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Abstract Mathematical models of dynamical systems in the life sciences typi-6

cally assume that biological systems are spatially well mixed (the mean-field as-7

sumption). Even spatially explicit differential equation models typically make8

a local mean-field assumption. In effect, the assumption is that diffusive move-9

ment is strong enough to destroy spatial structure, or that interactions between10

individuals are sufficiently long-ranged that the effects of spatial structure are11

weak. However, many important biophysical processes, such as chemical re-12

actions of biomolecules within cells, disease transmission among humans, and13

dispersal of plants, have characteristic spatial scales that can generate strong14

spatial structure at the scale of individuals, with important effects on the15

behaviour of biological systems. This calls for mathematical methods that in-16

corporate spatial structure. Here we focus on one method, spatial-moment17

dynamics, which is based on the idea that important information about a spa-18

tial point process is held in its low-order spatial moments. The method goes19

beyond dynamics of the first moment, i.e. the mean density or concentration20

of agents in space, in which no information about spatial structure is retained.21

By including the dynamics of at least the second moment, the method re-22

tains some information about spatial structure. Whereas mean-field models23

effectively use a closure assumption for the second moment, spatial-moment24

models use a closure assumption for the third (or a higher-order) moment.25

The aim of the paper is to provide a parsimonious and intuitive derivation26

of spatial-moment dynamic equations that is accessible to non-specialists. The27

derivation builds naturally from the first moment to the second and we show28

how it can be extended to higher-order moments. Rather than tying the model29

to a specific biological example, we formulate a general model of movement,30

birth and death of multiple types of interacting agents. This model can be31

applied to problems from a range of disciplines, some of which we discuss. The32

derivation is performed in a spatially non-homogeneous setting, to facilitate33

future investigations of biological scenarios, such as invasions, in which the34

spatial patterns are non-stationary over space.35

Keywords agent-based model · integro-differential equation · interacting36

agents · moment closure · spatio-temporal process · spatial pattern · stochastic37

process38
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1 Introduction39

Dynamic spatial point processes deal with the behaviour of populations of40

agents in a space. There are rather few restrictions on the populations, other41

than that they live in a continuous space, and that the location of an agent42

can be associated with a point in the space (this does not mean that the agent43

itself has to be infinitesimal in size). Spatial point processes provide a key to44

describing the dynamics of spatially structured systems, and have a potentially45

wide range of applications in biology, from molecules interacting on surfaces46

in cells, to tissue growth in multicellular organisms, to dynamics of interacting47

populations in ecology, as well as in other subject areas such as the social48

sciences.49

Typically in biology, dynamic models of populations of agents make use of50

the first moment as the state variable. This is a spatially averaged density, or51

intensity, or concentration of agents. Models of the first moment dynamics are52

referred to as ‘mean-field’, and classical examples include the logistic model53

for population growth (Verhulst, 1836), Lotka–Volterra models for ecologically54

interacting populations (Lotka, 1920; Volterra, 1927) and SIR models for the55

spread of an epidemic (Kermack and McKendrick, 1927). Spatially explicit56

models, such as reaction–diffusion equations, allow the first moment to be a57

function of location in space (Shigesada and Kawasaki, 1997). However, they58

typically still neglect variations in densities over small spatial scales (i.e. scales59

commensurate with individual dispersal and interaction) and may be termed60

‘local mean-field’.61

The first moment is silent on matters of spatial structure, as illustrated62

in Fig. 1. This shows three spatial patterns that all have the same average63

density of agents, and yet are clearly different. To capture information on64

spatial structure, the second spatial moment is needed, at least. Unlike the first65

moment, the second moment is a function of distance, and describes the density66

g(r) of pairs of agents separated by a distance r, normalised for illustration here67

by dividing through by the average density squared so that, for large enough68

r, g(r) ≈ 1 (Illian et al., 2008). In Fig. 1(a), there is no spatial structure:69

the agents are all independently located with uniformly distributed Cartesian70

coordinates (a spatial Poisson process), and g(r) is approximately 1 at all71

distances (Fig. 1(d)). In Fig. 1(b), agents tend to occur in clusters, with more72

pairs of agents close to one another than in a Poisson process, and g(r) > 1 at73

short distances (Fig. 1(e)). In contrast, agents in Fig. 1(c) tend to be spaced74

apart from one another, with fewer pairs of agents close to one another than75

in a Poisson process, and g(r) < 1 at short distances (Fig. 1(f)). The point76

processes in Fig. 1 are all spatially homogeneous, meaning that the probability77

of there being an agent in a small area is independent of the location of that78

region. Of course, point processes can also be non-homogeneous (i.e. have79

regions of high and low densities) and such point processes may or may not80

be have spatial covariances.81

Spatial structures like those in Fig. 1 become important when the proxim-82

ity of agents matters, as is often the case in the life sciences. How to describe83
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Fig. 1 Examples of spatial patterns (a–c) and the corresponding second spatial moments
(d–f). The second moment is normalised by dividing through by the average density squared
to give the pair correlation function g(r), which is approximately 1 for large r. All three
patterns have the same mean density (first moment) but differ in their second moment:
(a) Poisson spatial pattern (all agent’s locations are independent); (b) aggregated spatial
pattern (agents tend to be arranged in clusters); (c) disaggregated spatial pattern (agents
tend to be spaced apart).

the dynamics of neighbourhood interactions is not obvious because the spa-84

tial structures both determine and are determined by the interactions. The85

response to such difficulties has been a general shift away from mathematical86

formalism towards stochastic, agent-based models with algorithmic rules that87

can be easily simulated on modern computers (Grimm et al., 2006). However,88

such models have the drawback of being rather intractable mathematically.89

Here, we focus on and review the dynamics of the second spatial moment90

as a way of going beyond simulations of spatial agent-based models. By work-91

ing in continuous space, we avoid the need to specify an artificial lattice for92

the agent locations. The use of lattice-based models is usually for technical93

convenience rather than biological realism (Bruna and Chapman, 2013) and94

the choice of lattice can influence model behaviour (Fernando et al., 2010;95

Plank and Simpson, 2012). The idea behind spatial-moment dynamics is to96

capture spatial correlations between pairs of agents in the dynamics, moving97

on from mean-field approaches that ignore spatial correlations altogether. This98

approach has its roots in statistical physics (Kirkwood, 1935), although the99

application to biology is more recent (Matsuda et al., 1992; Bolker and Pacala,100

1997, 1999; Dieckmann and Law, 2000; Keeling, 2000; Lewis and Pacala, 2000).101

As in mean-field models, the hierarchy of spatial moments is closed by assump-102

tion, but the closure is made at second order, so that the dynamical system is103

able to hold some basic information on spatial structure as it unfolds over time.104
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There are other mathematical paths that do not rely on a closure assumption,105

for instance working directly with the stochastic process, using a perturbation106

approximation, or working with the full hierarchy of moments, as discussed107

in Sec. 7 (Blath et al., 2007; Bruna and Chapman, 2012b; Ovaskainen et al.,108

2014).109

In the life sciences, dynamics of the second spatial moment were originally110

developed for ecological problems where events are influenced by interactions111

with a small number of neighbours, at rates potentially far from those in112

a well-mixed, mean-field system (Dieckmann and Law, 2000). Such dynam-113

ical systems have the capacity to carry forward the spatial structure that114

plants and animals respond to, modifying the spatial structure as they do so115

(Bolker and Pacala, 1997; Law and Dieckmann, 2000). This is important in116

plant populations and communities because local spatial structure can make117

a ‘plant’s-eye’ view of its community quite different from a large-scale average118

