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HYBRIDIZATION IN NON-BINARY TREES 

SIMONE LINZ AND CHARLES SEMPLE 

ABSTRACT. Reticulate evolution-the umbrella term for processes like hy­
bridization, horizontal gene transfer, and recombination-plays an important 
role in the history of life of many species. Although the occurrence of such 
events is widely accepted, approaches to calculate the extent to which retic­
ulation has influenced evolution are relatively rare. In this paper, we show 
that the NP-hard problem of calculating the minimum number of reticula­
tion events for two (arbitrary) rooted phylogenetic trees parameterized by this 
minimum number is fixed-parameter tractable. 

1. INTRODUCTION 

Using mathematical models to reconstruct a tree of life from nucleotide or protein 
sequences is subject of many phylogenetic studies that aim at analyzing the complex 
evolutionary processes that have occurred during the development of the current 
diversity of species. Under the usual assumption that each species arises from 
its ancestor by a simple speciation event, tree-based methods have contributed 
significantly to approaching this task. However, due to non-tree-like events, not all 
groups of taxa are suited to this type of presentation. Such processes, collectively 
referred to as reticulation events, include hybridization, horizontal gene transfer, 
and recombination. Since reticulate evolution results in genomes that are mosaics 
of distinct ancestral genomes, ther.e has been an increased interest in modeling 
evolutionary relationships using phylogenetic networks rather than phylogenetic 
trees. 

In this paper, we focus our attention on hybridization and its impact on evolu­
tion. This has been an active and controversially discussed field of research for many 
years and even several definitions of the term hybridization have been suggested [8]. 
For the purposes of this article, we refer to the origin of a new species through a 
mating between two different species as a hybridization event. Hybridization is 
widely accepted to play an important role in the evolutionary history of certain 
groups of plants and fish. For a review of hybrid species, we refer the reader to [11]. 

Date: March 18, 2008. 
1991 Mathematics Subject Classification, 05005; 92015. 
Key words and phrases. Rooted phylogenetic tree, reticulate evolution, hybridization network. 
The first and second author were supported by the New Zealand Marsden Fund. Part of this 

work was carried out while the authors were visiting the Isaac Newton Institute for Mathematical 
Sciences, Cambridge, UK. 



2 SIMONE LINZ AND CHARLES SEMPLE 

A 
1 2 3 4 

T 

~< S1 

1 2

71

3 4 A 2 3 4 

3 2 4 

FIGURE 1. Two rooted phylogenetic tree 'T and T' and two binary 
refinements S1 and S2 of 'T'. The hybridization number for S1 and 
'T is 0, while this number for S2 and 'T is 1. 

To provide insight into the extent to which hybridization has influenced the 
evolution of a set of present-day species, this paper addresses the following funda­
mental problem: Given a collection of rooted phylogenetic trees that are correctly 
reconstructed for different genetic loci, what is the smallest number of hybridiza­
tion events needed to simultaneously explain the evolutionary scenarios of the gene 
trees under consideration? 

Bordewich and Semple [4] showed that the above problem is NP-hard even when 
the initial collection consists of two rooted binary phylogenetic trees. However, 
the same authors showed [5] that in the case of two binary trees the problem is 
fixed-parameter tractable. In particular, they showed that the minimum number of 
hybridization events can be computed in time O(f(k)+P(IXI)), where kis the actual 
minimum number, f is some computable function, and pis a fixed polynomial. Due 
to the NP-hardness of the problem, such a result is of importance, since for many 
practical instances, the minimum number of hybridization events is small and, 
therefore, the problem may be tractable, even for a large number of taxa. This can 
be seen by considering the separation of the variables k and !XI, For more details 
about fixed-parameter tractability, we refer the interested reader to [6]. 

Despite the above fixed-parameter tractable algorithm, for many biological data 
sets in practice (e.g. [7, 12]), the reconstructed phylogenetic trees are not fully re­
solved; that is, they contain polytomies. For example, this may be due to either 
the tree reconstruction method or the use of consensus trees for a certain analy­
sis. Polytomies-alternatively called multifurcations-refer to vertices that have 
more than two direct descendants. A polytomy is said to be hard if it refers to an 
event during which an ancestral species gave rise to more than two offspring species 
at the same time, whereas a soft polytomy represents ambiguous evolutionary re­
lationships as a result of insufficient information [10]. 

Since simultaneous speciation events only occur rarely, we typically assume that 
all polytomies in a phylogenetic tree are soft. The reconstruction of a strictly 
bifurcating (binary) tree may consequently force refinements that are not necessarily 
optimal in terms of the hybridization number. An example for that is depicted in 
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Fig. 1, where two binary refinements Si and S2 of the tree T 1 are shown. While 
the hybridization number for Si and T is 0, this number for S2 and T is 1. 

In this paper, we show that the decision problem of asking whether the minimum 
number of hybridization events to explain two (arbitrary) rooted phylogenetic trees 
is at most k is fixed-parameter tractable. We now describe the above-mentioned 
problem formally beginning with several definitions. 

A rooted phylogenetic X -tree T is a rooted tree with no degree-2 vertices except 
possibly the root which has degree at least two, and with leaf set X. The set X is 
called the label set of T and is denoted by C(T). In addition, Tis binary if, apart 
from the root which has degree two, all interior vertices have degree three. 

Let Y be a subset of X. We call Yan (edge) cluster of T if there is an edge e, 
or equivalently a vertex v, whose set of descendants in Xis precisely Y. We denote 
this cluster by Cr( v), or simply C ( v) if there is no ambiguity. The set of clusters of 
Tis denoted by C(T). Furthermore, the most recent common ancestor of Y is the 
vertex v in T with Yi;;:; Cr(v) such that there exists no vertex v' with Yi;;:; Cr(v') 
and Cr(v') C Cr(v). We denote v by mrcar(Y). 

Let T and T' be two rooted phylogenetic X-trees. We say that T' refines T, 
or equivalently T' is a refinement of T, if C(T) i;;:; C(T'). In addition, T' is a 
binary refinement if T' is binary. Note that Tis a refinement of itself. Graphically 
speaking, it is straightforward to see that if T' refines T, then T can be obtained 
from T' by contracting interior edges. 

Hybridization networks are a generalization of evolutionary trees that allow for 
a simultaneous visualization of several conflicting or alternating histories of life. 
Such a network embeds a collection of gene trees representing a set of present-day 
species, where each vertex whose in-degree is greater than 1 represents a hybrid 
species. Mathematically speaking, a hybridization network 1i ( on X) is a rooted 
acyclic digraph with root p in which 

(i) X is the set of vertices of out-degree zero, 
(ii) the out-degree of p is at least 2, and 

(iii) for each vertex with out-degree 1, its in-degree is at least 2. 

To quantify the number of reticulation events, the hybridization number of a hy­
bridization network '}-{, with root p is 

h(1i) = 2_)d-(v) -1), 
vfp 

where v is a vertex of'}-{,, 

Let T be a rooted phylogenetic X-tree, and let 1i be a hybridization network. 
We say that 1i displays T if C(T) i;;:; C('H) and there is a rooted subtree of '}-{, 
that is a refinement of T. In other words, T can be obtained from 'H by first 
deleting a subset of the edges of 'H, deleting and suppressing any resulting degree-0 
and degree-2 vertices, respectively, and then contracting edges. For a collection 
P of rooted phylogenetic trees, 'H displays P if each tree in P is displayed by 'H. 
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Furthermore, extending the definition of the hybridization number of a network to 
P, we set 

h(P) = min{h('H) : 'H is a hybridization network that displays P}. 

If P contains precisely two rooted phylogenetic X-trees T and T', then we denote 
the hybridization number h(P) by h(T, T') and remark that the beforehand given 
definition is equivalent to 

h(T, T') = min{h(S, S') : Sand S' are binary refinements of T and T', respectively}. 

Throughout the paper, both definitions are used interchangeably. 

We can now formally state the decision problem for when P = {T, T'}: 

HYBRIDIZATION NUMBER 
Instance: Two rooted phylogenetic X-trees T and T', and an integer k. 
Question: Is h(T, T') _::; k? 

Since computing h(T, T') is NP-hard when T and T' are binary [4], calculating this 
value for when T and T' are arbitrary rooted phylogenetic X-trees is also NP-hard. 

The main result of this paper is the following theorem. 

Theorem 1.1. The decision problem HYBRIDIZATION NUMBER is fixed-parameter 
tractable with h(T, T') being the parameter. 

The overall approach in proving Theorem 1.1 is similar to that used to show that 
HYBRIDIZATION NUMBER is fixed-parameter tractable when the initial two trees 
are binary. Basically, we use three reductions to kernalize the problem instance 
before calculating exactly the minimum number of hybridization events using an 
exhaustive search. The reason that this is sufficient to prove Theorem 1.1 is that 
the size of the label set of the trees S and S' obtained from T and T' by repeatedly 
applying the three reductions is linear in h(T, T'). 

