once the shear-free condition is imposed. This is primarily because

our gauge conditions are trying to locate the set of quasilocal observers in such a
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configuration that the surface S is always orthogonal to T. That is natural for radially

moving observers of a spherically symmetric system but may hold even if the space-

time is not spherically symmetric. The shear-free condition locates the quasilocal

observers as close to as they can get to such a configuration. Note that shear is the

fundamental concept of Bondi’s mass loss [14] without which gravitational radiation

at null infinity cannot be defined. Thus, this automatically raises an issue for quasilo-

cal observers at infinity who would like to measure the Bondi mass loss associated

with gravitational radiation. Investigation of whether or not there exist a gauge which

satisfies both the Bondi tetrad and our gauge conditions is left for future work.

Finally, we note that it is technically difficult to satisfy our null tetrad conditions for

more realistic, axially symmetric, stationary spacetimes such as Kerr. This difficulty

arises from the fact that our approach demands twist-free null congruences on the

worldsheet T. However, finding twist-free null congruences for spacetimes whose

principal null directions are twisting is a challenge. Although those nongeodesic null

congruences that we are after are not physical, their existence will guarantee the fact

that the quasilocal system, and the associated quasilocal charges, are all consistently

defined.

Recently, a quasilocal energy for the Kerr spacetime has been calculated for station-

ary observers [173] by using the definition of [174] both for the quasilocal energy and

the embedding method for the reference energy. Liu and Tam show that this energy

is exactly equal to Brown and York’s (BY) quasilocal energy, eq. (2.62). One might

wonder how our construction is compared to such an investigation. To start with, the

null tetrad constructed from the orthonormal double dyad of the stationary observers

in Boyer-Lindquist coordinates has imaginary divergence and hence does not satisfy

our null tetrad gauge conditions. Recall that the tetrad conditions we introduced here

guarantees the existence of well defined, boost-invariant quasilocal charges. Also

note that BY quasilocal energy is not invariant under boosts. Thus, the fact that Liu

and Tam end up with the BY quasilocal energy for their quasilocal system defined

by stationary observers in Boyer-Lindquist coordinates is no surprise. Therefore, in

our view, the calculations of Liu and Tam does not satisfy all the requirements of a

genuine quasilocal construction.
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According to many researchers, including the authors of references [175, 176, 177,

178], the 2+2 picture of general relativity might be more fundamental than the 3+1

approach. Although one might debate this point, the existence of a non vanishing

boundary Hamiltonian leads to the necessity of modifying the symplectic structure

of the ADM formalism in phase space to obtain a covariant formalism which can di-

rectly be linked to the quasilocal charges [25, 179]. Energy definitions, which do not

conflict with the equivalence principle, generically involve the extrinsic or/and intrinsic

geometry of a closed spacelike 2-surface. However, defining quasilocal charges that

are measures of energy and angular momentum for a generic spacetime is often a

challenge.

Here we realised that in order to construct well defined matter plus gravitational en-

ergy definitions one needs to define the system in question consistently. Given the

underlying theory is general relativity, such a procedure is highly geometry depen-

dent. Accordingly, the investigation presented in this thesis emerged from three ques-

tions:

• Is there something inherently fundamental about the 2+2 formalism in terms of

quasilocal energy definitions?

• If quasilocal energy resides on the intrinsic and/or extrinsic curvature of a closed

2-dimensional spacelike surface, what do the other extrinsic properties of that

surface correspond to?

• Can the Raychaudhuri and the other geodesic deviation equations, which have

proved their usefulness in terms of physically relevant observables in a 3+1

formalism, be investigated in a 2+2 formalism so that they can be linked to

physically meaningful quasilocal charges?
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To answer these questions we considered Capovilla and Guven’s generalised Ray-

chaudhuri equation given in [32] for a 2-dimensional worldsheet that is embedded in

a 4-dimensional spacetime. Also, we recognised Kijowski’s Hamiltonian formulation

and the quasilocal energies [25] as an anchor to build our own construction.

Since the consistent definition of a system depends highly on the symmetries of the

underlying spacetime, we started our investigation with a relatively easy task: spheri-

cally symmetric systems at thermodynamic equilibrium. We considered only the radi-

ally moving observers so that their timelike dyad resides on a temporal-radial plane,

i.e., our 2-dimensional worldsheet, T. Note that by imposing such a condition we

made sure that the resulting quasilocal thermodynamic potentials are invariant under

the radial boosts. This is just another way of stating that such a set of observers agree

on the measurements of the same system.

The contracted Raychaudhuri equation of Capovilla and Guven [32], for the case of

the situation depicted above, takes a very simple form. Our grounds for interpreting it

thermodynamically are due to the Raychaudhuri equation of T involving terms that are

closely related to the quasilocal observables of a system. In particular, the term J 2 in

eq. (3.2) can be linked to the mean extrinsic curvature of a closed spacelike 2-surface

S and hence the boundary Hamiltonian of general relativity. Moreover, the term RW
can be used to define a genuine relative work density in the 2 + 2 formalism unlike

its local analogue in the 3 + 1 picture, which is only applicable for the neighbouring

worldlines of the geodesic deviation.

Eventually we interpreted the contracted Raychaudhuri equation by defining the

Helmholtz free energy density, f , via the mean extrinsic curvature of S. One ob-

tains the Helmholtz free energy, F , by taking the integral of f over the closed surface

S. We defined our quasilocal thermodynamic equilibrium via the minimization of the

Helmholtz free energy, as one would do for a constant temperature system in classical

thermodynamics. Then the contracted Raychaudhuri equation can be written in terms

of our Gibbs free energy density and the work density linearly.

This relation between the Gibbs free energy and the work term is the same as in the

surface dynamics of the classical theory in which the work density, i.e., the surface

tension and the curvature of the surface are linked via the Young-Laplace equation.

According to the classical theory, fluids tend to extremize their surfaces to reach equi-

librium. At this point the surface tension takes its critical value.
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Similarly, our thermodynamic equilibrium condition for a gravitating system corre-

sponds to the minimum mean extrinsic curvature of S, i.e., when S is located at the

generalised apparent horizon of a given spacetime. Considering the fact that the ap-

parent and event horizons of a static black hole coincide, the resemblance between

the equations defining black hole mechanics and equilibrium thermodynamics seems

to be more than just an analogy. We believe that it is closely related to the boundary

Hamiltonian of general relativity, and defines a specific state of an arbitrary system.

Note that at hydrodynamic equilibrium of the classical theory, a system neither ex-

pands nor contracts. Moreover, hydrodynamic and thermodynamic equilibrium states

of a system coincide when the entropy takes its extremum value. Similarly in our

approach, at quasilocal thermodynamic equilibrium, the surface S neither expands

nor contracts when it is perturbed along T. Also, our quasilocal entropy, i.e., the 2-

surface area of the apparent horizon, takes its extremum value at this state. Thus,

we concluded that our quasilocal thermodynamic equilibrium should coincide with the

hydrodynamic equilibrium.

In astrophysics, these two coincident equilibrium states signal the existence of a virial

relation in which the temporal average of the kinetic energy of the total system be-

comes equal to the ensemble average of the kinetic energies of the particles at a

given time. Then the internal energy, which is equal to the ensemble average of the

kinetic energy of the particles at equilibrium, can be directly linked to the time aver-

aged potential energy of the system. For a similar construction in general relativity

we extended Bizon, Malec and Ó Murchadha’s mass bound [107] obtained for a static

black hole to the generic spherically symmetric systems. We picked Kijowski’s EK1 as

our internal energy, which reduces to the Misner-Sharp-Hernandez energy for spher-

ically symmetric spacetimes. We considered EKLY as the proper/invariant mass of

the system following Epp’s ideas [26] and ended up with a relation which relates the

internal energy of the quasilocal system to the potential energy. This relation has the

same form as the ultrarelativistic virial relation in astrophysics.