(Purves and Law, 2002; Llambi et al., 2004; Law et al., 2009). Second-moment119

dynamics have therefore been used to analyze the the combined effects of120

spatial structure and small neighbourhoods on plant communities (Bolker and121

Pacala, 1999; Bolker et al., 2003; Law et al., 2003; Murrell and Law, 2003). The122

method has been extended to describe the spatial structure that can emerge123

in the size distribution of plants (Murrell, 2009; Adams et al., 2013). A sim-124

ilar approach can be applied to the dynamics of animal populations as they125

become associated with their preferred habitat (Murrell and Law, 2000), and126

to spatial structures that develop between predators and their prey (Murrell,127

2005; Barraquand and Murrell, 2012, 2013). However, the widespread take-up128

of spatial, agent-based models across the life sciences suggests that spatial-129

moment dynamics have a potential field of application much broader than130

ecology.131

The purpose of this paper is primarily methodological. Moment-dynamic132

equations up to second order are already available in the literature, usually as133

special cases designed to address particular ecological questions, as described134

above. However, the algebra can appear complicated and the models context-135

specific and there is a need for a straightforward, general derivation that is136

not tied to specific ecological applications. With this in mind, we introduce a137

simple and elegant approach, suggested by Grey (2000, pers. comm.). This138

approach combines the intuitive appeal of the derivation of Bolker and Pacala139

(1999) with the rigour of Dieckmann and Law (2000). It is sufficiently trans-140

parent to invite extensions to some more complicated problems, some of which141

we outline. In particular, it allows a conjecture about the equation for the dy-142

namics of the nth spatial moment.143

2 Stochastic, agent-based model144

Spatial-moment dynamics are approximation schemes for stochastic, spatially145

explicit, agent-based models. Such models are defined by an initial state and146

by a set of rules through which properties of agents are updated over time.147
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A realization of the model gives the state at each point in time, which can148

potentially be a complicated multi-type spatial pattern. Repeated realizations149

of the model from the same initial conditions generate an ensemble of spatial150

patterns at each point in time. The expected values of the spatial moments of151

these patterns are the state variables of the spatial-moment dynamics.152

In the stochastic agent-based model, each agent has a physical location in153

space. For ease of presentation, we assume that the dynamics take place in154

a two-dimensional space Ω ⊆ R
2; other numbers of dimensions are possible.155

The space should be large relative to the scales over which agents interact156

and move. The agents can be of different types; they could, for instance, be157

different types of molecule, cell types, genotypes or species.158

The state of the system at time t consists of the location xn ∈ Ω and type159

in ∈ {1, . . . , imax} of each agent n (n = 1, . . . , N(t)), where imax is the number160

of different types. The rules for changing the properties of agents are context-161

dependent. To be specific, we consider three classes of event: movement, birth162

and death. This means that an agent’s location may change over time through163

movement, and the agent can give birth and die, changing the total number164

of agents N(t). Birth events are accompanied by dispersal of the new agent,165

so that there is never more than one agent at a single location in space. The166

notion of birth and death can be extended to more general events creating167

an agent and causing it to disappear, for instance through generating a new168

molecule in a chemical reaction. Other processes, for example growth of agents169

or transition of agents from one type to another, are also possible (see Sec. 6).170

Movement, birth and death events occur to agent n with rates per unit time171

M̂n, B̂n and D̂n respectively (theˆdistinguishes these functions from related172

ones used in the moment dynamics below). These events are Poisson processes173

over time, meaning that the probability of the events occurring in a short pe-174

riod of time δt, to leading order in δt, is M̂nδt, B̂nδt, D̂nδt respectively. When175

an event happens, the system is updated to a new state and consequently the176

rates change; the Poisson processes are therefore inhomogeneous over time.177

The event rates are assumed to comprise an intrinsic component (which may178

depend on the agent’s type in and location xn) and a component that depends179

on the presence of other agents in the neighbourhood. These two components180

are often referred to as density-independent and density-dependent respec-181

tively.182

We denote the intrinsic component of the movement rate of an agent of183

type i at location x by mi(x). In addition to this intrinsic component, an184

agent of type j and location y contributes w
(m)
ij (x, y) to the movement rate.185

The overall movement rate of agent n is defined as the sum of the intrinsic186

component and the contributions of all other agents:187

M̂n = min(xn) +
∑

l 6=n

w
(m)
inil

(xn, xl). (2.1)

When a movement event occurs to an agent of type i at some location u, the188

agent moves to a new location x drawn from a probability density function189
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µ
(m)
i (u, x). For simplicity, this movement distribution is assumed to be inde-190

pendent of the types and locations of other agents in the space. In the simplest191

model, µi(x, u) would be a function of |x− u| (i.e. dependent on the distance192

from the initial to final location but independent of the direction and of the193

initial location).194

The birth and death rates of agent n are defined similarly to Eq. (2.1):195

B̂n = bin(xn) +
∑

l 6=n

w
(b)
inil

(xn, xl), (2.2)

D̂n = din(xn) +
∑

l 6=n

w
(d)
inil

(xn, xl). (2.3)

When a birth event occurs to an agent of type i at location u, a new agent196

of the same type as the parent is created. The new agent disperses from the197

parent and appears at a location x, drawn from a probability density function198

µ
(b)
i (u, x).199

The definitions of the event rates in Eqs. (2.1)–(2.3) are equivalent to200

those in previous models (e.g. North and Ovaskainen, 2007; Raghib et al.,201

2011; Barraquand and Murrell, 2012). The weighting functions wij(x, y) and202

dispersal functions µi(x, y), that define the agent-based model, describe the203

core mechanisms generating spatial structure. Usually, these functions will204

be concentrated at y = x and decay to 0 as |y − x| increases (for example a205

Gaussian function w(x, y) = w0e
−k|y−x|2 , with k > 0). This means that agents206

are strongly influenced by near neighbours and not by more distant neighbours.207

The breadth of the function sets the spatial scale over which the mechanism208

operates; for example, smaller values of k in the Gaussian function above would209

mean that agents influence their neighbours over a greater range. Similarly,210

the breadths of the functions µi(x, y) set the spatial scales for movement and211

for dispersal of offspring.212

For the general derivation of the moment dynamics below, the weight-213

ing and dispersal functions do not have to be specified in detail. The only214

constraints are that M̂n, D̂n and B̂n must never be negative, µi(x, y) ≥ 0215

and
∫

µi(x, y) dy = 1. The integrals of the neighbour-weighting functions,216
∫

wi,j(x, y) dy, are not required to equal 1, but instead can be varied to217

control the overall strength of the corresponding interaction. (This contrasts218

Dieckmann and Law (2000), where these functions integrate to unity and the219

strength of the interaction is controlled by an additional parameter.) The220

intrinsic rates and neighbour-weighting functions in Eqs. (2.1)–(2.3) have di-221

mensions T−1. The dispersal functions µi(x, y) have dimensions L−2.222

3 Spatial moments223

Here the spatial moments are defined up to order 3, together with related224

conditional probabilities. These are needed for the derivation of the spatial225

moment dynamics that follows. The definitions can be understood in terms of226
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Fig. 2 Geometry of spatial moments up to third order in a two-dimensional space. A type-i
agent is located at x, type-j at y, and type-k at z. The probability of finding an agent in
a small region δx, of area h, centred on x can be written in terms of the first moment as
Z1,i(x)h; the probability of finding an agent of type i in δx and an agent of type j in δy

is written in terms of the second moment as Z2,ij(x, y)h
2, etc. If the system is spatially

homogeneous, the physical locations x, y, z can be replaced by displacements ξ = y− x and
ξ′ = z − x.

the geometry of three, small, non-intersecting regions δx, δy and δz containing227

the points x, y and z respectively (Fig. 2). Each region is assumed to have228

an area h, with the standard assumption that the probability of there being229

more than one agent in a region is O(h2). Note that there is no assumption230

of homogeneity of the space: the environment may differ from one part of the231

space to another, as may the density and pattern of the agents themselves.232

3.1 Spatial moments at time t233

The first three spatial moments are the densities of single agents, pairs and234

triplets. We assume geometries for the moments as in Fig. 2, indexing the type235

of agents by i, j, k, but note that this indexing can be ignored if all agents are of236

the same type. The spatial moments are all functions of time in the dynamics237

below but, for notational simplicity, we omit time as an argument where there238

is no ambiguity. We define Ni(A) to be the number of agents of type i in the239

region A ⊂ R
2 at time t.240

The first spatial moment is defined in terms of the expected number of241

agents of type i in a small region δx, of area h, centred on x:242

Z1,i(x) = lim
h→0

E [Ni(δx)]

h
(3.1)

In the spatial statistic literature, this is referred to as the intensity, denoted243

Λ(x) (Illian et al., 2008). The second spatial moment, the density of pairs244

comprising type i at x and type j at y, is defined as:245

Z2,ij(x, y) = lim
h→0

E [Ni(δx)Nj(δy)− δijNi (δx ∩ δy)]

h2
, (3.2)

