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On Frechet Differentiability of some Non-Linear Operators occurring in Inverse Prob­
lems; an Implicit Function Theorem Approach 

T.J. Connolly and David J.N. Wall 
June 20, 1990 

Abstract 

The validity of Newton-Kantorovich methods for the computational solution of inverse problems 

is directly linked to the Frechet differentiablity of the appropriate non-linear operator. This paper 

illustrates how use of the implicit function theorem can considerably simplify the analysis of Frechet 

differentiablity and regularity properties of this underlying operator. Two widely studied boundary 

and exterior measurement inverse problems are considered and new regularity results are produced. 

1. Introduction 

Our interest in this paper is in proving certain regularity results of the non-linear operators 
occurring naturally in inverse or identification problems. We emphasise that we do so in order to 
justify the use of computational techniques which are widely used in the solution of such problems. 
In order for the non-linear operator approach to succeed the minimum requirement must be that 
the measurements depend continuously upon the function, say v, to be identified, that is if Tis 
the non-linear operator mapping v onto the quantity to be measured then it must be continuous. 
Knowledge of this continuity provides information on the topology of the function spaces upon 
which T acts. For example if T is continuous from some space only into L2 it would be no use in 
utilising point measurements to reconstruct the function to be identified. As the inverse problem 
is improperly posed, regularisation methods must be utilised for its solution, it then follows that 
continuity is also important to obtain the required regularisation results; then continuity- in a 
weak sense- of the inverse ofT may be required. 

To use a numerical method with rapid convergence properties in the solution of the inverse 
problem we must require higher regularity properties on T than just continuity. In particular to 
generate an affine approximation to T it is required that T be Frechet differentiable. To obtain 
high order convergence properties of the numerical method this Fnkhet derivative must also be 
Lipschitz continuous. 

In this paper we shall show how the implicit function theorem can be readily utilised in proving 
Frechet differentiability of the appropriate operator in many identification problems. This has 
been hinted at in previous treatments [6], [20), however they use it only for particular interior 
measurement problems. Here we extend its usefulness to general situations such as exterior and 
boundary measurement identification problems. Then we show how the Frechet differentiability 
result is readily extended to examine Lipschitz continuity properties of the operator. The versatility 
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of the implicit function theorem approach for proving Frechet differentiability and continuity of 
these non-linear operators does not seem to have been appreciated in the literature where a variety 
of different techniques have been used to obtain such results. 

The first work on proving Frechet differentiability of a non-linear operator for an inverse 
problem appears to have been performed in the geophysics literature, Woodhouse (32] considered 
the expression for the Frechet derivative of the inverse problem of free oscillations in the Earth. 
These were derived formally from a variational principle of Rayleigh by Backus and Gilbert (3]. 
Woodhouse showed that the expression for the Frechet derivative was not valid when the function 
to be identified was discontinuous and square integrable, that is existing in L2 • Parker (25] pointed 
out if the choice of function space was different, such as L00 the Frechet derivative expression 

might be valid. These difficulties and a further comment by Anderssen (2] motivated Parker [25] 
to re-examine the existence of the Frechet derivative for an inverse problem of the layered Earth 
which he had derived formally earlier (24]. In all the mentioned examinations the existence of the 
Frechet derivative are not carried out in a rigorous manner, also see more recently (5]. 

In more recent times Frechet differentiability and continuity results for the non-linear operators 
from various inverse problems have appeared in the mathematical literature. Apart from the 
aforementioned work (6] and (20], the results have been proved directly without the use of the 
implicit function theorem; see for example (10] and (26]. 

The computational methods for solution of the non-linear operator equations are based on an 
affine approximation of the operator equation. This affine approximation is required for the two 
standard methods used- the Newton-Kantorovich method and the optimisation method- this 
is because with the latter, the standard Gauss-Newton approximation to the Hessian is commonly 
used [15, chapter 10]. 

The following are some of the advantages which accrue to the non-linear operator approach to 
inverse problems. 

(i) It is a method which is applicable to a variety of inverse problems for any type of differential 
equation and any number of spatial dimensions. As well as determining a spatially varying 
coefficient in a differential equation, the Newton-Kantorovich method and its variants may be 
used to solve inverse boundary scattering problems. 

(ii) The approach extends approximate methods of solution, such as the Born approximation, into 
algorithms providing solutions to the full non-linear problem. 