Later on, since we wanted to investigate more generic systems, we considered sys-

tems in nonequilibrium and we relaxed the spherically symmetric condition for the

spacetime in question. Then our investigation turned into a search for how to best

define the quasilocal energy of a system which can potentially be exchanged with

the surroundings. Note that in this generalization we do not mention anything about

nonequilibrium thermodynamic potentials or relations. This is because even in the
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classical theory, nonequilibrium thermodynamics is a less investigated territory. Only

for systems that are close to equilibrium one can define thermodynamic relations that

are diverging from linearity by a small amount. There is no putative, well defined ther-

modynamic relation for systems far from equilibrium, in which the thermodynamic po-

tentials are related to each other nonlinearly. Therefore, since we wanted to consider

those systems defined far from the apparent horizon we abandoned the thermody-

namic approach.

In order to better understand how the worldsheet focusing relates to the null cone

observables we transformed the contracted Raychaudhuri equation of T, that is writ-

ten in Capovilla and Guven’s notation, to the notation of the Newman-Penrose (NP)

formalism [34]. Similarly to the previous case for an equilibrium state, we defined a

system via the domain enclosed by S which is orthogonal to T at every point. For

this, we imposed the integrability conditions on the tangent vectors of T and S. When

the formalism transformation is applied, these integrability conditions correspond to

three null tetrad gauge conditions, namely τ+π = 0, ρ = ρ and µ = µ, for a null tetrad

constructed from the double dyad of the quasilocal observers. By satisfying these

conditions one defines a generic, well defined quasilocal system throughout its evolu-

tion.

We identified the spin coefficients that are related to the rotational and nonrotational

degrees of freedom of the system and isolated the terms in the contracted Raychaud-

huri equation accordingly. This, and our previous discussion about the relative work

density via the worldsheet deviation, allowed us to define boost-invariant quasilocal

energy-like charges. Then we ended up with a work-energy relation which is applica-

ble for systems that can potentially exchange energy.

In terms of the applications, we considered systems that are at quasilocal thermody-

namic equilibrium defined in Schwarzschild, Friedmann-Lemaître-Robertson-Walker

and Lemaître-Tolman spacetimes. We found that the worldsheet-constant tempera-

ture of the system is same as the temperature of the particle tunnelling through the

apparent horizon of the given spacetime that is presented in various studies.

We also considered systems in a radiating Vaidya spacetime, a C-metric and a

Lanczos-van Stockum dust in order to investigate quasilocal charges in nonequilib-

rium. For systems defined in Vaidya spacetime we observed that the mass-energy

loss is purely due to radiation. For the C-metric and the Lanczos-van Stockum dust
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metric cases we investigated the effects of the mass-energy input of an external agent

to the system in question without which it would not survive.

In this thesis, we proposed a geometric method in order to define and investigate

systems in general relativity. Our main outcome is that without a well defined quasilo-

cal system, there is no consistent definition of energy. We hope that the realization

of this will encourage other researchers who are working on the quasilocal energy

formulations in terms of better system definitions like ours or Epp et al.’s [128].

We discussed the difficulties and delicate issues encountered in our construction in

the previous chapter. This basically relates to the fact that, for generic spacetimes, it

is not always so easy to find a null tetrad which satisfies our three tetrad conditions.

As the system possesses less symmetry this task gets harder. For future work, our

primary goal is to investigate whether or not there is a systematic way of finding such

a null tetrad, which satisfies the required conditions for an arbitrary observer set.

Moreover, there are further fundamental questions to ask about our construction, or

any other quasilocal formulation given in the literature, which is formulated in classical

general relativity. For example, consider classical quantum mechanics where it is the

physical observables such as energy or angular momentum that are quantized. This

is a different focus from that of researchers working on quantum gravity who usually

tend to quantize spacetime itself in order to quantize gravity. However, as it has been

mentioned here and has been shown in the literature many times, energy and angular

momentum are already quasilocal in general relativity and the spacetime metric does

not have an explicit role in their definition. Are we then on the right track in terms of

what we should be quantizing?

In [180], Carlip argues for the advantages of doing quantum gravity in 2+1 dimensions

over 3 + 1 dimensions. Quantization in a 2 + 1 scenario is easier simply because

there are no propagating degrees of freedom in the corresponding quantum gravity

theory. The spacetime is either locally flat, de Sitter or anti-de Sitter. Note that his

construction is valid for a spacetime manifold with closed topology. On the other hand,

there have been certain attempts to quantize gravity for manifolds with non-vanishing

boundary. The action and the relevant boundary conditions one needs to pick have

been discussed for certain situations [181, 182, 183, 184, 185].

However, in all of these investigations the systems evolving from an initial state to a
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final state have been parametrised by “time”. It is true that the generator of energy

is the single time parameter that quantifies change in Newton’s theory. In general

relativity, on the other hand, energy resides on the extrinsic geometry of S defined

via the two degrees of freedom lying on the worldsheet T. Therefore, each state of a

given system should be parametrised by these two variables. Then the corresponding

transition amplitude of the states may be written as a double integral rather than a

single, time, integral.

Also, for such an approach, there would be no problem of time related to the

parametrization invariance of a given foliation in the 3 + 1 picture.1 We believe the

3 + 1 formulation is the closest one can get to Newtonian intuition in a relativistic the-

ory. However, recall that abandoning Newtonian intuition yielded incredible results in

physics at the first quarter of the twentieth century. Therefore, as a closing remark

we suggest that it might be more fruitful to try extending quantization studies in 2 + 1
dimensions to 2 + 2 dimensions rather than 3 + 1. This is just another way of saying

that quasilocal energy research should fundamentally underpin more quantum grav-

ity investigations. In the end, whoever has a better insight in terms of the boundary

Hamiltonians in a gravitational theory will probably crack the mysteries behind the

quantization of gravity.

1See [186] for a review.
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A Newman-Penrose Formalism

The formalism was introduced by Newman and Penrose in 1961 and is usually re-

ferred to as the spin field formalism or simply the Newman-Penrose formalism in the

literature. This formalism has the following advantages [187]:

• The Einstein field equations can be written without the usage of index or sum-

mation notation.

• The NP spin field equations are first order and one can get useful sets of linear

equations by certain groupings of them.

• In this formalism, all of the equations are complex. This means that the total

number of equations are halved.

• The NP spin field equations are all scalar and one can carry out an investigation

by focusing on only a few of them depending on the geometry of the problem.

We now introduce the NP formalism by considering a complex null tetrad

{la,na,ma,ma}. Here the components of l and n are real and the ones of m and

m are complex. When we take the inner products of these null vectors with each

other, the only non-vanishing inner products are 〈l,n〉 = −1 and
〈
m,m

〉
= 1. Note that

we are using the {−,+,+,+} signature for the spacetime metric through out the thesis.

Therefore our spin coefficients and the curvature scalars will have an extra negative

sign when compared to Newman-Penrose’s original notation [34]. However, signature

choice does not affect the NP spin field equations or any of the Lorentz transformation

relations of spin coefficients.
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A Newman-Penrose Formalism

A.1 Spin coefficients and curvature scalars

The spin coefficients are defined via the changes of null vectors when they are prop-

agated along each other with the relevant projections, i.e.,

κ = −〈Dll,m〉 , ν =
〈
Dnn,m

〉
, (A.1)

ρ = −
〈
Dml,m

〉
, µ =

〈
Dmn,m

〉
, (A.2)

σ = −〈Dml,m〉 , λ =
〈
Dmn,m

〉
, (A.3)

τ = −〈Dnl,m〉 , π =
〈
Dln,m

〉
, (A.4)

ε =
1
2
[
−〈Dll,n〉+

〈
Dlm,m

〉]
, (A.5)

γ =
1
2
[
〈Dnn, l〉−

〈
Dnm,m

〉]
, (A.6)

β =
1
2
[
−〈Dml,n〉+

〈
Dmm,m

〉]
, (A.7)

α =
1
2
[〈

Dmn, l
〉
−

〈
Dmm,m

〉]
, (A.8)

and the propagation equations follow as

Dll = (ε+ε) l− κm− κm, (A.9)

Dnl = (γ+γ) l−τm−τm, (A.10)

Dml = (α+β) l−ρm−σm, (A.11)

Dln = − (ε+ε)n +πm +πm, (A.12)

Dnn = − (γ+γ)n + νm + νm, (A.13)

Dmn = − (α+β)n +µm +λm, (A.14)

Dlm = πl− κn + (ε−ε)m, (A.15)

Dnm = νl−τn + (γ−γ)m, (A.16)

Dmm = λl−σn + (−α+β)m, (A.17)

Dmm = µl−ρn + (α−β)m. (A.18)

Newman and Penrose introduce two sets of curvature scalars, Weyl scalars and Ricci

scalars, which carry the same information as in the Riemann curvature tensor. The
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A.2 Spin field equations

Ricci scalars are defined as

Φ00 :=
1
2

Rµνlµlν , Φ11 :=
1
4

Rµν( lµnν+ mµm̄ν) , Φ22 :=
1
2

Rµνnµnν , Λ :=
R
24
.