If δx and δy are non-overlapping, the numerator reduces to E [Ni(δx)Nj(δy)],246

which, in the limit h → 0, is equivalent to the probability that there is an247

agent of type i in δx and an agent of type j in δy. The second term in the248

numerator is necessary to remove self-pairs that would otherwise create a249
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Dirac-delta peak in Z2(x, y) at x = y (Law and Dieckmann, 2000; Illian et al.,250

2008; Raghib et al., 2011). Here δij is the Kronecker-delta symbol. The third251

moment (density of triplets) is defined similarly as252

Z3,ijk(x, y, z) = lim
h→0

1

h3
E
[

Ni(δx)Nj(δy)Nk(δz)− δijNi(δx ∩ δy)Nk(δz)

−δikNi(δx ∩ δz)Nj(δy)− δjkNj(δy ∩ δx)Ni(δx)

+ 2δijkNi(δx ∩ δy ∩ δz)
]

. (3.3)

Again, the extra terms in the numerator are needed to remove non-distinct253

triplets. The definitions above are equivalent to those of Illian et al. (2008),254

who refer to them as the product densities. In general, the nth spatial moment255

Zn has dimensions L−2n and represents the expected number of n-tuplets of256

agents per unit (area)n.257

3.2 Probabilities of agent presences258

As a precursor for the derivation below, it helps to record the probabilities of259

agents being found in given areas. Since the probability of there being more260

than one agent in a small region of area h is O(h2), we have261

E (Ni(x)) = P (Ni(x) = 1) +O(h2)

Using (3.1)–(3.3), we can write the probabilities of agents being present in262

given areas, at any given time, in terms of the spatial moments:263

P (Ni(δx) = 1) = Z1,i(x)h+O(h2),

P (Ni(δx) = 1 & Nj(δy) = 1) = Z2,ij(x, y)h
2 +O(h3),

P (Ni(δx) = 1 & Nj(δy) = 1 & Nk(δz) = 1) = Z3,ijk(x, y, z)h
3 +O(h4),

provided the regions δx, δy and δz do not overlap.264

We can also use the law of conditional probability P (A|B) = P (A & B)/P (B)265

to calculate the probabilities of agents being found in given areas, conditional266

on the presence of other agents. From the above, the probability that there267

is agent of type j in δy, given that there is an agent of type i in δx is268

P (Nj(δy) = 1 | Ni(δx) = 1) =
Z2,ij(x, y) h

Z1,i(x)
+O(h2). (3.4)

Similarly, the probability that there is an agent of type k in δz, given that269

there is an agent of type i in δx and type j in δz is270

P (Nk(δz) = 1 | Ni(δx) = 1 & Nj(δy) = 1) =
Z3,ijk(x, y, z) h

Z2,ij(x, y)
+O(h2). (3.5)
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Movement Birth Death Multi-type NH
Bolker and Pacala (1997) No DI DI+DD No No
Bolker and Pacala (1999) No DI DI+DD Yes No
Lewis and Pacala (2000) No DI No No Yes
Lewis (2000) No DI+DD No No Yes
Dieckmann and Law (2000) DI DI+DD DI+DD Yes No
Murrell and Law (2000) DD No No Yes No
Bolker (2003) No DI DI+DD No No
Murrell and Law (2003) No DI DI+DD Yes No
Murrell (2005) DI DI+DD DI+DD Yes No

Table 1 Summary of the features included in previous spatial moment-dynamic models.
Key: NH = non-homogeneous; DI = density-independent; DD = density-dependent. Our
model includes density-independent and density-dependent movement, birth and death of
multiple types of agents in a non-homogeneous setting.

4 Spatial-moment dynamics271

Spatial moment models describe properties of the ensemble average of stochas-272

tic, spatially explicit, agent-based models, of the kind outlined in Sec. 2. This273

section derives the dynamics of the first and second moments from the stochas-274

tic process in Sec. 2, i.e. the expected density of agents at a given point in275

space, and the expected density of pairs of agents at two given points. The276

models do not give information on the size or nature of fluctuations around277

that ensemble average, and they cannot, for instance, be used to estimate the278

probability that a population will eventually go extinct.279

The derivation is similar to those of Bolker and Pacala (1999), Raghib et al.280

(2011) and others by these groups in that it is based on the expected num-281

bers of agents in small neighbourhoods. This contrasts to the master-equation282

approach, which describes the spatial point process as a sum of Dirac-delta283

functions (Dieckmann and Law, 2000; Murrell and Law, 2000). The derivation284

includes density-dependent movements and a non-homogeneous space, and is285

related to previous derivations as shown in Table 1. All these approaches can286

be used in non-homogeneous settings and lead to equivalent systems of equa-287

tions.288

The main differences between the derivation here and others in the liter-289

ature are the standardisation of the notation for the nth spatial moment as290

Zn and the encoding of expected rate functions and transition probabilities291

separately from the moment dynamic equations. We also adopt a consistent292

symbol for interaction kernels (w) and for dispersal/movement kernels (µ).293

This makes the derivation significantly more parsimonious than that in Ap-294

pendix A of Dieckmann and Law (2000). The transparency and the notational295

simplifications allow an extension to higher-order moments (see Sec. 6.3).296

We avoid specifying a particular closure scheme for the system (see Sec.297

5). This is advantageous as it allows the performance of different closures298

to be readily assessed (Murrell et al., 2004) and contrasts with some other299

approaches that incorporate a specific closure scheme into the derivation (e.g.300

Bolker and Pacala, 1997; Bolker, 2003).301
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Numerical integration of the equations for the first and second moments302

derived in this section would proceed in the same way as for other approaches303

(e.g. Bolker and Pacala, 1997; Dieckmann and Law, 2000). This is not a trivial304

task as the number of terms can be large and many terms require computa-305

tion of an integral. Nevertheless, this has been accomplished in a variety of306

scenarios, including multi-type (Murrell, 2005), non-homogeneous (Lewis and307

Pacala, 2000) and size-structured models (Adams et al., 2013).308

4.1 Rate functions for first-moment dynamics309

In the agent-based model, an agent located at x has movement, birth and death310

rates defined by Eq. (2.1)–(2.3). The neighbour-dependent components of these311

rates were found by summing over all neighbours, weighted by the appropriate312

kernel function w(x, y), where y is the location of the neighbour. The equivalent313

expression in the spatial-moment dynamics entails an integration over y of the314

probability of an agent being located at y conditional on the presence of the315

agent at x, weighted by w(x, y). The expected movement rate M1,i(x) for an316

agent of type i located at x is therefore317

M1,i(x) = mi(x) +
∑

j

∫

w
(m)
ij (x, y)

P (Nj(δy) = 1 | Ni(δx) = 1)

h
dy

= mi(x) +
1

Z1,i(x)

∑

j

∫

w
(m)
ij (x, y) Z2,ij(x, y)dy. (4.1)

Eq. (3.4) has been used here to convert the conditional probability into a318

conditional density of pairs. The expected birth and death rates for an agent319

of type i located at x have the same structure as Eq. (4.1)320

B1,i(x) = bi(x) +
1

Z1,i(x)

∑

j

∫

w
(b)
ij (x, y)Z2,ij(x, y)dy, (4.2)

D1,i(x) = di(x) +
1

Z1,i(x)

∑

j

∫

w
(d)
ij (x, y)Z2,ij(x, y)dy. (4.3)

The rates are functions of spatial moments, and are therefore functions of321

time, but we have omitted the time argument t for notational simplicity. We322

make no assumption that the process is stationary in time. The same applies323

to higher-order rate terms used in later sections.324

4.2 Dynamics of the first moment325

The rate of change of Z1,i(x) can be found from the change in the probability326

that the region δx contains an agent of type i over a short period of time δt.327

Since movement, birth and death events take place as independent Poisson328
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processes, the probability of more than one event occurring during a short329

time interval of length δt is O(δt2).330

The probability that there is an agent of type i in δx at time t+ δt can be331

found by conditioning on two cases: (a) that an agent was present at time t and332

is still present; (b) that an agent was absent at t and is now present. To write333

this concisely, we introduce some additional notation. Let p1(t) [respectively334

p0(t)] be the probability that there is [respectively is not] an agent in δx at335

time t. Let s1|1 [respectively s1|0] be the probability that there is an agent at336

t+ δt, given that there was [respectively was not] an agent at t. Then we have337

p1(t+ δt) = s1|1p1(t) + s1|0p0(t). (4.4)

The probabilities of an agent of type i being present, p1(t), or absent, p0(t),338

in δx at time t are related to the first moment via339

p1(t) = 1− p0(t) = Z1,i(x, t) h+O(h2). (4.5)

The probability s1|1 that an agent in δx remains in δx is the probability that340

the agent neither moves nor dies during [t, t+ δt]:341

s1|1 = 1− (M1,i(x) +D1,i(x)) δt+O(δt2). (4.6)

(Here and below we omit the time argument of the functions.) An agent can342

arrive in δx as a result of either a movement or a birth event (always accom-343

panied by dispersal). The probability s1|0 that an agent arrives in δx is the344

probability that it arrives via a movement event, integrated over all possi-345

ble starting locations u, plus the probability that it arrives via a birth event,346

integrated over all possible locations u of the parent:347

s1|0 = h δt

∫

(

µ
(m)
i (u, x)M1,i(u) + µ

(b)
i (u, x)B1,i(u)

)

Z1,i(u)du+O(δt2).