(iii) Regularisation methods giving the existence and stability of solutions in the presence of mea­
surement noise may be incorporated. 

(iv) Non-linear operator methods may be used to reconstruct functions which are not very smooth. 
All that is required is a suitable regularity result, allowing one to prove Frechet differentiability. 
Other methods for solving inverse problems often require fairly strong smoothness assumptions 
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on the function being reconstructed [12), [27). 

(v) Importantly for many inverse problems, at present, it seems there is no other way of recon­
structing an arbitrary function, that is no direct (non-iterative) method of solution is known. 

There is a need to examine theoretical questions in addition to a numerical solution of the 
inverse problem. There are numerous iterative schemes for the solution of inverse problems in the 
literature which have been derived in an ad-hoc manner. Many of these on further investigation 
turn out to be variants of the Newton-Kantorovich method- or perhaps gradient methods. Some 
authors in the engineering literature derive what they call Newton-Kantorovich methods, but 
neglect to prove F'rechet differentiability. Such knowledge gives an idea of how the iterative scheme 
can be expected to behave, and how it may be possible to go about improving its performance. In 
addition, many approximate methods for the solution of these problems are obtained in an ad-hoc 
manner. These often may be formalised as a linearisation of the non-linear operator equation about 
some simple approximation- often a constant function. 

We shall not consider the application of the implicit function theorem to boundary scattering 
problems here- although it has been applied to such problems [9). 

Once F'rechet differentiability has been proven, other properties of the non-linear operator can 
be easily found. We illustrate this in the sequel where applicable. It is important to observe that 
whatever formulation is utilised in showing F'rechet differentiability of the non-linear operator, the 
result will hold for any other formulation of the same mapping, however some forms of explicit 
formulae for the F'rechet differential may be more suitable computationally than others, see f<:>r 
example (3.6) and (3. 7). 

We shall illustrate the application of our technique to two problems widely examined in the 
inverse problem literature. Both of which involve the identification of a spatially varying param­
eter in a partial differential equation. The first problem being examined in §3 and is described 
through the modified Helmholtz equation and the second problem is examined in §4 and is the time 
independent diffusion equation. 

The two Frechet differentiability results proven in §3 are complementary. The result of §3.1 
gives differentiability for a continuous refractive index of arbitrary distance from unity. The result 
of §3.3, only requires the refractive index to be square integrable however it must be sufficiently close 
to unity. §3.2 shows how the results of §3.1 can be extended to examine the regularity properties 
of a boundary measurement inverse problem- namely identification of the refractive index from 
measurements of the far-field amplitude. These three results illustrate the essential characteristics 

of the implicit function theorem approach. In §4 we examine an inverse problem associated with the 
time-independent diffusion equation which has been extensively examined in earlier works, see [10) 
for some discussion of the relevant literature. In §4.1 after examining the F'rechet differentiability, 
we show that the non-linear operator is a compact mapping and hence is ill-posed, this implies 
that any direct attempt at linearization will result in a an unstable solution. In §4.2 we extend the 
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results available in the literature for the boundary measurement inverse problem. 

2. Preliminaries 

For the readers convenience we quote the well known implicit function theorem which is central 
to our approach. 

THEOREM 2.1. (Implicit Function Theorem) Consider the functional e(v,y), v E X, 
y E Y, where e :X X Y ~-+ W with X, Y, W being Banach spaces. Then suppose that there exists 
an open subset Xo C X, such that for every v E Xo the equation e( v, y) = 0 has a unique solution 
y = y( v) in Y, it then follows 

(a) The map v--> y(v), v E Xo, y E Y defined from X0 --> Y is continuous upon satisfaction of 
the additional assumptions 

( i) e( v' y) is continuous, 

( ii) ey(v,y) is continuous in v andy, 

(iii) [ey(v,y)]-1 exists as a bounded mapping W--> Y. 

(b) Moreover the map is Frechet differentiable if the conditions in (a) are satisfied and also ev( v, y) 
is continuous in v andy, with 

y'(v) = -[ev(v,y)t1ev(v,y). 

Proof: See [33, §12.4]. 0 

Observe this is the strong form of implicit function theorem in that the Frechet derivative 
is given at all v E X 0 ; the basic form of implicit function theorem only provides information at 
a point v0 E X 0 • We shall need the following corollary to handle inverse problems in which the 
measured quantity is a functional of the solution of the direct problem. 