The paper is organized as follows. The next section contains some additional 
preliminaries that are used throughout the paper. In Sections 3 and 4, we charac­
terize HYBRIDIZATION NUMBER in terms of a particular type of agreement forest. 
This characterization is essential to getting the main result of the paper. Section 5 
describes the three reductions that are used to kernalize the problem instance and 
also includes three key lemmas that are needed for the proof of Theorem 1.1. This 
proof is given in Section 6. The paper ends with some brief remarks in Section 7. 

We end the introduction by remarking that despite the similarities between the 
approaches used to prove Theorem 1.1 and the analogous result for binary trees, 
we see no obvious way that this latter result can be used to directly establish 
Theorem 1.1. Part of the reason for this is that a number of additional and non­
trivial complications arise in the non-binary case. 
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2. PRELIMINARIES 

In this section, we give some preliminary definitions that are used throughout 
the paper. Unless stated otherwise, the notation and terminology follows [13]. 

For a rooted phylogenetic X-tree T, a subset Y of X is called a vertex cluster 
of T if there is a refinement of T in which Y is an edge cluster. For example, 
considering Fig. 1, the taxa set {1, 2} is an edge cluster in T, but a vertex cluster 
(and not an edge cluster) in T'. Note that edge clusters are special types of vertex 
clusters. 

Let T be a rooted phylogenetic X-tree. Several types of rooted subtrees of T play 
a central role in this paper. Let Y be a subset of X. The minimal rooted subtree of 
T that connects the leaves in Y is denoted by T (Y). Furthermore, the restriction 
of T to Y, denoted TJY, is the subtree obtained from T(Y) by contracting all 
non-root vertices of degree two. Furthermore, a subtree of T is pendant if it can 
be obtained from a refinement of T by deleting a single edge. Lastly, a subtree is 
non-trivial if it contains at least two leaves. 

3. AGREEMENT FORESTS 

Various types of agreement forests have recently been used to analyze reticulate 
evolution for a set of gene trees and its impact on evolution [1, 3, 5, 14, 15]. All 
of these approaches are restricted to the case when the trees under consideration 
are binary. Here, we extend the definition of agreement forests to arbitrary rooted 
phylogenetic trees. For the reader familiar with agreement forests, we note that 
the following definitions coincide with those previously given for rooted binary 
phylogenetic trees. 

Let T and T' be two rooted phylogenetic X-trees. For the purposes of the 
upcoming definitions, we regard the root of both T and T' as a vertex labeled p 
at the end of a pendant edge adjoined to the original root. Furthermore, we also 
regard p as part of the label set of T and T', thus we view their label sets as Xu {p}. 

A forest of T is a partition { .Cp, .C1, .C2, ... , .Ck} of its label set X U {p}, where 
.Cp contains p, no part is empty, and the trees in {T(.C;) : i E {p, 1, 2, ... , k}} are 
edge-disjoint rooted subtrees of T. An agreement forest F for T and T' is a forest 
{.Cp,.C1,.C2,,,.,.Ck} of T and T' such that, for all i E {p,1,2, ... ,k}, the trees 
TJ.C; and T'f.C; have a common binary refinement. To illustrate these concepts, 
two examples of agreement forests F 1 and F2 are shown in Fig. 2 for the two rooted 
phylogenetic trees T and T' also shown in that figure. Considering F1, it is easily 
checked that, for each label set .C;, the restrictions of T and T', respectively, to .C; 
have a common binary refinement. 

The subtree prune and regraft distance between two rooted binary phylogenetic 
X-trees can be characterized in terms of agreement forests. However, the corre­
sponding characterization for the minimum number of hybridization events for the 
same pair of trees requires an additional condition. This condition excludes the 
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FIGURE 2. Two agreement forests F 1 and F 2 for the two rooted 
trees T and T' and their associated digraphs G F, and G :F2 • 

possibility that species inherit genetic material from their own descendants. Let 
F = {L'.p, L'.1, L'.2 , ... ,L'.k} be an agreement forest for two arbitrary rooted phyloge­
netic X-trees T and T'. Let G:F be the directed graph that has vertex set F and 
an arc (L'.i, L'.j) from L'.i to L'.j precisely if i i- j and either 

(I) the path from the root of T(L'.i) to the root of T(L'.j) contains an edge of 
T(L'.i), or 

(II) the path from the root of T' (L'.i) to the root of T' (L'.j) contains an edge of 
T'(L'.i)· 

We say that F is an acyclic-agreement forest for T and T' if G :F contains no 
directed cycles, that is, G:F is acyclic. For the example depicted in Fig. 2, F 2 is 
an acyclic-agreement forest for T and T' since GF2 is acyclic, whereas F1 is not 
an acyclic-agreement forest for T and T'. If F contains the smallest number of 
parts over all acyclic-agreement forests for T and T', we say that F is a maximum­
acyclic-agreement forest for T and T', in which case, we denote this value of k 
by ma(T, T'). In the case that both T and T' are binary, these definitions again 
extend those typically given for two rooted binary phylogenetic trees. Baroni et 
al. [1] established the following characterization for binary trees. 

Theorem 3.1. Let T and T' be two rooted binary phylogenetic X-trees. Then 

h(T, T') = ma(T, T'). 
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4. CHARACTERIZING h(T, T') IN TERMS OF AGREEMENT FORESTS 

In this section, we prove the following analogue of Theorem 3.1 for arbitrary 
rooted phylogenetic trees. This analogue is crucial in proving the main result of 
the paper. 

Theorem 4.1. Let T and T' be two rooted phylogenetic X-trees. Then 

h(T, T') = ma(T, T'). 

Essentially, all of the work in establishing this theorem is done in proving the next 
two lemmas. 

Lemma 4.2. Let T and T' be two rooted phylogenetic X -trees, and let :F be an 
acyclic-agreement forest for T and T'. Then there exist binary refinements S and 
S' of T and T', respectively, such that :F is an acyclic-agreement forest for S and 
S'. 

Proof. Suppose that :F = {.Cp, £1, £2, ... , .Ck} is an acyclic-agreement forest for T 
and T', and let Bi be a common binary refinement of Tl.Ci and T'I.Ci for all i. The 
proof of the lemma is by induction on k. Clearly, the result holds if k = 0. Now 
suppose that the result holds for all acyclic-agreement forests of T and T' of size 
at most k. Since :F is acyclic, G :F contains a vertex, .Cm say, with out-degree zero. 
Since .Cm has out-degree zero, T(.Cm) is a pendant subtree of T and T'(.Cm) is a 
pendant subtree of T'. 

Let Tm and T/,,, be the rooted phylogenetic trees Tl((XU{p} )-.Cm) and T'l((XU 
{p}) - .Cm), respectively, and let :Fm = :F - {.Cm}. Since :F is an acyclic-agreement 
forest of T and T', it is easily checked that, as T(.Cm) is a pendant subtree of T and 
T'(.Cm) is a pendant subtree of T', the collection :Fm is an acyclic-agreement forest 
of Tm and T/,,,. Therefore, by the induction assumption, there are binary refinements 
Sm and s:n of Tm and T/,,,, respectively, such that :Fm is an acyclic-agreement forest 
for Sm and s:n. 

We now construct a binary refinement of T from Sm. Let u be the vertex of 
T with the property that C(u) is the minimal cluster of T that properly contains 
.Cm, By construction, C(u)- .Cm is a cluster of Tm, Furthermore, as Sm is a binary 
refinement of Tm, the set C(u) - .Cm is a cluster of Sm, Let Um be the vertex of 
Sm such that C(um) = C(u) - .Cm, Let S be the rooted binary phylogenetic tree 
obtained from Sm by subdividing the edge coming into Um with a new vertex v 
and adjoining the root of Bm to this new vertex v via a new edge. Observing that 
C(v) = C(u), it is easily checked that Sis a binary refinement of T. Furthermore, 
by construction and because of the induction assumption, it follows that :F is a 
forest of S and, for all i, we have SI.Ci = Bi· 

By the same construction and argument, there is a binary refinement S' of T' 
such that :Fis a forest of S' and, for all i, we have S'I.Ci = Bi, It now follows that 
:Fis an agreement forest for S and S'. Moreover, as :Fm is an acyclic-agreement 
forest for Sm and s:n, it is easily seen that :F is an acyclic-agreement forest for S 
and S'. This completes the proof of the lemma. D 
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Lemma 4.3. Let T and T' be two rooted phylogenetic X -trees, and let S and S' 
be binary refinements of T and T', respectively. If F is an acyclic-agreement forest 
for S and S', then F is an acyclic-agreement forest for T and T'. 