Φ01 :=
1
2

Rµνlamν , Φ10 :=
1
2

Rµνlµm̄ν = Φ01 , Φ02 :=
1
2

Rµνmµmν , (A.19)

Φ20 :=
1
2

Rµνm̄µm̄ν = Φ02 Φ12 :=
1
2

Rµνmµnν , Φ21 :=
1
2

Rµνm̄µnν = Φ12.

in which Rµν is the Ricci tensor of the spacetime, Φ00, Φ11, Φ22, Λ are real scalars and

Φ10, Φ20, Φ21 are complex scalars. The Weyl scalars are defined as

ψ0 = Cµναβlµmνlαmβ, (A.20)

ψ1 = Cµναβlµnνlαmβ, (A.21)

ψ2 = Cµναβlµmνmαnβ, (A.22)

ψ3 = Cµναβlµnνmαnβ, (A.23)

ψ4 = Cµναβnµmνnαmβ. (A.24)

with Cµναβ being the Weyl tensor.

A.2 Spin field equations

We now have enough information to write down the Einstein equations as a set of

linear, first order, complex, scalar equations. These spin field equations are found to

be

Dlρ−Dm κ = (ρ2 +σσ̄) + (ε+ ε̄)ρ− κ̄τ− κ(3α+ β̄−π) +Φ00 , (A.25)

Dlσ−Dm κ = (ρ+ ρ̄)σ+ (3ε− ε̄)σ− (τ− π̄+ ᾱ+ 3β)κ+Ψ0 , (A.26)

Dl τ−Dn κ = (τ+ π̄)ρ+ (τ̄+π)σ+ (ε− ε̄)τ− (3γ+ γ̄)κ+Ψ1 +Φ01 , (A.27)

Dlα−Dm ε = (ρ+ ε̄−2ε)α+βσ̄− β̄ε− κλ− κ̄γ+ (ε+ρ)π+Φ10 , (A.28)
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A Newman-Penrose Formalism

Dl β−Dm ε = (α+π)σ+ (ρ̄− ε̄)β− (µ+γ)κ− (ᾱ− π̄)ε+Ψ1 , (A.29)

Dlγ−Dn ε = (τ+ π̄)α+ (τ̄+π)β− (ε+ ε̄)γ− (γ+ γ̄)ε+τπ− νκ+Ψ2 +Φ11−Λ , (A.30)

Dlλ− δ̄π = (ρλ+ σ̄µ) +π2 + (α− β̄)π− νκ̄− (3ε− ε̄)λ+Φ20 , (A.31)

Dlµ−Dmπ = (ρ̄µ+σλ) +ππ̄− (ε+ ε̄)µ− (ᾱ−β)π− νκ+Ψ2 + 2Λ , (A.32)

Dl ν−Dnπ = (π+ τ̄)µ+ (π̄+τ)λ+ (γ− γ̄)π− (3ε+ ε̄)ν+Ψ3 +Φ21 , (A.33)

Dnλ−Dm ν = −(µ+ µ̄)λ− (3γ− γ̄)λ+ (3α+ β̄+π− τ̄)ν−Ψ4 , (A.34)

Dm ρ−Dmσ = ρ(ᾱ+β)−σ(3α− β̄) + (ρ− ρ̄)τ+ (µ− µ̄)κ−Ψ1 +Φ01 , (A.35)

Dmα−Dm β = (µρ−λσ) +αᾱ+ββ̄−2αβ+γ(ρ− ρ̄) +ε(µ− µ̄)−Ψ2 +Φ11 +Λ , (A.36)

Dmλ−Dmµ = (ρ− ρ̄)ν+ (µ− µ̄)π+ (α+ β̄)µ+ (ᾱ−3β)λ−Ψ3 +Φ21 , (A.37)

Dm ν−Dnµ = (µ2 +λλ̄) + (γ+ γ̄)µ− ν̄π+ (τ−3β− ᾱ)ν+Φ22 , (A.38)

Dmγ−Dn β = (τ− ᾱ−β)γ+µτ−σν−εν̄− (γ− γ̄−µ)β+αλ̄+Φ12 , (A.39)

Dm τ−Dnσ = (µσ+ λ̄ρ) + (τ+β− ᾱ)τ− (3γ− γ̄)σ− κν̄+Φ02 , (A.40)

Dn ρ−Dm τ = −(ρµ̄+σλ) + (β̄−α− τ̄)τ+ (γ+ γ̄)ρ+ νκ−Ψ2−2Λ , (A.41)

Dnα−Dmγ = (ρ+ε)ν− (τ+β)λ+ (γ̄− µ̄)α+ (β̄− τ̄)γ−Ψ3. (A.42)

Also note that the following commutation relations, [X,Y] = DXY−DYX, for the null

vectors, {la,na,ma,ma}, that act on scalars will be relevant for our investigation,

[l,n] = − (γ+γ) l− (ε+ε)n + (π+τ)m + (π+τ)m, (A.43)

[l,m] = (π−α−β) l− κn + (ε−ε+ρ)m +σm, (A.44)

[n,m] = νl + (α+β−τ)n + (γ−γ−µ)m−λm, (A.45)[
m,m

]
= (µ−µ) l + (ρ−ρ)n +

(
β−α

)
m + (α−β)m. (A.46)

In Chapter 4, Lorentz transformation of the null tetrad are of interest. Therefore we will

remind the reader of the three types of Lorentz transformations of the NP formalism

now.
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A.3 Type-I Lorentz transformations

In a Type-I Lorentz transformation, the null tetrad is rotated around the vector l so that

the tetrad vectors transform as

l → l, (A.47)

n → ccl + n + cm + cm, (A.48)

m → cl + m, (A.49)

m → cl + m. (A.50)

Here c is a constant which is complex. Accordingly the spin coefficients transform

as

ν → ν+ ccπ+ cλ+ cµ+ c2τ+ c3cκ+ c2cρ+ c3σ+ 2cγ+ 2c2cε+ 2ccα+ 2c2β

+ Dn c + ccDl c + cDm c + cDm c, (A.51)

τ → τ+ cσ+ cρ+ ccκ, (A.52)

γ → γ+ ccε+ cα+ cβ+ cτ+ c2cκ+ ccρ+ c2σ, (A.53)

µ → µ+ cπ+ c2σ+ c2cκ+ 2cβ+ 2ccε+ Dm c + cDl c, (A.54)

σ → σ+ cκ, (A.55)

β → β+ cε+ cσ+ ccκ, (A.56)

λ → λ+ cπ+ 2cα+ 2c2ε+ c2ρ+ c3κ+ Dm c + cDl c, (A.57)

ρ → ρ+ cκ, (A.58)

α → α+ cε+ cρ+ c2κ, (A.59)

κ → κ, (A.60)

ε → ε+ cκ, (A.61)

π → π+ 2cε+ c2κ+ Dl c. (A.62)
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The transformations of the Ricci scalars are given by

Φ00 → Φ00, (A.63)

Φ01 → Φ01 + cΦ00, (A.64)

Φ10 → Φ10 + cΦ00, (A.65)

Φ02 → Φ02 + 2cΦ01 + c2Φ00, (A.66)

Φ20 → Φ20 + 2cΦ10 + c2Φ00, (A.67)

Φ11 → Φ11 + ccΦ00 + cΦ10 + cΦ01, (A.68)

Φ12 → Φ12 + 2ccΦ01 + c2Φ10 + cΦ02 + 2cΦ11 + c2cΦ00, (A.69)

Φ21 → Φ21 + 2ccΦ10 + c2Φ01 + cΦ20 + 2cΦ11 + c2cΦ00, (A.70)