COROLLARY 2.1. If an operator B(v,y) is continuously differentiable and a function 
e( v, y) exists as in Theorem 2.1 then B( v, y( v )) is Frechet differentiable with respect to v. Moreover 

B'(v) = Bv(v,y)+By(v,y)y'(v), 

where y'( v) is as given in Theorem 2.1. 

Proof: This follows from the chain rule and Theorem 2.1. 0 

The inverse problem is one of identification of v given an approximate measurement to y, 

whereas the solution of e(v,y) = 0 for y, given v, is generally termed the direct problem. Observe 
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that the assumptions (i)- (iii) of Theorem 2.1 require suitable knowledge of the regularity properties 
of the direct problem. 

Sometimes the nature of the continuity of the non-linear operator is required, for example the 
Lipschitz constant of Lipschitz continuity. The Lipschitz continuity result of the operator Tin our 
context gives a bound on the change in the solution of the direct problem that results from a change 
in the coefficient v. We note such a result for the operator T-1 would be very desirable for the 
inverse problem, but is not one which is obtainable in general, compare with §4.1. The Lipschitz 
continuity may be easily obtained from the appropriate Frechet differentiation result via and the 
mean value theorem for operators which we now quote. 

THEOREM 2.2. (Mean Value Theorem) If X, Y are Banach spaces and D a convex subset 
of X, then if B : D ~--> Y is Frechet differentiable at every point of D, then 

liB(!)- B(g)IIY ~ Lllf- gllx, 

where f, g ED and the Lipschitz constant L = suphED IIB'(h)IIY· 

Proof: See for example [33, p265, et. seq.], or [18, Lemma 4.47]. [J 

For use in the sequel we define our standard the operator formulation of the boundary mea­
surement inverse problem as 

T(v) = B(v,y(v)) = :E, x EM, 

here :E are the measurements of y taken from a set M on the surface S and where the support of 
v is n c lRn with the boundary of n sometimes being s. 
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3. Modified Helmholtz equation- penetrable wave scattering 

The inverse problem under consideration in this section is one of identifying a spatially varying 
refractive index, n, from the modified Helmholtz equation. 

The direct scattering problem described by 

(~+k2n2 (x))u(x)=O, xElR.U, nE{2,3}, (3.1) 

with the compact set {supp n = n C JR.U}, and where the total wave function u can be decomposed 
as 

(3.2) 

The incident wave uinc is produced by sources exterior ton so it thereby satisfies a homogeneous 

Helmholtz equation with constant wave number k within n. It therefore follows that u satis­
fies a non-homogeneous Helmholtz equation with wave number k and the non-homogeneous term 
-k2(n2 -1) is considered as specifying the source of u. In (3.2) u8 is the scattered wave which can 
be considered as arising from the presence of the scattering centre n with refractive index specified. 
The scattered wave function must also satisfy the radiation condition 

OU 8 

or - iku8 = o(r(l-n)/2), r ~ oo, 

with r = Jxl and a suppressed time dependence exp( iwt) of u assumed. The standard representation 
theorem applied to (3.1) then shows that an integral equation for u may be written as 

u(x) = uinc(x) + k2 fo (n2 -1}r(x, x')u(x') dV', xED, 

where D is a compact region in lR n, excluding sources of uinc, with n C D and 

exp(ikR) 

{ 
41rR 

I= ~H~1\kR) in lR2 

' 
R = lx- x'J. 

(3.3) 

It is important to appreciate that the integral equation (3.9) has been obtained by utilising the 
assumption that the refractive index is continuous in lR n. If this is not the case, transmission 
conditions must be added to the specification of the problem, and under some conditions surface 
integral terms occur in the integral equation; see [29]. For later convenience we define the linear 
integral operators 

lK = k2 ln 1(x,x') dV', lKv = JK(v-1), 

and set v = n2 • Then the solution of the direct problem is also the solution of 

(3.4) 

3.1: Integral equation solution. To study the inverse problem we first need existence and 
regularity results for the direct problem. These are provided in Theorem 3.1. 
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THEOREM 3.1. If n E C0 (S"2) and uinc E C1 (J5) then there exists a unique solution 
u E C1(D) of (3.4). Moreover 

for some constant C. 