Proof. Let F = {.Cp, .Ci, .C2, ... , .Ck} be an acyclic-agreement forest of S and S'. 
Since S and S' are both binary, it is easily seen, for all i, that SI.Ci and S'I.Ci are 
binary. Therefore, as S and S' are binary refinements of T and 7 1

, respectively, 
SI.Ci is a common binary refinement of Tl.Ci and T'J.Ci for all i. To see that the 
trees in {7(.Ci) : i E {p, 1, 2, ... , k}} are edge-disjoint rooted subtrees of T, suppose 
that this is not the case. Then, for some r =/:- s, the subtrees T (.Cr) and T (.Cs) are 
not edge-disjoint. That is, T(.Cr) and T(.Cs) have an edge e = {u,v} in common. 
Let u be the end vertex of e closest to p. Since S is a binary refinement of T, there 
are vertices u' and v' of S with Cs(u') = Cr(u) and Cs(v') = Cr(v). Now it is easily 
seen that S(.Cr) contains u' and v', and S(.Cs) contains u' and v'. In other words, 
S(.Cr) and S(.Cs) are not edge-disjoint in S, contradicting that Fis an agreement 
forest of S and S'. Thus the trees in { T (.Ci) : i E { p, 1, 2, ... , k}} are edge-disjoint 
rooted subtrees of T and, similarly, the trees in {71 (.Ci) : i E {p, 1, 2, ... , k}} are 
edge-disjoint rooted subtrees of T'. Hence, F is an agreement forest of T and 7'. 

Now relative to S and S', the graph G:,: is acyclic. With respect to F, consider 
the analogous graph, G':,: say, for T and 7'. Noting that both graphs have the same 
vertex set, it is clear that if (.Cr, .Cs) is an arc in G':,:, then (.Cr, .Cs) is an arc in G :F, 

Thus the arc set of G':,: is a subset of the arc set of G:,:. Since G:,: is acyclic, it 
follows that G':,: is acyclic. This completes the proof of the lemma. D 

Proof of Theorem 4. 1. Let S and S' be binary refinements of T and 7' that satisfy 
the hypothesis of Lemma 4.2. Then, by that lemma, ma(T, T') ~ ma(S,S'). But, 
by Theorem 3.1, ma(S, S') = h(S,S'). It now follows that, as h(S, S') ~ h(T, T'), 
we have ma(T, T') ~ h(T, T'). 

To establish the converse, now let S and S' be binary refinements of T and 7' 
such that h(S, S') = h(T, T'). Then, by Theorem 3.1, there is an acyclic-agreement 
forest F of S and S' such that 

JFI -1 = h(S,S') = h(T, T'). 

By Lemma 4.3, F is an acyclic-agreement forest for T and 7 1
, so 

ma(T, T') ~ JFI -1 = h(T, T'). 

It now follows that h(T, T') = ma(T, T'). This completes the proof of the theorem. 
D 

5. REDUCiNG THE SIZE OF THE PROBLEM INSTANCE 

In this section, we introduce three reductions which kernalize HYBRIDIZATION 
NUMBER. The subtree and long-chain reductions extend the subtree and chain 
reductions described in [5]. Additionally, we introduce the short-chain reduction 
which-in combination with the other two reductions-guarantees that all problem 
instances can be kernalized. We begin with some preliminaries. 
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Let T be a rooted phylogenetic X-tree, and let x be a leaf of T. Viewing T as a 
directed graph with edges directed away from its root, the unique vertex, u say, of 
T such that (u, x) is an arc of Tis called the parent of x and is denoted by PT(x). 

For all n ~ 2, an n-chain of T is an ordered tuple (a1, a2, ... , an) of distinct 
elements of X that satisfies the following properties: 

(i) for all i E {1, 2, ... , n - 1 }, either PT(ai) = PT(ai+1) or PT(ai) is a child of 
PT(ai+1), and 

(ii) there is an ordering, Pl, p2, ... , Pm say, of the parents of a1, a2, ... , an such 
that, for all i E {1, 2, ... , m - 1 }, the vertex Pi is a child of Pi+l and, apart 
from p1 and Pm, each of the vertices P2, p3, . .. , Pm-1 has exactly one child 
not in {a1, a2, ... , am}, 

If pis a parent of an element in A= {a1 ,a2, ... ,an}, then pis called internal if it 
has exactly one child not in A; otherwise p is said to be external. An element of A is 
internal (resp. external) if its parent is internal (resp. external). Furthermore, the 
partition of {a1, a2 , ... , an} defined by putting ai and aj in the same part precisely 
if PT ( ai) = PT ( aj) is called the parent partition of ( a1, a2, ... , an) induced by T. 
Throughout the paper, we will assume that if (a1, a2 , ... , an) is an n-chain of both 
T and T', where T and T' are rooted phylogenetic X-trees, then T and T' have no 
common non-trivial pendant subtree whose label set is a subset of {a1 , a2 , ... , an}· 
As we will soon see, this assumption does not restrict the results in this paper; it is 
simply for convenience and to avoid repetition in the statements. As an illustration, 
(a1, a2 , ... , an) is an n-chain of the two rooted phylogenetic trees T and T' shown 
in Fig. 3, where triangles represent subtrees outside of the chain. 

Let T and T' be two rooted phylogenetic X-trees. Let P be a disjoint collection of 
subsets of X such that each set in P contains the elements of a chain (a1 , a2 , ... , an) 
with n ::::; 5 in both T and T' that is one of the following two types: 

(i) For the first type, 3 ::::; n ::::; 5 and there are exactly three elements that are 
internal in both trees. Furthermore, if n = 4, then one of the elements is 
external in one tree, but internal in the other, while if n = 5, then either 
a1 or an is external in one tree, but internal in the other. 

(ii) For the second type, 2 ::::; n ::::; 4 and, in one of the trees, the chain has 
precisely two internal elements. Furthermore, if n = 3, then either a1 or 
an is external in the same tree, while if n = 4, then both a1 and an are 
external in this tree. On the other hand, regardless of size, the chain has 
exactly one parent in the other tree. 

Depending on whether the subset is of the first or second types, we assign a triple 
of weights or a single weight from z+ x z+ x z+ and z+, respectively. We call such 
a pair of trees with associated weighted set P a pair of weighted rooted phylogenetic 
X-trees. 

We now describe the three reductions. Let T and T' be a pair of weighted rooted 
phylogenetic X-trees with an associated set P, and let A be a subset of X. We say 
that A does not cross P if, for each element Sin P, the intersection Sn A is empty. 
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FIGURE 3. Two rooted phylogenetic X-trees T and T' reduced 
under the long-chain reduction, where S and S' are the resulting 
trees. Dotted lines indicate regions of the chain (a1 , a2 , •.. , an)· 

' /', 

Subtree Reduction: For IAI ~ 2, if A is the label set of a pendant subtree in 
T and T' such that TIA and T'IA have a common binary refinement, A does not 
cross P, and A is maximal with these properties, then replace these subtrees with 
either a single new leaf labeled a or a pendant edge ending in a new leaf labeled 
a depending on whether the subtree can be obtained without or with refinement, 
respectively. In all cases, the new label is the same in both resulting trees. 

Long-Chain Reduction: For n ~ 4, let (a1, a2, ... , an) be an n-chain of both 
T and T' that does not cross an element of P and is maximal with the following 
properties: 
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(i) The chain has at least three internal parents in both T and T', and at least 
three elements that are internal in both T and T'. 

(ii) If a1 is external in one of the trees, then a2 is internal in the same tree and 
a1 is internal in the other tree. 

(iii) If an is external in one of the trees, then an-1 is internal in the same 
tree while, in the other tree, an is internal and there are not exactly three 
internal parents one of which has an as its only child in { a1, a2, ... , an}. 

Depending upon whether 0, { ai}, { an}, or { a1, an} is the subset of elements of 
{ a1 , a 2 , ... , an} that are external in either T or T', respectively replace this chain 
in T and T' with the chain (a,b,c), (e1,a,b,c), (a,b,c,e2), or (e1,a,b,c,e2) as 
follows: 

(i) In T, 
pr(e1) i- pr(a) = Pr(b) i- Pr(c) i- Pr(e2), 

where e1 (resp. e2) is external if a1 (resp. an) is external in T, and e1 (resp. 
e2) is internal if a1 (resp. an) is external in T'. 

(ii) In T', 
Pr(e1) i- Pr(a) i- Pr(b) = Pr(c) i- Pr(e2), 

where e1 (resp. e2) is external if a1 (resp. an) is external in T', and e1 (resp. 
e2) is internal if a1 (resp. an) is external in T. 

If m denotes the number of internal parents in T and m' denotes the number 
of internal parents in T', then respectively add the new set { a, b, c}, { e1, a, b, c}, 
{ a, b, c, e2}, or { e1, a, b, c, e2} to P and, calling this set S, assign it a tuple of weights 
in which the first coordinate w 1 is n- ISi, the second coordinate w2 ism minus the 
number of internal parents of the resulting chain in T, and the third coordinate w3 

is m' minus the number of internal parents of the resulting chain in T'. Intuitively 
the reduction results in replacing a1 and an with e1 and e2, respectively, if a1 or 
an is external in either T or T', and replacing the elements of the chain that are 
internal in both trees with a, b, and c. Figure 3 depicts an example of the long-chain 
reduction, where T and T' are the trees before, and S and S' are the trees after 
applying the long-chain reduction. In this example, a1 is external in T, while an is 
external in T'. 