Φ22 → Φ22 + 4ccΦ11 + 2cΦ21 + 2cΦ12 + c2c2Φ00 + 2cc2Φ10

+ 2c2cΦ01 + c2Φ02 + c2Φ20, (A.71)

and the transformations of the Weyl scalars are given by

Ψ0 → Ψ0, (A.72)

Ψ1 → Ψ1 + cΨ0, (A.73)

Ψ2 → Ψ2 + 2cΨ1 + c2Ψ0, (A.74)

Ψ3 → Ψ3 + 3cΨ2 + 3c2Ψ1 + c3Ψ0, (A.75)

Ψ4 → Ψ4 + 4cΨ3 + 6c2Ψ2 + 4c3Ψ1 + c4Ψ0. (A.76)

A.4 Type-II Lorentz transformations

In Type-II Lorentz transformation, the null tetrad is rotated around the vector n and the

tetrad vectors transform as

l → l + ccn + cm + cm, (A.77)

n → n, (A.78)

m → cn + m, (A.79)

m → cn + m, (A.80)

(A.81)
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Here again, c is a complex constant. Accordingly the spin coefficients transform as

ν → ν, (A.82)

τ → τ+ 2cγ+ c2ν−Dnc, (A.83)

γ → γ+ cν, (A.84)

µ → µ+ cν, (A.85)

σ → σ+ cτ+ 2cβ+ 2c2γ+ c2µ+ c3ν−Dm c− cDn c (A.86)

β → β+ cγ+ cµ+ c2ν, (A.87)

λ → λ+ cν, (A.88)

ρ → +ρ+ cτ+ c2λ+ c2cν+ 2cα+ 2ccγ−Dmc− cDnc, (A.89)

α → α+ cτ+ cλ+ ccν, (A.90)

κ → κ+ ccτ+ cσ+ cρ+ c2π+ c3cν+ c2cµ+ c3λ+ cε+ 2c2cγ+ 2ccβ+ 2c2α

− Dl c− ccDn c− cDmc − cDmc , (A.91)

ε → ε+ ccγ+ cβ+ cα+ cπ+ c2cν+ ccµ+ c2λ, (A.92)

π → π+ cλ+ cµ+ ccν. (A.93)

The transformations of Ricci scalars are given by

Φ00 → Φ00 + 4ccΦ11 + 2cΦ01 + 2cΦ10 + c2c2Φ22 + 2cc2Φ12

+ 2c2cΦ21 + c2Φ20 + c2Φ02, (A.94)

Φ01 → Φ01 + 2ccΦ12 + c2Φ21 + cΦ02 + 2cΦ11 + c2cΦ22, (A.95)

Φ10 → Φ10 + 2ccΦ21 + cΦ12 + cΦ20 + 2cΦ11 + c2cΦ22, (A.96)

Φ02 → Φ02 + 2cΦ12 + c2Φ22, (A.97)

Φ20 → Φ20 + 2cΦ21 + c2Φ22, (A.98)

Φ11 → Φ11 + ccΦ22 + cΦ12 + cΦ21, (A.99)

Φ12 → Φ12 + cΦ22, (A.100)

Φ21 → Φ21 + cΦ22, (A.101)

Φ22 → Φ22. (A.102)
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and the transformations of Weyl scalars are given by

Ψ0 → Ψ0 + 4cΨ1 + 6c2Ψ2 + 4c3Ψ3 + c4Ψ4, (A.103)

Ψ1 → Ψ1 + 3cΨ2 + 3c2Ψ3 + c3Ψ4, (A.104)

Ψ2 → Ψ2 + 2cΨ3 + c2Ψ4, (A.105)

Ψ3 → Ψ3 + cΨ4, (A.106)

Ψ4 → Ψ4. (A.107)

A.5 Type-III Lorentz transformations

Type-III Lorentz transformation represents the boosting of l and n and the rotation of

m and m, i.e., the tetrad vectors transform as

l → a2l, (A.108)

n →
1
a2 n, (A.109)

m → e2iθm, (A.110)

m → e−2iθm. (A.111)

Here both a and θ are real functions. Accordingly the spin coefficients transform as

ν → a−4e−2iθν, (A.112)

τ → e2iθτ, (A.113)

γ → a−2 (γ+ Dn [lna + iθ]) , (A.114)

µ → a−2µ, (A.115)

σ → a2e4iθσ, (A.116)

β → e2iθ (β+ Dm [lna + iθ]) , (A.117)

λ → a−2 e−4iθλ, (A.118)

ρ → a2ρ, (A.119)
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A.5 Type-III Lorentz transformations

α → e−2iθ (α+ Dm [lna + iθ]
)
, (A.120)

κ → a4e2iθκ, (A.121)

ε → a2 (ε+ Dl [lna + iθ]) , (A.122)

π → e−2iθπ. (A.123)

The transformations of Ricci scalars are given by

Φ00 → a4Φ00, (A.124)

Φ01 → a2e2iθΦ01, (A.125)

Φ10 → a2e−2iθΦ10, (A.126)

Φ02 → e4iθΦ02, (A.127)

Φ20 → e−4iθΦ20, (A.128)

Φ11 → Φ11, (A.129)

Φ12 → a−2e2iθΦ12, (A.130)

Φ21 → a−2e−2iθΦ21, (A.131)

Φ22 → a−4Φ22, (A.132)

and the transformations of Weyl scalars are given by

Ψ0 → a4e4iθΨ0, (A.133)

Ψ1 → a2e2iθΨ1, (A.134)

Ψ2 → Ψ2, (A.135)

Ψ3 → a−2e−2iθΨ3, (A.136)

Ψ4 → a−4e−4iθΨ4. (A.137)
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B Raychaudhuri equation in

Newman-Penrose formalism

B.1 Useful expressions

The following expressions are used many times in our transformation to the NP for-

malism

ηabEρ
bEγ

a = −Eρ

0̂
Eγ

0̂
+ Eρ

1̂
Eγ

1̂

= −

(
1
√

2

)2 (
lρ+ nρ

) (
lγ + nγ

)
+

(
1
√

2

)2 (
lρ−nρ

) (
lγ−nγ

)
= −

(
lρnγ + lγnρ

)
. (B.1)

δi jNν
i N

β
j = Nν

2̂
Nβ

2̂
+ Nν

3̂
Nβ

3̂

=

(
1
√

2

)2 (
mν+ mν) (mβ+ mβ

)
+

(
−i
√

2

)2 (
mν−mν) (mβ−mβ

)
=

(
mνmβ+ mβmν

)
. (B.2)

ηabEβ
aDαEµ

b = −Eβ

0̂
DµEβ

0̂
+ Eµ

1̂
DαEρ

1̂

= −
1
2

(
lβ+ nβ

)
Dα

(
lµ+ nµ

)
+

1
2

(
lβ−nβ

)
Dα

(
lµ−nµ

)
= −

(
lβDαnµ+ nβDαlµ

)
. (B.3)

ηabEα
aDαEµ

b = −
(
Dlnµ+ Dnlµ

)
, (B.4)

δi jNα
i DβNν

j = Nα
2̂

DβNν
2̂

+ Nα
3̂

DβNν
3̂

=
1
2
(
mα+ mα)Dβ

(
mν+ mν)

−
1
2
(
mα−mα)Dβ

(
mν−mν)

= mαDβmν+ mαDβmν, (B.5)

δi jNα
i DαNν

j = Dmmν+ Dmmν. (B.6)
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ηcd
(
DρEµ

c

) (
DγEα

d

)
= −

(
DρEµ

0̂

) (
DγEα

0̂

)
+

(
DρEµ

1̂

) (
DγEα

1̂

)
= −

1
2

(
Dρlµ+ Dρnµ

) (
Dγlα+ Dγnα

)
(B.7)

+
1
2

(
Dρlµ−Dρnµ

) (
Dγlα−Dγnα

)
= −

[(
Dρlµ

) (
Dγnα

)
+

(
Dρnµ

) (
Dγlα

)]
. (B.8)

ηabEβ
bDβDγEµ

a = −Eβ

0̂
DβDγEµ

0̂
+ Eβ

1̂
DβDγEµ

1̂

= −
1
2

(
lβ+ nβ

)
DβDγ

(
lµ+ nµ

)
+

1
2

(
lβ−nβ

)
DβDγ

(
lµ−nµ

)
= −

1
2

[
DlDγ

(
lµ+ nν

)
+ DnDγ

(
lµ+ nν

)]
+

1
2

[
DlDγ

(
lµ−nν

)
−DnDγ

(
lµ−nν

)]
= −

(
DlDγnµ+ DnDγlµ

)
. (B.9)