(4.7)
The rate functions M1,i(u) and B1,i(u) are per capita rates at location u, so348

the rates per unit area at location u are products of M1,i(u) and B1,i(u) with349

density Z1,i(u). Inserting Eqs. (4.5)–(4.7) into Eq. (4.4) and letting h, δt → 0350

gives351

d

dt
Z1,i(x) = − (M1,i(x) +D1,i(x))Z1,i(x)

+

∫

(

µ
(m)
i (u, x)M1,i(u) + µ

(b)
i (u, x)B1,i(u)

)

Z1,i(u)du.(4.8)

This equation describes the dynamics of the first moment of each type of agent352

at each location in space. It is a function of the second moment, as well as of353

the first moment, because the second moment is present in the per capita rates354

Eqs. (4.1)–(4.3). This means that the dynamics of the first moment are directly355

influenced by the spatial structure of the system. Eq. (4.8) is equivalent to356

the expected value of the first jump moment of the first spatial moment in357

Dieckmann and Law (2000).358
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4.3 Rate functions for second-moment dynamics359

The expected rate of movement M2,ij(x, y) of an agent of type i in δx in a pair360

with an agent of type j in δy has a structure similar to Eq. (4.1) with intrinsic361

and neighbour-dependent components. The key difference is that, because the362

rate is conditional on the presence of the agent in δy, the neighbour-dependent363

component is a function of the conditional presence of a third agent, of type364

k in δz:365

M2,ij(x, y) = mi(x) +
∑

k

∫

w
(m)
ik (x, z)

P (Nk(δz) = 1 | Ni(δx) = 1 & Nj(δy) = 1)

h
dz

+ w
(m)
ij (x, y)

= mi(x) +
1

Z2,ij(x, y)

∑

k

∫

w
(m)
ik (x, z)Z3,ijk(x, y, z)dz + w

(m)
ij (x, y).

(4.9)

Eq. (3.5) has been used here to convert the conditional probability into a366

conditional density of triplets. Because the definition of Z3,ijk(x, y, z) in Eq.367

(3.3) excludes triplets containing a self-pair, the integral term in Eq. (4.9)368

only measures the contribution of ‘third-party’ agents, distinct from the pair369

of agents at in δx and δy. Therefore, the effect w
(m)
ij (x, y) of the agent in δy on370

the focal agent in δx must be added to Eq. (4.9) as a separate term (Adams371

et al., 2013). Using the same reasoning, the expected birth and death rates372

of an agent of type i in δx, in a pair with an agent of type j in δy are:373

B2,ij(x, y) = bi(x) +
1

Z2,ij(x, y)

∑

k

∫

w
(b)
ik (x, z)Z3,ijk(x, y, z)dz + w

(b)
ij (x, y),

(4.10)

D2,ij(x, y) = di(x) +
1

Z2,ij(x, y)

∑

k

∫

w
(d)
ik (x, z)Z3,ijk(x, y, z)dz + w

(d)
ij (x, y).

(4.11)

4.4 Dynamics of the second moment374

The rate of change of Z2,ij(x, y) depends on the change in probability that375

there is an agent of type i in the region δx and an agent of type j in the region376

δy, over a short period of time δt. The rate terms for these changes are given377

by Eqs. (4.9)–(4.11).378

Adopting notation similar to that used in Sec. 4.2, let pqr(t) be the prob-379

ability that there are q agents of type i in δx and r agents of type j in δy at380

time t. Let s11|qr be the probability that there is 1 agent of type i in δx and 1381

of type j in δy at time t+δt, given that there were q agents of type i in δx and382

r agents of type j in δy at time t (q, r ∈ {0, 1}). Using the rules of conditional383
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probability, the probability of finding a pair comprising i in δx and j in δy at384

time t+ δt is,385

p11(t+ δt) = s11|11p11(t) + s11|01p01(t) + s11|10p10(t) + s11|00p00(t). (4.12)

The probability s11|00 is O(δt2) because it would involve the occurrence of two386

Poisson events (arrival of an agent in δx and of another agent in δy) during a387

time δt. The probability p11 of there being an agent present in δx and another388

agent present in δy is given by the second moment. The probabilities p10 and389

p01 of there being an agent present in one region and absent from the other are390

equal to the probability of there being an agent present in one region, minus391

the probability that agents are present in both regions:392

p11(t) = Z2,ij(x, y, t)h
2 +O(h3), (4.13)

p01(t) = Z1,j(y, t)h− Z2,ij(x, y, t)h
2 +O(h3), (4.14)

p10(t) = Z1,i(x, t)h− Z2,ij(x, y, t)h
2 +O(h3). (4.15)

It is sufficient to retain only the order h terms in p10 and p01 because, as will be393

seen below, the associated transition probabilities s11|10 and s11|01 introduce394

an additional factor of h.395

The transition probabilities s11|qr can be constructed in terms of the ex-396

pected movement, birth and death rates in Eqs. (4.9)–(4.11). The probability397

s11|11 is the probability that neither the agent in δx nor the agent in δy moves398

or dies. For brevity, only events involving δx are shown below; those for δy are399

obtained by switching indices i, j and arguments x, y. Therefore we have400

s11|11 = 1− (M2,ij(x, y) +D2,ij(x, y)) δt− 〈i, j, x, y → j, i, y, x〉+O(δt2),
(4.16)

where the term 〈i, j, x, y → j, i, y, x〉 makes explicit the substitutions needed401

to incorporate the events in δy that are also taking place (Dieckmann and402

Law, 2000). Eq. (4.16) is comparable to Eq. (4.6) in the derivation of the403

first-moment dynamics.404

The probability s11|01 is the probability that an agent of type i arrives in405

δx, given that there is an agent of type j in δy. As in the dynamics of the first406

moment, this can occur via either a movement event or a birth event. For each407

class of event, the overall expected rate of arrival in δx is found by integrating408

over all possible locations u of the source of the event, as in Eq. (4.7). The main409

difference from Eq. (4.7) is that the probability of an agent being located at410

u is conditional on the presence of an agent at y. This conditional probability411

is expressed in terms of the second moment Z2,ij(u, y):412

s11|01 = hδt

[

1

Z1,j(y)

∫

(

µ
(m)
i (u, x)M2,ij(u, y) + µ

(b)
i (u, x)B2,ij(u, y)

)

Z2,ij(u, y)du

+ δijµ
(b)
j (y, x)B1,j(y)

]

+O(δt2). (4.17)
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An extra term has been included here to cover the case in which a pair is413

created by the agent at y giving birth to a new agent at x; the Kronecker414

delta δij stipulates that this can only happen if the two agents are of the same415

type (i.e. i = j). No such term is needed for movement of the agent at y to x as416

this event would leave δy empty. A similar equation for the probability s11|10417

is obtained by the making the substitutions 〈i, j, x, y → j, i, y, x〉 to (4.17).418

Eqs. (4.13)–(4.17) are now substituted into Eq. (4.12), Z2,ij(x, y)h
2 is sub-419

tracted from both sides, and the resulting equation divided by h2δt. Taking420

the limit h, δt → 0, the rate of change of the second moment Z2,ij(x, y) is421

d

dt
Z2,ij(x, y) = − (M2,ij(x, y) +D2,ij(x, y))Z2,ij(x, y)

