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Abstract - A separative ring is one whose finitely generated projective modules satisfy 
the property A EB A � A EB B � B EB B ==} A ,...., B. This condition is shown to provide 

a key to a number of outstanding cancellation problems for finitely generated projective 

modules over exchange rings. It is shown that the class of separate exchange rings is 

very broad, and, notably, closed under extensions of ideals by factor rings. That is, if an 

exchange ring R has an ideal I with I and Rf I both separative, then R is separative. 
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ABSTRACT. A separative ring is one whose finitely generated projective modules satisfy the 
property A EB A ~ A EB B ~ B EB B ~ A ~ B. This condition is shown to provide a key to 
a number of outstanding cancellation problems for finitely generated projective modules over 
exchange rings. It is shown that the class of separative exchange rings is very broad, and, 
notably, closed under extensions of ideals by factor rings. That is, if an exchange ring R has 
an ideal I with I and R/ I both separative, then R is separative. 

INTRODUCTION 

In order to study the direct sum decomposition theory of a class of modules, it is im­
portant to know how close the class is to having an 'ideal' decomposition theory. Of course 
in the presence of suitable chain conditions, each module in the class is a direct sum of 
indecomposable modules, and an ideal decomposition theory would yield uniqueness of 
decompositions into indecomposables, as in the Krull-Remak-Schmidt-Azumaya Theorem. 
However, when the class of modules is not built from indecomposables, an 'ideal' decom­
position theory must be formulated in terms of different conditions. Among the most basic 
and useful are: 

(C) Cancellation: A EB C"' B EB C =::} A"' B. 
(UR) Uniqueness of n-th roots: EB7=l A"' EB7=l B =::} A"' B. 
These conditions have been studied in many contexts. We focus on the class F P( R) 

of finitely generated projective modules over a (von Neumann) regular ring R, or, more 
generally, an exchange ring. It follows from a combination of results of Fuchs, Kaplansky 
and Handelman that the regular rings whose finitely generated projective modules satisfy 
(C) are precisely those with stable rank one (cf. [25, Theorem 4.5 and Proposition 4.12]). 
This result was recently extended to exchange rings by Yu [50, Theorem 9]. However, the 
second author has constructed simple regular rings with stable rank one over which (UR) 
fails [27]. On the other hand, right self-injective rings R constitute a nice class of exchange 
rings such that F P( R) satisfies uniqueness of n-th roots for all n ( cf. [24]), but in general 
F P( R) does not satisfy cancellation. 
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We say th31t Risa separative ring if the following condition holds for all A, B E F P(R): 

Obviously the class of separative rings includes all rings R such that F P( R) satisfies either 
cancellation or uniqueness of n-th roots. As we will prove, it includes many more - perhaps 
all - exchange rings. One important source of construction of separative exchange rings is 
provided by our Extension Theorem for separative exchange rings (Theorem 4.2). It states 
that, for an exchange ring R with a (two-sided) ideal I, the ring R is separative if and only 
if I and R/ I are separative. (Here, saying that I is separative is equivalent to saying that 
all the unital rings eRe are separative for e = e2 E I.) This is in sharp contrast with the 
class of exchange rings with stable rank one (see for example [25, Example 4.26]). 

We also prove that separativity for an exchange ring R drastically reduces the possible 
values of the stable rank of R, to 1, 2, or oo. It is conceivable that all exchange rings 
are separative. As we show, this would imply affirmative answers to five outstanding 
open questions in the theory of regular rings (see Section 6). This illustrates the role of 
separativity as a unifying principle for cancellation problems over exchange rings. 

The term separativity is borrowed from semigroup theory. Following Clifford and Pre­
ston [17, p.131], an abelian monoid Mis said to be separative if for all a, b E M, 

a+a=a+b=b+b a= b. 

They chose this term because, by a 1956 result of Hewitt and Zuckerman [32], M is 
separative if and only if the characters of M separate elements of M. (See [17, Theorem 
5.59]. For this result, a character of M can be any semigroup homomorphism of M into 
the multiplicative semigroup of complex numbers.) We have chosen our terminology in 
such a way that a ring R is separative if and only if the monoid V(R) of isomorphism 
classes of finitely generated projective R-modules is a separative monoid. We have found 
it useful to apply semigroup methods in V(R) to prove some of our results. 

In the last section, we give some applications of our results to the field of operator 
algebras. Since C*-algebras with real rank zero are exchange rings (Theorem 7.2), our 
results can be applied to this important class of C*-algebras. Moreover, this theorem 
shows that the exchange property provides a uniform algebraic viewpoint for direct sum 
decomposition properties over regular rings and C*-algebras with real rank zero, and hence 
it gives further motivation to work within the class of exchange rings. 

Here is a brief outline of the paper. In Section 1, we recall some basic definitions and 
we prove some preparatory lemmas. In Section 2, we develop some basic characterizations 
and initial applications of separativity. Section 3 is devoted to the study of stable rank 
conditions on exchange rings. In particular, it is proved that the only possible values of 
the stable rank of a separative exchange ring are 1, 2, or oo. We prove in Section 4 one 
of the main results of this paper, namely the Extension Theorem for separative exchange 
rings. Section 5 gives a corresponding extension result for the smaller class of strongly 
separative exchange rings, which is obtained as a corollary of the above. Finally, Sections 
6 and 7 examine some particular features of our results for the important classes of regular 
rings and C*-algebras with real rank zero, respectively. 
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Since mos_t of the literature on regular rings and exchange rings is written for the unital 
case, we shall operate under the dictum "all rings have units" for most of the paper. When 
discussing C*-algebras in the final section, however, we state our results for not necessarily 
unital algebras as far as possible. Our notation is standard; see for instance [9, 25). In 
particular, we write nA for the direct_ sum of n copies of a module A. We use the notation 
A ;S© B to indicate that a module A is isomorphic to a direct summand of a module B. 

All monoids considered in this paper will be abelian monoids, written additively. 

1. EXCHANGE RINGS AND REFINEMENT MONOIDS 

We begin by recalling some basic concepts that are central to our work, in particular 
the notions of 'exchange ring' and 'refinement monoid', and we introduce a natural refine­
ment monoid V(R) that faithfully records direct sum decompositions of finitely generated 
projective modules over any exchange ring R. 

An R-module M has the exchange property (see [19]) if for every R-module A and any 
decompositions 

A = M' ffi N = EB Ai 
iEJ 

with M' ~ M, there exist submodules Ai s;;; Ai such that 

A= M' ffi (EB A~)·· 
iEJ 

(It follows from the modular law that Ai must be a direct summand of Ai for all i.) 
If the above condition is satisfied whenever the index set is finite, M is said to satisfy 
the finite exchange property. Clearly a finitely generated module satisfies the exchange 
property if and only if it satisfies the finite exchange property. It should be emphasized 
that the direct sums in the definition of the exchange property are internal direct sums of 
submodules of A. One advantage of the resulting internal direct sum decompositions ( as 
opposed to isomorphisms with external direct sums) rests on the fact that direct summands 
with common complements are isomorphic - e.g., N ~ EBiEJ Ai above since each of these 
summands of A has M' as a complementary summand. 

Following Warfield [45), we say that a ring R is an exchange ring if RR satisfies the 
(finite) exchange property. By [45, Corollary 2], this definition is left-right symmetric. If 
R is an exchange ring, then every finitely generated projective R-module has the exchange 
property (by [19, Lemma 3.10], the exchange property passes to finite direct sums and 
to direct summands), and so the endomorphism ring of any such module is an exchange 
ring. Further, idempotents lift modulo all ideals of an exchange ring [39, Theorem 2.1, 
Corollary 1.3]. 

The class of exchange rings is quite large. It includes all semiregular rings (i.e., rings 
which modulo the Jacobson radical are regular and have idempotent-lifting), all 1r-regular 
rings, and more; see [45, 43]. Further, all C*-algebras with real rank zero are exchange 
rings, as we prove in Section 7. 

The following criterion for exchange rings was obtained independently by Nicholson and 
the second author. 



4 P. ARA, KR. GOODEARL, K.C. O'MEARA AND E. PARDO 

Lemma 1.1_. [39, Theorem 2.1; 29, p. 167] Let R be a ring. Then, R is an exchange ring 
if and only if for every element a E R there exists an idempotent e E R such that e E Ra 
and 1 - e E R( 1 - a). 0 

For any ring R we denote by FP(R) the class of finitely generated projective right 
R-modules. The following common refinement property for direct sums in FP(R) is well 
known over regular rings [25, Theorem 2.8]. 

Proposition 1.2. Assume that R is an exchange ring and that A1,A2,B1,B2 E FP(R). 
If A1 EB A2 ~ B 1 EB B 2 , there exist decompositions Ai = Aii EB Aiz for i = 1, 2 such that 
A1j EB A2j ~ Bj for j = 1,2. 

Proof. This is a special case of [19, Theorem 4.1]. We give the easy proof for the reader's 
convenience. It suffices to prove the existence of common refinements for any internal 
direct sum decomposition P = AEBB = CEBD, where P,A,B,C,D E FP(R). Now A has 
the exchange property. Then P = A EB C' EB D' for some submodules C' ~ C and D' ~ D; 
moreover, C = C' EB C" and D = D' EB D" for some C", D" E F P(R). Now P = A EBB = 
A EB-C' EB D', whence B IV C' EB D'. Also, P = C' EB D' EB ( C" EB D") = ( C' EB D') EB A, and 
thus A~ C" EB D'1

• 0 

The above common refinement property is fundamental to almost all work on direct 
sum decompositions of finitely generated projective modules over an exchange ring R. 
(See, e.g., [25] for its use in the case of a regular ring.) Since this property involves 
only isomorphisms and direct sums, it can be expressed in the monoid of isomorphism 
classes of objects from FP(R). This provides a convenient notational shorthand that 
simplifies many proofs. Furthermore, the monoid viewpoint provides a perspective which 
is sometimes more suggestive than a module-theoretic viewpoint. 

For any ring R, we denote by V(R) the monoid of isomorphism classes of objects from 
F P( R). We shall use square brackets to denote these isomorphism classes; hence, the addi­
tion operation in V(R) is given by [P] + [Q] = [P EB Q]. This monoid can also be described 
as the monoid of eqU:ivalence classes of idempotents from LJ~=l Mn(R). In particular, this 
shows the right-left symmetry of V(R). 

A monoid Mis said to be a refinement monoid (e.g., [21], [47]) if whenever a+b = c+d 
in M, there exist x,y,z,t EM such that a= x + y and b = z + t while c = x + z and 
d = y+t. It is sometimes convenient to record such simultaneous refinements in the format 
of a refinement matrix 

c d 

(This notation means that the sum of each row equals the element labelling that row, and 
similarly for column sums.) By induction, the refinement property also holds for sums 
with more than two terms, i.e., given a1 + ···+am = b1 + · · · + bn in M, there exist 
elements Xij E M (for i = 1, ... , m and j = 1, ... , n) such that each ai = Xii + · · · + Xin 

and each bj = X1j + · · · + Xmj. Refinement monoids have been extensively studied in recent 
years; see for example [21], [40], [47], [48]. The class of refinement monoids is very large, 
as can be seen from the following result: Every abelian semigroup can be embedded in a 
refinement monoid [30, Theorem 1; 21, Theorem 5.1]. 
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Corollary 1.3. If R is an exchange ring, then V(R) is a refinement monoid. 

Proof. This is just a restatement of Proposition 1.2. D 

5 

This result should be contrasted with the fact that Kt of an exchange ring does not 
always have the refinement property (38]. 

We will make use of a few standard concepts from the theory of abelian monoids. For 
instance, we will occasionally assume that our monoids are conical, meaning that elements 
x, y can satisfy x + y = 0 only when x = y = 0. Note that the monoids V(R) are always 
conical, since a direct sum of modules is zero only when the summands are zero. 