Short-Chain Reduction: For n ~ 3, let (a1, a2, ... , an) be an n-chain of both T 
and T' that does not cross an element of P such that in one of the trees, say T, this 
chain has exactly one parent, while in the other tree T' this chain has at least three 
internal parents. (Note that pr,(a1), ... ,pr,(an) are pairwise distinct vertices in 
T' and so only a1 or an may be external in T'.) Suppose that the chain is maximal 
with these properties. Depending upon whether 0, {ai}, {an}, or {a1, an} is the 
subset of external elements of this chain in T', respectively replace this chain in T 
and T' with the chain (a, b), (e1, a, b), (a, b, e2), or (e1, a, b, e2) as follows: 

(i) In T, 

(ii) In T', 
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FIGURE 4. Two rooted phylogenetic X-trees T and T' reduced 
under the short-chain reduction, where S and S' are the resulting 
trees. Dotted lines indicate regions of the chain ( a1 , a2, ... , an). 

where e1 (resp. e2) is external if a1 (resp. an) is external in T'. 

' ' 

Furthermore, add the new set {a,b}, {e1,a,b}, {a,b,e2 }, or {e1,a,b,e2} to P and, 
calling this set S, assign it weight n - ISi, Intuitively, the reduction results in 
replacing a1 and an with e1 and e2, respectively, if either a1 or an is external in T' 
and, relative to T', replacing the internal elements with a and b. Figure 4 depicts 
an example of the short-chain reduction, where T and T' are the trees before, and 
Sand S' are the trees after applying the short-chain reduction. Here a1 is external 
in T', but an is internal in T', and so the chain (a1, a2, ... , an) is replaced with the 
chain (e1 , a, b). 

An agreement forest :F for a pair of weighted rooted phylogenetic X-trees T and 
T' is legitimate if :F is acyclic and satisfies the following property, where, depending 
on the set in P, the elements e1 and e2 may or may not exist: 

(P): If { e1, a, b, c, e2} E P, then exactly one of the following holds: 
(i) { e1 , a, b, c, e2 } is a subset of a label set in :F, 



HYBRIDIZATION IN NON-BINARY TREES 13 

(ii) {a}, {b}, and {c} are label sets in :F, and e1 and e2 are in separate 
label sets in :F, 

(iii) { a, b} and { c} are label sets in :F, and e1 and e2 are in separate label 
sets in :F, 

(iv) {a} and {b,c} are label sets in :F, and e1 and e2 are in separate label 
sets in :F, 

while if { e1 , a, b, e2} E P, then exactly one of the following holds: 
(I) { e1, a, b, e2} is a subset of a label set in :F, 

(II) {a} and { b} are label sets in :F, and e1 and e2 are in separate label 
sets in :F. 

Furthermore, referring to property (P), for an arbitrary agreement forest of T and 
T', we define the weight of :F, denoted by w(:F), to be 

w(:F) = IFI - 1 + w1(S) 
S={e1,a,b,c,e2}EP;S satisfies (i) in :F 

+ 
S={e1 ,a,b,c,e2}EP;S satisfies (ii) in :F 

+ 
S={e,,a,b,c,e2}EP;S satisfies (iii) in :F 

+ w(S). 
S={e, ,a,b,e2 }EP;S satisfies (I) in :F 

We denote the minimum weight of a legitimate-agreement forest for T and T' by 
f(T, T'). Observe that f (T, T') ~ h(T, T') as the weightings are non-negative, 
and f (T, T') = h(T, T') whenever P is empty. 

The next three results are key lemmas in proving that HYBRIDIZATION NUM­

BER is fixed-parameter tractable. Each lemma describes how particular common 
configurations in T and T' behave in a legitimate-agreement forest for T and T' of 
minimum weight. For convenience in the proofs of these lemmas, we will frequently 
refer to the property of a forest :F that the trees in {T(.Ci) : i E {p, 1, 2, ... , k}} are 
edge-disjoint rooted subtrees of T as no two label sets in :F edge-overlap in T. 

Lemma 5 .1. Let T and T' be a pair of weighted rooted phylogenetic X -trees. 
Let A be the label set of a pendant subtree common to T and T' that satisfies 
the properties of its namesake in the description of the subtree reduction. Then, 
for every legitimate-agreement forest :F for T and T' of minimum weight, A is a 
subset of a label set in :F. 

Proof. Let :F = {.Cp, .C1 , .C2 , ... , .Ck} be a legitimate-agreement forest of T and T' 
of minimum weight. Suppose that two subsets, .Ci and .Cj say, have the property 
that .Ci n A and .Cj n A are both non-empty. If .Ci ~ A or .Cj ~ A, then it is easily 
checked that the partition of XU {p} obtained from :F by replacing .Ci and .Cj with 
.Ci U .Cj is a legitimate-agreement forest of T and T' but with smaller weight than 
:F; a contradiction. Therefore we may assume that .Ci n(XU {p}) and .Cj n (XU{p}) 
are both non-empty. Because of this assumption, the pendant subtree with label 
set A cannot be obtained from either Tor T' by deleting a single edge. Let e (resp. 
e') denote the edge of T (resp. T') that is directed into the vertex corresponding 
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to the root of TIA (resp. T'IA). Since no label sets in :F edge-overlap in T and T', 
at most one of T(Ci) and T(Cj) includes e and at most one of T'(Ci) and T'(Cj) 
includes e'. Also, since G;: is acyclic, if T(Ci) includes e, then T'(Cj) does not 
include e1

• Similar, conclusions hold for the other combinations including e or e1• 

Let :F' be the partition of X U {p} obtained from :F by replacing Ci and Cj with 
Ci U Cj. Because of these last conclusions, it is clear that :F' is an agreement forest 
for T and 7 1

• Furthermore, it easily checked that G;:, is acyclic as G;: is acyclic 
and that :F' satisfies (P) as :F satisfies (P). Therefore :F' is a legitimate-agreement 
forest of T and 7 1

• But w(:F') < w(:F); a contradiction. It now follows that A is a 
subset of a label set in :F, completing the proof of the lemma. D 

Lemma 5.2. Let T and T' be a pair of weighted rooted phylogenetic X -trees. 
Let ( a1, a2, ... , an) be a chain that satisfies the properties of its namesake in the 
description of the long-chain reduction. Then, for every legitimate-agreement forest 
:F for T and T' of minimum weight, exactly one of the following holds: 

(i) { a1, a2, ... , an} is a subset of a label set in :F, 
(ii) no label set in :F contains at least two elements of the chain and, if ai is 

an internal element of both T and T', then { ai} is a singleton in :F, or 
(iii) for either T or T', say T, two elements of the chain are in the same label 

set precisely if they have the same parent and, moreover, if that parent is 
internal in T, then the corresponding set contains no other elements of 
x u {p}. 

Proof. Let :F = {Cp, C1, C2, ... , Ck} be a legitimate-agreement forest for T and T' 
of minimum weight. Let A= {a1,a2 , .. . ,an}, The proof is partitioned into two 
cases depending on which of the following properties, up to symmetry, is satisfied 
by :F: 

(A) Whenever an element ai E A is in a label set, Ci say, and p7 (a1) is an 
ancestor of all elements in Ci - A in T, then py, ( a1 ) is an ancestor of all 
elements in Ci - A in 7 1

• 

(B) There is a label set, Ci say, in :F with both Ci n A and Ci - A non-empty 
and such that, in T, the vertex pr(a1) is an ancestor of all elements in 
Ci - A, but, in T', the vertex py, ( a 1) is not an ancestor of all elements in 
Ci - A. 

First consider (A). Let J index the label sets of :F that contain elements of the 
chain. More precisely, 

J = {j E {p,1,2, ... ,k}: Cj n{a1,a2,, .. ,an} f, 0}. 

Relative to the chain ( a1, a2, ... , an), we will call an edge of T or T' a non-pendant 
chain edge if the edge is non-pendant and incident with an internal parent in Tor 
T', respectively. The analysis of (A) is partitioned into two subcases: 

(I) There exists ( not necessarily distinct) label sets Ci and Ci, in :F such that 
T(Ci) and T'(Ci,) contain a non-pendant edge of the chain (a1, a2, ... , an) 
in T and 7 1

, respectively. 
(II) :F contains no such label sets Ci and Ci,. 
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For (I), we may assume without loss of generality that .Ci and .Ci, are chosen so 
that the roots of T(.Ci) and T'(.Ci,) are as close to p as possible in T and T'. If 
neither .Ci nor .Ci' contains an element of A, then it is easily seen that :F satisfies 
(ii) in the statement of the lemma. Thus, we may assume that either .Ci or .Ci,, say 
.Ci, contains an element of A. If .Ci' does not contain an element of A, then one 
of the following holds: (a) for some aj, aj' E (.Ci n A), we have PT(aj) =I= PT(aj') 
but PT' ( aj) = PT' ( aj'); (b) a1 E .Ci, an (j. .Ci, and a1 is an external element of the 
chain in T'; or (c) an E .Li, a1 (j. .Li, and an is an external element of the chain 
in T'. Since .Ci, does not contain an element of A, it follows that if a label set in 
F contains an element in A and an element in (X U {p}) - A, then that label set 
contains either a1 or an, in which case a1 or an are external in T', respectively, but 
no other elements from A. Furthermore, no label set in :F contains two elements 
of A that have different parents in T'. It is now easily checked that, as :F is a 
legitimate-agreement forest of minimum weight, :F satisfies (iii) if (a) or (b) holds 
and :F satisfies either (ii) or (iii) if (c) holds. In all cases, if (iii) holds, then T' is 
the distinguished tree. 