B.2 Derivation of ∇̃TJ

Consider the left hand side of the Raychaudhuri equation (4.44), and the worldsheet

covariant derivative of Jai j defined in relation (2.98), i.e.,

∇̃TJ := ηabδi j∇̃bJai j = ηabδi j

 ∇bJai j︸ ︷︷ ︸
DbJai j −γ

c
ba Jci j

−w k
bi Jak j −w k

b j Jaik

 . (B.10)

By using the definition of Jai j , eq. (2.78), the first term of the equation (B.10) be-

comes,

ηabδi jDbJai j := ηabδi jDb
[
gµνDi

(
Eµ

a

)
Nν

j

]
= gµνη

abδi j
(
DbNγ

i

) (
DγEµ

a

)
Nν

j

+ gµνη
abδi jNγ

i

(
DbDγEµ

a

)
Nν

j + gµνη
abδi jNγ

i

(
DγEµ

a

)
Eβ

b

(
DβNν

j

)
= gµν

(
δi jNν

j DβNγ
i

) (
ηabEβ

bDγEµ
a

)
+ gµν

(
δi jNγ

i N
ν

j

) (
ηabEβ

bDβDγEµ
a

)
+ gµν

(
δi jNγ

i DβNν
j

) (
ηabEβ

bDγEµ
a

)
,
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and by making use of eqs. (B.2), (B.3), (B.5) and (B.9),

ηabδi jDbJai j = −gµν
(
mνDβmγ + mνDβmγ

) (
lβDγnµ+ nβDγlµ

)
−

(
mγmν+ mνmγ) (DlDγnµ+ DnDγlµ

)
− gµν

(
mγDβmν+ mγDβmν

) (
lβDγnµ+ nβDγlµ

)
= −gµν

[
mν

(
Dβmγ

)
lβ

(
Dγnµ

)
+ mνmγDlDγnµ

]
− gµν

[
mν

(
Dβmγ

)
lβ

(
Dγnµ

)
+ mνmγDlDγnµ

]
− gµν

[
mν

(
Dβmγ

)
nβ

(
Dγlµ

)
+ mνmγDnDγlµ

]
− gµν

[
mν

(
Dβmγ

)
nβ

(
Dγlµ

)
+ mνmγDnDγlµ

]
− gµν

[(
Dlmν) (Dmnµ

)
+

(
Dnmν) (Dmlµ

)]
− gµν

[(
Dlmν) (Dmnµ

)
+

(
Dnmν) (Dmlµ

)]
= −

[〈
m,DlDmn

〉
+

〈
m,DlDmn

〉]
−

[〈
m,DnDml

〉
+

〈
m,DnDml

〉]
−

[〈
Dlm,Dmn

〉
+

〈
Dnm,Dml

〉]
−

[〈
Dlm,Dmn

〉
+

〈
Dnm,Dml

〉]
.

Now we can use eqs. (A.11), (A.12), (A.14), (A.15) and (A.16) to obtain

ηabδi jDbJai j =
[
Dn (ρ+ρ)−Dl (µ+µ)

]
+

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
−

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
−

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
+

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
=

[
Dn (ρ+ρ)−Dl (µ+µ)

]
. (B.11)

In order to derive the second term of eq. (B.10), we will use the definitions in eq. (2.76)

and eq. (2.78). Then we get

ηabδi jγ c
ba Jci j = ηabηcdδi j

(
gµν

[
DbEµ

a

]
Eν

d

) (
gαβ

[
DiE

α
c

]
Nβ

j

)
= gµνgαβ

(
Nγ

i N
β

jδ
i j
) (
ηabEρ

bDρEµ
a

) (
ηcdEν

d DγEα
c

)
.

Then by using relations (B.2), (B.3) and (B.4),

ηabδi jγ c
ba Jci j = gµνgαβ

(
mγmβ+ mβmγ

) (
Dlnµ+ Dnlµ

) (
lνDγnα+ nνDγlα

)
= gµνgαβ

(
Dlnµ+ Dnlµ

)
×

(
mβlνDmnα+ mβnνDmlα+ mβlνDmnα+ mβnνDmlα

)
=

〈
Dmn,m

〉
(〈Dln, l〉+ 〈Dnl, l〉) +

〈
Dml,m

〉
(〈Dln,n〉+ 〈Dnl,n〉)

+
〈
Dmn,m

〉
(〈Dln, l〉+ 〈Dnl, l〉) +

〈
Dml,m

〉
(〈Dln,n〉+ 〈Dnl,n〉) ,
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and by using eqs. (A.10), (A.11), (A.12) and (A.14) we obtain

ηabδi jγ c
ba Jci j = (ε+ε) (µ+µ) + (γ+γ) (ρ+ρ) . (B.12)

In order to derive the third term of eq. (B.10) one uses the definitions in eq. (2.77) and

eq. (2.78). Then we write

ηabδi jw k
bi Jak j = ηabδi jδkl

(
gµν

[
DbNµ

i

]
Nν

k

) (
gαβ

[
DlE

α
a

]
Nβ

j

)
= gµνgαβ

(
δklNγ

l N
ν
k

) (
δi jNβ

j DρNµ
i

) (
ηabEρ

bDγEα
a

)
.

Now using eqs. (B.2), (B.3) and (B.5) results in

ηabδi jw k
b j Jaki = −gµνgαβ

(
mγmν+ mνmγ)

×
(
mβDρmµ+ mβDρmµ

) (
lρDγnα+ nρDγlα

)
= −

[
〈Dmn,m〉

〈
Dlm,m

〉
+

〈
Dlm,m

〉〈
Dmn,m

〉
+

〈
Dnm,m

〉
〈Dml,m〉+

〈
Dnm,m

〉〈
Dml,m

〉
+ 〈Dlm,m〉

〈
Dmn,m

〉
+ 〈Dlm,m〉

〈
Dmn,m

〉
+

〈
Dnm,m

〉〈
Dml,m

〉
+ 〈Dnm,m〉

〈
Dml,m

〉]
,

and by eqs. (A.11), (A.14), (A.15) and (A.16) we obtain

ηabδi jw k
b j Jaki = −

([
ε−ε

] [
µ−µ

]
+

[
γ−γ

] [
ρ−ρ

])
. (B.13)

Similarly, the fourth term in eq. (B.10) follows from

ηabδi jw k
b j Jaik = ηabδi jδkl

(
gµν

[
DbNµ

j

]
Nν

k

) (
gαβ

[
DiE

α
a

]
Nβ

l

)
= gµνgαβ

(
δklNν

k Nβ
l

) (
δi jNγ

i DρNµ
j

) (
ηabEρ

bDγEα
a

)
.

Then by using relations (B.2), (B.3) and (B.5),

ηabδi jw k
b j Jaik = −gµνgαβ

(
mνmβ+ mβmν

)
×

(
mγDρmµ+ mγDρmµ

) (
lρDγnα+ nρDγlα

)
= −

[
〈Dmn,m〉

〈
Dlm,m

〉
+

〈
Dlm,m

〉〈
Dmn,m

〉
+

〈
Dnm,m

〉〈
Dml,m

〉
+ 〈Dnm,m〉

〈
Dml,m

〉
+

〈
Dlm,m

〉〈
Dmn,m

〉
+ 〈Dlm,m〉

〈
Dmn,m

〉
+

〈
Dnm,m

〉
〈Dml,m〉+

〈
Dnm,m

〉〈
Dml,m

〉]
,
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and by further using eqs. (A.11), (A.14), (A.15) and (A.16) we obtain the same result

as in (B.13), i.e.,

ηabδi jw k
b j Jaik = −

([
ε−ε

] [
µ−µ

]
+

[
γ−γ

] [
ρ−ρ

])
. (B.14)

Hence, substitution of the relations (B.11), (B.12), (B.13) and (B.14) into eq. (B.10)

results in

ηabδi j∇̃bJai j =
[
Dn (ρ+ρ)−Dl (µ+µ)

]
−

[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
+ 2

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
. (B.15)

B.3 Derivation of ∇̃SK

Consider the first term on the right hand side of the Raychaudhuri equation (4.44), and

the covariant derivative of Kab j on the spacelike 2-surface defined in relation (2.111),

i.e.,

∇̃SK := ηabδi j∇̃iKab j = ηabδi j

 ∇iKab j︸ ︷︷ ︸
DiKab j −γi jkK k

ab

−S aciK
c

b j −S bciK
c

a j

 . (B.16)

Then, by making use of the definition (2.75), the first term of eq. (B.16) is as follows

DiKab jη
abδi j = ηabδi jDi

[
−gµν

(
DaEµ

b

)
Nν

j

]
= −ηabδi j

[
Nν

j N
γ
i Dγ

(
gµν

(
DaEµ

b

))]
−ηabδi j

[
gµν

(
DaEµ

b

)
Nγ

i DγNν
j

]
= −gµν

[(
δi jNν

j N
γ

j

)
ηabDγ

(
Eβ

aDβEµ
b

)]
− gµν

[(
ηabEβ

aDβEµ
b

) (
δi jNγ

i DγNν
j

)]
.