Let M be a monoid. For x, y E M we will write x ~ y if there exists z E M such 
that y = x + z. This translation-invariant preorder (it is reflexive and transitive, but not 
necessarily antisymmetric) is called the algebraic preorder in M [10, 2.1.1]. It is sometimes 
useful to assume that M has an order-unit, i.e., an element u E M such that every element 
of Mis bounded above by a positive multiple of u. In the monoid V(R), we have [A] ~ [BJ 
if and only if A is isomorphic to a direct summand of B. Note that [R] is an order-unit in 
V(R); more generally, a class [A] E V(R) is an order-unit precisely when A is a generator 
in the category of R-modules. 

Finally, we need a concept of 'ideal' for monoids that corresponds, when applied to 
V(R), to ideals of the ring R. The appropriate concept is not that of ideal as used in 
semigroup theory, but rather an analog of the 'o-ideals' studied in the theory of partially 
ordered groups ( cf. [23, p. 20]). 

An o-ideal of a monoid M is a submonoid S ofM such that S is hereditary with respect 
to the algebraic ordering, i.e., y ~ x for y E M and x E S implies y E S. (Equivalently, 
a nonempty subset S of M is an o-ideal if and only if we have a + b E S ~ a, b E S for 
a, b EM.) Observe that the set of invertible elements of M (i.e., its group of units) is an 
o-ideal of M, contained in every o-ideal. The monoid M is said to be o-simple provided 
M is not a group and the only ideals of M are M and the group of units. In particular, a 
nonzero conical monoid is o-simple if and only if all its nonzero elements are order-units. 

Given an o-ideal S of M, we define a congruence ,...., s on M by setting a ,...., s b if and 
only if there exist e, f ES such that a+ e = b + f. Note that a rvs O if and only if a ES. 
Let M / S be the factor monoid obtained from the congruence ,...., s. We shall write elements 
of M/ Sin the form [a]s. In case M is a refinement monoid, the congruence "'S can be 
expressed in the following alternate way: a ,...,,, s b if and only if there exist c E M and 
g, h ES such that a= c + g and b = c + h. 

Let R be a ring and I a ( two-sided) ideal of R. Denote by F P(I) the set of projectives 
PE F P(R) such that P =PI, and by V(I) the set of isomorphism classes [P] E V(R) for 
P E F P(I). If R is an exchange ring, then every finitely generated projective R-module is 
isomorphic to a finite direct sum of principal right ideals of R generated by idempotents, 
so that V(I) is the submonoid of V(R) generated by {[eR] I e = e2 E I}. 

If R is an exchange ring, then so is R/ I for every ideal I of R. The next result determines 
V(R/ I) as a quotient of V(R). 

Proposition 1.4. Let R be an exchange ring and I an ideal of R. Then V(I) is an a-ideal 
of V(R) and V(R)/V(I) ~ V(R/ I). 

Proof. It is clear that V(I) is an o-ideal of V(R). The tensor product functor (-)rg>R(R/ I) 
induces a natural homomorphism </> : V(R) ----"* V(R/ I), and </> in turn induces a natural 
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homomorphism 'lj; : V(R)/V(I) ---+ V(R/ I). First, notice that as R is an exchange ring, 
idempotents-lift modulo I, whence <p and 'lj; are surjective. 

To prove that 'lj; is injective, it suffices to show that whenever A, B E F P(R) with 
A/AI ~ B/BI, there exist decompositions A = A1 EB A2 and B = B1 EB B2 such that 
A1 ,.-.., B1 while A2 = A2I and B2 = B2I. This amounts to a problem about idempotent 
matrices over R which become equivalent modulo I. Since all matrix rings over R are 
exchange rings, it is enough to solve the 1 x 1 case. Therefore we may assume, without 
loss of generality, that A = eR and B = f R for some idempotents e, f E R. 

Now eR/ el ,.-.., f R/ f I, and so there exist x E eRf and y E f Re such that xy = e 
(mod I) and yx - f (mod I). Observe that xy E eRe. Since eRe is an exchange ring with 
unit e, there exists an idempotent g E xyRe such that e - g E ( e - xy )Re; then e - g E I. 
Write g = xyt with t E eRg, and observe that e = g =et= t (mod I). On the other hand, 
the element h = ytx E f Rf is an idempotent such that g rv h and f = yx = yex = ytx = h 
(mod I). Therefore A = gR EB (e - g)R and B = hR EB(! - h)R with gR ,.-.., hR while 
(e - g)R = (e - g)RI and(! - h)R = (! - h)RI, as desired. D 

Although it is not needed in the present paper, we mention that for any exchange ring 
R, the lattice of ideals of V(R) is isomorphic to the lattice of semiprimitive ideals of R 
[40, Teorema 4.1.7]. 

We conclude this section with some further observations about ideals that will be needed 
later. 

Lemma 1.5. Let R be an exchange ring and I an ideal of R. 
(a) Given any idempotents e1 , ... , en E I, there exists an idempotent e E I such that 

e1, ... , en E ReR. 
(b) V ( I) equals a directed union of o-ideals V ( ReR) where e runs through the idempo­

tents in I. 
( c) V(ReR) ,.-.., V( eRe) for any idempotent e E R. 

Proof. (a) It suffices to consider the case n = 2. Since e1REB (1- e1)R = e2REB (1- e2)R, 
Proposition 1.2 yields a decomposition e2R = A EBB such that A and B are isomorphic 
to direct summands of e1R and (1 - e1)R respectively. Hence, there exist idempotents 
f E e1Re1 and f' E (1- e1)R(l- e1) such that(!+ f')R ,.-.., e2R. Note that f' E Re2R ~ I. 
Thus e := e1 + f' is an idempotent in I, and obviously e1 = ee1 E ReR. On the other 
hand, f + f' = e(f + f') E ReR, and therefore e2 E R(f + f' )R ~ ReR. 

(b) This is clear from (a). 
(c) Since the additive functor(-) ®eRe eR sends FP(eRe) into FP(ReR), it induces a 

monoid homomorphism <p: V( eRe) ---+ V(ReR). The functor (- )0RRe, on the other hand, 
does not send all projective R-modules to projective eRe-modules. Consider a projective 
A E FP(ReR). Since A is finitely generated, A= a1eR + · · · + aneR for some ai, whence 
there exists an epimorphism n( eR) ---+ A, and so n( eR) :::::'. A EB B for some R-module B. 
Consequently, n( eRe) rv Ae EBB e, and hence Ae E F P( eRe ). Therefore ( - ) 0 R Re induces 
a monoid homomorphism 'lj;: V(ReR)---+ V(eRe). 

It is clear that 'lj;<p is the identity on V( eRe ). Observe that for all right R-modules A 
there is a natural homomorphism T/A : A 0R Re 0eRe eR---+ A given by multiplication, and 
that T/eR is an isomorphism. If A E F P( ReR), then as above A is isomorphic to a direct 
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summand of n( eR) for some n, whence 'r/A is an isomorphism. Therefore qnp is the identity 
on V(ReR). D 

2. SEPARATIVITY 

We develop some basic characterizations and initial applications of separativity in this 
section. Let us say that a class C of modules is separative if for all A, B E C we have 

A~B. 

A ring R will be called a separative ring if F P(R) is a separative class of modules. This 
is clearly more general than rings for which FP(R) is cancellative. We give some concrete 
classes of examples later, after developing some equivalent formulations of separativity. 

Since some of our work with separative exchange rings R involves calculations with 
the monoids V(R), we turn next to separativity for monoids. The monoid context is also 
convenient for demonstrating the equivalence of various forms of this condition. Recall 
that a monoid Mis separative if for all a, b E M, 

a= b. 

Note that our terminology has been chosen so that a ring R is separative precisely when the 
monoid V(R) is separative. In describing alternate forms of this condition, it is convenient 
to use the following notation, borrowed from [48, Section 2]. For a, b E M we write a ex b 
if there exists a positive integer n such that a :::;; nb; equivalently, a belongs to the o-ideal 
generated by b. 

Since every semigroup can be embedded in a refinement monoid [30, Theorem 1; 21, 
Theorem 5.1], there exist non-separative refinement monoids. In fact, every o-simple coni­
cal monoid can be embedded in an o-simple conical refinement monoid [48, Corollary 2.7], 
and so there exist non-separative o-simple refinement monoids. The first example of such 
a monoid was constructed by Bergman [8]. 

Lemma 2.1. Given a monoid M, the following conditions are equivalent: 
(i) M is separative. 
(ii) For a, b EM, if 2a = 2b and 3a = 3b, then a= b. 
(iii) For a, b EM, if there exists n EN such that na = nb and (n + l)a = (n + l)b, then 

a= b. 
(iv) For a, b, c EM, if a+ c = b + c with c ex a and c ex b, then a= b. 

In case M is a reflnement monoid, separativity is also equivalent to the following: 
(v) For a, b, c EM, if a+ 2c = b + 2c, then a+ c = b + c. 

Proof. The equivalence of (i) and (iv) amounts to Hewitt and Zuckerman's result that 
M is separative if and only if its archimedean components are cancellative [32, Corollary 
4.15.1] (cf. [17, Theorem 4.16]). Our approach via condition (iii) gives an alternate proof. 
The implication (iii) ===?- (iv) is based on an argument of Kimura and Tsai [34, Theorem 
1] (cf. [10, Theorem 2.1.9]). 

(i) ===?- (ii). Observe that 2(2a) = 2(a + b) = 2a +(a+ b). Then by (i), we have 
2a =a+ b. Since 2a = 2b also, we conclude using (i) again that a= b. 
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(ii)====:;, (iii). If n EN such that na = nb and (n + l)a = (n + l)b, then na +a= na + b. 
It follows that na + ka = na + kb = nb + kb for all k E N. If n > 1, then 2n - 2 2:: n 
and so 2(n - l)a = 2(n - l)b and 3(n - l)a = 3(n - l)b. We conclude using (ii) that 
(n - l)a = (n - l)b. Therefore by induction on n, we obtain a= b. 

(iii) ====:;, (iv). Assume that a+ c = b + c with c ~ ka and c ~ kb for some k E N. Write 
ka = c + d for some d EM. We have 

(k + l)a =a+ c + d = b + c + d = ka + b. 

Then (k + 2)a = (k + l)a + b = ka + 2b, and so on: (k + r)a = ka + rb for all r E N. 
By symmetry, (k + r)b = kb+ ra for all r E N. In particular, taking r = k we obtain 
2ka = ka + kb = 2kb. Further, (2k + l)a = ka + (k + l)a = 2ka + b = (2k + l)b, and 
therefore a = b using (iii). 

(iv) ====:;, (i). Obvious. 
Now assume that M is a refinement monoid. The implication (iv) ====:;, (v) is clear. For 

the converse, consider elements a, b, c E M such that a + c = b + c while c oc a and c oc b. 
Since c ~ ka for some k E N, we have c = c1 + · · ·+Ck for some Ci ~ a. It suffices to cancel 
the Ci successively from the equality a+ c1 +···+Ck = b + c1 +···+ck, and so there is no 
loss of generality in assuming that c ~ a. Similarly, we may reduce to the case that c ~ b. 
Now write a = a' + c and b = b' + c for some a', b' E M. Then a' + 2c = b' + 2c and so 
a'+ c = b' + c by (v), that is, a= b. This shows that (v) ====:;, (iv). D 

Lemma 2.1 gives characterizations of separativity (using isomorphism in place of equal­
ity) for any class C of modules which is closed under finite direct sums - simply form 
the monoid of isomorphism classes. (To avoid set-theoretical difficulties, one can apply 
the lemma to monoids of isomorphism classes of modules taken from subsets of C.) In 
particular, (ii) shows that separativity of C occurs precisely when 'multiple-isomorphism' 
(nA ,....., nB for all n > 1) coincides with isomorphism. In this light, it appears that 
'multiple-isomorphism' within the class of finite rank torsionfree abelian groups is a con­
siderably finer equivalence relation than 'near-isomorphism', since by [46, Theorem 5.9] 
the latter is equivalent to nA ~ nB for some n. 