Proof: The existence and boundedness results follows from the Fredholm alternative theorem 
applied to (3.4). To apply this the compactness of JK 11 : C1(D) ~--+ C1(D) is required. As JK11 is an 
integral operator with a weak singularity it follows JKII : C0 (J5) 1-+ C1(J5) is bounded [22, p159]. 
Then as the imbedding ll : C1 (D) H C0 (D) is compact, and the composition of a bounded operator 
and a compact operator is compact, namely JK11 ll, we have the desired compactness. To complete 
the proof, the Fredholm theorem shows uniqueness implies existence, and the required uniqueness 
is given by (31] - the work of (21] is used in obtaining it. c 

The functional 
e(v,u) = U(VjX)- JKIIU(VjX)- Uinc(x) = 0, (3.5) 

which is obtained from the integral representation for the direct problem equation (3.4) can be 
utilised with the implicit function theorem to obtain the Frechet derivative of the mapping v-+ u. 
Here in the interior inverse problem u is to be measured throughout D. First appropriate function 
spaces for the mapping e must be defined, so note e: X0 x C1(D) ~--+ C1(D) with X 0 = {v: v E 

C0 (D), v > 0}. 

THEOREM 3.2. The map v-+ u from X 0 to C1(D) is Frechet differentiable, with Frechet 
differential 

u'(v)s =[I- lK 11t 1JKu(v)s 

= fo G(v; x, x')u(v; x')s(x') dV', 

where G(v; x, x') is the Green function pertinent for the refractive index v, see (3.9). 

(3.6) 

(3.7) 

Proof: Observe u'(v) is a linear operator, the Frechet derivative with s E X 0 • To prove differen­
tiability we check the conditions of the implicit function theorem. First Theorem 3.1 assures us 
there is only one solution u(v) in C1(D) then: 

Condition {i). To show e is continuous in v and u let us consider 

oe = e(v + ov, u + ou)- e(v, u) 

= ou- JK(ovu + (v- 1)ou + ovou), 

then 

lloeJicl(D) ~ lloullcl(D) + IIJKIIII8vu + (v- 1)8u + ovoullco(o)' 

with the standard operator norm 

(3.8) 
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being used for lK. It then follows 

!loellcl(D) :::;lloullcl(D) + IIJKII(IIovllco(n)llullcl(D) + !lv- 1llco(n)ll8ullcl(D) 
+ !lov!lco(IT) !loullcl(D)) 

on using !lullco(IT) :::; llullcl(D) · 

The limit !lov!l, 118u!l _,. 0 then gives the result. 

Condition (b) and {ii). To show ev is continuous in v and u consider the partial Frechet 
derivative of (3.5), which follows as 

ev(v, u)s = -lKus 

because (3.5) is linear in v, also note that s E C0 (!"2). 

Then 
lloev!lcl(D) = !lev(v + ov, u + ou)s- ev(v, u)sllcl(D) = IIJK8usllcl(D) 

:::; !llKII llousllco(IT) 

:::; IIJK!I ll8ullcl(D) llsllco(IT)· 
It therefore follows ev is continuous in v and u. 

The partial Frechet derivative of e with respect to u is 

eu(v, u)s =(I -lKv)s 

as (3.5) is linear in u, and with s E C1 (D). eu can be shown to be continuous in v and u in a 
similar manner to ev· 

Condition (iii). It follows [eu(v, u)]-1 is bounded from Theorem 3.1. 

The explicit expression for the Frechet derivative is given by the implicit function theorem, 
and (3.6) can be arranged by use of the integral equation satisfied by the Green function G(v; x, x') 
-the fundamental solution of (3.1) - namely 

G(v;x,x') = 1(x,x') + k2 fo[v(x") -1]t(x,x")G(v;x",x')dV", x,x' ED, (3.9) 

to yield equation (3.7). 0 

3.2: The far-field inverse problem. We now show how the results from §3.1 can be used 
for the boundary measurement inverse problem where now u is to be measured on a ball in the 
far-field. Consider an incident plane wave uinc = exp( i!;_i · x) where the direction of the incident 
wave vector is given by &i and k = 1&1. We shall denote kxflxl by /;_8

, then the asymptotic far-field 
behaviour is given by 
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with the complex scattering amplitude g(11; &i, f£8
) described by 

The non-linear mapping to be considered is T : 11 -+ g 

where g are the measured values of g(11*), 11* being the true refractive index to be determined. 