+

∫

(

µ
(m)
i (u, x)M2,ij(u, y) + µ

(b)
i (u, x)B2,ij(u, y)

)

Z2,ij(u, y)du

+δijµ
(b)
j (y, x)B1,j(y)Z1,j(y)

+〈i, j, x, y → j, i, y, x〉, (4.18)

where the term in angle brackets shows the substitutions needed in the previ-422

ous terms to incorporate events to the second agent in the pair. The second423

moment has a symmetry Z2,ij(x, y) = Z2,ji(y, x) that can be applied to sim-424

plify these additional terms. The similarity of this equation to that describing425

the first moment dynamics (4.8) is evident, including the feature that the dy-426

namics contain a dependence on the moment of next order, now the density427

of triplets inside the rate equations (4.9) – (4.11). Eq. (4.18) is equivalent to428

the expected value of the first jump moment of the second spatial moment in429

Dieckmann and Law (2000).430

4.5 Relation to spatially homogeneous dynamics431

Many previous studies of spatial-moment dynamics by ecologists have inves-432

tigated a spatially homogeneous problem (e.g. Bolker and Pacala, 1997, 1999;433

Law et al., 2003). Spatial homogeneity does not preclude spatial structure (i.e.434

departures from a spatial Poisson process): the agents can generate it them-435

selves. Although agent density is spatially uniform on averaging over many436

independent realizations of the agent-based model, strong spatial correlations,437

such as the clusters in Fig. 1(b) and spacing in Fig. 1(c), can still be generated438

by the neighbour-dependent birth, death and movements, or by the correlation439

between the locations of parent and offspring.440

The dynamics in Eqs. (4.8), (4.18) are referenced to locations in physical441

space x, y, z. We show here that the dynamics of earlier studies are recovered442

from Eq. (4.18) by making the following assumptions: (i) spatially homoge-443

neous initial conditions; (ii) replacement of the intrinsic event rates mi(x),444

bi(x) and di(x) by mi, bi, di independent of x; and (iii) replacement of the445

weighting kernels wi(x, y) and movement distributions µi(x, y) by functions446

wi(ξ), µi(ξ) that depend on the displacement ξ = y−x only. In such cases, the447
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first moment Z1,i is independent of space; the second moment Z2,ij(ξ) depends448

only on the displacement vector ξ of agent j from i (Fig. 2); the third moment449

depends only on the two displacement vectors ξ and ξ′ = z − x, and so on.450

In the spatially homogeneous setting, the dynamics of the first moment are451

independent of location x:452

dZ1,i

dt
= (B1,i −D1,i)Z1,i, (4.19)

where453

B1,i = bi +
1

Z1,i

∑

j

∫

w
(b)
ij (ξ)Z2,ij(ξ)dξ, (4.20)

and D1,i is given by (4.20), with b replaced by d. (The property
∫

µi(u, x)dx =454

1 has been used in obtaining these dynamics.) The movement terms have455

cancelled out here because movement does not alter the total number of agents456

and therefore cannot affect the average agent density.457

The dynamics of the second moment now depend only on the displacement458

vector ξ:459

d

dt
Z2,ij(ξ) = − (M2,ij(ξ) +D2,ij(ξ))Z2,ij(ξ)

+

∫

(

µ
(m)
i (ξ′)M2,ij(ξ + ξ′) + µ

(b)
i (ξ′)B2,ij(ξ + ξ′)

)

Z2,ij(ξ + ξ′)dξ′

+δijµ
(b)
j (−ξ)B1,jZ1,j

+〈i, j, ξ → j, i,−ξ〉, (4.21)

where460

M2,ij(ξ) = mi +
1

Z2,ij(ξ)

∑

k

∫

w
(m)
ik (ξ′)Z3,ijk(ξ, ξ

′)dξ′ + w
(m)
ij (ξ) (4.22)

and B2,ij(ξ) and D2,ij(ξ) are given by Eq. (4.22) with m replaced by b and d461

respectively.462

5 Moment closure463

Eq. (4.8) for the first-moment dynamics contains terms that depend on the464

second moment (4.1) – (4.3). Eq. (4.18) for the second-moment dynamics con-465

tains terms that depend on the third moment (4.9) – (4.11). In general, the466

dynamics of the nth spatial moment depend on the (n+1)th moment. In other467

words, the dynamical system is not closed. The source of this dependence is468

the integral over the neighbourhood of a focal agent needed to evaluate the469

aggregate effect of its neighbours.470

To obtain a closed system, it is necessary to employ some type of closure471

scheme to approximate the (n + 1)th moment in terms of the lower-order472

moments. Closure at first order assumes that there is no spatial structure, i.e.473
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that there are no spatial correlations in the locations of agents. This is the474

mean-field assumption, which is widely used in the life sciences and, for the475

class of models considered in Sec. 2, replaces the second moment Z2,ij(x, y) by476

the product of first moments Z1,i(x)Z1,j(y). Closure at second order retains477

some information about spatial correlations and requires an approximation for478

the third moment in terms of the second and first moments. Although there is479

no generally accepted way of deriving such a closure scheme (Ovaskainen et al.,480

2014), several closure approximations have been proposed (Kirkwood, 1935;481

Bolker and Pacala, 1997; Murrell et al., 2004) or derived using the principle of482

maximum entropy (Singer, 2004; Raghib et al., 2011). There is still much to483

learn about suitable closures, and this is a matter of current research beyond484

the scope of this paper. From a practical point of view, the performance of485

the closure can be assessed by comparing the results of the spatial-moment486

dynamics with the ensemble average of realizations of the stochastic, agent-487

based model. There is a class of closures — the asymmetric, power-2 closures488

— known to work well over a wide range of spatial structures (Murrell et al.,489

2004).490

The performance of closure schemes for non-homogeneous systems, such as491

Eq. (4.8) and (4.18), has received relatively little attention. The extension of a492

particular closure to the non-homogeneous setting seems clear geometrically.493

For example, where, in a homogeneous system, Z3,ijk(ξ, ξ
′) is approximated494

in terms Z2,ij(ξ), Z2,ik(ξ
′) and Z2,jk(ξ

′ − ξ), in a non-homogeneous system495

Z3,ijk(x, y, z) could be approximated in terms of Z2,ij(x, y), Z2,ik(x, z) and496

Z2,jk(y, z) (see Fig. 2). This hypothesis needs to be tested by comparing the497

results of agent-based models to solutions of spatial moment dynamic equa-498

tions.499

It is important to understand that the dependence of dynamics of the nth
500

spatial moment on the (n + 1)th moment comes from an assumption, that501

neighbours act additively on the target agent. This is an assumption about502

the biological system, and may not be applicable in all biological scenarios.503

For instance, a combination of several reagents and an enzyme, all local in504

space, might be needed to characterise a reaction rate within a cell. The birth505

rate of a plant might be a nonlinear function of the number of neighbours506

(Finkelshtein et al., 2013). The ability of a cell to move within a near-confluent507

monolayer will depend not only on the number of neighbouring cells, but508

also on their geometric configuration (Plank and Simpson, 2012; Bruna and509

Chapman, 2012b). The juxtaposition of several different agents is well known510

to ecologists, for instance in the need for a natural enemy to be present to511

achieve a mutualism involving protection of one partner and a home for the512

other (Bronstein et al., 2003). In such cases, the dynamics of the nth moment513

may depend on moments of order n + 2 and higher and the question of how514

to close the system becomes more difficult.515
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6 Extensions516

We describe here some extensions of the basic model of spatial moment dy-517

namics in Sec. 4.518

6.1 Marked agents519

The agents may have traits other than agent type; such traits are referred to as520

marks in the point process literature (Stoyan and Penttinen, 2000; Illian et al.,521

2008; Law et al., 2009). An agent’s mark can change over time depending on522

the type and location of the agent itself and other agents in the neighbourhood.523