Now assume that .Ci' contains an element of A. The rest of the analysis for (I) 
is in two parts. Let .C\ (resp . .c;,) denote the subset of elements in .Ci - A (resp . 
.Ci' -A) that are descendants of PT(a1) (resp. PT' (a1)), and let Xf (resp. X 1) denote 
the subset of elements in .Ci - A (resp . .Ci, -A) that are descendants of PT'(a1) in 
T' (resp. PT(a1) in T). 

For the first part, suppose that .c; = Xt and .c;, = X1, Let :F' be the forest 
obtained from :F by removing each label set .Cj with j E J and inserting the new 
label set .Ca = U j EJ .Cj. Since we are in case (A), :F' is an agreement forest for 
T and T'. To see that :F' is acyclic. Consider the directed graphs G:,: and G:,:, 
associated with :F and :F', respectively. The vertex set of G:,:, is obtained from G:,: 
by deleting the vertices .Cj for all j E J, and adding the new vertex .Ca, Also, if 
.Cr, .C8 E :F' -{.Ca}, then (.Cr, .Cs) is an arc in G:,:, if and only if (.Cr, .Cs) is an arc in 
G:,:. Without loss of generality, we may assume that an is internal in T. Regarding 
the arcs in G:,:, incident with .Ca, there are two instances to consider. First assume 
that .Ci-A is non-empty and contains an element that is not a descendant of PT(a1 ) 

in T. Then .Ci - A contains an element that is not a descendant of PT'(a1) in T'. 
Since G:,: is acyclic, there is no arc from .Ci' to .Ci in G:,:; otherwise, G:,: contains a 
directed 2-cycle. Therefore either the roots of T' (.Ci) and T' (.Ci,) coincide in T' or 
the root of T'(.Ci,) is a descendant of the root of T'(.Ci), Since the root of T(.Ca) 
is the same as the root of T(.Ci) in T, it follows that if (.Cr..Ca) is an arc in G:,:,, 
then (.Cr,.Ci) and (.Cr,.Ci,) are arcs in G:,:. Moreover, if (.Ca,.Cr) is an arc in G:,:,, 
then either (.Ca, .Ci) or (.Ca, .Ci') is an arc in G:,:. Thus, as G:,: is acyclic, G:,:, is also 
acyclic. 

Second assume that either .Ci -A is empty or if .Ci -A is non-empty, then it only 
contains elements that are descendants of PT(a1). Because of the first instance, we 
may assume that the analogous property holds for .Ci, and T'. Then the root of 
T(.Ca) is PT(an) in T and the root of T'(.Ca) is PT'(an) in T'. Suppose that G:,:, 
contains the directed cycle G. Then, as G:,: is acyclic, G must contain .Ca, Let 
.Ci and .Cm denote the vertices in G that immediately precede and succeed .Ca, 
respectively, in this directed cycle. Observe that, except for .Ca, all other vertices 
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in C are also vertices in Gr. Thus (Ci, Cm) is an arc in Gr. But (Ci, Ci) is also 
an arc in Gr, implying that Gr contains a directed cycle; a contradiction. Thus 
Gp is acyclic. Hence F' is an acyclic-agreement forest for T and 7'. Furthermore, 
as (a1 , a2 , ... , an) does not cross P and F satisfies (P), it is straightforward to 
check that F' satisfies (P). Thus if IJI 2 2, then w(F1

) < w(F), contradicting the 
minimality of F. Therefore A is a subset of a label set in F and so F satisfies (i) 
in the statement of the lemma. 

For the second part, suppose that either C\ =f Xf or .C\, =f X1 . Without loss of 
generality, we may assume that C\ =f X f and ai E Ci n A. Since we are in case (A), 
this implies that PT(a1) is an ancestor of at least one element in Ci - A, but it is 
not an ancestor of all elements in Ci - A. Let C\' denote the subset of elements in 
Ci-A that are not descendants ofpT(a1), Because we are in case (A), Xf =f Ci-A, 
and so there is an element in Ci - A that is not a descendant of PT' ( a1) in 7'. 

First assume that either ai is internal in both Tor 7', or ai = a1 . If (Ci -A) nXf 
is non-empty, then, as TICi and T'ICi have a common binary refinement, it is easily 
seen that C\ ~ Xf. Furthermore, if ai =f a1 or ai = a 1 and a1 is internal in 7', 
then the same reasoning implies that Xf n C\' is empty. But then Xf = C1; a 
contradiction. Therefore assume that ai = a 1 and a1 is external in 7'. If an (/. Ci, 
then, as F is a legitimate-agreement forest of minimum weight, F satisfies (ii) in 
the statement of the lemma. So assume that an E .Ci. If an is internal in 7, 
then, as TICi and 7'1.Ci have a common binary refinement, another check shows 
that Xf n C\1 is empty and so Xf = c:. So now assume that an is external in 
7, and therefore internal in 7 1

• Again as 71Ci and T'ICi have a common binary 
refinement, it is straightforward to check that, for any two elements in C:' n Xf 
the path in T from each of these elements to p meets the path from an to p in 
exactly one place. With this in hand, let P be the partition of X U {p} obtained 
from F by removing each label set Cj with j E J and inserting the new label sets 
ujEJ Cj - (Ci' n XD and C:' n Xf. Clearly, p is an agreement forest for T and 
T', and it is easily checked that, as F is acyclic, P is acyclic. Furthermore, as 
(a1, a2 , ... , an) does not cross P and F satisfies (P), P satisfies (P). Thus Fis a 
legitimate-agreement forest for T and 7'. But, in F, each of the elements of the 
chain that are internal in both T and 7' are singletons. Since there are at three 
such elements, w(P) < w(F); a contradiction. 

We may now assume (Ci -A) nXf is empty. As TICi and T'ICi have a common 
binary refinement, it is easily seen that, for any two elements in C1 the path in 7' 
from each of these elements to p meets the path from an to p in exactly one place. 
If a1 is external in 7, not in Ci and its label set contains elements in (XU {p}) -A, 
then, as we are in case (A), PT(a1) and PT' (a1) are ancestors of each of the elements 
in this label set. The same reasoning also shows that if an is external in T and 
not in Ci, then its label set contains no elements in (X U {p}) - A. Furthermore, 
if aj and ak are internal elements of both T and 7', then, as Tl.Ci and 7' !Ci 
have a common binary refinement, the label set containing aj is a subset of A if 
PT(aj) =f PT(ai), Also, as no label sets in F edge-overlap in 7, the elements aj 
and ak are in separate label sets in F if PT(aj) =f PT(ak), Thus there are two such 
subsets of A in F. Now let P be the partition of XU {p} obtained from F by 
removing each label set Ci with j E J and inserting the new label sets LJjEJ Cj - Ci 
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and .C~. It is clear that :F' is an agreement forest for T and T'. Moreover, it is 
easily seen that, as :Fis acyclic, :F' is acyclic and that, as (a1, a2, . .. , an) does not 
cross P and :F satisfies (P), :F' satisfies (P). But w(:F') < w(:F); a contradiction. 

It now follows that we may assume .Ci n A= { an}, where an is external in either 
T or T'. By considering T it is easily seen that if aj and ak are internal elements 
in T, then the label set in :F containing aj is a subset of A, and aj and ak can only 
be in the same label set in :F if they have the same parent in T. Now consider T'. 
If p7,(a1) is an ancestor of an element in .Ci, then :F satisfies (ii) in the statement 
of the lemma. Therefore assume that PT' ( a1 ) is not an ancestor of any element in 
.Ci. Now .Ci, contains an element of A and T' (.Ci,) contains a non-pendant edge of 
(a1, a2, ... , an), If a1 E .Ci' and .Ci' contains an element in (XU {p} )-A that is not 
a descendant ofpr,(a1) in T', then again :F satisfies (ii) in the lemma. Noting that 
the label set containing a1 can only contain another element of A if a1 is internal in 
T, it is now easily seen that, as :F is a legitimate-agreement forest for T and T' of 
minimum weight, then :F satisfies (iii) in the statement of the lemma with T as the 
distinguished tree. This completes the analysis of the second part, and therefore 
(I). 

Now consider (II). We may assume that for one of the trees, say T, whenever a 
label set .Cr in :F contains an element in A, then, unless this element is external, 
.Cr s;;; A and all elements in .Cr have the same parent in T. If :F satisfies (ii) in 
the statement of the lemma, then we are done; so assume that this is not the case. 
Then there is a label set, .Ci say, in :F that contains at least two elements in A. In 
T', these elements have different parents. Since :Fis a legitimate-agreement forest 
for T and T' of minimum weight, it is now easily checked that :F satisfies (iii) in 
the statement of the lemma. This completes the analysis of (II) and, therefore, (A) 

Now suppose that :F satisfies (B). First note that, since Tl.Ci and T'I.Ci have a 
common binary refinement, pr,(a1) is not an ancestor of any element in .Ci -A in 
T' unless .Ci n A = { ai} and a1 is external in T or .Ci n A = {an} and an is external 
in T'. The analysis of this case is separated into two subcases: 

(I) .Ci n A contains an element that is internal in both T and T'. 
(II) .Ci n A contains no element that is internal in both T and T'. 