THEOREM 3.3. The map 11-+ g(11;k.i,k.s) from X0 - JR is Frechet differentiable with the 
Frechet differential 

(3.10) 

Proof: If 

withE = g then from Corollary 2.1 

k2 r . .... I • k2 r . ... I • 

g1(11)s = 
4

11' Jn e-'.c:. ·x u(11;f)s(x')dV' + 
4

11' Jn e-'.c:. ·x [11(x') -1]u1(11;&')s(x 1)dV1
• (3.11) 

The second integral can be written as 

k2 r 2 r . ~-· " . 
4

11' Jn[k Jn G(11;x',x")[11(x')-1]e-'~ ·x ]dV']u(11;&',x11 )s(x")dV11 

on use of (3.7) and Fubini's theorem. 

But 
u(11; f£8

, x")- e-ifi'·x
1 = k2 k G(11; x', x11 )[11(x')- 1]e-ifi'·x

1 

dV1 

so that using the symmetry of the Green function G(11; x', x") = G(11; x", x') it follows that the 
second integral can now be written as 

so on use of this expression in (3.11) we find (3.10). 

This result implies the non-linear operator T is both differentiable and continuous and in the 
next section we will illustrate how it is possible to imply Lipschitz continuity of such an operator. 

3.3: Born Series Solution •. One method of solving the direct scattering problem is via 
successive approximations to the integral equation (3.4), or equivalently via the Neumann series. 
The resulting series for this problem is sometimes known as the Born series and its truncation 
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after one term as the Born approximation. As we will show this approach converges when the 
wavenumber is small enough, and when the refractive index does not vary too far from unity (in 
the L2 norm). Extensive numerical solutions of the direct problem has been made by use of the 
Born approximation in both the electrical engineering and optical literature. In two dimensions 
[16] and three dimensions [13] use has been made of this approach to solve the inverse scattering 
problem. 

We shall formalise the Born approximation used in the inverse problem solution as the Frechet 
derivative (that is the formal linearisation) of the refractive index to field map about a unity 
refractive index. This view differs from that of most authors who consider the Born approximation 
as an approximate solution of the direct problem, and then use this to obtain an approximate 
solution of the inverse problem. 

Again we must define appropriate function spaces -with v E L2(fl) and u E C0 (fl) -the 
boundedness of the operators lK : L2(fl) I-+ C0 (fl) and lKv : C0 (fl) I-+ C0 (fl) follows from the 
weak singularity of their kernels. We shall need operator norms other than (3.8), on the integral 
operators involved, so we shall define the standard uniform operator norm of 1K 11 by II1Kvlloo and 
the operator norm for lK as 

IIJKII = sup II1Kullco(o)· 
llull2,n=l 

It immediately follows from these norms that 

(3.12) 

We shall consider the operator lk is defined as lK, but now mapping L2(fl) -+ C0(D), with 
the standard operator norm. 

THEOREM 3.4. JflllKvlloo < 1 then there exists a unique solution u E C0 (fl) to the integral 
equation (3.4) with 

00 

U =(I+ L lK~)uinc (3.13) 
n=l 

and 

(3.14) 

Proof: This follows directly from application of Banach's lemma to (3.4) (see [18]). Cl 

The Born approximation to the solution is given by the first iterate in (3.13), namely 

(3.15) 

with error 
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Now we shall need the following lemma, which is an extension of a result of Colton [7, p 40] 

to give sufficiency conditions that II1Kvlloo < 1 in Theorem 3.3. We shall restrict the remainder 

of this section to the three dimensional case, that is in JR3 . Assume first that Q is a ball, that is 

Q = {x E lRn : lxl ~ a}, there is no difficulty if Q is not a ball, then the smallest ball containing Q 

may be considered. 

LEMMA 3.1. Let fL = llv- 1llz,n, then JllKvlloo < 1 whenever k2 < 1/(tta). 

Proof: Now 

J(lKvu)(x)J = k2 l k !(x,x')[v(x')- 1Ju(x') dV'J, 

and 
k2 llv(x') -11 , 

l(1Kvu)(x)l ~ -4 iiullco(fi) I 'I dV 
1r 0 x-x 

k2 tt { dV' 
~ 41f' iiullco(o") Jn lx- x'J2 

from using the Schwartz inequality. Now from [22, pp159] the integral on the right-hand side is less 

than or equal to 41f'a hence it follows jlK 11 u(x)J ~ k2ttaiiullco(IT) or II1Kvlloo ::; k2tta and the result 

follows. The analogous result for a one-dimensional scattering problem is contained in [4). c 

We now require a result for the solution (3.13) continued into D via (3.4). 