By using eqs. (B.2), (B.4) and (B.6) we write

DiKab jη
abδi j = gµν

[(
mγmν+ mνmγ)Dγ

(
Dlnµ+ Dnlµ

)]
+ gµν

[(
Dlnµ+ Dnlµ

) (
Dmmν+ Dmmν)]

=
〈
m,DmDln

〉
+

〈
m,DmDnl

〉
+

〈
m,DmDln

〉
+

〈
m,DmDnl

〉
+

〈
Dln,Dmm

〉
+

〈
Dln,Dmm

〉
+

〈
Dnl,Dmm

〉
+

〈
Dnl,Dmm

〉
,
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and by further using eqs. (A.10), (A.12) and (A.18) we obtain

DiKab jη
abδi j = Dm (π−τ) + Dm (π−τ)−

[(
α−β

)
(π−τ) + (α−β) (π−τ)

]
−

[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
+

[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
+

[(
α−β

)
(π−τ) + (α−β) (π−τ)

]
= Dm (π−τ) + Dm (π−τ) . (B.17)

The second term in eq. (B.16) is obtained by using the definitions (2.75) and (2.79).

The derivation follows as

γi jkKablδ
i jδklηab =

[
gαβ

(
DiN

α
j

)
Nβ

k

] [
−gµν

(
DaEµ

b

)
Nν

l

]
δi jδklηab

= −gαβgµν
(
δklNβ

k Nν
l

) (
δi jNρ

i DρNα
j

) (
ηabEγ

aDγEµ
b

)
.

Now let us use eqs. (B.2), (B.4) and (B.5) to write

γi jkKablδ
i jδklηab = gαβgµν

(
mβmν+ mνmβ

) (
mρDρmα+ mρDρmα

)
×

(
Dlnµ+ Dnlµ

)
=

〈
Dmm,m

〉〈
Dln,m

〉
+

〈
Dmm,m

〉〈
Dln,m

〉
+

〈
Dmm,m

〉〈
Dnl,m

〉
+

〈
Dmm,m

〉〈
Dnl,m

〉
+

〈
Dmm,m

〉
〈Dln,m〉+

〈
Dmm,m

〉
〈Dln,m〉

+
〈
Dmm,m

〉
〈Dnl,m〉+

〈
Dmm,m

〉
〈Dnl,m〉 .

Then by using eqs. (A.10), (A.12) and (A.18) we obtain

γi jkKablδ
i jδklηab = (α−β) (π−τ) +

(
α−β

)
(π−τ) . (B.18)

Finally we derive the third term that appears in eq. (B.16). Note that the third term is

equal to the fourth term since our ηab is diagonal. Here we make use of the definitions

(2.80) and (2.75) and get

S aciKbd jδ
i jηabηcd =

[
gµν

(
DiE

µ
a

)
Eν

c

] [
−gαβ

(
DbEα

d

)
Nβ

j

]
δi jηabηcd

= −gµνgαβ
(
δi jNγ

i N
β

j

) (
ηabEρ

bDγEµ
a

) (
ηcdEν

cDρEα
d

)
.
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B Raychaudhuri equation in Newman-Penrose formalism

Also by using eqs. (B.2) and (B.3)

S aciKbd jδ
i jηabηcd = −gµνgαβ

(
mγmβ+ mβmγ

) (
lρDγnµ+ nρDγlµ

)
×

(
lνDρnα+ nνDρlα

)
= −

[
〈Dmn, l〉

〈
Dln,m

〉
+ 〈Dmn,n〉

〈
Dll,m

〉]
= −

[
〈Dml, l〉

〈
Dnn,m

〉
+ 〈Dml,n〉

〈
Dnl,m

〉]
= −

[〈
Dmn, l

〉
〈Dln,m〉+

〈
Dmn,n

〉
〈Dll,m〉

]
= −

[〈
Dml,n

〉
〈Dnl,m〉+

〈
Dml, l

〉
〈Dnn,m〉

]
.

Then by further using eqs. (A.9), (A.10), (A.11), (A.12) and (A.13) we write

S aciKbd jδ
i jηabηcd = −

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
. (B.19)

Therefore substitution of relations (B.17), (B.18) and (B.19) into eq. (B.16) results in

ηabδi j∇̃iKab j = Dm (π−τ) + Dm (π−τ)−
[
(α−β) (π−τ) +

(
α−β

)
(π−τ)

]
+ 2

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
. (B.20)

B.4 Derivation of J 2

In order to derive the second term that appears on the right hand side of the Ray-

chaudhuri equation (4.44), we start with the definition (2.78) and write

J 2 := Jbik Jal jη
abδi jδlk =

[
gµν

(
DiE

µ
b

)
Nν

k

] [
gαβ

(
DlE

α
a

)
Nβ

j

]
ηabδi jδlk

= gµνgαβ
(
δi jNρ

i N
β

j

) (
δklNγ

l N
ν
k

) [
ηab

(
DγEα

a

) (
DρEµ

b

)]
,

then by eqs. (B.2) and (B.8),

Jbik Jal jη
abδi jδlk = −gµνgαβ

(
mρmβ+ mβmρ

) (
mγmν+ mνmγ)

×
[(

Dγlα
) (

Dρnµ
)
+

(
Dγnα

) (
Dρlµ

)]
= −

[〈
Dmn,m

〉〈
Dml,m

〉
+

〈
Dmn,m

〉〈
Dml,m

〉]
−

[
〈Dmn,m〉

〈
Dml,m

〉
+ 〈Dml,m〉

〈
Dmn,m

〉]
−

[〈
Dmn,m

〉
〈Dml,m〉+ 〈Dmn,m〉

〈
Dml,m

〉]
−

[〈
Dml,m

〉〈
Dmn,m

〉
+

〈
Dml,m

〉〈
Dmn,m

〉]
.
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B.5 Derivation of K 2

Finally, by using eqs. (A.11) and (A.14) we obtain

Jbik Jal jη
abδi jδlk = 2

(
µρ+µρ+σλ+σλ

)
. (B.21)

B.5 Derivation of K 2

The third term that appears on the right hand side of the Raychaudhuri equation

(4.44), is obtained as the following once the definition (2.75) is considered.

K 2 := Kbci Kad jη
abηcdδi j =

[
−gµν

(
DbEµ

c

)
Nν

i

] [
−gαβ

(
DaEα

d

)
Nβ

j

]
ηabηcdδi j

= gµνgαβ
(
δi jNν

i N
β

j

) (
ηabEρ

bEγ
a

) [
ηcd

(
DρEµ

c

) (
DγEα

d

)]
.

Also by making use of eqs. (B.1), (B.2) and (B.8) we write

Kbci Kad jη
abηcdδi j =

(
mνmβ+ mβmν

) (
lρnγ + lγnρ

)
×

[(
Dρlµ

) (
Dγnα

)
+

(
Dρnµ

) (
Dγlα

)]
=

[
〈Dll,m〉

〈
Dnn,m

〉
+ 〈Dln,m〉

〈
Dnl,m

〉]
+

[
〈Dnl,m〉

〈
Dln,m

〉
+ 〈Dnn,m〉

〈
Dll,m

〉]
+

[〈
Dll,m

〉
〈Dnn,m〉+

〈
Dln,m

〉
〈Dnl,m〉

]
+

[〈
Dnl,m

〉
〈Dln,m〉+

〈
Dnn,m

〉
〈Dll,m〉

]
.