For (I), let ai be an element of .CinA that is internal in both T and T'. Let aj be 
an element of A that is internal in both T and T'. If Pr ( aj) =I Pr ( ai), then using 
the facts that no label sets in :F edge-overlap iri T or T', that Tl.Ci and T' I.Ci have 
a common binary refinement, and that :F is acyclic, it is easily checked that aj is 
in a label set of :F containing only elements of A and all of the elements in this set 
have the same parent in T. Because of the requirement on internal parents in (iii) 
in the definition of the long-chain reduction, there are at least two such label sets. 
Also, if pr(aj) = pr(ai) for some j =Ii and aj ~ .Ci, then, because :Fis acyclic and 
no label sets in :F edge-overlap, aj is in a label set of :F containing only elements of 
A and all of the elements in this set have the same parent. Furthermore, since Tl.Ci 
and T'I.Ci have a common binary refinement, any two distinct elements in .Ci - A 
intersect the path from an to p in T' in exactly one place. 

~ ~'-' + ·- .·' -· 

. ~ ~ ~ 
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We next consider a1 (resp. an) if a1 (resp. an) is external in either Tor T'. If 
a1 is external in T, then, as Tl.Ci and T'I.Ci have a common binary refinement, 
a1 (/. .Ci, Furthermore, a1 is in a label set of :F that contains no other elements of A 
and, moreover, both PT(a1) and PT'(a1) are ancestors of all elements in this label 
set. If a1 is external in T', then it easily checked that a1 behaves in the same way 
as elements in A that are internal in both T and T'. Now consider an, If an is 
external in T, then, as Tl.Ci and T'J.Ci have a common binary refinement, an (/. .Ci. 
Also, as :F is acyclic, an is in a label set of :F that contains no other elements of A 
and, moreover, PT(an) is an ancestor of all elements in this label set, but PT(a1) is 
an ancestor of none. Furthermore, except for an, the vertex PT' ( a1) is an ancestor 
of all elements in this set. Now assume that an is external in T'. If an (/. .Ci, then, 
as no label sets in :F edge-overlap in T', the element an is the only element of A in 
its label set and, if this label set contains elements in (XU {p}) - A, then PT' (a1) 

is not an ancestor of any of these elements and all elements in .Ci are descendants 
of p7,(an)· 

With the above conclusions in hand and noting that it is possible for an to be 
external in T' and an E .Ci, let J index the label sets of :F that contain elements 
of the chain. Let :F' be the forest obtained from :F by removing each label set .Cj 
with J° E J and inserting the new label sets 

LJ .Cj - (.Ci -A) - (.Cn - {an}), 
jEJ 

.C~ = .Ci - A, and .C~ = .Cn - A if an is external in T, where .Cn is the label set in 
:F containing an, and 

LJ .Cj - (.Ci - A) 
jEJ 

and .C~ = .Ci - A if an is external in T'. Note that :F' is a partition of XU {p}. 
By considering the possibilities for a1 and an, and noting that PT' (a1) is not an 
ancestor of any element in .Ci - A, it is clear that :F' is an agreement forest for 
T and T'. Using arguments similar to that used in (A), a straightforward check 
shows that, as :F is llccyclic, :F' is acyclic. Since ( a1 , a2 , ... , an) does not cross P 
and :F satisfies (P), :F' satisfies (P). Therefore :F' is a legitimate-agreement forest 
for T and T'. But, as there are at least two label sets in :F containing just elements 
of A, we have w(:F') < w(:F); contradicting the minimality of :F. Thus subcase (I) 
does not arise. 

For the analysis of (II), first observe that .Ci nA is a non-empty subset of { a1, an} 
and each of the elements in .Ci n A is external in either T or T'. Let aj, ak E A 
such that neither ai nor ak is a1 if a1 is external in either T or T' and neither ai 
nor ak is an if an is external in either Tor T'. Assume first that a1 E .Ci, Since 
:F is acyclic and no label sets in :F edge-overlap in T or T', it is easily checked 
that ai and ak are in separate label sets in :F and none of these label sets contain 
elements in (X U {p}) - A. Arguing similarly, if an is external in T, and therefore 
internal in T', then { an} is a label set in :F. It now follows that if an is not external 
in T', then :F satisfies (ii) in the statement of the lemma. Therefore, assume that 
an is external in T'. If an (/. .Ci, then, as no label sets in :F edge-overlap in T', 
the elements aj and an are not in the same label set in :F for all J°. Thus :F again 
satisfies (ii) in the statement of the lemma, so assume that an E .Ci, Since Tl.Ci 



HYBRIDIZATION IN NON-BINARY TREES 19 

and T'I.Ci have a common binary refinement, py,(an) is an ancestor of all elements 
in .Ci, Let :F' be the partition of XU {p} that is obtained from F by replacing .Ci 
and all other label sets containing elements of A with the three sets .C\, .C\', and A, 
where .C\' contains precisely the elements in .Ci - A that are descendants of p7 , ( a1) 

in T' and .C~ = .Ci - (AU .en, Clearly, F' is an agreement forest for T and T'. 
Furthermore, using arguments similar to that used in (A), it is easily checked that, 
as F is acyclic, F' is acyclic. Since (a1, a2, ... , an) does cross P and F satisfies 
(P), :F' satisfies (P) and so :F' is a legitimate-agreement forest for T and T'. But 
:F has the property that {aj} E F for all aj EA - {ai,an}· Since IAI ~ 5, this 
implies that w(F) < w(:F'); a contradiction. 

We may now assume that an E .Ci and a1 (j. .Ci, First note that if p7,(a1) is 
an ancestor of an element in .Ci, then, as the label sets in F are edge-disjoint, F 
satisfies (ii) in the statement of the lemma. Thus we may also assume that p7 , ( a1 ) 

is not an ancestor of any element in .Ci, Since no label sets in F edge-overlap in T, it 
follows that if py(aj) -=f. py(ak) or p7(a1) -=f. py(aj), then aj and ak, and a 1 and aj 
are in separate label sets in F, respectively. Furthermore, unless py(aj) = py(an) 
and an is external in T', the label set containing aj does not contain an element of 
(X U {p}) - A. Also, if a1 is internal in T, then its label set does not contain an 
element of (X U {p}) - A. It is now easily seen that if an is external in T, then, 
as an is internal in T' and F is a legitimate-agreement forest of minimum weight, 
:F satisfies (iii) in the statement of the lemma with T as the distinguished tree. 
Therefore, assume that an is external in T'. 

If a1 is external in T and its label set contains an element in (XU {p}) - A that 
is not an ancestor of p7,(a1), then F satisfies (ii) in the lemma. Thus if the label 
set containing a1 contains an element in ( X U {p}) - A, we may assume that it is 
a descendant of p7,(a1). 

Now, apart from .Ci and the label set containing a1 if a1 is external in T, the only 
other possible label set, .Ck say, in F that has a non-empty intersection with A and 
(XU {p}) - A has the property that if ak E .Ck n A, then py(ak) = py(an), If no 
label set in :F contains at least two elements of A each having a different parent in 
T' and there exists no such label set .Ck, then F satisfies (ii) in the statement of the 
lemma. Therefore, suppose that one of these two possibilities occur. Let F' be the 
partition of XU {p} obtained from F by replacing .Ci, .Ck if such a label set exists, 
and all other label sets containing elements in A with the sets .C~, A U .C1 U .Ck and 
.C%, where .C~ = £,i - {an}, £1 is the label set of F containing a1 if a1 is external in 
T, .C% contains precisely the elements in .Ck - A that are descendants of p7 , ( a1), 

and .Ck = .Ck - .C%, Note that, as no label sets in F edge-overlap in T or T', 
either .C1 - { ai} or .C% is empty. Clearly, F' is an agreement forest for T and T'. 
Furthermore, using the fact that one of the two above possibilities occur, it is easily 
checked that, as Fis acyclic, F' is acyclic. Moreover, as (a1, a2, ... , an) does not 
cross P and F satisfies (P), :F' satisfies (P) and so F' is a legitimate-agreement 
forest for T and T'. But w(:F') < w(F) as T has at least three internal parents. 
This contradiction completes the proof of (B) and hence the lemma. 0 
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Lemma 5.3. Let T and T' be a pair of weighted rooted phylogenetic X -trees. Let 
( a1, a2, ... , an) be a chain that satisfies the properties of its namesake in the de­
scription of the short-chain reduction. Then, for every legitimate-agreement forest 
F for T and T' of minimum weight, exactly one of the following holds: 

(i) { a1, a2, ... , an} is a subset of a label set in F, or 
(ii) no label set in F contains at least two elements of the chain and, if ai is 

an internal element of ( a1, a2, ... , an) in T', then { ai} is a singleton in F. 