LEMMA 3.2. (Colton) If II1Kvlloo < 1 then there exists a unique solution u E C0 (D) where 
all sources ofuinc are external to the compact domain D. 

Proof: The equation (3.4) gives a unique continuation of u onto D (see [7, p 39]). 

We shall consider v as belonging to the open set X 2 defined by 

Xz = {v E L2(Q), llv- 1llz,n < 1/lllKII}, 

and if n is a ball of radius a it follows from Lemma 3.1 !IlK II = ak2• We shall then need the following 

regularity result. 

LEMMA 3.3. If v E X 2 then there exists a unique solution u E C0 (D) to (3.4), moreover 

(3.16) 

for some constant C. 

Proof: As v E X 2 it follows II1Kvlloo < 1, hence Lemma 3.1 shows there exists a unique solution 

u E C0 (D). Now u(x) = uinc(x) + lk(v- 1)u(x), xED so on taking norms of this equation and 

using (3.14) we can show 

(3.17) 

so that (3.16) follows. 
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THEOREM 3.5. The map v --> ·u(v) from X2 --> C0 (D) is Frechet differentiable with the 

Frechet differential 

u'(v)s = [I -JK(v- 1)r11Ku(v)s. (3.18) 

Proof: We examine the conditions of the implicit function theorem where e(v, u) is as given in (3.5) 
but u is to be understood to be defined through (3.13) and then e : X2 X C0(D) 1--+ C0 (D). 

Observe that Lemma 3.2 assures us that there is only one solution u(v) in C0 (D) then: 

Condition (i). To show e is continuous in v and u consider 

oe = e(v + 8v, u + 8u)- e(v, u) 

= 8u -JK(8vu + (v- 1)8u + 8v8u), 

then 

It then follows 

The limit ll8vll, ll8ull--> 0 then gives the result. 

Condition (b) and (ii). To show ev is continuous in v and u consider the partial Frechet 
derivative of (3.5) which is 

ev(v, u)s = -lf<us, 

because (3.5) is linear in v, also note that s E L2(!1). 

Then 
ll8evllco(i5) = llev(v + OV, U + 8u)s- ev(v, u)sllco(D) = IIJK8usllco(D) 

~ lllKII ll8usll2,n 
~ IIJKIIII8ullco(D) llsll2,n· 

It therefore follows ev is continuous in v and u as lK is bounded. 

The partial Frechet derivative of e with respect to u is 

eu(v, u)s =(I- 1Kv)s, 

(3.19) 

as (3.5) is linear in u, with s E C0 (D). eu may be shown to be continuous in v and u in a similar 

manner to ev· 
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Condition {iii). It follows [eu(v, u)]-1 is bounded from Theorem 3.3. 

The explicit expression for the Frechet derivative is given by the implicit function theorem, 
and is to be interpreted as a series like the solution for the direct problem, namely (3.13). c 

The Frechet derivative at a refractive index of unity is much simpler than (3.18). 

COROLLARY 3.1. 
differential given by 

When v = 1 the Frechet derivative u1(1) : L2(U) ~---+ C0 (D) with the 

u'(v)s = JK:uinc s 

= k21/Uincs dV'. 

This corollary shows that the Born approximation (3.15) gives the formal linearization of u(v) 

about a refractive index of unity. Most other authors consider the Born approximation to be an 
approximate solution of the direct problem; obtained as the leading term of the Neumann series. 
This then provides a linear integral equation which can be used to solve for an approximate solution 
to the inverse problem. We have shown here that this particular linearization is in fact the Frechet 
derivative - that is a uniform linear approximation - to the operator equation about a unity 
refractive index. This Fr1khet differential can be utilised in a modified Newton-Kantorovich 
scheme to solve the inverse scattering problem, this is done in (30], however there is no guarantee 
of convergence of such a scheme. 

As Frechet differentiability implies continuity we have from Theorem 3.4 continuity of the 
appropriate operator for v E X 2 • To obtain Lipschitz continuity a more restrictive sub-space than 
X 2 must be used. We shall illustrate the application of the implicit function theorem result in 

proving Lipschitz continuity of this operator via the mean value theorem Theorem 2.2. 

COROLLARY 3.2. The map v-+ u(v) for v E X1, where X1 = {v E L2(U), iiv- 1112,n :5 
M < 1/IIJKII}, is Lipschitz continuous with Lipschitz constant L. 