Our main interest in Lemma 2.1 is its application to the monoids V(R). Thus, separa­
tivity for a ring R is equivalent to any of the following conditions holding for all modules 
A,B,C E FP(R): 

(ii) If 2A,...., 2B and 3A,....., 3B, then A"'"' B. 
(iii) If there exists n EN such that nA,...., nB and (n + l)A"'"' (n + l)B, then A~ B. 
(iv) If A EB C "'"' B EB C and C is isomorphic to direct summands of both mA and nB 

for some m, n EN, then A"'"' B. 
We refer to property (iv) as separative cancellation. In case R is an exchange ring, 

separativity is also equivalent to the condition 
( v) If A EB 2C "'"' B EB 2C, then A EB C "'"' B EB C 

for A, B, C E F P(R). In [4, Theorem 3.4], we show that R is separative if and only if all 
regular square matrices over each corner ring eRe are diagonalizable over eRe. 

Many large classes of rings of interest are separative. For instance: 
(1) All rings R with stable rank 1, since FP(R) is cancellative in that case [22, Theorem 

2]. This includes all unit-regular rings as well as all strongly 1r-regular rings [3, Theorem 
4], and hence all algebraic algebras over a field. 
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(2) Any ring whose finitely generated projective modules enjoy uniqueness of square 
roots (2A ,..; 2B ===} A ~ B), because of condition (ii) above. This includes all right 
~ 0 -continuous regular rings [1, Theorem 2.13] and all right self-injective rings ( e.g., [24, 
Theorem 3]), as well as all AW*-algebras - even all Rickart C*-algebras (see [2, Theorem 
2.7]). 

(3) In light of the Extension Theorem that we prove in Section 4, many seemingly patho­
logical examples of regular rings in the literature, from Bergman's example of a directly 
finite regular ring which is not unit-regular [25, Example 4.26] to the rings constructed in 
[5] and [6], are actually separative. 

The examples just mentioned illustrate the point that all known classes of exchange 
rings are separative. Outside the class of exchange rings, however, separativity can easily 
fail. Examples include the first Weyl algebra and the coordinate ring of the 2-sphere ( cf. 
[28, Section 2]). It is not difficult to see that a commutative ring R is separative only if 
F P( R) is actually cancellative. 

Proposition 2.2. The class of separative exchange rings is closed under taking corners, 
finite matrix rings, arbitrary direct products, direct limits, and factor rings. 

Proof. Closure under direct products and direct limits is easy, using Lemma 1.1 and the 
definition of separativity. We leave that part of the proof to the reader. That separativity 
passes to factor rings of exchange rings is easiest to prove using monoid calculations. Since 
we will need the corresponding monoid result later, we defer the proof to Lemma 4.3. 
Finally, let R be an exchange ring and T either a corner eRe or a matrix ring Mn(R). 
Then Tis an exchange ring because it is the endomorphism ring of an object in FP(R). 
In the first case, V(T) ,...., V(ReR) ~ V(R) by Lemma 1.5, while in the second case 
V(T) = V(Te11T) ,...., V(e11Te11) ~ V(R) by the same lemma, where e11 is the usual 
matrix unit. In either case, separativity therefore passes from V(R) to V(T). 0 

Our first application of separativity is to the stability of direct finiteness under the 
formation of matrix rings. Recall that a module A is called directly finite or directly 
infinite according to whether or not A is isomorphic to a proper direct summand of itself. 
A ring R is said to be directly finite provided RR is a directly finite module; equivalently, 
xy = 1 implies yx = 1 for x, y E R. We say that R is stably finite if all matrix rings Mn(R) 
are directly finite; equivalently, if all finitely generated projective R-modules are directly 
finite. 

Proposition 2.3. Any directly finite separative ring R is stably finite. 

Proof. Suppose that nR EB C ,...., nR for some n E N and C E FP(R). Then we have 
(n - l)R EB (R EB C),...., (n - l)R EB R. Since R is separative, we can cancel (n - l)R from 
both sides, obtaining R EB C ,...., R. Then since R is directly finite, we conclude that C = 0. 
Therefore R is stably finite. 0 

An interesting situation in which separativity occurs is the case of an a-simple 'purely 
infinite' monoid, as follows. This is a monoid version of an argument of Cuntz [20, Theorem 
1.4, Proposition 1.5]. 

Proposition 2.4. Let M be an a-simple conical monoid, and assume that for every nonze­
ro element a EM, there exists a nonzero element b EM such that a+ b = a. Then Mis 
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a separative refinement monoid. In fact, the set M* = M \ { 0} is a group. 

Proof. Since Mis conical, M* is closed under addition. We claim that given any x, y E M*, 
there exists an element z E M* such that x + z = y. By hypothesis, y + b = y for some 
b E M*, and we observe that y + nb = y for all n E N. Since M is o-simple, x :::; nb for 
some n. Then x + x' = nb for some x' E M, and x + (x' + y) = y. Since M is conical, 
x' + y E M*, and the claim is proved. 

The claim above implies that M* is a group ( e.g., [18, Section 3.2, Theorem l]). In 
particular, M* is cancellative, and it follows immediately that M is separative. It also 
follows easily that M* is a refinement monoid, and therefore that M is one as well. D 

Corollary 2.5. Let R be a simple ring. If every nonzero finitely generated projective 
R-module is directly infinite, then R is separative. D 

Corollary 2.6. If Risa simple exchange ring which is not separative, then R has a corner 
eRe which is a directly finite, simple, non-separative exchange ring. 

Proof. By Corollary 2.5, there must be some nonzero A E F P(R) which is directly finite. 
Now A= A1 EB··· EB An for some Ai which are isomorphic to direct summands of RR, and 
these Ai must be directly finite. Hence, there exists a nonzero idempotent e E R such that 
eR is a directly finite module. Thus eRe is a directly finite simple exchange ring. Since 
V(eRe) ~ V(ReR) = V(R) by Lemma 1.5, eRe cannot be separative. D 

Although separativity for a ring R is an 'external' condition in that it involves all the 
modules from F P(R), it is equivalent to a corresponding 'internal' version involving direct 
summands of R in case R is an exchange ring (Corollary 2.9). En route to proving this, 
we give the main reduction step as a lemma that will be used again later. 

Lemma 2. 7. Let M be a refinement monoid, and let a, b, c E M with a+ c = b + c. 
(i) There exist decompositions a= a1 + a2 and b = b1 + b2 together with c = c1 + c2 in 

M such that a1 = b1 and a2 + c2 = b2 + c2 = c. 
(ii) If c:::; a and c:::; b, there exist decompositions as in (i) such that c2 :::; a2 and c2 :::; b2 . 

Proof. (i) Since a+ c = b + c, there exists a refinement matrix 

c 

a2) 
Cz 

Set b1 = a1 and c1 = az. 
(ii) We modify the decompositions obtained in (i). Since c2 :::; c:::; a = a1 + a2 , we can 

write c2 = c' + c" with c' :::; a1 and c" :::; a2 . Then a1 = c' + d for some d, and we obtain 
decompositions 

a = d + ( a2 + c'), b = d + (b2 + c'), c = ( c1 + c') + c" 

such that ( a2 + c') + c" = (b2 + c') + c" = c and c" :::; a2 :::; a2 + c'. Thus, after replacing 
the original decompositions of a, b, c with these new ones, we may assume that c2 :::; a2 . 

Note that the procedure just performed reduces c2 while enlarging a2 and b2 • Therefore 
we need only repeat the procedure with the roles of a and b reversed. D 
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Proposition 2.8. Let M be a refinement monoid containing an order-unit u. Then Mis 
separative if and only if, for a, b, c E M, if a+ c = b + c S u with c S a and c S b, then 
a= b. 

Proof. Assume that the given special cases of separativity hold, and suppose that a+ c = 
b + c for a, b, c E M with c ex a and c ex b. As in the proof of Lemma 2.l[(v)===}(iv)], we 
can reduce to the case that c S { u, a, b}. 

Now there exist decompositions a= a1 + a2, b = b1 + b2, and c = c1 + c2 as in Lemma 
2.7(i). Since a2 + c2 = c S u, we may - by hypothesis - cancel c2 from the equation 
a2 + c2 = b2 + c2 • Therefore a2 = b2, and hence a = b as desired. D 

Corollary 2.9. Let R be an exchange ring. Then R is separative if and only if whenever 
A EB C '.:::'. B EB C ;:S(!) R with C ;:S(!) A and C ;:S(!) B, it follows that A"' B. D 

3. STABLE RANK 

It has been known for some time that stable rank conditions on endomorphism rings 
imply various cancellation properties [22, 46]. For a regular ring R, a combination of 
results of Kaplansky, Fuchs and Handelman shows that R has stable rank 1 if and only if 
RR cancels from direct sums ( cf. [25, Theorem 4.5 and Proposition 4.12]). This equivalence 
was recently extended to exchange rings by Yu [50, Theorem 9]; see also [16, Theorem 3]. 
Further, Menal and Moncasi proved that bounds on the stable rank of a regular ring R 
are equivalent to cancellation conditions in FP(R) [36, Theorem 3]. 

We prove that for any exchange ring R, the stable rank of R is determined by cancel­
lation conditions within F P( R). This allows us to restrict the stable rank severely in the 
separative case - namely, the stable rank of a separative exchange ring can only be 1, 2, 
or oo. 

Recall that a ring R satisfies the n-stable rank condition (for a given positive integer n) if 
whenever a1, ... ,an+1 ER with a1R+· · ·+an+1R = R, there exist elements b1, ... , bn ER 
such that 

If n is the least positive integer such that R satisfies the n-stable rank condition, then R 
is said to have stable rank n, and we write sr(R) = n. If no such n exists, then sr(R) = oo. 
The reader is referred to [ 44] for the basic properties of stable rank. 

Lemma 3.1. [39, Proposition 2.9] The following conditions are equivalent for a projective 
module P: 

(i) P has the finite exchange property. 
(ii) If P = M1 +···+Mn, where the Mi are submodules of P, then there is a decom­

position P = P1 EB··· EB Pn with Pi ~ Mi for each i. 
(iii) If P = M + N, where M and N are submodules of P, then there exists a direct 

summand P1 of P such that P1 ~ M and P = P1 + N. D 

Theorem 3.2. Let R be an exchange ring, P E F P(R), and n E N. Then sr(EndR(P)) S 
n if and only if the following condition holds: 

(t) Whenever X, YE FP(R) with nP EB X "'P EBY, there exists Q E FP(R) such that 
nP C=1 P EB Q and Y "'X EB Q. 
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Proof. Set S = EndR(P). The implication ( ===}) is due to Warfield [46, Theorem 1.3], 
and is valid -without the exchange property. 

Conversely, assume that ( t) holds, and let a1, ... , an+l be elements in S such that 
a1S+· · ·+an+1S = S. By Lemma 3.1, there exist orthogonal idempotents e1, ... , en+I ES 
such that e1 + · · · + en+I = 1 and eiP ~ aiP for all i; it follows that eiS ~ aiS, Choose 
elements Xi E Sei such that ei = aiXi, and set Ji = Xiai, Then adi = aiXiai = eiai, 
Further, JiXi = Xi, and hence fr = Ji. 

Note that eiP '.::::'. fiP for all i. Hence, we have 

nP EB en+1P = fiP EB (1 - Ji )P EB··· E9 J nP EB (1 - J n)P EB en+1P 

'.::::'. e1P EB··· EB en+1P EB (1 - fi)P EB··· EB (1 - J n)P 

= P EB (1 - fi)P EB··· EB (1 - Jn)P. 

By (t), there exists a projective Q E FP(R) such that nP "'P EB Q and 

Therefore there exist elements ti E en+1S(l - Ji) and Si E (1 - Ji)Sen+I such that 
I::1 tiSi = en+l· Note that aiSi = ai(l - Ji)Si = (1 - ei)aiSi for all i ~ n. 