Using the model of Adams et al. (2013) for the growth of a stand of plants,524

we show how the dynamics of agent-marks can be superimposed on the birth,525

death, movement dynamics of Eqs. (4.8), (4.18). In keeping with earlier sec-526

tions, the argument is built on the physical location of agents, rather than527

on their displacements from one another, thereby removing the assumption of528

spatial homogeneity in Adams et al. (2013). A plant’s growth rate depends on529

its species (type), its local physical environment and properties of neighbour-530

ing plants, including their species, sizes and locations.531

To proceed, the agent-based model in Sec. 2 is modified so that, at a given532

time, the nth agent is associated with a mark sn, representing its size, as well533

as with a type in and location xn. The mark can change via growth events534

(we assume the plant cannot shrink), assumed to occur in fixed increments δs535

as an inhomogeneous Poisson process over time with rate536

Ĝn =
1

δs



gin(xn, sn) +
∑

l 6=n

w
(g)
inil

(xn, sn, xl, sl)



 . (6.1)

This rate consists of an intrinsic component g and a neighbour-dependent537

component. The function w
(g)
ij (x, s, y, s′) defines the contribution of an agent538

of type j and size s′ located at y to the growth rate of an agent of type i and539

size s located at x. The factor of 1/δs ensures that the average growth rate is540

not affected by changing δs.541

The first spatial moment Z1,i is now a function of location x and size s.542

If the size increment δs is small, s can be treated as a continuous variable543

and the growth process results in a convection term in the equations for the544

spatial-moment dynamics (Adams et al., 2013). The expected growth rate of545

an agent of type i and size s located at x is:546

G1,i(x, s) = gi(x, s) +
1

Z1,i(x, s)

∑

j

∫∫

w
(g)
ij (x, s, y, s′)Z2,ij(x, s, y, s

′)dyds′,

(6.2)
The rate of change of the first moment, ∂/∂t (Z1,i(x, s)), is given by Eq. (4.8),547

plus the growth term548

−
∂

∂s
(G1,i(x, s)Z1,i(x, s)) . (6.3)
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Similarly, the expected growth rate for an agent of type i and size s at x, in a549

pair with an agent of type j and size s′ at y, is550

G2,ij(x, s, y, s
′) = gi(x, s) + w

(g)
ij (x, s, y, s′) +

1

Z2,ij(x, s, y, s′)

×
∑

k

∫∫

w
(g)
ik (x, s, z, s′′)Z3,ijk(x, s, y, s

′, z, s′′)dzds′′.(6.4)

The rate of change of the second moment, ∂/∂t (Z2,ij(x, s, y, s
′)), is given by551

Eq. (4.18) plus two convection terms, representing growth of the agents at x552

and y respectively:553

−
∂

∂s
(G2,ij(x, s, y, s

′)Z2,ij(x, s, y, s
′))−

∂

∂s′
(G2,ji(y, s

′, x, s)Z2,ij(x, s, y, s
′)) .

(6.5)
The neighbour-dependent components of movement, birth and death rates554

may also be size-dependent. For example, a large neighbour may have a stronger555

effect than a smaller neighbour; a large agent may be less susceptible than a556

small agent to the effects of its neighbours. This type of effect can be included557

by allowing the interaction kernels w(m,b,d) to depend on the sizes of the agents558

in the pair, as in the function w(g) defined above. It would also be possible to559

allow marks to decrease as well as to increase, for example by modelling sn560

as a biased random walk. This would result in a diffusive term, in addition to561

the convection term in Eq. (6.3) (Codling et al., 2008).562

6.2 Agents that change type563

Most existing models assume that an agent’s type, denoted by indices i, j, k,564

is (a) fixed over the entire lifetime of the agent, and (b) faithfully inherited565

by its offspring (Bolker and Pacala, 1999; Dieckmann and Law, 2000; Murrell566

and Law, 2003). This is appropriate for some classifications of agents, such as567

species, but too restrictive in general.568

Some models include special cases of agents switching types, for example569

infection of a susceptible agent in an epidemic model (Bolker, 1999; Brown and570

Bolker, 2004). However, other types of switching and mutation are possible571

(e.g. Champagnat et al., 2006). Agents classified, for instance, by cell type,572

phenotype or life stage could change type during their lives. Mutation events573

in cancer cells cause permanent change to the genotype of daughter cells.574

Mutation events would also have obvious relevance in an evolutionary model.575

In a stage-structured population, agents of one type (adults) would give birth576

to agents of another type (juveniles); juveniles would have to become adults577

before being able to reproduce. In all of these examples, the mutation or578

switching rates would, in general, be neighbour-dependent.579

In this section, we show how assumptions (a) and (b) above can be relaxed580

to include mutations and switching. Champagnat et al. (2006) and Champag-581

nat and Méléard (2007) derived spatial-moment equations for a model with582
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mutations across a continuous trait space. Here, we consider a discrete set583

of agent types, indexed i, j, . . .. We define B1,il(x) to be the expected rate584

at which an agent of type i located at x gives birth to an agent of type l585

(mutation):586

B1,il(x) = bil(x) +
1

Z1,i(x)

∑

j

∫

w
(b)
ijl (x, y)Z2,ij(x, y)dy. (6.6)

Similarly, we define C1,il(x) to be the expected rate at which an agent of type587

i located at x switches to type l 6= i.588

C1,il(x) = cil(x) +
1

Z1,i(x)

∑

j

∫

w
(c)
ijl (x, y)Z2,ij(x, y)dy. (6.7)

Each of these rates contains an intrinsic and a neighbour-dependent compo-589

nent. In the neighbour-dependent component, w
(b)
ijl (x, y) is the contribution590

that an agent of type j located at y makes to the rate at which an agent of591

type i located at x gives birth to an agent of type l. A similar role is played by592

w
(c)
ijl (x, y) in the switching rate. We assume that the dispersal kernel µ

(b)
i (x, y)593

depends only the type of the parent agent (i) and is independent of the type594

of the daughter agent (l). This model reduces to the fixed-species model on595

setting C1,il(x) = 0, B1,il(x) = 0 for i 6= l, and B1,ii(x) to be given by Eq.596

(4.2).597

With these new types of event, the equation for the dynamics of first mo-598

ment becomes599

d

dt
Z1,i(x) = −

(

M1,i(x) +D1,i(x) +
∑

l

C1,il(x)

)

Z1,i(x) +
∑

l

C1,li(x)Z1,l(x)

+

∫

µ
(m)
i (u, x)M1,i(u)Z1,i(u)du+

∑

l

∫

µ
(b)
l (u, x)B1,li(u)Z1,l(u)du. (6.8)

This is the same as Eq. (4.8) for the fixed-species model except that it contains600

an additional loss term for agents changing from type i to other types, an601

additional gain term for agents switching from other types to type i, and the602

birth term is summed over the possible types of the parent agent.603

The expected rate of an agent of type i at x in a pair with an agent of type604

j at y giving birth to an agent of type l is605

B2,ijl(x, y) = bil(x) +
1

Z2,ij(x, y)

∑

k

∫

w
(b)
ikl(x, z)Z3,ijk(x, y, z)dz + w

(b)
ijl (x, y).

(6.9)
The corresponding expected switching rate C2,ijl(x, y) is given by a similar606

equation with b replaced by c. The equation for the dynamics of the second607
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moment is608

d

dt
Z2,ij(x, y) = −

(

M2,ij(x, y) +D2,ij(x, y) +
∑

l

C2,ijl(x, y)

)

Z2,ij(x, y)

+
∑

l

C2,lji(x, y)Z2,lji(x, y) + µ
(b)
j (y, x)B1,ji(y)Z1,j(y)

+

∫

µ
(m)
i (u, x)M2,ij(u, y)Z2,ij(u, y)du

+
∑

l

∫

µ
(b)
l (u, x)B2,lji(u, y)Z2,lj(u, y)du

+〈i, j, x, y → j, i, y, x〉. (6.10)

6.3 Dynamics of higher-order moments609

The structure of the moment equations (4.8), (4.18) is transparent enough to610

allow a continuation up the hierarchy of spatial moments, which would be611

harder using the approach of Dieckmann and Law (2000) for example. In this612

section, we sketch a derivation the dynamics for the third spatial moment, i.e.613

the density of triplets with the geometry shown in Fig. 2. By analogy, we then614

make a conjecture about the dynamics of the nth spatial moment.615

The expected rate of movement M3,ijk(x, y, z) of an agent of type i in δx616

in a triplet with type j in δy and type k in δz is given by:617

M3,ijk(x, y, z) = mi(x) +
1

Z3,ijk(x, y, z)