Proof: The Lipschitz continuity follows directly from the Theorem 2.2 as X 1 is a convex set. 
Theorem 2.2 shows 

so from Lemma 3.3 and (3.17) this implies 

where 
L = 1 + lllKIIIIv- 1112,n 

0 
1- lllKvlloo ' 
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We have proved Lipschitz continuity within the Born series regularity theory but with the 
requirement that v belong to a bounded subset of L2(n). This result is complementary to the 
result of [31] , who required v to belong to a compact subset of C0 (n). Our result requires that v 

be sufficiently close to unity, [31] has no such L2 limit on v. 

Consideration of the far-field inverse problem within the Born series solution can be carried 
out in a similar manner to §3.2. 

4. Time independent Diffusion equation 

The direct problem to solve is 
\1. (v\lu) = p, X En, 

u = 9 x E an, 
(4.1) 

for u, given the diffusivity v, p, and g. We shall only consider the Dirichlet boundary value problem 
here, the Neumann boundary value problem can be handled in a similar manner. The bounded 

domain n is assumed to be convex and to have a smooth boundary curve an of finite length with 

an = n\n, an E C2•a, 

here the Holder spaces cm,a are equipped with the standard norm which is denoted by II . llm,a' 
mE Z+ U {0}, a E lR+· 

We shall consider classical solutions of ( 4.1) and to achieve the required regularity results the 
additional assumptions that p E C0 •a(n), g E C2•a(8n) and v belonging to the open set 

Xo = {v: v E C1•a(n), v > 0}, ( 4.2) 

will allow existence and regularity results for the direct problem to be provided by the following 
theorem. 

THEOREM 4.1. For v E X 0 there exists a unique solution u E C2•a(n) of (4.1), moreover 

when g = 0 

llullz,a ~ C(v, n)IIPIIo,a· 

Proof: Follows from [14, p331 et. seq.] 0 

We first examine the inverse problem with measurements in the interior and then show that 
the boundary measurements problem can be analysed subsequently with the use of these results. 

4.1: Interior Measurement. We examine the Frechet differentiability of the operator with 
classical solutions of the direct problem. To apply the implicit function theorem u must belong 
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to a linear sub-space and as u defined through ( 4.1) it follows u belongs to an affine sub-space. 
This may be rectified by the following considerations. Extend g E C2•a(an) tog E C2•a(n) see for 
example [17, p 92], so then u = u - g satisfies 

V · (v'\i'u) = p- V · (v'\i'g) =: p, X E n, 
u = o, x e an. 

Observing that u1(v)s = u1(v)s we need only consider the homogeneous boundary condition problem 
further. We will drop the tildes in the sequel and require the solution to the direct problem to 

belong to Yo with Yo= {u E C2•a(n),·u =::: 0 on an}. 

Then the functional 

~(v, u) = V· (vVu)- p = 0, (4.3) 

which is obtained directly from ( 4.1) can be utilised with the implicit function theorem to obtain 
the Frechet derivative of the mapping v-+ u. First note~: X 0 x Yo ~-r C0•a(n). 

THEOREM 4.2. The map v-+ u(v) from X 0 -+ C2•a(n) is Frechet differentiable with the 

Frechet differential 

u'(v)s =in G(v; x, x')V' · [s(x')V'u(v; x')] dV'. ( 4.4) 

Proof: We examine the conditions of the implicit function theorem. Observe that Theorem 4.1 

assures us that there is only one solution u(v) in Yo. 

Condition (i). To show~ is continuous in v and u consider 

ll8~1lo,a = lle(v + 8v, u + 8u)- e(v, u)llo,a 

=!IV· (vV8u) + V· (8vVu) + V· (8vV8u)llo,a 

~ i(llviii,all8ull2,a + 1!8viii,allull2,a + !18vlh,all8ull2,a, 

where use has been made of !IV· (vVu)l!o,a ~ !llvllt,allull2,a which may be derived by expanding 
V · (vVu) and using the properties of the Holder norm. The limit ll8vjj, ll8ull -+ 0 then gives the 
result. 

Condition (b) and (ii). To show ev is continuous in v and u consider the partial Frechet 
derivative of ( 4.3) which is 

ev(v,u)s =::: v. (sVu) 

because (4.1) is linear in v, also note that s E C1•a(n). Then 

l!oevllo,a = llev(ll + 8v, u + 8u)s- ev(v, u)sllo,a =::: IIV· (sV8u)llo,a 

~ ill8ull2,alls!II,a. 