Then by eqs. (A.9), (A.10), (A.12) and (A.13) we obtain the final form as

Kbci Kad jη
abηcdδi j = −2(κν+ κν+πτ+πτ) . (B.22)

B.6 Derivation of RW

Now we derive the last term on the right hand side of the Raychaudhuri equation

(4.44), in terms of the variables of the Newman-Penrose formalism, i.e.,

RW := g(R(Eb,Ni )Ea,N j )η
abδi j = RαβµνE

µ
bNν

i E
β
aNα

jη
abδi j

= Rαβµν
(
ηabEµ

bEβ
a

) (
δi jNν

i N
α

j

)
.
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B Raychaudhuri equation in Newman-Penrose formalism

Then by using eqs. (B.1) and (B.2) we obtain

g(R(Eb,Ni )Ea,N j )η
abδi j = −Rαβµν

(
lµnβ+ lβnµ

) (
mνmα+ mαmν)

= −
[
Rmnlm + Rmnlm + Rmlnm + Rmlnm

]
. (B.23)

Since, the Riemann tensor is defined as,

Rxyvw = −
〈
DxDyv,w

〉
+

〈
DyDxv,w

〉
+

〈
D[x,y]v,w

〉
,

we write

g(R(Eb,Ni )Ea,N j )η
abδi j = −

[
Rmnlm + Rmnlm + Rmlnm + Rmlnm

]
= −

[
−
〈
DmDnl,m

〉
+

〈
DnDml,m

〉
+

〈
D[m,n]l,m

〉]
−

[
−
〈
DmDnl,m

〉
+

〈
DnDml,m

〉
+

〈
D[m,n]l,m

〉]
−

[
−
〈
DmDln,m

〉
+

〈
DlDmn,m

〉
+

〈
D[m,l]n,m

〉]
−

[
−
〈
DmDln,m

〉
+

〈
DlDmn,m

〉
+

〈
D[m,l]n,m

〉]
.(B.24)

Now we will make use of the commutation relations, (A.44) and (A.45), in order to

write the inner products that involve the brackets in terms of the Newman-Penrose

variables. In particular,

D[m,n]l = −νDll−
(
α+β−τ

)
Dnl− (γ−γ−µ) Dml +λDml,

D[m,n]l = −νDll− (α+β−τ) Dnl− (γ−γ−µ) Dml +λDml,

D[m,l]n = −
(
π−α−β

)
Dln + κDnn− (ε−ε+ρ) Dmn−σDmn,

D[m,l]n = − (π−α−β) Dln + κDnn− (ε−ε+ρ) Dmn−σDmn. (B.25)

At the next step of our derivation we make use of the propagation equations (A.9),

(A.10), (A.11), (A.12), (A.13) and (A.14). Then we obtain〈
D[m,n]l,m

〉
+

〈
D[m,n]l,m

〉
+

〈
D[m,l]n,m

〉
+

〈
D[m,l]n,m

〉
= ...

... = 2(κν+ κν)−2(ττ+ππ)−2
(
ρµ+ρµ+λσ+λσ

)
+
[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
−

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
,
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so that

g(R(Eb,Ni )Ea,N j )η
abδi j =

[〈
DmDnl,m

〉
−

〈
DnDml,m

〉]
+

[〈
DmDnl,m

〉
−

〈
DnDml,m

〉]
+

[〈
DmDln,m

〉
−

〈
DlDmn,m

〉]
+

[〈
DmDln,m

〉
−

〈
DlDmn,m

〉]
− 2(κν+ κν) + 2(ττ+ππ) + 2

(
ρµ+ρµ+λσ+λσ

)
−

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
+

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
.

Now we further use eqs. (A.10), (A.11), (A.12), (A.14), (A.15), (A.16) and (A.18) and

write

g(R(Eb,Ni )Ea,N j )η
abδi j = Dm (π−τ) + Dm (π−τ)

−
[(
α−β

)
(π−τ) + (α−β) (π−τ)

]
−

[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
+

[
Dn (ρ+ρ)−Dl (µ+µ)

]
+

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
−

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
− 2(κν+ κν) + 2(ττ+ππ) + 2

(
ρµ+ρµ+λσ+λσ

)
−

[
(α+β) (π+τ) +

(
α+β

)
(π+τ)

]
+

[
(ε−ε) (µ−µ) + (γ−γ) (ρ−ρ)

]
.

Hence,

g(R(Eb,Ni )Ea,N j )η
abδi j = Dn (ρ+ρ)−Dl (µ+µ) + Dm (π−τ) + Dm (π−τ)

−
[(
α−β

)
(π−τ) + (α−β) (π−τ)

]
−

[
(ε+ε) (µ+µ) + (γ+γ) (ρ+ρ)

]
− 2(κν+ κν) + 2(ττ+ππ) + 2

(
ρµ+ρµ+λσ+λσ

)
.
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B Raychaudhuri equation in Newman-Penrose formalism

B.7 Alternative derivation of RW

Here we will present a derivation of RW by using the decomposition of the Riemann

tensor into its fully traceless, Cµναβ, semi-traceless, Yµναβ , and the trace parts, S µναβ.

For a 4-dimensional spacetime, the decomposition is as follows [12],

Rµναβ = Cµναβ + Yµναβ −S µναβ, (B.26)

where Cµναβ is the Weyl tensor, R is the Ricci scalar of the spacetime and

Yµναβ =
1
2

(
gµαRβν−gµβRαν−gναRβµ+ gνβRαµ

)
, (B.27)

S µναβ =
R
6

(
gµαgβν−gµβgαν

)
. (B.28)

The term we are after follows as

RW := g(R(Eb,Ni )Ea,N j )η
abδi j = RαβµνE

µ
bNν

i E
β
aNα

jη
abδi j

= Rαβµν
(
ηabEµ

bEβ
a

) (
δi jNν

i N
α

j

)
.

Now by using eqs. (B.1) and (B.2) we obtain

g(R(Eb,Ni )Ea,N j )η
abδi j = −Rαβµν

(
lµnβ+ lβnν

) (
mνmα+ mαmν)

= −
[
Rmnlm + Rmnlm + Rmlnm + Rmlnm

]
.

Symmetries of Rµναβ allows us to write

g(R(Eb,Ni )Ea,N j )η
abδi j = −2

(
Rmnlm + Rmlnm

)
,

and by using the decomposition (B.26),

g(R(Eb,Ni )Ea,N j )η
abδi j = −2

(
Cmnlm +Cmlnm

)
− 2

(
Ymnlm + Ymlnm −S mnlm−S mlnm

)
.

Here we make use of the symmetries of Cµναβ and the definition (A.22) to get

g(R(Eb,Ni )Ea,N j )η
abδi j = −2

(
Ψ2 +Ψ2

)
−2

(
Ymnlm + Ymlnm −S mnlm−S mlnm

)
.