Proof. Let F = { Lp, L1, L2, . .. , Lk} be a legitimate-agreement forest for T and T' 
of minimum weight, and let A = { a1, a2, ... , an}. Let J index the label sets of F 
that contain elements of A and let La = ujEJ Lj. Suppose that neither (i) nor (ii) 
hold for F. If no label set in F contains at least two elements of A, then, relative 
to T', there is a label set in F that contains an internal element of the chain as 
well as an element of (XU {p}) - A. By considering the structure of ( a1, a2, ... , an) 
in T', it is easily seen that, as (a1,a2 , .•. ,an) has at least three internal elements 
relative to T', at least one of these internal elements is a singleton in F. A routine 
check shows that, apart from one exceptional case, we can replace such a singleton 
and a label set in F that contains an internal element of the chain in T' as well as 
an element of (XU {p}) -A with the union of these two sets to obtain a legitimate­
agreement forest of T and T' that has smaller weight then F; a contradiction. In 
the exceptional case, there is exactly one label set, Li say, in F that contains an 
internal element of the chain in T' and an element in (XU {p}) -A, and this set 
has the properties that ILi n Al= 1, and PT'(a1) is an ancestor of all the elements 
in Li - A, but PT(a1) is not an ancestor of all the elements in Li, Since F is 
acyclic, it follows that each of the remaining internal elements of the chain in T' 
are singletons in F. A straightforward check now shows that 

{L - A : L E F} U A 

is a legitimate-agreement forest for T and 7 1
, but with smaller weight than F. 

This contradiction implies that there is a label set in F containing at least two 
elements of A. Without loss of generality, we may assume that this set is Li and 
that ai E Li n A, where i > i 1 for all ai' E Li n A. 

Suppose that there exists an Lh E F - {Li} such that ILh n Al ;:::: 1, !Lh n ((XU 
{p}) -A)I;:::: 1, and let ah E (Lh n A). If PT'(ah) is a descendant of PT1(ai), then, 
as ILil ;:::: 2 and no label sets in F edge-overlap in T', the vertex PT'(ah) in T' is 
an ancestor of all elements in Lh n ((XU {p}) -A). Because Fis acyclic, it follows 
that the vertex PT(%) in Tis an ancestor of all elements in Lh n ((XU {p}) -A); 
otherwise G:F contains a directed 2-cycle. Now assume that PT'(ah) is an ancestor 
of PT(ai). If Li (resp. £,h) contains an element z that is not a descendant of PT' (an) 
in T', then, as G:F is acyclic, PT(an) is an ancestor of all elements in Lh (resp. Li) 
in T. Now let F' be the forest obtained from F by removing each label set Lj 
with j E J and inserting the new label set La, Using the outcomes of the above 
two possibilities, it is easily seen that F' is an agreement forest for T and T'. 
Furthermore, as (a1, a2, ... , an) does not cross P and F satisfies (P), F' satisfies 
(P). Using the facts that Fis acyclic and at least one of the label sets in F contains 
at least two elements of A, arguments similar to that used in the proof of Lemma 5.2 
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show that :F' is acyclic. But then w(:F') < w(F); a contradiction to the minimality 
of F. Thus :F satisfies either (i) or (ii). D 

6. HYBRIDIZATION NUMBER IS FIXED-PARAMETER TRACTABLE 

In this section, we prove Theorem 1.1. We begin by showing that each of the 
three reductions described in the last section preserves the minimum weight of a 
legitimate-agreement forest. 

Proposition 6.1. Let T and T' be a pair of weighted rooted phylogenetic X-trees. 
Let S and S' be the pair of weighted rooted phylogenetic X' -trees obtained from T 
and T', respectively, by applying the subtree, long-chain, or short-chain reduction. 
Then f(T, T') = f (S, S'). 

Proof. It is an immediate consequence of Lemma 5.1 that if S and S' have been 
obtained from T and T' by an application of the subtree reduction, then the propo­
sition holds. We next prove the result for when S and S' have been obtained from 
T and T' by applying the long-chain reduction. The proof of the result for the 
short-chain reduction is similar and omitted. 

Suppose that (a1, a2, ... , an) is the common chain of T and T' used in this 
application of the long-chain reduction. Now let FT be a legitimate-agreement 
forest for T and T' of minimum weight. Then, by Lemma 5.2 one of the following 
holds: 

(i) { a1, a2, ... , an} is a subset of a label set of FT, 
(ii) no label set in FT contains at least two elements of the chain and, if ai is 

an internal element of both T and T', then { ai} is a singleton in FT, or 
(iii) for either Tor T', say T, two elements of the chain are in the same label 

set precisely if they have the same parent and, moreover, if that parent 
is internal in T, then the corresponding set contains no other elements of 
x u {p}. 

Let Fs be the forest obtained from FT by replacing a1 and an with e1 and e2, 
respectively, if a1 or an is external in either T or T', and then, depending on 
which of (i), (ii), or (iii) holds, respectively replace the remaining elements of A as 
follows: replace a1 , a2 , ... , an with a, b, and c; collectively replace the label sets of 
the form { ai} with {a}, { b}, and { c}; or collectively replace the label sets of the 
form { ai, ai+l, ... , aj} with { a, b} and { c} and, if there is a label set of the form 
{ e1, a2, ... , ai'} or { aj,, aj' +1, ... , e2}, replace it with { e1} or { e2}, respectively. 
Since :FT is a legitimate-agreement forest for T and T', it is easily checked that 
:Fs is a legitimate-agreement forest for S and S'. In the case that (ii) holds, the 
contribution of the singletons containing elements that are internal in both T and 
T' to w(FT) is exactly the same as the contribution of {a}, {b}, and {c} to w(Fs). 
Furthermore, in the case that (iii) holds, the contribution of the label sets containing 
just internal elements of A in T to FT is equal to the contribution of { a, b}, { c}, 
and { e1} and { e2} if either e1 or e2 are internal elements of the reduced chain in S 
respectively, to Fs. Thus w(Fs) = w(FT), and so f(S,S') s; f(T, T'). 
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Now suppose that :Fs is a legitimate-agreement forest for S and S' of minimum 
weight. As :Fs is legitimate, one of the follqwing holds, where e1 and e2 may or 
may not exist depending on whether a1 or an is external in either 7 or 7': 

(i) {e1,a,b,c,e2} is contained in a label set, C say, in :Fs, 
(ii) {a}, {b}, and {c} are label sets in :Fs, and e1 and e2 are in separate label 

sets in :Fs, 
(iii) {a, b} and {c} are label sets in :Fs, and e1 and e2 are in separate label sets 

in :Fs, or 
(iv) {a} and {b,c} are label sets in :Fs, and e1 and e2 are in separate label sets 

in :Fs, 

Let :Fr be the forest obtained from :Fs by replacing e1 and e2 with a1 and an, 
respectively, if a1 or an is external in either 7 or 7 1

, and then, depending on which 
of (i) to (iv) holds, make one of the following replacements for a, b, and c: 

(i) C with (£ - {a, b, c}) U A, 
(ii) {a}, {b}, and {c} with the sets {ai}, where ai is an internal element in both 

7 and 7 1
, 

(iii) {a,b} and {c} with the parts of the parent partition of (a1,a2, .. ,,an) 
induced by 7 whose corresponding parents are internal in 7, and deleting 
{a1} or {an} if e1 or e2 is internal in S, or 

(iv) {a} and { b, c} with the parts of the parent partition of ( a1, a2, ... , an) 
induced by 7 1 whose corresponding parents are internal in 7 1

, and deleting 
{ ai} or { an} if e1 or e2 is internal in S'. 

A routine check shows that, as :F s is a legitimate-agreement forest for S and S', 
the collection :Fr of sets is a legitimate-agreement forest for 7 and 7 1

• In (ii), 
the contribution of the singletons {a}, {b}, and {c} to w(:Fs) is the same as the 
contribution of the sets {ai} to w(:Fr), where ai is an internal element of both 7 
and 7 1

• Furthermore, in (iii) and analogously in (iv), the contribution of { a, b} 
and {c}, and {ei} and {e2} if e1 or e2, respectively, are internal in S to :Fs is 
equal to the contribution of the label sets in :F which exclusively contain internal 
elements of A in 7 to :Fr, Thus w(:Fr) = w(:Fs), and so f(7, 7') ~ f(S,S'). 
Hence f (7, 7') = f (S, S'), completing the proof of the proposition. D 

Lemma 6.2. Let 7 and 7 1 be a pair of weighted rooted phylogenetic X -trees, 
and let ( a 1 , a 2 , ..• , an) be a chain of both 7 and 7 1 that does not cross P and 
is maximal with these properties. Then, by a sequence of long- and short-chain 
reductions applied to this chain, the length of the resulting chain is at most 11. 