For i = 1, ... , n, set Zi = en+1ai(l - Ji) and Ci= Xn+1(ti - zi), and observe that 

n 

di =Si+ Xi - Xi L ajSj 
j=l 
#i 

for i = 1, ... , n. Since Xi = Ji Xi while tdi = zdi = 0, we compute that 

n n n n 
= :r>iSi +Lei+ L(ai - Zi)Si - L ejaiSi 

i=l i=l i=l i,j=l 
i=j:j 

n n 

= 1 + L( ai - Zi)Si - L(l - ei - en+1)aiSi = 1. 
i=l i=l 

Therefore I:~=1(ai + an+1ci)S = S, which verifies that sr(S) ~ n. D 

Theorem 3.2 shows in particular that if P cancels from direct sums in FP(R), then 
EndR(P) has stable rank 1. The converse follows from Evans' theorem [22, Theorem 2]. 
Hence, we obtain a new proof of Yu's result that an exchange ring R has stable rank 1 if 
and only if RR cancels from direct sums [50, Theorem 9]. 
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Theorem 3.3. Let R be a separative exchange ring and Pa finitely generated projective 
R-module. 

(a) sr(EndR(P)) can only be 1, 2, or oo. 
(b) sr(EndR( P)) < oo if and only if the following condition holds: 

for all X, YE FP(R). 

Proof. It is clear from Theorem 3.2 that the condition given in (b) implies sr(EndR(P)) :=::; 

2. It remains to deduce this condition from the assumption that sr(EndR(P)) = n < oo. 
Suppose that 2P ffi X "'P ffi Y for some X, Y E F P(R); we wish to show that P ffi X "'Y. 
Because of the separativity of FP(R), it suffices to prove that P ;S© nY. By adding 
( n - 1) Y to both sides of the isomorphism 2P EB X ~ P ffi Y and repeatedly replacing P ffi Y 
by 2P EB X on the left hand side, we obtain nP ffi (P ffi nX) ~ P ffi nY. Since EndR(P) has 
stable rank n, there exists Q E F P(R) such that nP "' P ffi Q and nY "' (P EB nX) EB Q. 
Therefore P ;S© nY as desired. D 

Theorem 3.4. Let R be a separative exchange ring. If R is simple and directly_ finite, 
then sr(R) = 1. 

Proof. In view of Theorem 3.2, it suffices to show that F P(R) is cancellative. Suppose 
A, B, C are in F P( R) with A ffi C "' B ffi C. If one of A or B is 0, then so is the other, since 
R is stably finite (Proposition 2.3). If both A and B are nonzero, then by simplicity of R, 
we have C ;S© nA and C ;S© nB for some n. Now by separative cancellation in FP(R), 
we obtain A ~ B. Therefore F P( R) is cancellative, as desired. ( An alternative method of 
proof can be found at the end of [28, Section 3]). D 

Returning to Theorem 3.2 for a moment, we note that this result shows that the stable 
rank of an exchange ring R is determined by the monoid V(R). To simplify the connection, 
it is convenient to introduce a definition of stable rank for elements of a monoid, modelled 
on the condition appearing in the theorem. 

Let M be a monoid, a an element of M, and n EN. We say that a satisfies then-stable 
rank condition provided the following implication holds: Whenever na+x = a+y for some 
x, y EM, there exists b EM such that na =a+ bandy= x + b. (Note that then-stable 
rank condition implies the m-stable rank condition for all integers m ~ n.) The stable 
rank of a, denoted sr( a), is the least positive integer n such that a satisfies the n-stable 
rank condition (if such an n exists), or oo (if no such n exists). 

Theorem 3.2 can now be restated as follows: Given a finitely generated projective 
module P over an exchange ring R, the stable rank of the ring EndR(P) equals the stable 
rank of the element [P] in the monoid V(R). In particular, sr(R) = sr([R]). 

We conclude the section by noting a recent result of Wu and Tong: If R is an exchange 
ring such that all idempotents in R/ J(R) are central, then FP(R) is cancellative [49, 
Theorem 2.5]. 

4. EXTENSIONS 

We now develop an Extension Theorem for separativity, which shows that the class of 
separative exchange rings is closed under extensions in the following sense - whenever R 
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is an excha~ge ring with an ideal I such that I and R/ I are both separative, then R is 
separative. (The exchange property for R must be assumed at the outset, since the class 
of exchange rings is not closed under extensions.) 

We say that an ideal I of a ring R is a separative ideal if V(I) is a separative monoid. 
The following characterization of separative ideals of exchange rings is clear from Lemma 
1.5. 

Lemma 4.1. Let R be an exchange ring and I an ideal of R. Then I is separative if and 
only if all corner rings eRe, for idempotents e E I, are separative. D 

Theorem 4.2. (Extension Theorem) Let R be an exchange ring and I an ideal of R. 
Then R is separative if and only if I and R/ I are separative. 

Proof. The result will follow from Theorem 4.5 and Proposition 1.4. 0 

Theorem 4.2 shows that separativity leads to better closure properties than cancellativ­
ity. Namely, if R is an exchange ring and I is an ideal of R such that V(R/ I) and V(I) 
are cancellative then V(R) need not be cancellative; see for example [25, Example 4.26] or 
[36, Example 1). However, Theorem 4.2 shows that V(R) must at least be separative, and 
we shall see in the next section that it in fact satisfies a rather strong form of separativity. 

We derive Theorem 4.2 from a corresponding extension theorem for separative refine­
ment monoids. The monoid approach proved invaluable here. Indeed, we were unable to 
prove Theorem 4.2 with module-theoretic methods, and it was only the perspective afford­
ed by phrasing the problem in terms of refinement monoids that indicated a route to the 
solution. 

Lemma 4.3. Let M be a separative monoid and S an a-ideal of M. Then M/ S is 
separative. 

Proof. Assume that 2[a]s = [a]s + [b]s = 2[b]s for some a, b E M. Then there exist 
e1, e2, e3 E S such that 2a + e1 = a + b + e2 = 2b + e3. After replacing each ei by ei + e3, 
we may assume in addition that e3 :::; 2e2. Now observe that 

with a :::; a+ e1 and a :::; 2a + e1 = 2b + e3 :::; 2(b + e2). By Lemma 2.l(iv), we obtain 
a+ e1 = b + e2 since Mis separative. Therefore [a]s = [b]s. 0 

Lemma 4.4. Let M be a refinement monoid and S a separative a-ideal of M. Assume 
that a + e = b + e for some a, b E M and e E S such that e ex: a and e ex: b. Then a = b. 

Proof. As in the proof of Lemma 2.l[(v)==Hiv)], we can reduce to the case that e:::; a and 
e:::; b. By Lemma 2.7, there exist decompositions 

such that a1 = b1 and a2 + e2 = b2 + e2 :::; e, while also e2 :::; a2 and e2 :::; b2. Since e lies 
in S, so do a2, b2, e2. Hence, a2 = b2 because S is separative, and therefore a = b. 0 

I .· 
! 
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We are n<?w ready to prove our extension theorem for separative refinement monoids. 
The hypotheses of the theorem include the assumption that the whole monoid has refine­
ment, since, in general, an extension of two separative refinement monoids has neither 
separativity nor refinement. For example, consider the (abelian) monoid M generated by 
symbols a, b, c subject to the relation a+ 2c = b + 2c. The order ideal S of M generated by 
c is just the free abelian monoid on c, and the factor M / S is the free abelian monoid gener­
ated by [a]s = [b]s. However, Mis neither separative (2(a+c) = (a+c)+(b+c) = 2(b+c), 
yet a + c #- b + c) nor a refinement monoid ( the relation a + 2c = b + 2c cannot be refined). 

Theorem 4.5. Let M be a refinement monoid and S an o-ideal of M. Then M is 
separative if and only if S and M / S are separative. 

Proof. If M is separative, then Sis obviously separative and M / S is separative by Lemma 
4.3. 

Assume now that Sand M/ Sare separative and that 2a = a+b = 2b for some a, b EM. 
We have to prove that a = b. Let M' be the o-ideal generated by a, which equals the o­
ideal generated by b. Set S' = M' n S. Then S' is a separative o-ideal of M', and M' / S' is 
isomorphic to a submonoid of M / S, whence M' / S' is separative. Thus, changing notation, 
we can assume that M is the o-ideal generated by a. 

Since M / S is separative, we have [a]s = [b]s and so a+ x = b + y for some x, y E S. 
Now 

2a + x = a + b + x = 2b + y = 2a + y. 

Apply refinement to the equality a+ a+ x =a+ a+ y to obtain a refinement matrix 

y 

Y1) Y2 
Y3 

Next, apply refinement to the equality an +a12 +y1 = a12 +a22 +x2 to obtain a refinement 
matrix 

a12 a22 x2 

:~~ ( ~:~ ~:: ~::) 
Y1 C31 C32 C33 

In particular, c12::; {an,a22}, and so we can remove c12 from an and a22 as long as we 
add it to a12 and a21, More precisely, we obtain a new refinement matrix for the equality 
a+ a+ x =a+ a+ y as follows: 

a 

c12 + a12 
C22 + C32 

X2 

y 

Y1) Y2 
Y3 

Further, c11 + c13 ::; a12 + x2 ::; c12 + a12 + x2 and c22 + c32 ::; a12 + Y1 ::; c12 + a12 + Y1. 
Hence, after replacing our first refinement matrix with the new one, we may assume that 
an ::; a12 + x2 and a22 ::; a12 + Y1. 
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With a similar argument, based on a refinement of the equality au + azI + XI = azI + 
a22 + Yz, we -may assume in addition that au ~ azI + Yz and a22 ~ azI + XI. 

Observe that XI,x2,Y1,Y2 E S. Hence, in M/S we have [an]s + [a12]s = [a]s = 
[au]s + [a21]s, with [a11]s ~ {[a12]s, [a21]s}. Since M/ S is separative, [aiz]s = [a21]s, 
and thus a12 + tI = a21 + tz for some tI, tz E S. 

Now we have 

a + x + tI = au + a12 + YI + x + tI = au + a21 + YI + x + tz 

= a + Y1 + xz + Y3 + tz = a21 + a22 + y + xz + tz 

= a12 + a22 + y + xz + t1 = a + y + tI. 

Since tI E S and tI ex a (because the o-ideal generated by a is M), Lemma 4.4 gives us 
a + x = a + y. Finally, note that a + y = a + x = b + y with y E S and y ex a, y ex b, so 
that Lemma 4.4 yields a= b as desired. D 

5. STRONG SEPARATIVITY 

As indicated in the previous section, there is a strong form of separativity that can 
hold even when cancellation still fails. The Extension Theorem leads to a corresponding 
result for strong separativity which allows us to show that the finitely generated projective 
modules over many exchange rings, including a number of seemingly pathological examples, 
satisfy strong separativity. 

Lemma 5.1. Let C be a class of modules, closed under finite direct sums. Then the 
following conditions are equivalent: 

(a) For A, B, CE C, if A EB C,...., B EB C and C ;::;ai nA for some n EN, then A,...., B. 
(b) For A, BE C, if 2A,...., A EBB, then A~ B. 
( c) For A, B, CE C, if A EB 2C,...., B EB C, then A EB C,...., B. 

Proof. Straightforward. (Compare [6, Proposition 4.2].) D 

We shall say that a class C of modules, closed under finite direct sums, is strongly sepa­
rative if the conditions of Lemma 5.1 hold. Condition (a), for finitely generated projective 
modules, was considered in [6] under the name cancellation of small projectives. 

Let us say that a ring R (or an ideal I of R) is strongly separative provided FP(R) 
(or FP(I)) is strongly separative. As with Lemma 4.1, it is clear from Lemma 1.5 that 
an ideal I of an exchange ring R is strongly separative if and only if the corner rings 
eRe are strongly separative for all idempotents e E I. Strongly separative exchange rings 
form a large subclass of separative exchange rings. On the other hand, since members of 
this subclass have stable rank at most 2 (see Theorem 3.3), there are many examples of 
separative exchange rings which lie outside this subclass. In fact, there exist separative 
regular rings with rank functions which are not strongly separative (see [5, Example 3.8]; 
Theorem 4.2 can be used to show that these examples are separative). The exact connection 
between separativity and strong separativity will be given in Proposition 5.6. 

