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ABSTRACT. Rota conjectured that, given n disjoint bases of a 
rank-n matroid M, there are n disjoint transversals of these bases 
that are all bases of M. We prove a stronger statement for the 
class of paving matroids. 

1. INTRODUCTION 

We prove the following theorem. 

Theorem 1.1. Let Bi, ... , En be disjoint sets of size n 2: 3 and let 
Mi, ... , Mn be rank-n paving matroids on LJi Bi such that Bi is a basis 
of Mi for each i E {1, ... , n }. Then there exist n disjoint transversals 
Ai, ... , An of Bi, ... , En such that Ai is a basis of Mi for each i E 
{1, ... ,n}. 

A paving matroid Mis a matroid in which each circuit has size r(M) 
or r(M) + 1, where r(M) is the rank of M. Theorem 1.1 implies Rota's 
basis conjecture for paving matroids. 

Conjecture 1.2 (Rota). Given n disjoint bases Bi, ... , En in a rank-n 
matroid M, there exist n disjoint transversals Ai, ... , An of B1, ... , En 
that are all bases of M. 

For n = 2, Conjecture 1.2 follows immediately from basis exchange 
in matroids. Chan [2] proved the conjecture for n = 3. Wild [9] proved 
a stronger conjecture for the class of strongly base-orderable matroids, 
while more recently a slightly weaker result was proved for a general 
matroid (Ponomarenko [8]). Further partial results may be found in 
[1], [3], [4], [5] and [9]. 

Theorem 1.1 fails for both n = 2 and matroids in general. When 
n = 2, if we take B(Mi) = { {e, .f}, {e, g}, {f, h}, {g, h}} and B(M2 ) = 
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{ { e, J}, { e, h }, {f, g }, {g, h} }, then { e, J}, {g, h} is the only pair of dis­
joint bases. In the second instance, if one of the matroids Mi has all 
the x E E - Bi as loops, then there are no independent transversals of 
Bi, ... , En in }\/Ji, 

The remainder of this paper is taken up with the proof of the theo­
rem. In Section 2, we prove that Theorem 1.1 holds when n = 3. This 
result is then used in Section 3 to prove the theorem inductively. 

2. THE CASE n = 3 

For basic concepts in matroid theory, the reader is referred to Oxley 
[7]. We follow the same notation as Oxley throughout this paper. 

A closed set in a matroid is commonly known as a flat. We will 
primarily be interested in rank-2 flats, or lines. In the proof of Theo­
rem 2.1, we make frequent use of the fact that if rM(X) = rM(Y) = 2 
and /X n Y/ 2 2, then X and Y are contained in the same line in M. 

Theorem 2.1. Theorem 1.1 holds for n = 3. 

Proof. If we assume the theorem is false, then there exist bases 
Bi= {a1,a2,a3},B2 = {bi,b2,b3},B3 = {ci,c2,c3} of rank-3 paving 
matroids lvfi, lvf2 , M3 respectively, with common ground set E = 
Bi U B2 U B 3 , that provide a counterexample. The rank of a set X 
in a matroid Mi will be denoted by ri(X) and the closure by cli(X). A 
three-element subset of E will be called a transversal if it meets each 
of B1, B2, and B 3 . Note that we may assume that every non-trivial 
line in each matroid contains a transversal, since all non-trivial lines 
not containing a transversal may be relaxed to provide an alternative 
counterexample ( see [7], Section l. 5, Exercise 3). 

2.1.1. Let X ~ E be a set that meets each of Bi, B2 , B3. If ri(X) = 3, 
then X contains an Mi-independent transversal. 

Subproof. Let T ~ X be a transversal of B1, B2, B3, and suppose that T 
is Mi-dependent. Then since ri(X) = 3, there is some e EX such that 
e i cli(T). Without loss of generality, e E B1, so let f be the unique 
element in T n B1. Then ri((T - f) U e) = 3, and we are done. 0 

2.1.2. If no M1 -dependent transversal contains both a1 and b1, then 
there exists e E B3 such that r2(E- {a1,b1,e}) = 2. 