Proof. We begin by partitioning the chain into at most four smaller ordered tuples. 
Suppose first that there is an element of the chain that is internal in both 7 and 
7 1

• With i ~ j, choose ai and aj as follows: 

(i) If a1 (resp. an) is internal in both 7 and 7', choose ai (resp. aj) to be a1 
(resp. an), 
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(ii) If a1 (resp. an) is external in both T and T', but a2 (resp. an-1) is internal 
in both T and T', choose ai (resp. aj) to be a2 (resp. an-i), 

(iii) If neither (i) nor (ii) holds, then, for some n E {T, T'} (resp. S E {T, T'} ), 
a1 (resp. an) and a2 (resp. an-1) are external in n (resp. S). In this 
case, choose ai (resp. aj) to be the element of the chain that is external 
in 'R, and has maximum (resp. minimum) index with a1,a2, ... ,ai (resp. 
aj, aJ+1, ... , an) all external inn (resp. S). 

Having picked ai and aj, consider the chain (ai,ai+l,···,aj), If this chain sat­
isfies (i) and the condition on internal parents at the end of (iii) in the description 
of the long-chain reduction, then we can apply this reduction to get a chain with 
at most 5 elements. Furthermore, if (a1, az, ... , ai-1) is a chain with at least three 
internal elements in the tree in {T, T'} that is not 'R, then we can apply the short­
chain reduction to get a chain with at most 3 elements. Lastly, if ( aJ+1, aJ+2 , ... , an) 
is a chain with at least three internal elements in the tree in {T, T'} that is not S, 
then we can again apply the short-chain reduction to get a chain with at most 3 
elements. Note that if we cannot apply the first or the second of these short-chain 
reductions, then i - 1 s; 3 and n - j s; 3, respectively. It now follows that after 
these three reductions, the resulting chain has length at most 11. 

Now assume that (ai, a;+1 , ... , aj) does not satisfy (i) and the condition on 
internal parents at the end of (iii) in the description of the long-chain reduction. 
Then, up to the possibility of an additional internal parent which only has aj as 
its only child in { ai, ai+l, ... , aj}, this chain has at most two internal parents p1 
and pz in either T or T'. Except for the children of these two parents that are in 
A, all of the remaining elements of A are external in either T or T'. In particular, 
a1, . .. , ai-1 share the same parent in n, and aj+l, .. . , an share the same parent 
in S. As (a1,a2 , ... ,an) has an internal element in both T and T', these two 
shared parents are distinct. Applying at most four short-chain reductions, it is 
easily checked that the resulting chain has length at most 10. 

Now suppose that no element of the chain is internal in both T and T', then 
each element of the chain is external in either Tor T'. In this case, either we apply 
a single application of the short-chain reduction to get a chain of length at most 4 
or we apply two applications of the short-chain reduction to get a chain of length 
at most 6. This completes the proof of the lemma. D 

Proposition 6.1 showed that the weight function is preserved under each of the 
three reductions. Part (i) of the next lemma shows that these reductions can be 
applied so that the size of the label set of the resulting rooted phylogenetic trees is 
a linear function of the value of this function. 

Lemma 6.3. Let T and T' be two rooted phylogenetic X-trees, and let P be an 
empty collection of subsets of X. Let S and S' be two weighted rooted phylogenetic 
X' -trees obtained from T and T', respectively, by repeatedly applying the subtree 
reduction until no further reduction is possible, and then, for each maximal chain 
common to both resulting trees, repeatedly applying the long-chain and short-chain 
reductions. Then 
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(i) S and S' have no pendant subtrees with common label set A such that SjA 
and S'IA have a common binary refinement and IA! ;:::: 2, 

(ii) the length of any chain common to both S and S' is at most 11, and 
(iii) jX'I < 59h('T, 'T'). 

Proof. For the proof of (i) and (ii), let 7i and 'T{ be the rooted phylogenetic trees 
obtained from 'T and 'T' after repeatedly applying the subtree reduction until no 
further reduction is possible. Furthermore, observe that if Pi, P2 E P, then S(Pi) 
and S(P2 ) are edge-disjoint, and S'(P1) and S'(P2 ) are edge-disjoint. Consider (i), 
and let A be such a label set. Without loss of generality, we may assume that 
A is maximal. Then, because of maximality, if A intersects a set in P, then that 
set is a subset of A. Now let A' be the set obtained from A by replacing the 
elements belonging to a set in P with their original counterparts. Using the above 
observation, it is easily seen that A' is a pendant subtree of 7i and 'T{. But, as 
SjA and S'IA have a common binary refinement, 7i!A' and 'T{IA' have a common 
binary refinement; a contradiction. Thus (i) holds, 

For (ii), suppose that there exists a chain common to both S and S' that has 
at least 12 elements. Without loss of generality, we may assume that this chain 
is maximal. Let A denote the label set of this common chain. Analogous to (i), 
because of maximality, if A intersects a set in P, then that set is a subset of A. 
Moreover, if this intersection involves a set that was part of a sequence of reductions 
to reduce a common chain in 7i and 'T{, then all of the associated sets in P are 
subsets of A. Using Lemma 6.2 to get a contradiction, a similar argument used to 
establish (i) can now be used to establish (ii). 

Now consider (iii). Let :F = { .Cp, .C1, .C2, ... , .Ck} be a legitimate-agreement for­
est for S and S' of minimum weight. Let B and B' be two binary refinements of 
S and S', respectively, so that :F is an acyclic-agreement forest for B and B'. By 
Lemma 4.2, such binary refinements exist. If Band B' have a common pendant sub­
tree with label set A and !Al ;:::: 2, then this subtree is a common binary refinement 
of SIA and S'jA, contradicting (i). Thus Band B' have no such pendant subtree. 
Furthermore, if Band B' have a common chain with label set A and !Al ;:::: 12, then 
this implies that S and S' have such a chain, contradicting (ii). Hence any chain 
common to both B and B' has at most 11 elements. With these restrictions on B 
and B', we can now use the argument for the analogous result for binary trees in [5] 
to complete the proof of (iii). The only modification necessary is to replace chains 
of size 2 with chains of size at most 11. Making this change and working through 
the straightforward algebra gives the desired result. D 

Proof of Theorem 1.1. Let 'T and 'T' be two rooted phylogenetic X-trees, and let 
P be an empty collection of subsets of X. Let k be an integer. Let S and S' be 
the weighted rooted phylogenetic X'-trees obtained from 'T and 'T' by repeatedly 
applying the subtree reduction until no further reduction is possible, and then, for 
each maximal chain common to both resulting trees, repeatedly applying the long­
chain and short-chain reductions. As P is empty, h('T, 'T') = f ('T, 'T') and so, by 
Proposition 6.1, 

h('T, 'T') = f('T, 'T') = f (S, S'). 
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It is clear that Sand S' can be found in time polynomial in IXI, say p(IXI). By 
Lemma 6.3(iii), IX'I ~ 59h(T, T') and so, if IX'I > 59k, we declare that h(T, T') > 
k. 

Now suppose that IX'I ~ 59k. The time taken to check whether a partition of 
X' U {p} is a legitimate-agreement forest for S and S' takes time polynomial in k. 
Note that for deciding if two rooted phylogenetic trees 1i and T{ have a common 
binary refinement, one simply needs to check whether or not C(1i) U C(T{) is a 
hierarchy, that is, for all (edge) clusters 0 1, 0 2 E C(1i) U C(T{), the set C1 n 0 2 E 
{0, 0 1 , 0 2 }. Furthermore, as IX'I ~ 59k, the number of forests with at most k + 1 
parts is bounded by a computable function ink, say f(k). If one of these forests is 
a legitimate-agreement forest for S and S' with weight at most k, then we declare 
h(T, T') ~ k; otherwise, we declare h(T, T') > k. Hence we can answer the 
HYBRIDIZATION NUMBER decision problem for T and T' in time O(f(k) + p(IXI)). 
Thus HYBRIDIZATION NUMBER is fixed-parameter tractable. D 

Remark. While one could explicitly give a function in k that bounds the number 
of partitions to consider in the proof of Theorem 1.1, it is unlikely to be the best 
theoretically and we expect in practice much better methods. 

7. CONCLUDING REMARKS 

We end the paper with some remarks. 

1. In this paper, we reduced a chain using two types of chain reductions. 
However, we believe that it is possible to do this with a single type of 
chain reduction. The drawback of such a reduction is that the number of 
possibilities for a legitimate-agreement forest for T and T' increase. Since 
the goal of the paper is to show that HYBRIDIZATION NUMBER is fixed­
parameter tractable, we decided to use the two types of reductions, thereby 
reducing the complexity and lengths of the proofs. 

2. The subtree, long-chain, and short-chain reductions are enough to kernalize 
HYBRIDIZATION NUMBER and yield an algorithm that is fixed-parameter 
tractable. These reductions extend the two reductions used to kernalize 
HYBRIDIZATION NUMBER when the initial two trees are both binary [5]. 
However, there is another type of reduction for binary trees that turns 
out to particularly useful. This additional reduction, called the cluster 
reduction [2], allows for an attractive divide-and-conquer approach that 
breaks the problem into a number of smaller and, therefore, more tractable 
subproblems. Details on how this reduction can easily be fitted into the 
framework of (arbitrary) rooted phylogenetic trees can be found in [9]. 
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