We can now state our Extension Theorem for strong separativity in exchange rings. 
This result will follow immediately from Proposition 1.4 and Theorem 5.5. 
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Theorem 5.2. Let R be an exchange ring and I an ideal of R. Then R is strongly 
separative i{and only if so are I and R/ I. D 

As an application of Theorem 5.2 we see that right semiartinian exchange rings are 
strongly separative. Bergman's example of a directly finite regular ring R which is not 
unit-regular [25, Example 5.10] is right and left semiartinian; hence, V(R) is strongly 
separative but not cancellative. Note that [7, Example 3.1] gives an example of a directly 
finite regular ring which is right semiartinian and a right V-ring (i.e., all simple right 
modules are injective), but not unit-regular. 

The analog of Lemma 5.1 for a monoid Mis that the following conditions are equivalent: 
(a) For a, b, c EM, if a+ c = b + c and c ex a, then a= b. 
(b) For a, b E M, if 2a = a+ b, then a = b. 
( c) For a, b, c E M, if a + 2c = b + c, then a + c = b. 

We say that M is strongly separative provided these conditions are satisfied. 

Lemma 5.3. If Sis an a-ideal of a strongly separative monoid M, then Sand M/S are 
strongly separative. 

Proof. Obviously Sis strongly separative. Consider a, b E M such that 2[a]s = [a]s + [b]s 
in M/ S. Then there exist e, f ES such that 2a+e = a+b+ f, that is, (a+e)+a = (b+ f)+a. 
Since a ~ a+ e, it follows from strong separativity in M that a+ e = b + f. Therefore 

· [a]s = [b]s, proving that M /Sis strongly separative. D 

Lemma 5.4. A monoid M is strongly separative if and only if M is separative and all 
the a-simple factors of principal a-ideals of M are cancellative. 

Proof. Any factor of an o-ideal of M is strongly separative by Lemma 5.3. Since an 
a-simple strongly separative monoid is cancellative, we get one of the implications. 

Now assume that M is separative and that all the a-simple factors of all the principal 
o-ideals of M are cancellative. Let a, b E M be such that 2a = a + b. Denote by I and 
J the a-ideals generated by a and b respectively. Clearly J ~ I. If I = J then a = b by 
separativity of M. If J is strictly contained in I, then we can choose a maximal proper 
o-ideal S of I containing J, and we obtain that 2[a]s = [a]s =I- [O]s in I/ S, contradicting 
the assumption that I/ S is cancellative. Therefore a = b and M is strongly separative. D 

Theorem 5.5. Let M be a reflnement monoid and San a-ideal of M. Then Mis strongly 
separative if and only if S and M / S are strongly separative. 

Proof. One implication is given by Lemma 5.3. Conversely, assume that S and M / S are 
strongly separative. Then all the a-simple factors of principal o-ideals of S and M / S are 
cancellative. Now consider an arbitrary a-simple factor I/ J of a principal o-ideal I of M. 
If I n S ~ J, then 

I I J = I/ ( I n ( J + S)) IV ( I + S) / ( J + S) IV ( ( I + S) / S) / ( ( J + S) / S) 
with (I+ S)/S a principal o-ideal of M/S. On the other hand, if In S </:_ J, then 
(In S) + J = I by the maximality of J and so I/ J ~(In S)/(J n S); since this monoid 
has an order-unit, it is isomorphic to a factor of a principal o-ideal of S. In either of the 
above cases, we conclude that I/ J is cancellative. Since M is separative by Theorem 4.5, 
the result follows from Lemma 5.4. D 

We conclude the section with the following ring-theoretic analog of Lemma 5.4. 
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Proposition 5.6. An exchange ring R is strongly separative if and only if R is separative 
and all simple factor rings of corners of R are directly finite, if and only if R is separative 
and all simple factor rings of corners of R have stable rank 1. 

Proof. This follows from Propositions 1.4, Theorem 3.4, and Lemmas 1.5, 5.4, together 
with the observation that the principal o-ideals of V ( R) are precisely the o-ideals of the 
form V(ReR) for idempotents e E R. It is clear that V(ReR) is the o-ideal generated by 
[eR]. Conversely, the o-ideal of V(R) generated by a class [A] is easily seen to equal V(I) 
where I is the trace ideal of A. We can write A ,...., e1 R EB · · · EB enR for some idempotents 
ei E R, and then I = Re1R + · · · + RenR. In view of Lemma 1.5, I = ReR for some 
idempotent e, and the proof is complete. 0 

6. SEPARATIVE REGULAR RINGS 

Since regular rings. constitute the most thoroughly investigated class of exchange rings, 
and since many of the cancellation problems to which separativity is related were originally 
formulated over regular rings, we summarize our main results in this context and discuss 
their relations with various open questions. In particular, we observe that several basic 
open problems in this area have positive answers within the class of separative regular 
rings. We also develop an elementwise characterization of separativity for regular rings, 
which we use to pinpoint the relationship between separativity and unit-regularity. 

Separativity for regular rings is apparently the norm, in that it holds for all known 
classes of regular rings and is preserved in standard constructions. For instance, the class 
of separative regular rings includes all unit-regular rings, all right or left ~0-continuous 
regular rings (see [1, Theorem 2.13]), and all regular rings satisfying general comparability 
- in fact, all regular rings satisfying 'generalized s-comparability' [41, Theorem 3.9(2)]. 
By Proposition 2.2, this class is closed under taking corners, finite matrix rings, arbitrary 
direct products, direct limits, and factor rings. Further, the class is closed under extensions 
of ideals by factor r1ngs, by [25, Lemma 1.3] and the Extension Theorem ( 4.2). 

The presence of separativity in a regular ring has a number of nontrivial positive impli­
cations, which we summarize in the following theorem. For this reason, separativity was 
awarded a 'blue ribbon' in [28]. 

Recall that a ring Risa right (left) Hermite ring [33] provided every 1 x 2 (2 x 1) matrix 
over R is equivalent to a diagonal matrix. These conditions are equivalent for regular rings 
[36, Proposition 8]. Further, a regular ring R is Hermite if and only if 

2R EB A rv R EB B 

for all A,B E FP(R) [36, Theorem 9]. 

Theorem 6.1. Let R be a separative regular ring. 
(a) If R is directly finite, then R is stably finite. 
(b) If R is simple and directly finite, then R is unit-regular. 
( c) The stable rank of R is 1, 2, or oo. 
( d) If R has finite stable rank, then Risa Hermite ring. 
( e) Every square matrix over R is equivalent to a diagonal matrix. 

Proof. Properties ( a)-( d) follow directly from Proposition 2.3 and Theorems 3.3, 3.4. Part 
(e) is [4, Theorem 2.5]. 0 
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Each of ~he five parts of Theorem 6.1 is itself the subject of an outstanding open 
problem - namely, does that implication or statement hold universally for regular rings? 
Parts (a) and (b) correspond to Open Problems 1 and 3 in [25], parts (c) and (d) arose 
from [36], while part (e) corresponds to Question 6 in [37]. It is generally regarded that, 
on balance, the first four of these problems ( which are seemingly independent) are likely to 
have negative answers. In this light, it seems rather likely that non-separative regular rings 
should exist. One of the reasons that current construction techniques have not yielded non­
separative examples is that the class of separative regular rings is closed under extensions. 
This is in sharp contrast with, say, the class of unit-regular rings. For instance, the first 
example by Bergman of a directly finite regular ring which is not unit-regular [25, Example 
5.10] was constructed as an extension of two unit-regular (in fact, semisimple) rings. 

As Theorem 6.1 and the discussion above show, separativity plays a key role in the 
direct sum decomposition theory of regular rings. Thus the question whether separativity 
holds universally appears as a fundamental problem, which we emphasize by formulating 
the 

Separativity Problem. Are all regular rings separative? 

For a regular ring R, cancellativity for F P(R) can be characterized entirely within the 
ring R by an elementwise property, namely, that each a E R be unit-regular ( a = aua 
for some unit u ). Unit-regularity of certain elements of R also serves to characterize 
separativity. The characterization is as follows; we write r( a) and f( a) for the right and 
left annihilators of an element a. 

Proposition 6.2. A regular ring R is separative if and only if each a E R satisfying 

(*) Rr(a) = f(a)R = R(l - a)R 

is unit-regular in R. 

Proof. Firstly assume that R is separative and a E R satisfies (*). Let J = R(l - a )R 
and choose an idempotent g E J such that 1 - a E gRg. (Such an idempotent exists by 
[31, Lemma 2.4].) Note that J = RgR and a= y + (1 - g) where y = ag = ga is in gRg. 
Also r( a) ~ g R and £(a) ~ Rg. Let A = r( a) and choose principal right ideals B and C 
such that gR = A EB C = B EB yR. Then yR = agR = aC,....., C, so A EB C,....., B EB C. Now 
gR ~ J = RA by (*), whence gR ;S(f) nA for some n. Also by the second equality in (*), 
gR ~ J = f(a)R and so gR ;S(f) m(R/aR),....., m(gR/yR),....., mB for some m. Therefore by 
separative cancellation we can cancel C from A EB C '.:::::'. B EB C to obtain A ,....., B. Finally, 
we see that a is unit-regular because r(a) =A,....., B,....., gR/yR,....., R/aR. 

Conversely, assume (*) always implies the element a is unit-regular. By Corollary 2.9, 
it is enough to show that we can obtain cancellation of C in the special case 

A EB C ~ B EB C <(£) R 
rv 

where A, B, C are principal right ideals of R satisfying C ;S(f) A and C ;S(f) B. Write 
R = A1 EB C1 EB D = B1 EB C2 EB D where A1 ,....., A and B1 ,....., B while C1 ,....., C2 ~ C. Let 
a E R induce (by left multiplication) an endomorphism of RR which is zero on A1 , an 
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isomorphism from C1 onto C2 , and the identity on D. Then (1 - a)R ;:5$ A 1 E9 C1 ;S$ 
2A1 = 2r(a)~ whence (1 - a)R ~ Rr(a) and so R(l - a)R = Rr(a). Also, R/aR'"" B 1 

yields (l-a)R ;S$ A1 E9C1 '""B1 E9C2 ;S$ 2B1 '""2(R/aR), and therefore (l-a)R ~ R(a)R. 
Hence, R(l - a)R = R(a)R. Now a satisfies(*) and so, by assumption, a is unit-regular. 
Thus r(a) ~ R/aR which implies A'"" A1 = r(a) ~ R/aR'"" B 1 '.::::'.Band yields the desired 
cancellation. D 

Proposition 6.2 allows us to give the following connection between separativity and 
unit-regularity, parallel to [6, Proposition 4.9]. 

Proposition 6.3. A regular ring R is unit-regular if and only if R is separative, every 
factor ring of R is directly finite, and units can be lifted modulo every ideal of R. 

Proof. Direct finiteness and separativity are obvious consequences of unit-regularity. That 
units lift is an old folklore result, recently recorded in [7, Lemma 3.5]. 

Conversely, assume that the given conditions hold, and let a E R and I = Rr( a). In the 
factor ring R = R/ I, the right annihilator of 7i is zero, and so Ra= R. By assumption, 7i is 
a unit of Rand lifts to a unit u ER. Set b = u-1a. Then I= Rr(b) and 1- b EI, whence 
Rr(b) = R(l - b )R 2 R(b )R. Since R/ R(b )R is directly finite, we obtain that r(b) ~ R(b )R. 
Thus Rr(b) = R(b)R = R(l - b)R, which by separativity and Proposition 6.2 implies bis 
unit-regular. Now b equals a unit times an idempotent, whence a= ub has the same form, 
and so a is unit-regular. Therefore R is unit-regular. D 

7. APPLICATIONS TO OPERATOR ALGEBRAS 

The cancellation problems for finitely generated projective modules over regular rings 
discussed in the previous section all have analogs over C*-algebras, although in that setting 
it is common to phrase them in terms of orthogonal sums of projections (self-adjoint 
idempotents). The parallels between the two situations, in terms of what is known and 
what is open, are particularly striking for C*-algebras whose 'real rank' (see below) is 
zero. We prove here that these parallels are not just coincidental - the C*-algebras with 
real rank zero are precisely those C*-algebras which are exchange rings .. This theorem 
then allows our separativity results to be applied to C*-algebras with real rank zero. We 
summarize the main applications using operator algebra terminology and notation, for the 
convenience of operator algebraic readers. 