It therefore follows ev is continuous in ll and u. 
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The partial Frechet derivative of e with respect to u is 

~u(v,u)s = Y' · (v\i's) 

as (4.1) is linear in u, with s E C2 •a(n). ~u may be shown to be continuous in v and u in a similar 

manner to ev• 

Condition (iii). It follows [eu(v, u)]-1 is bounded from Theorem 4.1. 

The explicit expression for the Frechet derivative is given by the implicit function theorem by 
noting 

[e;1(v, u)]p = k G(v; x, x')p(x') dV, 

where G(v; x, x') is the Green function pertinent for the diffusivity v and satisfying homogeneous 
Dirichlet data on an. IJ 

Chavent [6] proves an analogous result for the same problem by also using the implicit function 
theorem but for weak solutions {v E L00 (0), v > 0}, u E H 1 (D). Chavent's result and Theorem 
4.2 are complementary, although his result has a weaker assumption on the function v to be 

reconstructed, however our Theorem 4.2 has a stronger function space for the range. For example, 
Theorem 4.2 allows for point measurements whereas Chavent's does not in lR.n, n 2: 2. 

Theorem 4.1 can now be used to show Lipschitz continuity of the operator in a similar manner 

as in Corollary 3.2 [9], however instead, we will illustrate that the operator T(v ), as defined through 
( 4.3), is compact when T: X 0 ~-+ Z where Z may be L2(D) or C0 (D). As the inverse of a compact 
operator is unbounded this implies the well known property of inverse problems, they are improperly 

posed. Observe this result is for the non-linear operator, often in the literature the ill-posedness is 
shown only for the linearisation of this operator and this does not always imply that the underlying 
non-linear operator is in fact compact. Our result implies whatever formulation is utilised for the 

derivation of a Frechet differential the linearisation will be ill-posed. 

We first must show T : v -> u( v) is bounded, and to do this we require a tighter function space 
than X0 , that is we require v to be bounded below so we shall now define X1 = {v E C1•a(n), v 2: 
c > 0}. 

LEMMA 4.1. The map v-;. u(v) is bounded. 

Proof: To show that bounded sets of X1 are mapped to bounded sets of C2•a, that is if v E X1 

and llvi!I,a ~ lvfo then 1!ul!2,a ~ No for some No. Now note from [14, p335] 

with C = C(a,c,lvi0 , diameter (D)). The result follows. IJ 
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THEOREM 4.3. 
compact. 

The operators T(v) : X 1 ~-+ Z and T'(v) : C1•a(n) ~-+ Z with v E Xo are 

Proof: The operators T(v) : X 1 ~-+ C2•a(n) and T'(v) : C1 •a(n) ~-+ C2•a(n) are bounded from 
Lemma 4.1 and Theorem 4.2, respectively. As the imbedding C2 •a(n) to Z is compact, the result 
follows as the composition of a compact operator and a bounded operator is compact. [J 

In particular this result shows the inverse problem will be unstable for point measurements of 
u (from setting Z = C0 (!1)) or distributed measurements (from setting Z = L2(!1)). 

4.2: Boundary Measurements The Frechet differentiability result of Theorem 4.2 can 
be easily extended to the boundary measurement inverse problem, where in the case considered 
here v ~~, the normal flux (current) is measured on the boundary - with Dirichlet boundary data 
being specified. So if 

with 

being specified, we can show. 

au 
B(vu)=v- onan 

' an 

u(v) = g, on an, 

THEOREM 4.4. The map T: X 0 1-t C 1•a(an) is Frechet differentiable with 

1 au'(v)s au 
B (v)s = v a lao+ s-a lao, n n 

where u' ( v )s is given by ( 4.4). 

(4.5) 

Proof: From Theorem 4.2 u(v) is Frechet differentiable with derivative (4.4) then the differentia­
bility of B(v) with differential ( 4.5) follows from Corollary 2.1. a 

This result allows for point measurements of v~~ lao , or as distributional measurements in 
L 2( an), that is point measurements. 

The Newton-Kantorovich method for the determination of v resulting from equation ( 4.5) and 
Theorem 4.4 will again require the calculation of Green functions, a more computational efficient 
method is described in [10]. This reference also provides a derivation of the Frechet derivative, 
although by methods other than the implicit function theorem. 
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