(B.29)
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B.7 Alternative derivation of RW

By using the definitions of Yµναβ and S µναβ given in (B.27) and (B.28) we write

Ymnlm =
1
2

(〈
m, l

〉
Rmn−

〈
m,m

〉
Rln−〈n, l〉Rmm + 〈n,m〉Rlm

)
, (B.30)

Ymlnm =
1
2

(〈
m,n

〉
Rml−

〈
m,m

〉
Rnl−〈l,n〉Rmm + 〈l,m〉Rnm

)
, (B.31)

S mnlm =
R
6

(〈
m, l

〉
〈m,n〉−

〈
m,m

〉
〈l,n〉

)
, (B.32)

S mlnm =
R
6

(〈
m,n

〉
〈m, l〉−

〈
m,m

〉
〈n, l〉

)
. (B.33)

Also, since the Ricci scalar is R = gµνRµν = 2
(
−Rln + R

mm

)
and the Ricci tensor is a

symmetric, we have

RW = −2
(
Ψ2 +Ψ2

)
−2

(R
2
−

R
3

)
. (B.34)

In the NP formalism one defines a variable Λ = R/24, thus we conclude that

RW = −2
(
Ψ2 +Ψ2 + 4Λ

)
. (B.35)
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C Other derivations

C.1 Gauss equation of S

For a 2-dimensional spacelike surface embedded in a 4-dimensional spacetime, the

Gauss equation reads as [141],

g(R(Nk,Nl)N j,Ni) = Ri jkl− Jaik Jb jlη
ab + Ja jk Jbilη

ab. (C.1)

When we contract eq. (C.1) with δikδ jl we get

g(R(Nk,Nl)Nk,Nl) = RS−H2 + J 2, (C.2)

where RS is the intrinsic curvature scalar of S, H2 = Jaik Jb jlη
abδikδ jl is the square

of the mean extrinsic curvature scalar of S and J 2 = Ja jk Jbilη
abδikδ jl is one of the

variables that appear in the contracted Raychaudhuri equation. Then derivation of

g(R(Nk,Nl)Nk,Nl) in terms of the NP variables proceeds as follows.

g(R(Nk,Nl)N j,Ni)δikδ jl = RαβµνN
µ
k Nν

l N
β

j N
α

iδ
ikδ jl = Ri jklδ

ikδ jl

= Rαβµν
(
Nµ

k Nα
iδ

ik
) (

Nν
l N

β
jδ

jl
)
.

Now considering the relation (B.2) we write

Ri jklδ
ikδ jl = Rαβµν

(
mµmα+ mαmµ) (mνmβ+ mβmν

)
= Rmmmm + Rmmmm + Rmmmm + Rmmmm,

and by considering the symmetries of Rµναβ we obtain

Ri jklδ
ikδ jl = −2Rmmmm.
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C.1 Gauss equation of S

Now let us use the decomposition (B.26) and write

Ri jklδ
ikδ jl = −2

(
Cmmmm + Ymmmm −S mmmm

)
, (C.3)

where

Cmmmm = Ψ2 +Ψ2, (C.4)

Ymmmm =
1
2

(〈
m,m

〉
Rmm−

〈
m,m

〉
Rmm−

〈
m,m

〉
Rmm + 〈m,m〉Rmm

)
= −Rmm, (C.5)

S mmmm =
R
6

(〈
m,m

〉
〈m,m〉−

〈
m,m

〉〈
m,m

〉)
= −

R
6
. (C.6)

Equation (C.4) follows from the fact that Weyl tensor is traceless. To see this, consider

the following. For any pair of vectors {v, w} one can write

gxyCxvyw = 0 = −Clvnw −Cnvlw +Cmvmw +Cmvmw. (C.7)

Now let us set v = m, w = m, then we obtain

0 = −Clmnm −Cnmlm +Cmmmm +Cmmmm

= Clmmn +Clmmn + 0−Cmmmm. (C.8)

Then by using the definition given in (A.22) we find

Cmmmm = Ψ2 +Ψ2. (C.9)

In order to rewrite eq. (C.5) in terms of the curvature scalars consider

R = 2
(
−Rln + Rmm

)
and Φ11 =

1
4

(
Rln + Rmm

)
. (C.10)

Then we write

Rmm =
R + 8Φ11

4
. (C.11)

Therefore, substitution of equations (C.4), (C.5) and (C.6) into the decomposition (C.3)

yields

g(R(Nk,Nl)Nl,Nk) = −2
[(

Ψ2 +Ψ2
)
−

(
R + 8Φ11

4

)
+

R
6

]
= −2

(
Ψ2 +Ψ2−2Λ−2Φ11

)
. (C.12)
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C.2 Boost invariance of quasilocal charges:

C.2.1 Transformation of ∇̃TJ under Type-III Lorentz

transformations

Under a Type-III Lorentz transformation, the null vectors l and n transform according

to the relations (A.108) and (A.109) respectively. The transformed spin coefficients,

γ′, µ′, ρ′ and ε′ can be obtained via the relations (A.114), (A.115), (A.119) and (A.122)

so that the transformation of the term ∇̃TJ in eq. (4.51) follows as

∇̃TJ ′ = 2
(
Dn′ρ

′−Dl′µ
′)−2

[(
ε′+ε′

)
µ′+

(
γ′+γ′

)
ρ′

]
= 2

[
1
a2 Dn

(
a2ρ

)
−a2Dl

(
1
a2µ

)]
− 2

{
a2 (ε+ Dl [lna + iθ]) + a2 (ε+ Dl [lna− iθ])

} 1
a2µ

− 2
{ 1
a2

(γ+ Dn [lna + iθ]) +
1
a2

(γ+ Dn [lna− iθ])
}
a2ρ

= 2(Dnρ−Dlµ)−2
[
(ε+ε)µ+ (γ+γ)ρ

]
. (C.13)

Therefore ∇̃TJ is invariant under a Type-III Lorentz transformation.

C.2.2 Transformation of ∇̃SK under Type-III Lorentz

transformations

By using eq. (4.52), the transformed ∇̃SK can be written as

∇̃SK ′ = 2
[
Dm′π

′−Dm′τ
′
]
−2

[(
α′−β′

)
π′+

(
α′−β

′)
π′

]
, (C.14)

in which the transformations of the complex null vectors m and m are given in relations

(A.110) and (A.111) respectively. Also, the transformed spin coefficients τ′, β′, α′ and

π′, are obtained via the relations (A.113), (A.117), (A.120) and (A.123) so that we
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C.2 Boost invariance of quasilocal charges:

have

∇̃SK ′ = 2
[
e2iθDm

(
e−2iθπ

)
− e−2iθDm

(
e2iθτ

)]
− 2

{
e2iθ (α+ Dm [lna− iθ])− e2iθ (β+ Dm [lna + iθ])

}
e−2iθπ

− 2
{
e−2iθ (α+ Dm [lna + iθ]

)
− e−2iθ

(
β+ Dm [lna− iθ]

) }
e2iθπ.

Now by further imposing our null tetrad condition, τ+π = 0 on the above equation we

obtain

∇̃SK ′ = 2
[
Dmπ−Dmτ

]
−2

[
(α−β)π+

(
α−β

)
π
]
. (C.15)

Then, ∇̃SK transforms invariantly under the spin-boost transformation of the null

tetrad.

C.2.3 Transformation of J 2 under Type-III Lorentz transformations

The transformation of J 2 follows from the definition (4.53) plus the transformation

relations (A.115), (A.116), (A.118) and (A.119) of the spin coefficients µ′, σ′, λ′ and

ρ′. Then we write

J 2′ = 4µ′ρ′+ 2
(
σ′λ′+σ′λ

′)
= 4

(
a−2µ

) (
a2ρ

)
+ 2

[(
a2e4iθσ

) (
a−2e−4iθλ

)
+

(
a2e−4iθσ

) (
a−2e4iθλ

)]
= 4µρ+ 2

(
σλ+σλ

)
. (C.16)

Therefore J 2 transforms invariantly under the spin-boost transformation of the null

tetrad.

C.2.4 Transformation of K 2 under Type-III Lorentz

transformations

By using eq. (4.54) as for the definition of K 2 and considering relations (A.112),

(A.113), (A.121) and (A.123) for the transformations of spin coefficients ν′, τ′, κ′ and
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π′ we write

K 2′ = −2
(
κ′ν′+ κ′ν′

)
+ 2

(
π′π′+τ′τ′

)
= −2

[(
a4 e2iθκ

) (
a−4 e−2iθν

)
+

(
a4 e−2iθκ

) (
a−4 e2iθν

)]
+ 2

[(
e−2iθπ

) (
e2iθπ

)
+

(
e2iθτ

) (
e−2iθτ

)]
= −2(κν+ κν) + 2(ππ+ττ) . (C.17)

Thus K 2 is also invariant under spin-boost transformations.

C.2.5 Transformation of RW under Type-III Lorentz

transformations

The Weyl scalar Ψ2 transforms invariantly under spin-boost transformations according

to the relation (A.135). Moreover, the parameter Λ = R/24 is invariant under such a

transformation since the Ricci scalar is unchanged. Therefore, following eq. (4.50), it

is easy to see that

RW
′ = −2

(
ψ′2 +ψ

′

2 + 4Λ′
)

= −2
(
ψ2 +ψ2 + 4Λ

)
, (C.18)

and RW is invariant under spin-boost transformations.
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