We refer the reader to [9] and [26] for background and notation for C*-algebras. In 
particular, we use'"" and ;S to denote Murray-von Neumann equivalence and subequivalence 
of projections, and we write M 00 (A) for the (non-unital) algebra consisting of w xw matrices 
over an algebra A with only finitely many nonzero entries. Unless specifically noted, our 
C*-algebras are not assumed to be unital. 

The concept of real rank zero for a C*-algebra A has a number of equivalent character­
izations (see [14]). The one that relates most naturally to orthogonal sums of projections 
is the requirement that each self-adjoint element of A can be approximated arbitrarily 
closely by real linear combinations of orthogonal projections. (This is usually phrased as 
saying that the set of self-adjoint elements of A with finite spectrum is dense in the set 
of all self-adjoint elements.) The main result of this section is that the unital C*-algebras 
of real rank zero are exactly the C*-algebras which are exchange rings. Since the class of 
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C*-algebras of real rank zero is quite large (see for example [11]), this gives a wealth of 
new examples of exchange rings. In particular, all von Neumann algebras, AF-algebras, 
irrational rotation algebras and simple purely infinite C*-algebras are exchange rings. (See 
[ 11] and the references therein.) 

Lemma 7.1. Let A be a unital Banach algebra such that for each a EA there exists an 
idempotent e E Aa satisfying Ill - ell ::; 1 and Ila - aell < 1. Then A is an exchange ring. 

Proof. Let a E A, and choose an idempotent 1 - e E A(l - a) with llell ::; 1 such that 
11(1 - a) - (1 - a)(l - e)II < 1. Then lie - aell < 1, and as llell ::; 1, we have that 
lie - eaell < 1. Thus, eae is invertible in the Banach algebra eAe. Let t E eAe such 
that t(eae) = (eae)t = e, and set g = e + ta(l - e). Then, g = g2 and also ta = 
ete(ea) = ete(eae + ea(l - e)) = e + ta(l - e) = g, whence g E Aa. On the other hand, 
1 - g = 1- e -ta(l - e) = (1 - ta)(l - e) E A(l - e) ~ A(l - a). By Lemma 1.1, A is an 
exchange ring. D 

Let A be a C*-algebra. For E > 0, denote by !€ the continuous function from R to R 
which is O on (-oo, E/2], linear on [c/2, El, and 1 on [E, +oo ). For a positive element x in 
A, the set {JE(x) IE> O} forms an approximate identity for the hereditary sub-C*-algebra 
generated by x, namely (xAx)-. As noted in [42, proof of Theorem 7.2], if for each E > 0 
there is a projection p€ EA such that fzc(x)::; p€::; f€; 2 (x), then the projections p€ form 
an approximate identity for (xAx)-. 

Theorem 7.2. Let A be a unital C*-algebra. Then the following conditions are equivalent: 
(a) A has real rank zero. 
(b) A is an exchange ring. 
( c) For any positive element x in A and any E > 0, there exists a projection p E xAx 

such that f€ ( x) E pAp. 
( cl) For each positive element x E A, there exists a projection pin A such that p E xA 

and 1 - p E (1 - x )A. 

Remark. As the proof shows, it is also equivalent to ask that conditions ( c) or ( cl) hold for 
all self-adjoint elements, or that condition ( d) hold for elements x such that O ::; x ::; 1. 

Proof. ( a) =} (b ). By a result of Menal [35, Proposition 4.8], every unital C*-algebra 
with real rank zero satisfies the hypothesis of Lemma 7.1. 

(b) =} ( c ). Let x ::::: 0 in A and E > 0. By Lemma 1.1, there exists an idempotent 
e EA such that e E JE; 2(x)A and 1- e E (1-f€;2 (x))A. Observe that JE;4(x)e = e, 
so that g := ef€;4(x) is an idempotent and eA = gA. Now set z = 1 + (g* - g)(g - g*) 
and observe that p = g*gz-1 is a projection in A ( cf. [9, Proposition 4.6.2]). Note that 
pA = g* A~ JE;4(x)A and sop E f€;4(x)Af€;4(x) ~ xAx. 

On the other hand, since 1 - e E (1 - f€;2 (x))A, we have f€(x)(l - e) = 0 and so 
f€(x) = JE(x)e. Consequently 

JE(x)g = JE(x)ef€;4(x) = f/x)f€/4(x) = f€(x). 

This implies that JE(x) E g* A= pA. Thus pis a projection in xAx such that f€(x) E pAp. 
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(c) ===?- (d). Let x be a positive element in A. By (c), there exists a projection 
p E xAx such that f 1 ; 2 (x) E pAp. By spectral calculus, (1 - f 1; 2 (x))A ~ (1 - x)A. 
Also, 1- p = (1 - f1;2(x))(l - p), and thus 1- p E (1 - f1;2(x))A ~ (1- x)A. 

(d) ===?- (a). It is enough to show that for each positive element x EA, the hereditary 
sub-C*-algebra (xAx)- has an approximate identity consisting of projections (use [14, 
Theorem 2.6(iv)]). For this, it suffices to find, for each E > 0, a projection pin A such that 
f2€(x) ~ P ~ f€;2(x). 

Applying condition (d) to the element f€(x), we get a projection p E f€(x)A such 
that 1 - p E (1 - f€(x))A. Then fz€(x)(l - p) = 0 and so fz€(x) = fz€(x)p. This gives 
fz€( x) ~ p. On the other hand, since p E !€( x )A, we get f€;2 ( x )112 p = p and sop ~ f€;2 ( x ), 
as desired. 0 

Given a (unital) C*-algebra A, all idempotents in matrix algebras Mn(A) are equivalent 
to projections ( e.g., [9, Proposition 4.6.2], [26, Proposition 19.1]). Hence, the monoid V(A) 
may be described as the set of Murray-von Neumann equivalence classes of projections from 
M 00(A), with addition induced from orthogonal sums. This description of V(A) is taken as 
the definition by operator algebraists ( cf. [9, Section 5.1 ]). The same definition is also used 
when A is not unital, and does not conflict with our usage in that case either. Namely, 
if A is identified with a closed ideal in its unitification A"' in the standard manner, the 
above definition of V(A) in terms of projections yields a monoid isomorphic to the one 
constructed from the class FP(A) ~ FP(A"') as in Section 1. 

In view of Theorem 7.2, Corollary 1.3 provides an alternative route to Zhang's Riesz 
decomposition results for projections in C*-algebras with real rank zero [51, Theorem 3.2]: 

Theorem 7.3. Let P1,P2,q1,q2 be projections in M 00 (A) where A is a C*-algebra with 
real rank zero. If P1 EB P2 ,....., q1 EB q2, there exist orthogonal decompositions Pl = r11 EB r12 
and P2 = r21 EB r22 such that q1 ,....., r11 EB r21 and q2 ,....., r12 EB r22. 

Proof. After replacing q1 and q2 by equivalent projections, we may work within the unital 
C*-algebra (p1 EB P2)M00 (A)(p1 EB p2), which has real rank zero by [14, Theorem 2.10, 
Corollary 2.8]. Thus, without loss of generality, we may assume that A is unital and that 
p1, p2 , q1 , q2 all lie in A. By Theorem 7 .2 and Corollary 1.3, V (A) is a refinement monoid. 
The desired result now follows from the description of V(A) as the monoid of equivalence 
classes of projections from M 00 (A). 0 

This theorem of course includes Zhang's original Riesz decomposition result [52, The­
orem 1.1], namely that p ;S qi EB q2 implies p = r1 EB r2 with ri ;:S qi for each i. 

Theorem 7.2 together with Theorem 3.2 yields the following means of calculating stable 
ranks (see the end of Section 3 for the definition of stable rank of elements of a monoid): 

Theorem 7.4. If A is a unital C*-algebra with real rank zero, then its stable rank equals 
the stable rank of the element [lA] in the monoid V(A). 0 

Since the monoid V(A) has the same description in terms of projections in both the 
unital and non-unital cases, the definition of separativity for C*-algebras can be given in 
both cases simultaneously. Thus, a C*-algebra A is separative provided that 
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for projections p, q E M00 (A). (Some equivalent formulations follow from Lemma 2.1.) 
The class- of separative C*-algebras includes those with stable rank 1 ( over which or­

thogonal sums of projections enjoy cancellation) as well as those whose projections satisfy 
the condition p EB p ,.._, q EB q ====>- p ,.._, q. Thus, for example, all AW*-algebras, Rickart C*­
algebras, AF-algebras, and irrational rotation algebras are separative. It follows from re­
sults of Cuntz [20, Theorem 1.4, Proposition 1.5] that all purely infinite simple C*-algebras 
are separative. In work in progress, Brown and Pedersen have shown that C*-algebras of 
real rank zero which are extremally rich in the sense of [15] are separative ( cf. [13, Section 
1]). 

Theorem 7.5. Let A be a C*-algebra witb real rank zero and assume tbat I is a closed 
ideal of A. Tben A is separative if and only if I and A/ I are separative. In particular, A 
is separative if and only if its unitification is separative. 

Proof. This follows from Theorems 4.2 and 7.2. D 

We conclude by summarizing our main applications of separativity in the operator 
algebra context. Recall that a unital C*-algebra A is said to be finite if xx* = 1 implies 
x*x = 1 for x E A; this is equivalent to A being directly finite [9, 6.3.2]. 

Theorem 7.6. Let A be a unital C*-algebra witb real ranlc zero, and assume tbat A is 
separative. 

(a) If A is finite, tben A is stably finite. 
(b) If A is simple and finite, tben A bas stable rank 1. 
(c) Tbe stable rank of A is 1, 2, or oo. 
( d) Tbe stable rank of A is finite if and only if tbe following cancellation property bolds 

for projections p, q E Moo(A): 

Proof. Because of Theorem 7.2, we can apply Proposition 2.3 and Theorems 3.3, 3.4. D 

There exist examples of finite unital C*-algebras which are not stably finite. These 
examples are constructed as extensions of a commutative C*-algebra by the algebra of 
compact operators on a separable infinite-dimensional Hilbert space [9, 6.10.l]. By The­
orems 7.5 and 7.6, no such construction gives a finite but not stably finite C*-algebra of 
real rank zero. 

REFERENCES 

[1) P. Ara, Aleph-nought-continuous regular rings, J. Algebra 109 (1987), 115-126. 
[2] , Left and right projections are equivalent in Rickart C*-algebras, J. Algebra 120 (1989), 

433-448. 
[3] , Strongly 71'-regular rings have stable range one, Proc. Amer. Math. Soc. (to appear). 
[4) P. Ara, K.R. Goodearl, K.C. O'Meara, and E. Pardo, Diagonalization of matrices over regular rings 

( to appear). 
[5) P. Ara, K.R. Goodearl, E. Pardo, and D.V. Tyukavkin, K-theoretically simple von Neumann regular 

rings, J. Algebra 174 (1995), 659-677. 
[6) P. Ara, K.C. O'Meara and D.V. Tyukavkin, Cancellation of projective modules over regular rings 

with comparability, J. Pure Appl. Algebra 107 (1996), 19-38. 



24 P. ARA, K.R. GOODEARL, K.C. O'MEARA AND E. PARDO 

[7) G. Baccella, Semiartinian V-rings and semiartinian von Neumann regular rings, J. Algebra 173 
(1995), 587-612. 

[8) G. Bergman, Personal correspondence, 1990. 
[9) B. Blackadar, !{-Theory for Operator Algebras, MSRI Publications 5, Springer-Verlag, New York, 

1986. 
[10) ___ , Rational C*-algebras and non-stable J{ -theory, Rocky Mountain J. Math. 20 (1990), 285-

316. 
[11) ___ , Projections in C*-algebras, in C*-Algebras: 1943-1993 (R. S. Doran, Ed.), Contemp. Math. 