∑

l

∫

w
(m)
il (x, u)Z4,ijkl(x, y, z, u)du

+w
(m)
ij (x, y) + w

(m)
ik (x, z), (6.11)

where Z4 is the fourth spatial moment, and can be defined as an extension618

of the sequence of moments in Sec. 3. The effect of neighbour agents in δy619

and δz on the focal agent in δx are added in as separate terms in (6.11).620

The corresponding expected birth rate B3,ijk(x, y, z) and expected death rate621

D3,ijk(x, y, z) are given by replacing m in (6.11) with b and d respectively.622

Extending the notation in Sec. 4.4, the probability of finding a triplet623

comprising i in δx, j in δy and k in δz at time t+ δt is,624

p111(t+ δt) = s111|111p111(t)+ s111|011p011(t)+ s111|101p101(t)+ s111|110p110(t).
(6.12)

We have omitted terms that would involve more than one Poisson event during625

the time period δt as the probability of such events is of order O(δt2). The term626

s111|qrs is the probability of a single agent in each of δx, δy, δz at time t+ δt,627

given q in δx, r in δy and s in δz at time t (q, r, s ∈ {0, 1}), the probability628

of each of these configurations at time t being pqrs(t). These configuration629
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probabilities at t are known from the moments:630

p111(t) = Z3,ijk(x, y, z, t)h
3 +O(h4), (6.13)

p011(t) = Z2,jk(y, z, t)h
2 +O(h3), (6.14)

p101(t) = Z2,ik(x, z, t)h
2 +O(h3) (6.15)

p110(t) = Z2,ij(x, y, t)h
2 +O(h3). (6.16)

where only terms of order h2 are retained in p011, p101, p110 because an extra631

factor of h is introduced by the associated transition probabilities.632

The probabilities for the states at t + δt conditional on the states at t633

depend on the rate terms M3, B3, D3 (see Eq. (6.11)). The term s111|111 is634

the probability that there is no death or movement of an agent from δx, δy or635

δz from t to t+ δt:636

s111|111 = 1− (M3,ijk(x, y, z) +D3,ijk(x, y, z)) δt

−〈i, j, k, x, y, z → j, i, k, y, x, z〉

−〈i, j, k, x, y, z → k, i, j, z, x, y〉+O(δt2). (6.17)

The first part of the right-hand side deals with events in δx and the angle637

brackets show the changes in indices and arguments needed for events in δy638

and δz. We have made use of a symmetry in the expected movement rate:639

M3,ijk(x, y, z) = M3,ikj(x, z, y). The conditional probability for entry into δx640

is641

s111|011 = hδt

[

1

Z2,jk(y, z)

∫

(

µ
(m)
i (u, x)M3,ijk(u, y, z) + µ

(b)
i (u, x)B3,ijk(u, y, z)

)

× Z3,ijk(u, y, z)du+ δijµ
(b)
j (y, x)B2,jk(y, z) + δikµ

(b)
k (z, x)B2,kj(z, y)

]

+O(δt2), (6.18)

Corresponding equations for s111|101 and s111|110) (i.e. entry into δy and δz642

respectively) are obtained by making the same interchanges of indices and643

arguments as in Eq. (6.17). The final step substitutes Eqs. (6.13) –(6.18) into644

(6.12), subtracts Z3,ijk(x, y, z) from both sides, divides through by h3δt, and645

takes the limit as h3δt → 0, giving646

d

dt
Z3,ijk(x, y, z) = − (M3,ijk(x, y, z) +D3,ijk(x, y, z))Z3,ijk(x, y, z)

+

∫

(

µ
(m)
i (u, x)M3,ijk(u, y, z) + µ

(b)
i (u, x)B3,ijk(u, y, z)

)

Z3,ijk(u, y, z)du

+
(

δijµ
(b)
j (y, x)B2,jk(y, z) + δikµ

(b)
k (z, x)B2,kj(z, y)

)

Z2,jk(y, z)

+〈i, j, k, x, y, z → j, i, k, y, x, z〉+ 〈i, j, k, x, y, z → k, i, j, z, x, y〉. (6.19)

Thus the dynamics of the third moment are a straightforward extension of647

those of the second moment in Eq. (4.18). They contain a dependence on the648
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moment of next order, which is the density of quadruplets, in the rate equations649

M3, B3, D3 (see Eq. 6.11), together with two extra terms at x caused by births650

from parents at y and z, and with all events repeated at y and z, as indicated651

by the substitutions in angle brackets.652

The sequence of terms in equations for the dynamics of the first, second653

and third moments, (4.8), (4.18), (6.19), is clear. For a configuration of points654

(singleton, pair or triplet), there are terms for: (i) loss of the agent at x due655

to movement or death; (ii) arrival of an agent at x due to movement or re-656

production of an agent not in the configuration. For configurations other than657

singletons, there are two further terms: (iii) arrival of an agent at x due to658

reproduction by one of the other agents in the configuration; (iv) symmetric659

sets of terms for the same classes of events occurring at each other node of the660

configuration.661

This common structure allows a conjecture about the dynamics of the nth
662

moment. An n-tuplet of agents is described by the vector x = (x1, . . . , xn) of663

agent locations and the vector i = (i1, . . . , in) of agent types. The expected664

rate of movement Mn,i(x) of the agent of type i1 in δx1 in this n-tuplet is:665

Mn,i(x) = mi1(x1) +
1

Zn,i(x)

∑

l

∫

w
(m)
i1l

(x1, u)Zn+1,il(x, u)du

+
n
∑

k=2

w
(m)
i1ik

(x1, xk), (6.20)

with similar expressions for the expected birth and death rates obtained by666

replacing m by b and d respectively. This leads to the following equation for667

the rate of change of the nth moment:668

d

dt
Zn,i(x) = − (Mn,i(x) +Dn,i(x))Zn,i(x)

+

∫

(

µ
(m)
i1

(u, x1)Mn,i(u,x2...n) + µ
(b)
i (u, x1)Bn,i(u,x2...n)

)

Zn,i(u,x2...n)du

+

n
∑

k=2

δi1ikµ
(b)
ik

(xk, x1)Bn−1,ik2...n
(xk2...n)Zn−1,i2...n(x2...n)

+

n
∑

k=2

〈i,x → ik1...n,xk1...n〉, (6.21)

where we have used the shorthand x2...n = (x2, x3, . . . , xn),669

xk1...n = (xk, x1, . . . , xk−1, xk+1, . . . , xn) and670

xk2...n = (xk, x2, . . . , xk−1, xk+1, . . . , xn). This equation contains the same671

four types of term as in the second- and third-order dynamics, appropriately672

modified for order n:673

(i) The movement and death rates of an agent at x1 in an n-tuplet multiplied674

by the density of such n-tuplets (i.e. the nth moment).675
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(ii) The arrival of an agent at x1 due to movement or reproduction of an676

agent not in the n-tuplet. This is given by the movement and birth rates677

of an agent at u in an n-tuplet with other agents at x2, . . . xn, multi-678

plied by the density of this n-tuplet, multiplied by the probability of679

movement/dispersal from u to x1, integrated over all possible locations680

u.681

(iii) The arrival of an agent at x1 due to reproduction by one of the other682

agents in the n-tuplet. This is given by the density of an (n − 1)-tuplet683

of agents at x2, . . . , xn, multiplied by the birth rate of the agent at xk in684

this (n− 1)-tuplet, multiplied by the probability of dispersal from xk to685

x1, summed over all agents in the (n− 1)-tuplet k = 2, . . . , n.686

(iv) Symmetric terms for the loss/arrival of an agent at xk obtained by in-687

terchanging x1 and xk (and i1 and ik) and summing over k = 2, . . . , n.688

7 Discussion689

Simulations of stochastic, agent-based models are now widely used in the life690

sciences and social sciences (Niazi and Hussain, 2011), and are perceived as691

a key route to understanding complex processes where agents interact with692

neighbours (Grimm et al., 2006). Although such simulations can give hints693

about the causes of emerging patterns, clear-cut answers usually entail going694

to the underlying mathematics.695

The use of spatial-moment dynamics is one of several ways of charting696

the ground between spatial, agent-based models and mathematical analy-697

sis. Reaction–diffusion equations have been used for many years in various698

branches of the life sciences (Murray, 1989; Shigesada and Kawasaki, 1997),699

allowing the first moment to be a function of space. However, the assumption700

of local mean-field dynamics in the reaction terms of these partial differen-701

tial equations means that they do not deal with small-scale spatial structure.702