Subproof. For each a E B1 and b E B2, there exists c E Es such that 
{a, b, c} is Ms-independent (since rs(Bs) = 3). In particular, there 
exist e, f, g E Es such that { a2, bs, e }, { as, b3, J}, and { a2, b2, g} are M3-
independent. Then, by2.l.1, {a3,b2}U(Bs-{e}), {a2,b2}U(B3-{f}), 
and { a3 , b3} U ( Es - {g}) all have rank 2 in M2 ( since otherwise we would 
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find the required partition into transversals). The second and third of 
these sets both have two points in common with the first, and so they 
are all contained in a common line in M2 • 0 

Suppose Nfi has a line L containing at least seven elements. 
Since r 1(B1) = 3, \L - B1\ 2: 5. Up to symmetry, we may as­
sume that b1, b2, c1, c2, C3 E L and that a1 ¢:. cl1(L). Now neither 
{ ai, bi} nor { ai, b2} is in an Mi -dependent transversal. So by 2 .1. 2 
r2( { a2, a3, b2, b3}) = r2( { a2, a3, bi, b3}) = 2, contradicting the fact that 
r2(B2 ) = 3. Thus none of M1, M2, and M3 contain a line on seven or 
more elements. 

2.1.3. Every pair e E B;, f ¢:. B; is contained in some M;-dependent 
transversal. 

Subproof. Suppose no M1 -dependent transversal contains both ai and 
b1. Then, by 2.1.2 and symmetry, we may assume that r2 (E -
{ai,bi,ci}) = 2. Let X = E- {ai,bi,ci} and Y = X - Bi, Since 
each transversal in { ai, bi, c2, c3 } is Mi -independent and each transver­
sal in { a2, a3 , b2, b3 , c1} is Mr independent, there is no M3-independent 
transversal in X; thus r3(X) = 2. Similarly, since each transver­
sal in { a2, a3 , bi, c2, c3} is Nh-independent and each transversal in 
{ a2, a3 , b2 , b3 , ci} is M3-independent, we conclude that ri (Yu{ ai}) = 2. 
Without loss of generality, a2 ¢:. cli(Y), and so both {a2,b2,c2} and 
{a2, b3 , c3} are Mi-independent. This means that {a1 , bi, c2} and 
{a1, b1, c3} are Mrdependent, for otherwise we again have three dis­
joint transversals that are independent in their respective matroids. 
Thus r 2({a1,b1,c2,c3}) = 2 and E- {c1} is an eight-point line in M2, 
which is a contradiction. 0 

Assume B 2 is dependent in M1. Thus, some line L in M1 contains 
B2 ; we may assume that L also contains a1 and ci, since any non­
trivial line contains a transversal. Also, there must be some element 
a3 , say, of B1 that is not in ch(L). But then no transversal containing 
both a3 and c1 is dependent in M1, leading to a contradiction by 2.1.3. 
Thus each of B1, B2, and B 3 is independent in all three matroids. This 
provides additional symmetry since we may now permute (B1, B2, B3). 

Suppose next that M1 contains a five- ( or six-) point line L. By the 
conclusion of the last paragraph, we may assume that ai, bi, b2 , c1, c2 E 
Land that a3 ¢:. ch(L). Now, since there is an Mi-dependent transver­
sal containing a3 , bi, we have that {a3 , bi, c3} must be Mi-dependent. 
Likewise {a3 ,b2,c3} is Nfi-dependent, and thus ri({a3 ,bi,b2 ,c3}) = 2, 
contradicting the fact that a3 ¢:. cl1 ( L). Hence, none of M 1, Nh and 
NI3 have lines containing more than four points. 
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We suppose now that the transversal { a3 , b3 , c3} is Nh-independent 
and M3-dependent. Since r 1 (E - { a3 , b3 , c3}) = 3, we may assume 
that {a1,b1,ci} is M1-independent, and also that r3({a2,b2,c2}) = 2 
for otherwise we have the required disjoint bases. Now, at most one of 
a3 , b3 , and c3 may be contained in ch({a2,b2,c2}), so without loss of 
generality both { a2 , b3, c2} and { a3, b2, c2} are M3-independent. Then 
{ a3 , b2, c3} and { a2, b3 , c3 } are both Mrdependent. The transversal 
{ a2, b2, c3} must now be Mr independent, for otherwise we get a line 
in M2 containing { a3, b3, c3}. Thus r3 ( { a3 , b3, c2}) = 2, and further 
r 3({a3,b3,c2,c3}) = 2. Then both of {a2,b2,c3} and {a3,b2,c3} are 
M3-independent, for otherwise there is a line in M 3 that contains 
E- {a1,b1,c1}, But now r2({a3,b3,c2}) = r2({a2,b3,c2}) = 2. This, 
together with the dependence of {a3, b2 , c3} and {a2, b3, cJ} in M2, fur­
ther implies that {a3 , b3 , c3} is M2-dependent, which is a contradiction. 