167 (1994), 131-149. 
[12] B. Blackadar and D. Handelman, Dimension functions and traces on C*-algebras, J. Fune. Anal. 45 

(1982), 297-340. 
[13] L. G. Brown, Homotopy of projections in C*-algebras of stable rank one, in Recent Advances in 

Operator Algebras (Orleans, 1992), Asterisque 232 (1995), 115-120. 
[14) L.G. Brown and G.K Pedersen, C*-algebras of real rank zero, J. Fune. Anal. 99 (1991), 131-149. 
[15) ---, On the geometry of the unit ball of a C*-algebra, J. reine angew. Math. 469 (1995), 113-147. 
[16) V.P. Camillo and H.-P. Yu, Stable range one for rings with many idempotents, Trans. Amer. Math. 

Soc. 347 (1995), 3141-3147. 
[17) A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys 7, Amer. 

Math. Soc., Providence, 1961. 
[18] P.M. Cohn, Algebra, Vol. 1, Second Ed., Wiley, New York, 1982. 
[19) P. Crawley and B. J6nss<;m, Refinements for infinite direct decompositions of algebraic systems, 

Pacific J. Math. 14 (1964), 797-855. 
[20] J. Cuntz, K-theory for certain C*-algebras, Annals of Math. 113 (1981), 181-197. 
[21] H. Dobbertin, Refinement monoids, Vaught monoids, and Boolean algebras, Math. Annalen 265 

(1983), 473-487. 
[22) E.G. Evans, Jr., Krull-Schmidt and cancellation over local rings, Pacific J. Math. 46 (1973), 115-121. 
[23) L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. 
[24) K. R. Goodearl, Direct sum properties of quasi-injective modules, Bull. Amer. Math. Soc. 82 (1976), 

108-110. 
[25] ---, Von Neumann Regular Rings, Pitman, London, 1979; Second Ed., Krieger, Malabar, Fl., 

1991. 
[26) ---, Notes on real and complex C*-algebras, Shiva Math. Series 5, Nantwich (Cheshire), 1982. 
[27) ---, Torsion in Ko of unit-regular rings, Proc. Edinburgh Math. Soc. 38 (1995), 331-341. 
[28) --- , Von Neumann regular rings and direct sum decomposition problems, in Abelian Groups and 

Modules, Padova 1994 (A. Facchini and C. Menini, eds.), Kluwer, Dordrecht, 1995, pp. 249-255. 
[29) K.R. Goodearl and R.B. Warfield, Jr., Algebras over zero-dimensional rings, Math. Annalen 223 

(1976), 157-168. 
[30) P.A. Grillet, Interpolation properties and tensor products of semigroups, Semigroup Forum 1 (1970), 

162-168. 
[31) J. Hannah and K.C. O'Meara, Products of idempotents in regular rings, II, J. Algebra 123 (1989), 

223-239. 
[32) E. Hewitt and H.S. Zuckerman, The £1-algebra of a commutative semigroup, Trans. Amer. Math. 

Soc. 83 (1956), 70-97. 
[33] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491. 
[34] N. Kimura and Y.-S. Tsai, On power cancellative archimedean semigroups, Proc. Japan Acad. 48 

(1972), 553-554. 
[35] P. Menal, Spectral Banach algebras of bounded index, J. Algebra 154 (1993), 27-66. 
[36) P. Menal and J. Moncasi, On regular rings with stable range 2, J. Pure Appl. Algebra 24 (1982), 

25-40. 
[37] J. Moncasi, Rang estable en anells regulars, Ph.D. Thesis, Universitat Autonoma de Barcelona, 1984. 
[38] ---, A regular ring whose Ko is not a Riesz group, Communic. in Algebra 13 (1985), 125-131. 
[39) W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 

269-278. 



SEPARATIVE CANCELLATION OVER EXCHANGE RINGS 25 

(40] E. Pardo, Monoides de refinament i anells d'intercanvi, Ph.D. Thesis, Universitat Autonoma de 
Barcelona, 1995. 

(41] ---, Comparability, separativity and exchange rings, Communic. in Algebra (to appear). 
(42] M. R¢rdam, On the structure of simple C*-algebras tensored with a UHF-algebra, II, J. Fune. Anal. 

107 (1992), 255-269. 
(43] J. Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), 

437-453. 
(44] L.N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Fune. Anal. Applic. 5 

(1971), 102-110. 
(45] R.B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. 
(46] ___ , Cancellation of modules and groups and stable range of endomorphism rings, Pacific J. 

Math. 91 (1980), 457-485. 
(47] F. Wehrung, Injective positively ordered monoids I,II, J. Pure Appl. Algebra 83 (1992), 43-82, 83-100. 
(48] ___ , Embedding simple commutative monoids into simple refinement monoids, Semigroup Forum 

(to appear). 
(49] T. Wu and W. Tong, Finitely generated projective modules over exchange rings, manuscripta math. 

86 (1995), 149-157. 
(50] H.-P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), 105-109. 
(51] S. Zhang, Diagonalizing projections in multiplier algebras and in matrices over a C*-algebra, Pacific 

J. Math. 145 (1990), 181-200. 
(52] , A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory 

24 (1990), 204-225. 
(53] ___ , Certain C*-algebras with real rank zero and their corona and multiplier algebras. Part I, 

Pacific J. Math. 155 (1992), 169-197. 

P. ARA: DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA, 08193 BEL­

LATERRA (BARCELONA), SPAIN 

E-mail address: para@mat.uab.es 

K.R. GOODEARL: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, 

CALIFORNIA 93106, USA 

E-mail address: goodearl@math.ucsb.edu 

K.C. O'MEARA: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CANTERBURY, CHRISTCHURCH, 

NEW ZEALAND 

E-mail address: komeara@math.canterbury.ac.nz 

E. PARDO: DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA, 08193 
BELLATERRA (BARCELONA), SPAIN 

E-mail address: epardo@mat.uab.es 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40; only even numbered pages
     Trim: none
     Shift: move right by 51.02 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Right
     51.0236
     0.0000
            
                
         Even
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     25
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40; only even numbered pages
     Trim: none
     Shift: move left by 2.83 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Left
     2.8346
     0.0000
            
                
         Even
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     25
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40; only even numbered pages
     Trim: none
     Shift: move left by 2.83 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Left
     2.8346
     0.0000
            
                
         Even
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     25
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40; only odd numbered pages
     Trim: none
     Shift: move right by 22.68 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Right
     22.6772
     0.0000
            
                
         Odd
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     26
     24
     12
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40; only odd numbered pages
     Trim: none
     Shift: move left by 2.83 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Left
     2.8346
     0.0000
            
                
         Odd
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     26
     24
     12
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40
     Trim: none
     Shift: move left by 28.35 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Left
     28.3465
     0.0000
            
                
         Both
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     25
     25
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40
     Trim: none
     Shift: move right by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Right
     14.1732
     0.0000
            
                
         Both
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     25
     25
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 40
     Trim: none
     Shift: move down by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1797
     167
     Fixed
     Down
     14.1732
     0.0000
            
                
         Both
         2
         SubDoc
         40
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     25
     25
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 0.92, 642.42 Width 599.42 Height 199.50 points
     Mask co-ordinates: Horizontal, vertical offset 546.34, -0.01 Width 73.21 Height 711.98 points
     Mask co-ordinates: Horizontal, vertical offset 480.45, 115.30 Width 134.53 Height 53.99 points
     Mask co-ordinates: Horizontal, vertical offset 248.92, 280.94 Width 106.16 Height 53.99 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     0.9151 642.4192 599.4174 199.5008 546.3392 -0.0098 73.2113 711.9798 480.4491 115.298 134.5258 53.9933 248.9184 280.9385 106.1563 53.9933 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     0
     26
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 556.41, -0.01 Width 41.18 Height 839.18 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         AllDoc
         17
              