This is sometimes referred to as the hydrodynamic limit, corresponding to an703

assumption that dispersal occurs on a much faster timescale than population704

dynamics (Cantrell and Cosner, 2004). A classical example of a local mean-field705

model is the Fisher–Kolmogorov equation (Fisher, 1937; Kolmogorov et al.,706

1937) for a population undergoing motility and logistic growth; this model ig-707

nores correlations between agent locations that can affect the dynamics (Simp-708

son and Baker, 2011). Other examples may be found in reaction–diffusion mod-709

els in ecology (Okubo et al., 1989), cell biology (Murray, 1989) and epidemiol-710

ogy (Noble, 1974). Some models incorporate a spatially distributed (i.e. non-711

local) reaction process but still ignore pairwise correlations (Medlock and Kot,712

2003). Spatial-moment dynamics in non-homogeneous settings allow large- and713

small-scale spatial structure to be combined (Lewis and Pacala, 2000) and de-714

serve more attention.715

To an ecologist, the use of spatial-moment dynamics has the advantage716

that the second spatial moment, often expressed as a pair correlation function717

(Illian et al., 2008), is a core measure of spatial structure in plant communities718
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(Law et al., 2009). However, from a mathematical perspective, the method719

of low-order spatial moments does not have priority over other methods of720

incorporating spatial structure into dynamics. The method has the drawback721

that a closure of the hierarchy of moment equations is needed, just as a closure722

has been used ubiquitously to avoid dealing with spatial structure altogether723

(the mean-field assumption). Closures at second order can give acceptable724

approximations to the ensemble average of stochastic processes over a wide725

range of spatial structures (Murrell et al., 2004), but our understanding of726

them is still limited and they are a matter of ongoing mathematical research727

(Singer, 2004; Raghib et al., 2011).728

Previous mathematical work on spatial point processes has focused pri-729

marily on homogeneous spaces, in which the expected density (and higher-730

order moments) are independent of physical location and the spatial struc-731

ture comes from spatial covariances between agents (e.g. Bolker and Pacala,732

1997; Dieckmann and Law, 2000; Adams et al., 2013). Non-homogeneous pro-733

cesses are important in several areas of biology, for example ecological invasions734

(Shigesada and Kawasaki, 1997), in vitro cell invasion assays (Simpson et al.,735

2013), embryogenesis (Young et al., 2004) and wound healing (Khain et al.,736

2007). All these processes involve colonisation of a region by a population of737

agents that is initially spatially confined. Lewis and Pacala (2000) and Lewis738

(2000) modelled ecological invasions, although their results are restricted to a739

birth/dispersal process with short-range interactions and without movement740

or density-dependent death. Murrell and Law (2000) modelled beetle move-741

ment in a heterogeneous environment, assumed to be fixed. Outside these742

special cases, relatively little is known about spatial moment dynamics for743

non-homogeneous systems.744

Processes of interest in the life sciences typically operate in continuous745

space. However there are circumstances in which the discretisation of space can746

be helpful, and spatial-moment dynamics have their counterpart in discrete-747

space, lattice models (Matsuda et al., 1992). For instance, computations are748

more straightforward on lattices. Also, lattice models can have crowding effects749

built in through exclusion of more than one individual from a lattice cell750

(Liggett, 1999; Simpson et al., 2007). Exclusion models often use the mean-751

field assumption in deriving a continuum limit (Deroulers et al., 2009; Simpson752

et al., 2009, 2010), on the basis that, for instance, unbiased, random movements753

overwhelm spatial effects of births and deaths. Otherwise, the continuum limit754

needs to keep track of second-order spatial correlations, at least. The pair755

approximation has been used for this purpose, for instance in lattice-based756

models of Lotka–Volterra and logistic dynamics (Matsuda et al., 1992; Ellner,757

2001). Related second-order closures also have been applied to network models758

of epidemics where ‘space’ becomes a non-trivial lattice topology (Keeling759

et al., 1997; Keeling, 1999; Van Baalen, 2000; Kiss et al., 2005), and extensions760

to higher-order correlation structures have been made (Petermann and De761

Los Rios, 2004). Kirkwood’s superposition approximation has been used as a762

second-order closure for cell proliferation (Baker and Simpson, 2010), and has763
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been extended to biased movement in a non-homogeneous space (Simpson and764

Baker, 2011) and to cell adhesion (Johnston et al., 2012).765

A more rigorous way forward is a formal analysis of the stochastic process766

on which the agent-based model simulations are based. For instance, Blath767

et al. (2007) investigated a stochastic, lattice model of two competing species768

by means of stochastic differential equations, to see if coexistence could be769

achieved purely by spatial properties of competition, as had been previously770

been observed in a numerical study of a lattice-free moment model Murrell771

and Law (2003). Among other things, this work illustrates the importance772

of parsimony in constructing agent-based models. Blath et al. (2007) made a773

conjecture on coexistence (Conjecture 2.5), but the full stochastic competition774

model of Murrell and Law (2003) was too complicated to admit a rigorous775

proof.776

Another way forward is to approximate the stochastic process via a pertur-777

bation method, using a small parameter ǫ ≪ 1 to characterise the system. For778

example, Bruna and Chapman (2012b) examined the dynamics of finite-sized,779

non-overlapping particles undergoing Brownian motion. Taking the occupied-780

volume fraction as a small parameter ǫ, they used matched asymptotic expan-781

sions in ǫ to derive a nonlinear diffusion equation, and found that the diffusion782

coefficient for collective movement of the population was an increasing function783

of ǫ. Bruna and Chapman (2012a) extended the model to deal with multiple784

species, each with its own diffusivity, and Bruna and Chapman (2013) con-785

sidered the case where the particles are moving in a severely confined domain786

(e.g. a narrow channel whose width is comparable to the diameter of the par-787

ticles). This approach has the advantage that it can capture exactly the steric788

interactions of finite-sized particles undergoing Brownian motion, without the789

need for a closure assumption. However, it can only handle short-range inter-790

actions (collisions), is limited to low-density situations in which the occupied791

volume fraction is small (ǫ ≪ 1), and deals only with movement of agents (not792

proliferation or death).793

At a given time, the set of spatial moments of all orders gives an exact de-794

scription of the ensemble average of the stochastic process (Finkelshtein et al.,795

2009). Thus, in principle, the time evolution of the ensemble average is known796

exactly from the dynamics of the set of all spatial moments. A perturbation797

expansion around the spatial mean-field model (Ovaskainen and Cornell, 2006;798

North and Ovaskainen, 2007; Cornell and Ovaskainen, 2008) can be put on a799

rigorous mathematical basis using techniques from Markov evolutions (Kon-800

dratiev and Kuna, 2002; Finkelshtein et al., 2009, 2012), allowing a closed801

system of equations for moments of all orders to be derived (Ovaskainen et al.,802

2014). The perturbation method rescales the kernels defining the spatial range803

of pairwise interactions by a parameter ǫ. As ǫ → 0, the kernels become in-804

creasingly flat and long-ranged, corresponding to the spatial mean-field case.805

This allows an O(ǫd) (d is the number of spatial dimensions) correction to the806

mean-field solution to be obtained, without the need for a closure assumption.807

Working with two-point configurations may lead to loss of accuracy when ǫ808

is relatively large, i.e. when there are strong, short-range interactions among809
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agents. Ovaskainen et al. (2014) conjectured that accuracy may be improved810

by moving to three-point configurations and including an O(ǫ2d) term. Results811

are currently available for a population of unmarked agents of a single type,812

but could be extended to include marks and multiple types.813

In summary, spatial-moment dynamics and related techniques are helpful814

in giving insight into seemingly difficult problems in which behaviour of agents815

is determined by processes that are local in space. Such systems are not well816

characterised by a mean-field assumption based on spatially averaged densities.817

Such problems crop up repeatedly in the life sciences, because processes often818

take place locally in spaces where agents are not well mixed, and we anticipate819

that the techniques have many applications outside the subject area of ecology820

for which they were originally developed. The tools are flexible, and can be821

extended to deal with problems in which the environment is non-homogeneous,822

and to problems of invasion and retreat of agents in which spatial structures823

are not stationary over space. The notion of space itself needs no more than824

a measure of distance between neighbours and the application to other spaces825

such as those in networks could also be considered.826
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