From now on, we may assume that Nl1 , M2, and M 3 are the same 
matroid M, since they share the same set of independent transverals. 
Suppose that M contains the four-point line { a3 , b3 , c2, c3}. Without 
loss of generality, we may assume that { a1 , b1, c1} is independent in M, 
but then both {a2,b3,c3} and {a3,b2,c2} are also independent in M, 
so we are done. 

Thus, the rank-2 flats in M each contain at most three points. 
Let { a3, b3 , c3} be a dependent transversal of M. By 2.1.1, the set 
{ a3, b2, c1, c2} contains a transversal that is independent in M. Sup­
pose without loss of generality that {a3 , b2 , c2} is such a transversal. 
Then, again by 2.1.1, the set {a1, a2, b1, c1} contains an M-independent 
transversal, { a1 , b1, c1} say. Finally, { a2 , b3 , c3} is also independent, for 
otherwise we get a four-point line, and we have the three required 
transversals. D 

3. PROOF OF THEOREM 1.1 

Before proving Theorem 1.1, we require two further lemmas. These 
allow us to apply induction with Theorem 2.1 as the base case. Let 
13(M) denote the set of bases of a matroid M. 

Lemma 3.1. Let B 1 E 13(.Nli), B2 E 13(NI2 ) be disjoint bases of rank-n 
paving matroids on the same ground set, where n ~ 3. Let X be a 
two-element subset of B 1 . Then there is some x E X, y E B 2 such that 
(B1 - x) Uy E 13(M1) and (B2 - y) U x E 13(M2 ). 

Proof. Since M 1, M2 are paving matroids, (B1 - X) U y is M1-
independent for all y E B 2 . Suppose that both (B1 - x) Uy and 
(B1 - x') Uy are circuits in M1 , where x, x' are distinct elements of X. 
Then by circuit elimination, B1 is also a circuit of Nfi. Hence for each 
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y E B 2, at least one of (Bi - x) Uy and (Bi - x') Uy must be a basis 
of Jvli. 

Let Yi, y2 , y3 be distinct elements of B 2 . Then without loss of gener­
ality (Bi - x) Uyi, (Bi -x) Uy2 E B(Mi). But then either (B2 -yi) U x 
or (B2 - y2 ) U x is a basis of M2, so we are done. D 

Lemma 3.2. Let Bi, ... , Bn be disjoint sets of size n 2: 3 and let 
l\lfi, ... , Mn be rank-n paving matroids on LJi Bi such that Bi is a basis 
of Mi for each i E { 1, ... , n}. Then there is an ordering of the elements 
of Bi as ai, ... , an and a transversal {b2, ... , bn} of B2, ... , Bn such 
that for all j E {2, ... ,n}, the set (Bi - {a2, ... ,aj}) U {b2, ... ,bj} is 
a basis of M1 and (Bj - bj) U aj is a basis of Mj· 

Proof. For j = 2, the lemma follows immediately from Lemma 3.1. 
Suppose now that the lemma holds for some j E {2, ... , n-1 }, so that 
B' = (B1 - {a2, ... , aj}) U {b2, ... , bj} E B(M1), Then IB1 n B'I 2: 2, 
and so by Lemma 3.1 there is some element aj+l E B1 n B' and some 
bj+l E Bj+l such that (B' - aH1) U bj+l E B(M1) and (Bj+l - bj+l) U 
aH1 E B(MH1), thus proving the lemma. D 

Lemma 3.2 is stated for J° E {2, ... , n} to simplify the induction 
process. We only need the result for j = n to prove main theorem of 
this paper. 

Proof of Theorem 1.1. Assume that the theorem is true for some m 2: 
3, and taken= m + 1. Let B1 = {a1, ... , an} and bi E Bi for each i E 
{2, ... , n }. By Lemma 3.2 we may assume that A1 = { a1, b2, ... , bn} 
is a basis of M 1 and that B: = (Bi - bi) U ai is a basis of Mi for each 
iE{2, ... ,n}. 

Now let X = E - (B1 U A1) and Ml = (M)ai)IX for each i E 
{2, ... , n }. Then each Mf is a rank-m paving matroid having Bi - bi 
as a basis. By our induction hypothesis, there are disjoint transversals 
A;, ... , A~ of these m bases such that A; is a basis of Ml. But then 
Ai = A; U ai is a basis of Mi for each i E {2, ... , n }. Moreover, the 
bases A1, ... , An are disjoint transversals of Bi, ... , Bn as required. D 
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