       CurrentAVDoc
          

     556.4058 -0.0098 41.1814 839.1844 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     26
     25
     26
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 1.83, 725.70 Width 592.10 Height 116.22 points
     Mask co-ordinates: Horizontal, vertical offset 389.85, 491.42 Width 92.43 Height 43.93 points
     Mask co-ordinates: Horizontal, vertical offset 495.09, 163.80 Width 36.61 Height 39.35 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     1.8303 725.6971 592.0963 116.2229 389.8501 491.4209 92.4293 43.9268 495.0913 163.8004 36.6056 39.3511 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     1
     26
     1
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 125.37, 733.93 Width 10.07 Height 9.15 points
     Mask co-ordinates: Horizontal, vertical offset -6.41, 39.34 Width 50.33 Height 59.48 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     125.3743 733.9333 10.0666 9.1514 -6.406 39.3412 50.3328 59.4841 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     26
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 379.78, 796.16 Width 203.16 Height 38.44 points
     Mask co-ordinates: Horizontal, vertical offset 140.02, 463.05 Width 48.50 Height 15.56 points
     Mask co-ordinates: Horizontal, vertical offset 345.92, 461.22 Width 10.07 Height 6.41 points
     Mask co-ordinates: Horizontal, vertical offset 454.83, 627.78 Width 21.05 Height 20.13 points
     Mask co-ordinates: Horizontal, vertical offset 91.51, 35.68 Width 66.81 Height 67.72 points
     Mask co-ordinates: Horizontal, vertical offset -26.54, 455.73 Width 74.13 Height 132.70 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     379.7836 796.1629 203.1613 38.436 140.0166 463.0516 48.5025 15.5574 345.9233 461.2213 10.0666 6.406 454.8251 627.777 21.0482 20.1331 91.5141 35.6807 66.8053 67.7205 -26.5391 455.7305 74.1264 132.6955 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     3
     26
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 426.46, 793.42 Width 142.76 Height 44.84 points
     Mask co-ordinates: Horizontal, vertical offset 134.53, 215.05 Width 84.19 Height 26.54 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     426.4557 793.4175 142.762 44.8419 134.5258 215.0483 84.193 26.5391 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     4
     26
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 125.37, 738.51 Width 12.81 Height 4.58 points
     Mask co-ordinates: Horizontal, vertical offset 532.61, 75.03 Width 41.18 Height 28.37 points
     Mask co-ordinates: Horizontal, vertical offset 1.83, 158.31 Width 57.65 Height 150.08 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     125.3743 738.509 12.812 4.5757 532.6121 75.0317 41.1813 28.3694 1.8303 158.3096 57.6539 150.0831 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     5
     26
     5
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 107.07, 792.50 Width 488.69 Height 49.42 points
     Mask co-ordinates: Horizontal, vertical offset 469.47, 759.56 Width 22.88 Height 27.45 points
     Mask co-ordinates: Horizontal, vertical offset 213.23, 767.79 Width 28.37 Height 5.49 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     107.0715 792.5024 488.6853 49.4176 469.4674 759.5573 22.8785 27.4542 213.2279 767.7936 28.3694 5.4908 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     6
     26
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 485.02, 59.47 Width 71.38 Height 25.62 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     485.0248 59.4744 71.381 25.6239 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     6
     26
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 146.42, 787.93 Width 388.94 Height 47.59 points
     Mask co-ordinates: Horizontal, vertical offset 126.29, 740.34 Width 5.49 Height 1.83 points
     Mask co-ordinates: Horizontal, vertical offset 351.41, 651.57 Width 13.73 Height 10.07 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     146.4226 787.9266 388.935 47.5873 126.2895 740.3393 5.4908 1.8303 351.4142 651.5706 13.7271 10.0666 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     7
     26
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 414.56, 797.99 Width 150.08 Height 42.10 points
     Mask co-ordinates: Horizontal, vertical offset 442.01, 754.07 Width 27.45 Height 17.39 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     414.5589 797.9933 150.0831 42.0965 442.0132 754.0665 27.4542 17.3876 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     8
     26
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 31.11, 805.31 Width 148.25 Height 35.69 points
     Mask co-ordinates: Horizontal, vertical offset 469.47, 804.40 Width 58.57 Height 34.78 points
     Mask co-ordinates: Horizontal, vertical offset 334.25, 610.21 Width 3.05 Height 3.49 points
     Mask co-ordinates: Horizontal, vertical offset 534.54, 554.36 Width 42.33 Height 176.29 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     31.1148 805.3143 148.2529 35.6905 469.4674 804.3992 58.5691 34.7754 334.2538 610.2114 3.0545 3.4909 534.5443 554.357 42.3272 176.2905 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     9
     26
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 160.58, 758.14 Width 13.53 Height 9.60 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     160.5815 758.1384 13.5273 9.6 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     9
     26
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 281.86, 669.87 Width 8.24 Height 8.24 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     281.8635 669.8735 8.2363 8.2363 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     10
     26
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 43.01, 840.09 Width 0.92 Height 0.00 points
     Mask co-ordinates: Horizontal, vertical offset 10.07, 796.16 Width 547.25 Height 43.93 points
     Mask co-ordinates: Horizontal, vertical offset 88.77, 672.62 Width 4.58 Height 3.66 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     43.0116 840.0898 0.9151 0 10.0665 796.1629 547.2544 43.9268 88.7687 672.6189 4.5757 3.6606 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     11
     26
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 477.70, 794.33 Width 67.72 Height 43.01 points
     Mask co-ordinates: Horizontal, vertical offset 67.72, 273.62 Width 44.84 Height 40.27 points
     Mask co-ordinates: Horizontal, vertical offset 436.52, 533.52 Width 38.44 Height 15.56 points
     Mask co-ordinates: Horizontal, vertical offset 416.39, 571.95 Width 47.59 Height 21.05 points
     Mask co-ordinates: Horizontal, vertical offset 527.12, 632.35 Width 39.35 Height 14.64 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     477.7036 794.3327 67.7204 43.0117 67.7204 273.6174 44.8419 40.2662 436.5223 533.5174 38.4359 15.5574 416.3892 571.9534 47.5873 21.0482 527.1213 632.3527 39.3511 14.6423 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     12
     26
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 150.08, 787.93 Width 36.61 Height 25.62 points
     Mask co-ordinates: Horizontal, vertical offset 184.86, 767.79 Width 11.90 Height 2.75 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     150.0832 787.9267 36.6056 25.624 184.8585 767.7936 11.8968 2.7454 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     12
     26
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 85.11, 786.10 Width 223.29 Height 48.50 points
     Mask co-ordinates: Horizontal, vertical offset 160.23, 763.37 Width 8.38 Height 7.33 points
     Mask co-ordinates: Horizontal, vertical offset 358.69, 718.87 Width 141.90 Height 20.95 points
     Mask co-ordinates: Horizontal, vertical offset 125.65, 739.15 Width 5.08 Height 2.54 points
     Mask co-ordinates: Horizontal, vertical offset 145.99, 744.23 Width 3.27 Height 3.99 points
     Mask co-ordinates: Horizontal, vertical offset 273.82, 686.85 Width 4.36 Height 2.18 points
     Mask co-ordinates: Horizontal, vertical offset 272.36, 651.99 Width 13.44 Height 9.44 points
     Mask co-ordinates: Horizontal, vertical offset 189.43, 139.09 Width 53.08 Height 34.78 points
     Mask co-ordinates: Horizontal, vertical offset 485.94, 69.54 Width 38.44 Height 25.62 points
     Mask co-ordinates: Horizontal, vertical offset -1.83, 433.77 Width 55.82 Height 148.25 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     85.1081 786.0964 223.2944 48.5025 160.2322 763.3748 8.3781 7.3309 358.6896 718.8658 141.9049 20.9454 125.6508 739.1477 5.0841 2.5421 145.9874 744.2318 3.2684 3.9947 273.8172 686.8537 4.3578 2.1789 272.3646 651.991 13.4366 9.442 189.4342 139.0916 53.0782 34.7754 485.9399 69.5409 38.4359 25.624 -1.8303 433.767 55.8236 148.2528 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     13
     26
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 325.79, 754.07 Width 18.30 Height 11.90 points
     Mask co-ordinates: Horizontal, vertical offset 67.72, 803.48 Width 63.14 Height 26.54 points
     Mask co-ordinates: Horizontal, vertical offset -7.32, 378.86 Width 66.81 Height 203.16 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     325.7902 754.0664 18.3028 11.8969 67.7204 803.4841 63.1447 26.5391 -7.3211 378.8586 66.8053 203.1613 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     14
     26
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 158.32, 802.57 Width 66.81 Height 35.69 points
     Mask co-ordinates: Horizontal, vertical offset 37.53, 755.52 Width 67.64 Height 21.82 points
     Mask co-ordinates: Horizontal, vertical offset 124.80, 739.81 Width 10.04 Height 4.36 points
     Mask co-ordinates: Horizontal, vertical offset 528.44, 811.81 Width 16.15 Height 16.15 points
     Mask co-ordinates: Horizontal, vertical offset 358.69, 616.32 Width 9.60 Height 6.98 points
     Mask co-ordinates: Horizontal, vertical offset 201.16, 403.38 Width 30.98 Height 18.76 points
     Mask co-ordinates: Horizontal, vertical offset 394.47, 409.48 Width 23.13 Height 20.95 points
     Mask co-ordinates: Horizontal, vertical offset 388.80, 453.99 Width 3.49 Height 2.62 points
     Mask co-ordinates: Horizontal, vertical offset 372.22, 317.41 Width 156.22 Height 24.00 points
     Mask co-ordinates: Horizontal, vertical offset 380.51, 357.12 Width 18.33 Height 17.02 points
     Mask co-ordinates: Horizontal, vertical offset 17.45, 367.16 Width 34.04 Height 21.38 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     158.3194 802.5689 66.8053 35.6905 37.5272 755.5202 67.6362 21.8181 124.7997 739.8111 10.0363 4.3636 528.4352 811.811 16.1454 16.1454 358.6901 616.3205 9.6 6.9818 201.1632 403.3755 30.9818 18.7636 394.4718 409.4846 23.1272 20.9454 388.7991 453.9936 3.4909 2.6182 372.2173 317.412 156.2178 24 380.5082 357.121 18.3272 17.0182 17.4545 367.1574 34.0363 21.3818 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     15
     26
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 346.84, 788.84 Width 187.60 Height 48.50 points
     Mask co-ordinates: Horizontal, vertical offset 125.37, 739.42 Width 8.24 Height 4.58 points
     Mask co-ordinates: Horizontal, vertical offset 485.02, 636.93 Width 49.42 Height 32.03 points
     Mask co-ordinates: Horizontal, vertical offset 85.11, 513.38 Width 90.60 Height 27.45 points
     Mask co-ordinates: Horizontal, vertical offset 6.41, 467.63 Width 32.03 Height 53.99 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     346.8385 788.8418 187.6039 48.5025 125.3743 739.4242 8.2363 4.5757 485.0248 636.9284 49.4176 32.0299 85.1081 513.3844 90.599 27.4542 6.406 467.6273 32.0299 53.9933 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     16
     26
     16
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 10.07, 801.65 Width 162.90 Height 35.69 points
     Mask co-ordinates: Horizontal, vertical offset 418.22, 760.47 Width 2.75 Height 3.66 points
     Mask co-ordinates: Horizontal, vertical offset 415.47, 755.90 Width 10.07 Height 14.64 points
     Mask co-ordinates: Horizontal, vertical offset 172.96, 739.42 Width 5.49 Height 3.66 points
     Mask co-ordinates: Horizontal, vertical offset 204.08, 68.63 Width 176.62 Height 21.05 points
     Mask co-ordinates: Horizontal, vertical offset 510.65, 88.76 Width 45.76 Height 28.37 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     10.0665 801.6538 162.8951 35.6906 418.2195 760.4724 2.7454 3.6606 415.4741 755.8968 10.0666 14.6423 172.9617 739.4242 5.4908 3.6606 204.0765 68.6258 176.6222 21.0483 510.6487 88.7589 45.757 28.3694 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     17
     26
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 289.43, 758.03 Width 58.83 Height 7.99 points
     Mask co-ordinates: Horizontal, vertical offset 382.04, 782.73 Width 17.07 Height 25.06 points
     Mask co-ordinates: Horizontal, vertical offset 541.82, 740.96 Width 8.72 Height 37.04 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     289.4327 758.0317 58.8307 7.9894 382.0367 782.7261 17.0682 25.0576 541.8239 740.9635 8.7156 37.0416 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     17
     26
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 273.63, 758.64 Width 7.32 Height 5.49 points
     Mask co-ordinates: Horizontal, vertical offset 443.84, 789.76 Width 104.33 Height 48.50 points
     Mask co-ordinates: Horizontal, vertical offset 167.47, 571.04 Width 12.81 Height 11.90 points
     Mask co-ordinates: Horizontal, vertical offset 388.02, 584.77 Width 15.56 Height 13.73 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     273.6272 758.6421 7.3211 5.4908 443.8434 789.7569 104.326 48.5024 167.4708 571.0382 12.812 11.8969 388.0198 584.7653 15.5574 13.7271 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     18
     26
     18
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 15.56, 792.50 Width 93.34 Height 41.18 points
     Mask co-ordinates: Horizontal, vertical offset 465.81, 808.06 Width 70.47 Height 20.13 points
     Mask co-ordinates: Horizontal, vertical offset 32.03, 13.72 Width 397.17 Height 71.38 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     15.5574 792.5024 93.3444 41.1813 465.8068 808.0597 70.4659 20.1331 32.0299 13.7173 397.1712 71.381 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     19
     26
     19
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 489.60, 812.64 Width 18.30 Height 15.56 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     489.6005 812.6355 18.3028 15.5574 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     20
     26
     20
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 84.19, 758.64 Width 32.95 Height 29.28 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     84.193 758.6421 32.9451 29.2845 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     21
     26
     21
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 472.21, 787.93 Width 102.50 Height 50.33 points
     Mask co-ordinates: Horizontal, vertical offset -11.90, 27.44 Width 100.67 Height 74.13 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     472.2128 787.9266 102.4958 50.3328 -11.8968 27.4444 100.6655 74.1264 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     22
     26
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 422.80, 589.34 Width 11.90 Height 7.32 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     422.7952 589.341 11.8968 7.3211 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     22
     26
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 123.54, 762.30 Width 23.79 Height 72.30 points
     Mask co-ordinates: Horizontal, vertical offset 4.58, 495.08 Width 53.99 Height 198.59 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     123.5441 762.3027 23.7937 72.2961 4.5757 495.0815 53.9933 198.5856 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     22
     26
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 423.71, 783.35 Width 145.51 Height 53.08 points
     Mask co-ordinates: Horizontal, vertical offset 178.45, 2.74 Width 409.98 Height 97.00 points
     Mask co-ordinates: Horizontal, vertical offset 349.58, 542.67 Width 14.64 Height 7.32 points
     Mask co-ordinates: Horizontal, vertical offset 510.65, 597.58 Width 9.15 Height 9.15 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     423.7103 783.3509 145.5074 53.0782 178.4525 2.7356 409.9832 97.0049 349.5839 542.6688 14.6423 7.3212 510.6487 597.5773 9.1514 9.1514 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     24
     26
     24
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 148.25, 785.18 Width 70.47 Height 27.45 points
     Mask co-ordinates: Horizontal, vertical offset 266.31, 255.31 Width 53.99 Height 27.45 points
     Mask co-ordinates: Horizontal, vertical offset 86.94, 508.81 Width 8.24 Height 4.58 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     148.2529 785.1812 70.4659 27.4543 266.3061 255.3145 53.9933 27.4542 86.9384 508.8086 8.2363 4.5757 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     25
     26
     25
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 126.11, 738.94 Width 5.45 Height 2.18 points
     Mask co-ordinates: Horizontal, vertical offset 285.05, 554.25 Width 1.96 Height 2.62 points
     Mask co-ordinates: Horizontal, vertical offset 152.84, 122.25 Width 2.62 Height 3.60 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     126.1092 738.9381 5.4546 2.1818 285.0544 554.2474 1.9636 2.6182 152.8363 122.2477 2.6182 3.6 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     24
     26
     24
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 350.50, 457.56 Width 17.39 Height 7.32 points
     Mask co-ordinates: Horizontal, vertical offset 393.51, 401.74 Width 12.81 Height 8.24 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     350.4991 457.5607 17.3877 7.3211 393.5107 401.7371 12.812 8.2363 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     25
     26
     25
     1
      

   1
  

 HistoryList_V1
 qi2base





